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ARE GIANTS IN RANDOM DIGRAPHS ‘ALMOST’

LOCAL?

REMCO VAN DER HOFSTAD AND MANISH PANDEY

Abstract. Recently, the first author showed that the giant in random

undirected graphs is ‘almost’ local. This means that, under a necessary

and sufficient condition, the limiting proportion of vertices in the giant

converges in probability to the survival probability of the local limit. We

extend this result to the setting of random digraphs, where connectivity

patterns are significantly more subtle. For this, we identify the precise

version of local convergence for digraphs that is needed.

We also determine bounds on the number of strongly connected com-

ponents, and calculate its asymptotics explicitly for locally tree-like di-

graphs, as well as for other locally converging digraph sequences under

the ‘almost-local’ condition for the strong giant. The fact that the num-

ber of strongly connected components is not local once more exemplifies

the delicate nature of strong connectivity in random digraphs.

1. Introduction and main results

1.1. Introduction. In the realm of network and graph theory, the study
of directed graphs, also known as digraphs, has gained considerable interest
due to their ubiquitous presence in various real-world applications, such as
social networks, transportation systems, and information flow analysis. Un-
derstanding their connectivity properties is fundamental for gaining insights
into the dynamics of complex systems that are modelled using random di-
graphs. A strongly connected component is called a strong giant when its size
is asymptotically linear in the number of vertices. The giant size is crucial
for the understanding of connectivity in a network. There are other notions
for graph components and subsequently giants in digraphs, sometimes called
weak giants, which we discuss in more detail in Section 6.

In this paper, we explore the limiting connectivity structure of locally
converging digraphs. Specifically, our research focuses on the limiting pro-
portion of vertices in the largest strongly connected component, and the
number of connected components, in these graphs.

Local convergence of random graphs, first introduced in [1, 2], is a well-
studied notion. It describes what a graph looks like locally, as the number
of vertices grows large. It is discussed in detail in [9, Chapter 2] for undi-
rected graphs, and in [9, Section 9.2] for digraphs. When the local limit
of a sequence of random graphs/digraphs is known, we are able to predict
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2 REMCO VAN DER HOFSTAD AND MANISH PANDEY

properties about the graph that are continuous with respect to the local
topology.

For undirected graphs, the number of vertices in the largest connected
component, which is also called the giant, is not continuous under the local
topology, but [8] shows that this quantity is ‘almost’ local. Indeed, the
proportion of vertices in the giant converges to the survival probability of
the local limit if and only if a certain condition holds. In this paper we show
that the giant strongly connected component is also ‘almost’ local for the
case of random digraphs.

The difference between the directed and the undirected case is quite deli-
cate. One example to illustrate this subtlety is through the number of con-
nected components. In the undirected case, the asymptotics for the number
of connected components can easily be obtained since it is continuous in the
local topology. In contrast, the directed case turns out to be much more
complex due the stronger, and less local, notion of connectivity. In particu-
lar, it is an open question whether it is ‘almost’ local or not, which we answer
affirmatively in this paper.

Connectivity properties of random digraphs have attracted substantial
attention. The diameter of the directed configuration model is studied in [3],
the size of the largest strongly connected component of a random digraph
with prescribed degrees in [4], Weak components of the directed configuration
model in [5], percolation in simple random digraphs with prescribed degrees
in [11], and graph distances in [10].

1.2. Preliminaries. In this section, we discuss different types of connected
components in digraphs, and informally introduce the notion of local con-
vergence in directed random graphs.

Let G = (V (G), E(G)) be a digraph. We denote the length of the shortest
directed path between u, v ∈ V (G) by dG(u, v). We define dG(u, v) = ∞ if
there is no directed path between u and v. In digraphs, the distance is not
symmetric, i.e., dG(u, v) 6= dG(v, u).

Definition 1.1 (Vertex-induced subgraph). Let G = (V (G), E(G)) be a
digraph and U ⊂ V (G). Then, the digraph induced by the vertex set U ,
which we denote by G[U ], is the digraph obtained by removing all the vertices
in U c = V (G) \ U , along with the edges incident to these vertices, from G.
◭

Definition 1.2 (Strongly connected component of a vertex). Fix v ∈ V (G),
then we let Cv be the strongly connected component of v, defined as

Cv := G [{x ∈ V (G) : dG(x, v) < ∞, dG(v, x) < ∞}] . (1.1)

◭

Definition 1.3 (In- and out-component, weak components of a vertex). Fix
v ∈ V (G), then we let C −

v and C +
v to be the in- and out-component of v,
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respectively, defined as

C
−

v := G [{x ∈ V (G) : dG(x, v) < ∞}] , (1.2)

C
+
v := G [{x ∈ V (G) : dG(v, x) < ∞}] . (1.3)

◭

The strongly connected components of a digraph partitions the vertex set.
Let (C(i))i≥1 denote the unique partition formed by the strongly connected
components of Gn, ordered in such a way that |C(1)| ≥ |C(2)| ≥ |C(3)| ≥ · · · ,
where | · | denote the size of the vertex set and ties are broken arbitrarily.
Thus, C(1) is the largest strongly connected component(LSCC) of the graph,
which we also denote by Cmax.
Local convergence in random digraphs. Local convergence of random
digraphs describes what a digraph locally looks like from the perspective of
a uniformly chosen vertex, as the number of vertices in the digraph tends
to infinity. For example, the sparse Erdős-Rényi random digraph, which is
formed by bond percolation on the complete digraph of size n with probabil-
ity p = λ/n, locally looks like a Poisson branching process with parameter
λ in both directions, as n tends to infinity.

Now let us give the informal definition of local convergence. We write

Xn
P

→ X when Xn converges in probability to X.

