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Abstract

We consider a particular model of hard spheres that collide inelastically, losing a fixed amount of kinetic

energy at each collision. We show that the transport associated to this hard sphere dynamics preserves

locally the measure in the phase space. We prove the analog of Alexander’s theorem for our model,

providing the global well-posedness of the trajectories, for almost every initial datum.
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1 Introduction

In this note we consider a two-dimensional model of inelastic particles exhibiting a surprising property: on
the one hand during each collision which is sufficiently energetic the system will lose a positive amount of
kinetic energy, on the other hand the flow induced by such a dynamics will preserve the measure in the phase
space. Intuitively, these two properties look contradictory, we will show that they are actually independent
from each other. We provide also examples of such models in dimension d ≥ 2, with d arbitrary.
As a consequence of the conservation of the measure in the phase space by the flow of the particle dynamics,
we deduce an Alexander’s theorem ([1], [7]) for such a model: the dynamics of the particle system is globally
well-posed for almost every initial datum in the phase space. To the best of our knowledge, this is the first
example of an Alexander’s theorem for a model of particles different from the classical elastic hard spheres. In
the case of the inelastic particles with a fixed restitution coefficient, the global well-posedness of the dynamics
for almost every initial datum is still an open problem.

2 Presentation of the model

We consider a system of N spherical particles, of diameter 1, evolving in R
d, where d ≥ 2 is a positive integer.

The position, respectively the velocity, of each of the particles will be denoted by xi ∈ R
d, respectively vi ∈ R

d.
The configuration of the system is the vector

ZN = (x1, v1, . . . , xN , vN ) ∈ R
2dN , (1)

collecting the positions and velocities of all of the N particles of the system. We assume that when the
particles are at a positive distance one from another (|xi − xj | > 1), they move in straight line with constant
velocity (that is, the particles evolve according to the free flow). When two particles collide, that is, when
there exists a pair (i, j) with 1 ≤ i 6= j ≤ N such that |xi − xj | = 1, the velocities vi, vj of such colliding
particles are immediately changed into v′i, v

′
j according to the reflection law:

{

v′i =
vi+vj

2 − σ
»

|vj−vi|2

4 − ε0,

v′j =
vi+vj

2 + σ
»

|vj−vi|2

4 − ε0,
(2)
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where ε0 > 0 is a fixed, positive real number, and σ is the symmetry of the normalized relative velocity
(vj − vi)/|vj − vi| with respect to ω⊥, where ω is the line of contact between the two colliding particles, that
is:

σ =
vj − vi
|vj − vi|

− 2

Å

(vj − vi)

|vj − vi|
· ω
ã

ω, (3)

and

ω =
xj − xi

|xj − xi|
· (4)

A fixed quantity, equal to ε0 > 0, of kinetic energy is lost during each collision of colliding pairs of particles
that are energetic enough:

|v′i|2
2

+
|v′j |2
2

=
|vi|2
2

+
|vj |2
2

− ε0. (5)

Such a model is a simple generalization of the elastic hard spheres, that one recovers by prescribing ε0 = 0
(and in this case (2) is the σ-representation of the elastic collision between two hard spheres). One may
interpret the model as a system of particles that emit one photon at each collision, such a photon being
always emitted with the same frequency.
Of course, (2) defines a well-posed law of interaction only when |vj − vi|2 ≥ 4ε0. When it is not the case,
we can modify the collision law and prescribe ε0 = 0 for such low energy collisions. Note that with such an
extension of the definition for colliding pairs that are not energetic enough, we obtain a transport that is not
injective anymore. Nevertheless, the evolution is still deterministic, everywhere it is well-defined.

We will call the particle system that we introduced above the inelastic hard sphere with emission model.