Definition 1.4 (Forward-backward neighbourhood). Let G be a digraph and

v ∈ V (G). Then B(G)
r (v) is the rooted digraph with root v, induced by the

vertex set V (B(G)
r (v)), where

V (B(G)
r (v)) = {u ∈ V (G) : min{dG(u, v), dG(v, u)} < r} , (1.4)

where a rooted digraph is a digraph with a distinguished vertex, called a root,

defined formally in Definition 2.1. ◭

Definition 1.5 (Digraph isomorphism). Two digraphs, G1 and G2 are said
to be directed isomorphic if there exists a bijection φ : V (G1) → V (G2)
such that (v1, v2) ∈ E(G1) precisely when (φ(v1), φ(v2)) ∈ E(G1). This is
abbreviated as G1

∼= G2. ◭

Definition 1.6 (Rooted digraph isomorphism). Two rooted digraphs, (G1, o1)
and (G2, o2) are said to be directed isomorphic if there exists a bijection
φ : V (G1) → V (G2) such that (v1, v2) ∈ E(G1) precisely when (φ(v1), φ(v2)) ∈
E(G1). In addition to this, it should also hold that φ(o1) = o2. This is ab-
breviated as (G1, o1) ∼= (G2, o2). ◭

We will rely on two types of local convergence, namely, forward-backward
local weak convergence and forward-backward local convergence in probabil-
ity. Let on denote a uniformly chosen vertex from V (Gn). Forward-backward
local weak convergence means that

P
(

B(Gn)
r (on) ∼= (H, o′)

)

→ µ̄(B(Ḡ)
r (o) ∼= (H, o′)), (1.5)
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for all rooted digraphs (H, o′). In (1.5), (Ḡ, o) ∼ µ̄ is a random rooted graph,
which is called the forward-backward local weak limit. For forward-backward
local convergence in probability, instead, we require that

1

|V (Gn)|

∑

v∈V (Gn)

1

{

B
(Gn)
r (v)∼=(H,o′)

}

P

→ µ(B(G)
r (o) ∼= (H, o′)) (1.6)

to hold for all rooted digraphs (H, o′). In (1.6), (G, o) ∼ µ is a random
rooted graph which is called the local limit in probability (and bear in mind
that µ can possibly be a random measure on rooted graphs). Both (1.5) and
(1.6) describe the convergence of the proportions of vertices around which
the digraph locally looks like a certain specific digraph.

Remark 1.1 (Other notions of local convergence of digraphs). Other no-
tions of local convergence of digraphs exist. For example, one can consider
digraphs as undirected graphs with marks on the edges that indicate their
directions. Then one can define marked local convergence of such marked
undirected graphs. This notion is much stronger than forward-backward
local convergence. Further, sometimes only one direction is relevant. An
example arises in the study of the local limit of the PageRank distribution
on a digraph, as studied in [6]. There, the in-component matters, with as
extra vertex marks the out-degree of the vertices. We see that convergence
of different digraph properties require different local convergence notions.
Forward-backward convergence is exactly what we need for the convergence
of the strong giant and the number of strongly connected components. ◭

We discuss the definition of forward-backward local convergence more for-
mally in Section 2. We now turn to our main results.

1.3. Main results. Our main results are divided into three subsections, the
‘almost’ locality of the giant, the local limit of the giant, and the number of
strongly connected components.

1.3.1. Strong giant is ‘almost’ local. In this section we state a condition for
the existence and size of a giant in a sequence of random digraphs that
converges locally in probability in the forward-backward sense. We start by
showing a generic probabilistic upper bound on the size of the strong giant
on random digraph sequences converging locally in probability:

Theorem 1.1 (Upper bound on size of strong giant). Let (Gn)n≥1 be a

sequence of random digraphs, of size |V (Gn)| = n, converging locally in

probability in the forward-backward sense to (G, o) ∼ µ. Let ζ = µ(|C −

o | =
|C +

o | = ∞). Then, for all ε > 0,

P

(

|Cmax|

n
≥ ζ + ε

)

→ 0. (1.7)

Theorem 1.1 implies that ζ = µ(|C −

o | = |C +
o | = ∞) is always an upper bound

on the size of the strong giant in locally converging digraph sequences.
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Next, we proceed towards a matching lower bound, for which we will state
a necessary and sufficient condition. Define

Nk
n := #{(x, y) ∈ V (Gn) : |C

−

x |, |C +
x |, |C −

y |, |C +
y | ≥ k, x = y}, (1.8)

which is the number of vertex pairs that have large in- and out-components
but are not in the same strongly connected component. In (1.8), x = y
means that either x is not connected to y, or y is not connected to x (i.e.,
x and y are in different strongly connected components). Then, our main
result on the ‘almost-local’ nature of the strong giant is as follows:

Theorem 1.2 (Strong giant is ‘almost’ local). Let (Gn)n≥1 be a sequence

of random digraphs, of size |V (Gn)| = n, converging locally in probability in

the forward-backward sense to (G, o) ∼ µ. Assume that

lim
k→∞

lim sup
n→∞

1

n2
E

[

Nk
n

]

= 0. (1.9)

Then

|Cmax|

n
P

→ ζ = µ(|C −

o | = |C +
o | = ∞),

|C(2)|

n
P

→ 0. (1.10)

Under the assumption of forward-backward local convergence in probability,

the condition in (1.9) is necessary and sufficient for (1.10) to hold.

Remark 1.2 (The limiting value). One might have expected Theorem 1.2 to
hold under different conditions with a different limit. Indeed, one may have

thought that |Cmax|/n
P

→ µ(|Co| = ∞), which might be true in some cases.
However, in many directed random graphs, the local limit is a tree in that C −

o

and C +
o are disjoint trees µ−almost surely. In such cases, µ(|Co| = ∞) = 0,

while |Cmax|/n
P

→ ζ > 0 can occur. This exemplifies the subtleties of strongly
connected components in the directed setting. It would be of interest to find
examples for which µ(|C −

o | = |C +
o | = ∞) = µ(|Co| = ∞). ◭

Remark 1.3 (Comparison to undirected setting). The subtleties described

in Remark 1.2 are not present in the undirected setting, where |Cmax|/n
P

→
µ(|Co| = ∞) and Co is the undirected connected component in (G, o). This
can be understood by noting that if u ∈ B(G)

r (v) in the undirected setting,
then we know that u ∈ Cv, while if u ∈ B(G)

r (v) in the directed setting, then
we do not know that u ∈ Cv. ◭

Remark 1.4 (Applications of Theorem 1.2). Theorem 1.2 can be applied to
the directed Erdős-Rényi random graph model, and the directed configura-
tion model with appropriate regularity conditions on the degree distribution.
Condition (1.9) for these models can be shown using coupling arguments
similar to the ones used in [9, Section 2.3] and [8], respectively. We do not
provide more details. ◭

Remark 1.5 (Simplification of condition in Theorem 1.2). It is possible to
simplify the conditions in Theorem 1.2. Indeed, define

Nk
n(2) = #{(x, y) ∈ V (Gn) : |C

−

x |, |C +
x |, |C −

y |, |C +
y | ≥ k, x 9 y}, (1.11)
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where x 9 y means that there is no directed path from x to y. In Lemma
3.2 below, we show that Nk

n(2) ≤ Nk
n ≤ 2Nk

n(2). Thus, one can replace Nk
n

by Nk
n(2) in (1.9). ◭

1.3.2. Local limit of the giant. In this section, we discuss the local conver-
gence of the giant. Denote the number of vertices v in the giant component
satisfying (d−

v , d
+
v ) = (l,m) by v1(l,m). Then, we have the following asymp-

totics for v1(l,m):

Theorem 1.3 (Limiting degree distribution of the giant). Under the as-

sumptions of Theorem 1.2,

v1(l,m)

n

P

→ µ (|C −

o | = |C +
o | = ∞,Do = (l,m)) . (1.12)

Further, when D−

on and D+
on are both uniformly integrable,

|E(Cmax)|

n

P

→
1

2
E[(D−

o +D+
o )1{|C−

o |=|C+
o |=∞}]. (1.13)

The next theorem tells us what the strong giant and its complement look
like locally:

Theorem 1.4 (Local limit of the strong giant and its complement). Under

the assumptions of Theorem 1.2,

1

n

∑

v∈Cmax

1

{

B
(Gn)
r (v)∼=H⋆

}

P

−→ µ
(

|C −

o | = |C +
o | = ∞, B(G)

r (o) ∼= H⋆

)

, (1.14)

and

1

n

∑

v/∈Cmax

1

{

B
(Gn)
r (v)∼=H⋆

}

P

−→ µ
(

|C −

o | = |C +
o | < ∞, B(G)

r (o) ∼= H⋆

)

. (1.15)

1.3.3. Number of strongly connected components. In this section, we discuss
the number of strongly connected components of digraph sequences having
a local limit:

Theorem 1.5 (Limiting number of SCCs). Under the assumptions of The-

orem 1.2, and further assuming that |Cmax|
P

−→ ∞ when ζ = 0,

Kn

n

P

−→ Eµ

[

1

|C (o)|
1{|C−(o)|<∞}∪{|C +(o)|<∞}

]

. (1.16)

Remark 1.6 (Comparison to undirected setting). In the undirected setting,

Kn/n
P

−→ Eµ[1/|C (o)|] always holds when Gn converges locally in proba-
bility, i.e., we do not need to rely on the additional ‘giant-is-almost-local
condition’ that is the undirected equivalent of (1.9). This once again shows
that strong connectivity in digraphs is a more delicate notion than connec-
tivity in undirected graphs. Having Theorem 1.2 in mind, we can think
of

1{|C−(o)|<∞}∪{|C +(o)|<∞} = 1− 1{|C−(o)|=∞}∩{|C +(o)|=∞}

as enforcing that o is in the limit of the strong giant. ◭
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We next give a simpler limiting result for locally tree-like digraphs, which
we first define:

Definition 1.7 (Locally tree-like digraphs). We say that a sequence of di-
graphs (Gn)n≥1 is locally tree-like when the sequence converges locally in
probability to (G, o) ∼ µ, which is almost surely a random directed tree. By
directed tree we mean that the strongly connected component of each vertex
is almost surely the vertex itself i.e., a graph with no directed cycles. Di-
rected configuration models, directed Erdős-Rényi models, etc. are all locally
tree-like digraphs. ◭

Theorem 1.6 (Number of SCCs in locally tree-like digraphs). Let (Gn)n≥1

be a sequence of random digraphs, of size |V (Gn)| = n, converging locally in

probability in the forward-backward sense to (G, o) ∼ µ, which is a random

directed tree. Then, under the assumption of Theorem 1.2,

Kn

n

P

−→ 1− ζ. (1.17)

Remark 1.7 (Locally tree-like digraphs are special). The limiting value for
the number of strongly connected components in Theorem 1.5, if computed
for locally tree-like digraphs, matches with the expression in Theorem 1.6.
Thus, Theorem 1.6 tells us that we do not need additional conditions for
locally tree-like digraphs, as in Theorem 1.5. ◭

Remark 1.8 (Upper bound in terms of ζ). The upper bound in Theorem
1.6 holds more generally. Indeed, the bound

Kn

n
≤ 1−

|Cmax|

n
+

1

n
(1.18)

always holds. Thus, under the assumptions of Theorem 1.6, whp for every
ε > 0,

Kn

n
≤ 1− ζ + ε. (1.19)

◭

Remark 1.9 (Comparison of proofs between directed and undirected graphs).
The complexity of proofs in digraphs in comparison to undirected graphs
varies depending on the connectivity property we are investigating. In par-
ticular, the proofs for the size of the strong giant are similar to the proofs
used for the undirected case in [8]. In contrast, for digraphs, the number
of connected components is a non-local quantity, whereas, for undirected
graphs, it is local. Thus, the proof becomes more complicated and less gen-
eral. ◭

2. Local convergence in digraphs

In this section, we formally define the notion of forward-backward local
weak convergence and local convergence in probability for digraphs. There
are several versions of local convergence in random digraphs. Amongst these,
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the four most commonly discussed are forward, backward, forward-backward,
and marked (see Remark 1.1).