3 Evolution of the measure of the phase space under the action of

the flow

If we consider the flow in the phase space
(

R
d × R

d
)N ∩⋂i6=j

{

|xi − xj | ≥ 1
}

of N particles associated to
the particle dynamics we introduced, we can compute the evolution of the measure in the phase space under
the action of such a flow.
Between two collisions, such a flow corresponds to the free flow, which preserves the measure. Therefore,
the question of the evolution of the measure lies essentially in the evolution of the measure, for the velocity
variables, during the collisions. Let us denote by v and v∗ the pre-collisional velocities of two colliding
particles, and by v′ and v′∗ their post-collisional velocities. If we denote:

κ =

 

|v∗ − v|2
4

− ε0, (6)

we find, for any pair of components i, j ∈ {1, . . . , d}:

∂viσk = − δi,k
|v∗ − v| +

(v∗,k − vk)(v∗,i − vi)

|v∗ − v|3 + 2
ωiωk

|v∗ − v| − 2(v∗ − v) · ω (v∗,i − vi)ωk

|v∗ − v|3 (7)

where δi,k = 1 if and only if i = k, 0 elsewhere, is the Kronecker’s delta symbol, and:

∂viκ = ∂vi

 

|v∗ − v|2
4

− ε0 = − (v∗,i − vi)

4κ
· (8)
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Therefore, collecting (7) and (8) together we obtain:

∇vv
′ =

1

2
Id −

κ

|v ∗ −v|Id +
κ

|v∗ − v|
(v∗ − v)

|v∗ − v| ⊗
(v∗ − v)

|v∗ − v| + 2
κ

|v∗ − v|ω ⊗ ω

− 2
κ

|v∗ − v|
(v∗ − v) · ω
|v∗ − v|

(v∗ − v)

|v∗ − v| ⊗ ω +
(v∗ − v)⊗ (v∗ − v)

4|v∗ − v|κ − 2
(v∗ − v) · ω
|v∗ − v|

(v∗ − v)⊗ ω

4κ

=
1

2
Id +

κ

|v∗ − v|
[

− Id +

Å

1 +
|v∗ − v|2

κ2

ã

(v∗ − v)

|v∗ − v| ⊗
(v∗ − v)

|v∗ − v|

− 2
(v∗ − v)

|v∗ − v| · ω
Å

1 +
|v∗ − v|2

4κ2

ã

(v∗ − v)

|v∗ − v| ⊗ ω + 2ω ⊗ ω
]

(9)

where Id the d× d identity matrix. Writing the formula (9) in the form:

∇vv
′ =

1

2
Id +A

with

A =
κ

|v∗ − v|
[

− Id +

Å

1 +
|v∗ − v|2

κ2

ã

(v∗ − v)

|v∗ − v| ⊗
(v∗ − v)

|v∗ − v|

− 2
(v∗ − v)

|v∗ − v| · ω
Å

1 +
|v∗ − v|2

4κ2

ã

(v∗ − v)

|v∗ − v| ⊗ ω + 2ω ⊗ ω
]

,

and computing the other partial derivatives ∇v∗v
′, ∇vv

′
∗ and ∇v∗v

′
∗, we obtain an expression of the following

form for the Jacobian matrix J of the scattering mapping (v, v∗) 7→ (v′, v′∗) defined by (2):

J =

Å1
2Id +A 1

2Id −A
1
2Id −A 1

2Id +A

ã

. (10)

The determinant of such a matrix can be computed as follows. First we obtain:

det(J) =

∣

∣

∣

∣

1
2Id +A 1

2Id −A
1
2Id −A 1

2Id +A

∣

∣

∣

∣

=

∣

∣

∣

∣

1
2Id +A 1

2Id −A
Id Id

∣

∣

∣

∣

=

∣

∣

∣

∣

2A 1
2Id −A

0 Id

∣

∣

∣

∣

= det(2A).

It remains to compute det(2A). Such a determinant is of the form:

det(2A) =

Å

− 2κ

|v∗ − v|

ãd

det(Id + λu⊗ u+ µu⊗ ω + νω ⊗ ω), (11)

where

u =
(v∗ − v)

|v∗ − v| , (12)















λ = −
(

1 + |v∗−v|2

κ2

)

,

µ = 2 (v∗−v)
|v∗−v| · ω

(

1 + |v∗−v|2

4κ2

)

,

ν = −2.