We start by defining rooted digraphs:

Definition 2.1 (Rooted digraph). A digraph is G = (V (G), E(G)) together
with a vertex o ∈ V (G) is called a rooted digraph. We denote a rooted
digraph G with root o ∈ V (G) by (G, o). ◭

Next we define the forward-backward metric space over the rooted di-
graphs:

Definition 2.2 (Metric space). Let G⋆ be the space of all rooted digraphs.
Let (G1, o1), (G2, o2) ∈ G⋆. Define the metric dG⋆ : G⋆ × G⋆ → R≥0 by

dG⋆((G1, o1), (G2, o2)) :=
1

R⋆ + 1
. (2.1)

where R⋆ is given by

R⋆ := sup{r ≥ 0 s.t. B(G1)
r (o1) ∼= B(G2)

r (o2)},

where ∼= denotes rooted digraph isomorphism defined in Definition 1.6. ◭

Remark 2.1 (Equivalence classes). Obviously, R⋆ = ∞ when (G1, o1) ∼=
(G2, o2) so that dG⋆((G1, o1), (G2, o2)) = 0. Therefore, dG⋆ defines a metric
on the equivalence classes of isomorphic digraphs. ◭

Definition 2.3 (Forward-backward local convergence in probability of di-
graphs). The sequence (Gn)n≥1 of random digraphs is said to converge lo-
cally in probability to the random rooted digraph (G, o), a random variable
taking values in G⋆ having law µ, as n → ∞, if for every continuous and
bounded function f : G⋆ → R in the forward-backward metric,

En[f(Gn, on)]
P

−→ Eµ[f(G, o)], (2.2)

where on is a uniformly chosen vertex from V (Gn). ◭

3. Giants in converging digraphs: Proofs of Theorems 1.1 & 1.2

In this section we derive a condition for the existence of a giant in a
sequence of random digraphs that converges locally in probability in the
forward-backward sense. We start by proving the generic probabilistic upper
bound on the size of the strong giant in Theorem 1.1.

Proof of Theorem 1.1. Let Z≥k be the number of vertices in Gn having in-
and out-components size at least k, i.e.,

Z≥k =
∑

v∈V (Gn)

1{|C−

v |≥k,|C+
v |≥k}. (3.1)

Let ζ≥k = µ(|C −

o | ≥ k, |C +
o | ≥ k). Then, taking k → ∞, we have ζ≥k →

µ(|C −

o | = |C +
o | = ∞).
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Notice that (G, o) 7→ 1{|C −

v |≥k,|C+
v |≥k} is a bounded continuous function in

the forward-backward sense of random digraphs, and thus due to the forward-

backward local convergence in probability, Z≥k/n
P

−→ ζ≥k. Therefore, for
all ε > 0,

P

(

∣

∣

∣

Z≥k

n
− ζ≥k

∣

∣

∣ > ε

)

→ 0. (3.2)

Also, ζ≥k → ζ as k → ∞, which means that there exists K ∈ N such that
ζ≥k ≤ ζ + ε/2 for all k ≥ K. Further, {|Cmax| ≥ x} ⊆ {Z≥k ≥ x}, for every
x ≥ 1. Thus,

P

(

|Cmax|

n
≥ ζ + ε

)

≤ P

(

|Cmax|

n
≥ ζ≥k +

ε

2

)

≤ P

(

Z≥k

n
≥ ζ≥k +

ε

2

)

→ 0.

(3.3)
This completes the proof. �

Remark 3.1 (In- and out-components of strongly connected components).
Each vertex in a strongly connected component has the same in- and out-
component. This is illustrated in Figure 2 for the largest strongly connected
component. We denote the in- and out-component associated with C(i) by
C

−

(i) and C
+
(i), respectively. ◭

In the remainder of the proof, the following notation will be essential:

Notation 3.1. Suppose (Xn)n≥1 and (Xn,k)n≥1,k≥1 are sequences of random
variables. We write Xn,k = ok,P(Xn) when

lim
k→∞

lim sup
n→∞

P (|Xn,k| > ε|Xn|) = 0.

◭

Lemma 3.1 (Sum of squares of cluster sizes). Under the assumptions of

Theorem 1.2,

1

n2

∑

i≥1

|C(i)|
2
1{|C−

(i)
|≥k,|C+

(i)
|≥k} = ζ2 + ok,P(1). (3.4)

Proof. By Remark 3.1, we can rewrite Z≥k in (3.1) as

Z≥k =
∑

v∈V (Gn)

1{|C−

v |≥k,|C+
v |≥k} =

∑

i≥1

|C(i)|1{|C−

(i)
|≥k,|C+

(i)
|≥k}. (3.5)

Squaring (3.5) gives

Z2
≥k =

∑

i≥1

|C(i)|
2
1{|C −

(i)
|≥k,|C+

(i)
|≥k} +

∑

i 6=j

|C(i)||C(j)|1{|C−

(i)
|,|C+

(i)
|,|C−

(j)
|,|C+

(j)
|≥k}.

(3.6)
The second cross-product term counts the number of pairs of vertices that are
not in the same strongly connected component, but have at least k vertices
in their in- and out-components. Thus, by (1.8),

Z2
≥k

n2
=

1

n2

∑

i≥1

|C(i)|
2
1{|C−

(i)
|≥k,|C+

(i)
|≥k} +

1

n2
Nk

n . (3.7)
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Fix ε > 0. By the Markov inequality,

lim
k→∞

lim sup
n→∞

P

(

1

n2
Nk

n > ε

)

≤ lim
k→∞

lim sup
n→∞

1

εn2
E

[

Nk
n

]

= 0, (3.8)

Thus, Nk
n = ok,P(n

2), proving (3.4). This completes the proof. �

Next we prove Theorem 1.2:

Proof of Theorem 1.2. Due to Theorem 1.1, it is sufficient to show (1.10) for
ζ > 0. Thus, we assume that ζ > 0. Observe that

1

n2

∑

i≥1

|C(i)|
2
1{|C−

(i)
|≥k,|C+

(i)
|≥k} ≤

|Cmax|

n

1

n

∑

i≥1

|C(i)|1{|C−

(i)
|≥k,|C+

(i)
|≥k}, (3.9)

which means that

|Cmax|

n
≥

1
n2

∑

i≥1 |C(i)|
2
1{|C−

(i)
|≥k,|C+

(i)
|≥k}

1
n

∑

i≥1 |C(i)|1{|C−

(i)
|≥k,|C+

(i)
|≥k}

=
ζ2 + ok,P(1)

ζ≥k + oP(1)
. (3.10)

Letting k → ∞ in (3.9), for all ε > 0, we get

lim
n→∞

P

(

|Cmax|

n
≥ ζ − ε

)

= 1. (3.11)

Equation (3.11), combined with Theorem 1.1, completes the proof of the law
of large numbers on the strong giant under the condition (1.9) in Theorem
1.2.

Next we show that (1.9) is also a necessary condition for the giant compo-
nent to converge to ζ. Suppose that the condition in (1.9) fails. This implies
that

lim sup
k→∞

lim sup
n→∞

1

n2
E[Nk

n ] = κ > 0. (3.12)

In turn, this implies that there exists a subsequence (nl)l≥1 such that

lim
l→∞

lim sup
k→∞

1

n2
l

E[Nk
nl
] = κ. (3.13)

Thus, along the subsequence (nl)l≥1,

1

n2
l

E

[

|Cmax|
2
1{|C+

max|≥k,|C−

max|≥k}

]

≤
1

n2
l

E





∑

i≥1

|C(i)|
2
1{|C+

(i)
|≥k,|C−

(i)
|≥k}





=
1

n2
l

E[Z2
≥k −Nk

nl
] → ζ2≥k − κ.

Notice that
1

n2
l

E
[

|Cmax|
2
]

=
1

n2
l

E

[

|Cmax|
2
1{|C+

max|≥k,|C−

max|≥k}

]

(3.14)

+
1

n2
l

E

[

|Cmax|
2
1{|C +

max|<k}∪{|C−

max|<k}

]

.
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We know that |C±
max| ≥ |Cmax|. Thus,

{|C +
max| < k} ∪ {|C−

max| < k} ⊆ {|Cmax| < k},

so that, in turn,

1

n2
l

E

[

|Cmax|
2
1{|C +

max|<k}∪{|C−

max|<k}

]

≤

(

k

nl

)2

→ 0, (3.15)

as nl → ∞. This implies

lim
l→∞

1

n2
l

E[|Cmax|
2] ≤ ζ2 − κ < ζ2. (3.16)

We conclude that |Cmax|/n
P

→ ζ cannot hold. This is because by the bounded

convergence theorem, it would imply that E

[

(|Cmax|/n)
2
]

→ ζ2 which gives

a contradiction with (3.16). �

Recall the definition of Nk
n in (1.8), and that of Nk

n(2) in (1.11). We now
show that both are of the same order of magnitude:

Lemma 3.2 (Relaxing the assumption). Nk
n(2) ≤ Nk

n ≤ 2Nk
n(2).

Proof. For x, y ∈ V (Gn) we define the events Ax,y and Bx,y as

Ax,y =
[

|C −

x |, |C +
x |, |C −

y |, |C +
y | ≥ k, x 9 y

]

, (3.17)

Bx,y =
[

|C −

x |, |C +
x |, |C −

y |, |C +
y | ≥ k, x 8 y

]

. (3.18)

Then,

Nk
n =

∑

(x,y)∈V (Gn)2

1Ax,y∪Bx,y , Nk
n(2) =

∑

(x,y)∈V (Gn)2

1Ax,y =
∑

(x,y)∈V (Gn)2

1Bx,y .

(3.19)

Using the fact 1A ≤ 1A∪B ≤ 1A + 1B , we get

Nk
n(2) =

∑

(x,y)∈V (Gn)2

1Ax,y ≤ Nk
n ≤

∑

(x,y)∈V (Gn)2

(

1Ax,y + 1Bx,y

)

= 2Nk
n(2),

(3.20)

which completes the proof. �

4. Local limit of the giant: Proof of Theorems 1.3 & 1.4

In this section we prove local limit properties of the giant component:

Proof of Theorem 1.3. When ζ = 0, there is nothing to prove, so we may
again assume that ζ > 0. For A ⊆ N

2, we define

ZA,≥k =
∑

v∈V (Gn)

1{|C−

v |,|C+
v |≥k,(d−v ,d+v )∈A}. (4.1)
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Assuming that Gn converges locally in probability in the forward-backward
sense, we get

ZA,≥k

n

P

→ µ (|C −

o |, |C +
o | ≥ k, (d−

o , d
+
o ) ∈ A) . (4.2)

Since |Cmax| > k with high probability (it is here that we use that ζ > 0),
we have

1

n

∑

(l,m)∈A

v1(l,m) ≤
ZA,≥k

n

P

→ µ (|C −

o |, |C +
o | ≥ k, (d−

o , d
+
o ) ∈ A) . (4.3)

Define

µk(A) = µ (|C −

o |, |C +
o | ≥ k, (d−

o , d
+
o ) ∈ A) . (4.4)

Applying (4.3) for A = {(l,m)}c, we get

lim
n→∞

P

(

1

n
|Cmax − v1(l,m)| ≤ µk(A) +

ε

2

)

= 1. (4.5)

We argue by contradiction. Suppose that for some pair (l,m) ∈ N
2,

lim inf
n→∞

P

(

1

n
v1(l,m) ≤ µk({l,m}) − ε

)

= κ > 0. (4.6)

Then along the subsequence (nj)j≥1, where the above liminf is attained, with
a non-zero probability the following holds:

1

n
|Cmax| =

1

n
(|Cmax| − v1(l,m)) +

1

n
v1(l,m) ≤ µ (|C −

o | = |C +
o | = ∞)−

ε

2
,

(4.7)
which contradicts Theorem 1.2. Thus, (1.12) holds.