(13)

We need a generalization of the well known-formula

det(Id + u⊗ ω) = 1 + u · ω (14)

concerning the determinant of a single tensor product. In the two-dimensional case we have the following
result:
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Lemma 1 (Determinant of the sum of tensors products of two vectors). We consider the two-dimensional
case: d = 2. Let λ, µ, ν be three real numbers, and u, ω be two vectors of R2.
Then:

det(I2 + λu⊗ u+ µu⊗ ω + νω ⊗ ω) = 1 + λ|u|2 + µu · ω + ν|ω|2 + λν (det(u, ω))2 . (15)

Applying the formula (15), (11) becomes:

det(2A) =
4κ2

|v∗ − v|2

[

1−
Å

1 +
|v∗ − v|
4κ2

ã

+ 2
(v∗ − v)

|v∗ − v| · ω
Å

1 +
|v∗ − v|2

4κ2

ãÅ

(v∗ − v)

|v∗ − v| · ω
ã

− 2 + 2

Å

1 +
|v∗ − v|2

κ2

ã

det

Å

(v∗ − v)

|v∗ − v| , ω
ã2
]

=
4κ2

|v∗ − v|2

[

− 1−
Å

1 +
|v∗ − v|
4κ2

ã

+ 2

Å

1− |v∗ − v|2
4κ2

ãÅ

(v∗ − v)

|v∗ − v| · ω
ã2

+ 2

Å

1 +
|v∗ − v|2

κ2

ã

det

Å

(v∗ − v)

|v∗ − v| , ω
ã2
]

, (16)

and writing:

(v∗ − v)

|v∗ − v| · ω = cos θ, (17)

we have

det

Å

(v∗ − v)

|v∗ − v| , ω
ã

= sin θ, (18)

so that

det(2A) =
4κ2

|v∗ − v|2

[

− 1−
Å

1 +
|v∗ − v|
4κ2

ã

+ 2

Å

1− |v∗ − v|2
4κ2

ã

cos2 θ + 2

Å

1 +
|v∗ − v|2

κ2

ã

sin2 θ

]

=
4κ2

|v∗ − v|2

[

− 1 +

Å

1 +
|v∗ − v|
4κ2

ã

]

= 1.

In conclusion, we have the following result.

Theorem 1 (Measure-preserving property of the inelastic hard sphere with emission model). In dimension
d = 2, the inelastic hard sphere with emission flow preserves locally the measure in the phase space: at t
fixed, the Jacobian of the transport ZN 7→ Tt(ZN ) of the inelastic hard spheres with emission is equal to 1.

We introduced a model of particle system that does not conserve the kinetic energy, but that induces a flow
which preserves the measure in the phase space.

Remark 1. The flow we introduced is not injective. In particular, a pair of particles in a post-collisional
configuration such that the energy of the pair is smaller or equal to ε0 after the collision has two preimages,
coming either from an elastic, or an inelastic collision. Nevertheless, in order to interpret the result of
Theorem 1, for every initial datum for which the trajectory of the system is defined, we can compute the
Jacobian of the transport semigroup of the inelastic hard spheres with emission.
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4 Interpretation, consequences

4.1 Global well-posedness of the flow of the inelastic hard spheres with emission

In the case of the classical model of elastic hard spheres (see for instance [11]), the question of the global
well-posedness of the dynamics of the particles is addressed by Alexander’s theorem [1] (see also [7] for a
modern presentation). Such a well-posedness property is the first step in order to complete the proof of
Lanford’s theorem [8], which provides a rigorous derivation of the Boltzmann equation from the elastic hard
sphere system. This well-posedness is a delicate question, for particles can experience triple collisions, which
prevents to define further the dynamics, therefore such a dynamics has no chance to be globally well-posed for
every initial configuration. However, Alexander’s theorem establishes such a result, for almost every initial
datum (with respect to the Lebesgue measure in the phase space of N particles).
Since one of the main ingredients in Alexander’s proof is the conservation of the measure by the flow, as a
direct consequence of Theorem 1, we can repeat such a proof in the case of the inelastic hard spheres with
emission. The main difficulty is that, in the present case, we defined a flow of particles that is not injective in
the phase space. The second key argument is an a priori uniform estimate on the number of collisions of such
a system. This estimate is a consequence of the uniform bounds that are known for the systems of elastic
hard spheres (see the article of Burago, Ferleger and Kononenko [3]). We can obtain the following result.