For the next part, we just observe that

|E(Cmax)|

n
=

1

2n

∑

k,l

(k + l)v1(k, l). (4.8)

Thus, for any natural number N .

|E(Cmax)|

n
=

1

2n

∑

k+l≤N

(k + l)v1(k, l) +
1

2n

∑

k+l>N

(k + l)v1(k, l). (4.9)

From (1.12) and the dominated convergence theorem, we conclude that

1

2n

∑

k+l≤N

(k + l)v1(k, l)
P

−→
1

2

∑

k+l≤N

(k + l)µ (|C −

o | = |C +
o | = ∞,Do = (k, l))

=
1

2
Eµ

[

(D−

o +D+
o )1{D−

o +D+
o <N}

]

. (4.10)
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For the second term in (4.9), we bound v1(k, l) by the total number of vertices
with in- degree k and out-degree l, which we denote by nk,l, to get

1

2n

∑

k+l>N

(k + l)v1(k, l) ≤
1

2

∑

k+l>N

(k + l)
nk,l

n

=
1

2
E

[

(

D−

on +D+
on

)

1{D−

on+D+
on>N} | Gn

]

.

(4.11)

By uniform integrability of D−

on and D+
on ,

lim
N→∞

lim sup
n→∞

E

[

(

D−

on +D+
on

)

1{D−

on+D+
on>N}

]

= 0. (4.12)

Thus, using the Markov inequality we can conclude that for each ε > 0, there
exists a N = N(ε) < ∞ such that

P

(

E

[

(

D−

on +D+
on

)

1{D−

on+D+
on>N} | Gn

]

> ε
)

→ 0. (4.13)

This completes the proof for the second part of the theorem. �

Proof of Theorem 1.4. When ζ = 0, there is nothing to prove, so we may
again assume that ζ > 0. The proof is a minor modification of that of
Theorem 1.3. Let G⋆ be the space of all rooted digraphs. By forward-
backward local convergence in probability of (Gn)n≥1, for every H⋆ ⊆ G⋆,

1

n

∑

v∈V (Gn)

1

{

B
(Gn)
r (v)∈H⋆

}

P

−→ µ
(

B(G)
r (o) ∈ H⋆

)

. (4.14)

Thus, (1.15) follows from (1.14). Therefore, we only need to show (1.14).
Define

Z≥k,H⋆
=

1

n

∑

v∈V (Gn)

1

{

|C−

v |≥k,|C+
v |≥k,B

(Gn)
r (v)∈H⋆

}

P

−→ µ
(

|C −

o | ≥ k, |C +
o | ≥ k,B(G)

r (o) ∈ H⋆

)

.

(4.15)

Because of Theorem 1.2, we have that |Cmax|/n
P

→ ζ > 0. Thus, on the high
probability event {|Cmax| ≥ k},

1

n

∑

v∈Cmax

1

{

B
(Gn)
r (v)∈H⋆

} ≤ Z≥k,H⋆

P

→ µ
(

|C −

o | ≥ k, |C +
o | ≥ k,B(G)

r (o) ∈ H⋆

)

.

(4.16)
Define

µk(H⋆) = µ
(

|C −

o | ≥ k, |C +
o | ≥ k,B(G)

r (o) ∈ H⋆

)

. (4.17)

Then, by (4.16),

lim
n→∞

P





1

n

∑

v∈Cmax

1

{

B
(Gn)
r (v)∈H⋆

} ≤ µk (H⋆) +
ε

2



 = 1. (4.18)
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Choosing H⋆ = {H⋆}, gives the upper bound. For, H⋆ = {H⋆}
c in (4.18),

lim
n→∞

P





1

n



|Cmax| −
∑

v∈Cmax

1

{B
(Gn)
r (v)∼=H⋆}



 ≤ µk(H⋆) +
ε

2



 = 1. (4.19)

We again argue by contradiction. For this, we assume that

lim
n→∞

P





1

n

∑

v∈Cmax

1

{B
(Gn)
r (v)∼=H⋆}

≤ µk({H⋆})−
ε

2



 = κ > 0. (4.20)

Then, with asymptotic probability κ,

|Cmax|

n
=

1

n



|Cmax| −
∑

v∈Cmax

1

{B
(Gn)
r (v)∼=H⋆}



+
1

n

∑

v∈Cmax

1

{B
(Gn)
r (v)∼=H⋆}

≤ ζ≥k − ε/2 ≤ ζ − ε/2. (4.21)

This contradicts Theorem 1.2. Thus, (4.20) cannot hold. This completes the
proof. �

5. Number of strong components: Proof of Theorems 1.5 & 1.6

In this section, we prove results concerning the number of strongly con-
nected components of random digraph sequences having a local limit.

5.1. Number of strong components is ‘almost’ local: Proof of The-

orem 1.5. In this section, we prove Theorem 1.5. We prove a lower bound
that holds more generally, and an upper bound that holds under the assump-
tions stated in Theorem 1.5.

We first use that

Kn =
∑

v∈V (Gn)

1

|Cv|
. (5.1)

Indeed, if one sums the right-hand side for the vertices as partitioned by the
strongly connected components, one obtains

∑

v∈V (Gn)

1

|Cv|
=

∑

1≤i≤Kn

∑

v∈C(i)

1

|C(i)|
=

∑

1≤i≤Kn

1 = Kn. (5.2)

Equation (5.1) is the starting point of our analysis. However, we emphasize
that, unlike in the undirected case, h(G, o) = 1/|Cv | is not a bounded and
continuous function in the forward-backward sense.

For the lower bound, we fix k and bound

Kn ≥
∑

v∈V (Gn)

1

|Cv|
1{|C−

v |<k}∪{|C+
v |<k}. (5.3)
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For each k < ∞, the function

h(G, o) =
1

|Co|
1{|C−

o |<k}∪{|C+
o |<k}

is a bounded continuous function. Indeed, any u ∈ Co is on a directed cycle
starting and ending at o. When |C −

o | < k or |C +
o | < k, there cannot be any

cycle longer than k − 1, so that we can determine h(G, o) on the basis of
B(G)

k (o) (recall Definition 1.4).
We conclude that

1

n

∑

v∈V (Gn)

1

|Cv|
1{|C −

v |<k}∪{|C+
v |<k}

P

−→ Eµ

[

1

|Co|
1{|C−

o |<k}∪{|C+
o |<k}

]

. (5.4)

Since, for k → ∞,

Eµ

[

1

|Co|
1{|C−

o |<k}∪{|C+
o |<k}

]

→ Eµ

[

1

|Co|
1{|C−

o |<∞}∪{|C+
o |<∞}

]

, (5.5)

we obtain that

Kn

n
≥ Eµ

[

1

|Co|
1{|C−

o |<∞}∪{|C+
o |<∞}

]

+ oP(1), (5.6)

as required.
For the upper bound, we again fix k and now write

Kn =
∑

v∈V (Gn)

1

|Cv|
1{|C −

v |<k}∪{|C+
v |<k} +

∑

v∈V (Gn)

1

|Cv|
1{|C−

v |≥k}∩{|C+
v |≥k}.

(5.7)
It suffices to prove that the second term in (5.7) is ok,P(n), which is what we
will do now. For this, we make the further split

∑

v∈V (Gn)

1

|Cv|
1{|C−

v |≥k}∩{|C+
v |≥k} (5.8)

=
∑

v∈V (Gn)

1

|Cv|
[1{|C−

v |≥k}∩{|C+
v |≥k} − 1{v∈Cmax}] +

∑

v∈V (Gn)

1

|Cv|
1{v∈Cmax}.

We note that

1

n

∑

v∈V (Gn)

1

|Cv|
1{v∈Cmax} =

1

n

∑

v∈Cmax

1

|Cmax|
=

1

n
→ 0. (5.9)

Further, since |Cmax|
P

−→ ∞ by assumption, we have that |Cmax| ≥ k whp,
so that whp also

1{|C −

v |≥k}∩{|C+
v |≥k} − 1{v∈Cmax} ≥ 0.
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As a result, using that |Cv| ≥ 1, on the high probability event that |Cmax| ≥
k,

1

n

∑

v∈V (Gn)

1

|Cv|
[1{|C −

v |≥k}∩{|C+
v |≥k} − 1{v∈Cmax}] (5.10)

≤
1

n

∑

v∈V (Gn)

[1{|C −

v |≥k}∩{|C+
v |≥k} − 1{v∈Cmax}]

=
1

n

[

Z≥k − |Cmax|].

By Theorem 1.1 and forward-backward local convergence in probability of
Gn,

1

n

[

Z≥k − |Cmax|]
P

−→ ζ≥k − ζ, (5.11)

which vanishes as k → ∞. We conclude that also the left-hand side of (5.10)
is ok,P(1), which, together with (5.9), completes the proof. �

5.2. Isolated vertices in digraphs and locally tree-like digraphs. In
this section, we investigate strongly isolated vertices, which are of interest be-
cause each such vertex contributes a unique strongly connected component.
In locally tree-like graphs these are the major contributors when counting the
number of strongly connected components, as we will show in this section.

Definition 5.1 (Strongly isolated vertices). A vertex v ∈ V (G) is said to be
strongly isolated if Cv = {v}. We denote the set of strongly isolated vertices
of G by V1(G), and denote α1(n) = |V1(G)|.

We next study α1(n) :

Lemma 5.1 (Upper bound for the proportion of strongly isolated vertices).
Under the assumptions of Theorem 1.2, and for all ε > 0,

lim
n→∞

P (α1(n) ≤ 1− ζ + ε) = 1, (5.12)

where ζ = P(|C −

o | = |C +
o | = ∞).

Proof. The number of isolated vertices cannot exceed the number of vertices
outside the giant component, since the vertices in the giant cannot be iso-
lated. This gives α1(n) ≤ n− |Cmax|. Dividing by n on both sides gives the
required result. �

Definition 5.2 (In- and out-neighbourhood of a fixed finite radius). Let
G be a digraph and v ∈ V (G), then we let B−

k (v) and B+

k (v) to be the
subgraphs induced by the vertices in the k radius in- and out-neighbourhood
of v, respectively, defined as

B−

k (v) = G [{u ∈ V (G) s.t. dG(u, v) < k}] , (5.13)

B+

k (v) = G [{u ∈ V (G) s.t. dG(v, u) < k}] . (5.14)
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Similarly, we let ∂B−

k (v) and ∂B+

k (v) to be the boundary of k radius in- and
out-neighbourhoods of v, respectively, defined as

∂B−

k (v) = {u ∈ V (G) s.t. dG(u, v) = k} , (5.15)

∂B+

k (v) = {u ∈ V (G) s.t. dG(v, u) = k} . (5.16)

◭

We next turn to locally tree-like digraphs:

Lemma 5.2 (Proportion of strongly isolated vertices in locally tree-like di-
graphs). Suppose that Gn is a sequence of random digraphs such that Gn

converges forward-backward locally in probability to (G, o) ∼ µ, which is al-

most surely a random directed tree. Then, under the assumption of Theorem

1.2,

α1(n)
P

−→ 1− ζ. (5.17)

Proof of Lemma 5.2. Fix a finite k ∈ N. Then

α1(n) =
1

n

∑

v∈V (Gn)

1{|Cv|=1}

≥
1

n

∑

v∈V (Gn)

1{|B−

k
(v)∩B+

k
(v)|=1,|∂B−

k
(v)||∂B+

k
(v)|=0}

P

−→ µ(|B−

k (o) ∩B+

k (o)| = 1, |∂B−

k (o)||∂B
+

k (o)| = 0).

(5.18)

If the local limit is a directed tree, then µ(|B−

k (o) ∩ B+

k (o)| = 1) = 1, since
otherwise there will be a directed cycle in the local limit graph. Thus, we
can write

µ(|B−

k (o) ∩B+

k (o)| = 1, |∂B−

k (o)||∂B
+

k (o)| = 0) (5.19)

= µ(|∂B−

k (o)||∂B
+

k (o)| = 0).

Also, we know that, as k → ∞,

µ(|∂B−

k (o)||∂B
+

k (o)| = 0) → µ ({|C −

o | < ∞} ∪ {|C +
o | < ∞}) = 1− ζ. (5.20)

This completes the proof. �

Proof of Theorem 1.6. By the definition of α1(n) in Definition 5.1,

Kn

n
≥ α1(n), (5.21)

Also,

Kn ≤ 1 + n− |Cmax|. (5.22)

From (5.21) and (5.22),

α1(n) ≤
Kn

n
≤ 1−

|Cmax|

n
+

1

n
. (5.23)

Lemma 5.2 and Theorem 1.2 then complete the proof. �
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6. Discussion

6.1. Discussion results and literature. The main results in this paper
concern the proportion of vertices in the LSCC and the number of con-
nected components. We prove that these properties are ‘almost local’. Why
are these connectivity properties important? Apart from indicating the con-
nectivity of the graph, they are also used in the comparisons of centrality
measures (see, e.g., [14]). This investigates how much a graph breaks down
in terms of its connectivity, when we remove the most central nodes. We
next list some open problems of our work.

In Theorem 1.5, we prove that (1.9) is a necessary and sufficient condition

for |Cmax|/n
P

−→ ζ = µ(|C +
o | = |C −

o | = ∞) to hold. Of course, ζ ≥ ζ ′ ≡

µ(|Co| = ∞). What is a necessary and sufficient condition for |Cmax|/n
P

−→
ζ ′ to hold? These conditions should really be different, since, for example, for

locally tree-like digraphs, ζ ′ = 0, while |Cmax|/n
P

−→ ζ = µ(|C +
o | = |C −

o | =
∞) > 0 can hold.

Currently, to describe the number of strongly connected components in
Theorem 1.5, we rely on the necessary and sufficient condition (1.9) for the
proportion of vertices in the giant being equal to ζ = µ(|C +

o | = |C −

o | = ∞).

What is the necessary and sufficient condition for the convergence Kn/n
P

→ α
to hold, and is it possible that α takes a different form than that on the right-
hand side of (1.16)?

6.2. Large weak components. In this section, we discuss weak giants.
The definition of a strong component in a digraph is well accepted. In
contrast, the notion of a weak component has been used differently in the
literature, as we discuss next.
In- and out-components. One could consider weak components to be in-
and the out-components. For example, in [4], the authors study the largest
in- and out-component sizes for the directed configuration model. We define
the sizes of the largest in- and out-components Imax and Omax to be

Imax = max
v∈V (Gn)

|C −

v | and Omax = max
v∈V (Gn)

|C +
v |. (6.1)

The strong giant having linear size implies that its in- and out-components
also have linear size, but the converse is not necessarily true. We visualize
this in Figure 1. The big question is whether the maximal in- and out-

C(1) C(2)
. . .

C(k−1) C(k)

Figure 1. A linear-sized giant in- or out-component can exist

despite the fact that there is no linear-sized strong giant.
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LSCCOut In

Figure 2. The ‘bow-tie’ figure used to describe the connectivity

structure of large directed networks.

components are ‘almost’ local or not, and if so, under what condition. In
particular, a natural question is to find a condition that guarantees that the
proportion of vertices in Imax is asymptotically equal to the proportion of
vertices in the out-component of Cmax. See Figure 2, where LSCC stands for
the largest strongly connected component. This means that the condition
for the existence of weak giants should be weaker than the conditions given
in Theorem 1.2.

For the in- and out-components, we believe it to be possible that |C+
max|/n

P

→
α ≤ µ(|C −

o | = ∞) and vice-versa for the in-component. We state the follow-
ing open problem:

Open Problem 6.1. Find the necessary and sufficient conditions for

|C+
max|

n

P

→ α+ and
|C−

max|

n

P

→ α− (6.2)

to hold.

When |C+
max|/n

P

→ α+, then one can easily deduce that α+ ≤ µ(|C−
o | =

∞). It is not clear when α+ = µ(|C −
o | = ∞) holds. One difficultly to prove

such a result is that, unlike the strongly connected components, the in- and
out-components do not partition the vertex set.
Ignoring the directions of edges. One can also consider weak components
to consist of the set of vertices that can be reached by recursively following
all edges regardless of their orientations [5, 13]. This corresponds to the
connected components in the underlying undirected graph, i.e., the graph
obtained after removing the edge directions. These types of components find
applications in real-world problems, including epidemiology, data mining,
communication networks, world wide web structure, etc. In this case, the
results in [8] can be used to give a necessary and sufficient condition for the
proportion of vertices in the giant to be the survival probability of the local
limit.
Weak components as a relation. The 1972 paper by Graham, Knuth, and
Motzkin [12, 7] introduced a rather different notion of weak components.
Formally, it can be defined by the following 4 symmetric relations on the
vertex set of a digraph:
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(1) For any two vertices u and v in V (G), u ⇐⇒ v if both vertices are in
the same strongly connected component, i.e., max{dG(u, v), dG(v, u)} <
∞. In other words, there exists a path from v to u and vice versa.

(2) For any two vertices u and v in V (G), u ‖ v if min{dG(u, v), dG(v, u)} =
∞, i.e., there is no path from v to u and from u to v.

(3) For any two vertices u and v in V (G), u ≈ v if either u ⇐⇒ v or
u ‖ v.

(4) We define R to be the transitive closure of ≈. This means that if there
is a chain (u = v0, v1, . . . , vk = v) such that u ≈ v1 ≈ · · · vk−1 ≈ v,
then uRv.

The relation R is an equivalence relation and partitions the vertex set into the
weak components. This concept of weak component is not a local quantity
as a small perturbation in the graph can easily dramatically change the
components in the graph. In particular, the addition of one isolated vertex
can change the definition of all these weak components. This suggests that,
in terms of local convergence, this notion is too sensitive to local changes.
Yet, Pacault [15] gives an algorithm for computing weak components.
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