Theorem 2 (Alexander’s theorem for the inelastic hard sphere with emission model). Let N be any positive
integer. Then, the dynamics of the system of N inelastic hard spheres with emission is almost everywhere
globally well-defined in dimension d = 2. In other words, for almost every initial configuration (with respect

to the Lebesgue measure) ZN = (x1, v1, . . . , xN , vN ) of N particles in
(

R
2
)2N ∩ ⋂i6=j

{

|xi − xj | ≥ 1
}

, the
evolution of the system from such an initial datum is well-defined for all time t ≥ 0, involving only via free
flow and binary collisions, and in addition for any T > 0, the system of particles starting initially from ZN

experiences only a finite number of collisions in the time interval [0, T ].

Proof. We start with following the classical proof of Alexander’s theorem. We consider any arbitrary time
T > 0, and two cut-off parameters R1, R2 > 0. Let us denote by ZN = (x1, v1, . . . , xN , vN ) the initial
configurations of the system of N particles, and we will assume that the initial positions and velocities are
such that:

|XN | = |(x1, x2, . . . , xN )| ≤ R1, |VN | = |(v1, v2, . . . , vN )| ≤ R2. (19)

We introduce finally a third cut-off parameter δ, meant to be small, such that T/δ = n is an integer, and
such that:

δ ≤ 1, δ ≤ 2

3
√
2R2

· (20)

Let us now define recursively the flow of inelastic hard spheres with emission, on the time interval [0, T ], for
all initial configurations ZN of BXN

(0, R1)×BVN
(0, R2), except for a subset A(δ), the size of which we will

estimate later in terms of the small cut-off parameter δ.

We introduce the set E0 ⊂
(

R
2 × R

2
)N ∩⋂i6=j

{

|xi − xj | ≥ 1
}

defined as follows:

E0 =
{

ZN ∈ BXN
(0, R1)×BVN

(0, R2) / ∃(i, j) 6= (k, l) ∈ {1, ..., N}2, i < j, k < l /

|xi − xj | ≤ 1 +
3

2

√
2δR2, |xk − xl| ≤ 1 +

3

2

√
2δR2

}

. (21)

On the one hand, outside E0 any initial configuration ZN leads to a well-defined trajectory on the time
interval [0, δ], because such an initial configuration generates a trajectory with at most one collision on the
time interval ]0, 3δ/2]. Let us denote by Tt : ZN 7→ Tt(ZN ) the transport of inelastic particles with emission.
On the other hand we have the following estimate on the measure of E0:

|E0| =
Ç

N

2

å2

|BR2(N−2)(0, R1)| ×
(∣

∣

∣
BR2(0, 1 +

3
√
2

2
δR2)

∣

∣

∣
− |BR2(0, 1)|

)2

× |BR2N (0, R2)|

≤ C(N)R
2(N−2)
1 R2N+2

2 δ2. (22)
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Let us now define the flow on [δ, 2δ]. At time δ, the trajectories are contained in BXN
(0, R1 + δR2) ×

BVN
(0, R2). Therefore, we introduce the set Eδ, defined in the same fashion as E0 (the only difference lies

in the estimate on the positions). We have again:

|Eδ| ≤ C(N)(R1 + δR2)
2(N−2)R2N+2

2 δ2

≤ C(N)(R1 + TR2)
2(N−2)R2N+2

2 δ2, (23)

and for any initial configuration ZN /∈ E0 and such that Tδ(ZN ) /∈ Eδ, ZN generates a trajectory well-defined
at least on [0, 2δ]. But on the time interval ]0, δ], the system experiences at most one collision, that can be
either elastic, or inelastic.
Let us denote by T elas. the low-energy hard sphere transport, and T inel. the inelastic transport. Note that
we will need only these flows backwards on the time intervals [kδ, (k + 1)δ]. The low-energy hard sphere
transport T elas. is defined such that when two particles collide, and the energy of the pair is smaller than
ε0, we apply the classical elastic scattering, while when the energy of the pair is strictly larger than ε0, we
apply the backwards inelastic scattering (according to the definition of the inelastic hard sphere with emission
dynamics, a pair of particles with an energy strictly larger than ε0 right after the collision had to collide
according to the inelastic scattering (2)). The backwards inelastic scattering is defined using (2), where ε0
is replaced by −ε0 in the formula. The inverse of the inelastic transport T inel. is defined such that whenever
two particles collide, the backwards inelastic scattering is always applied.
The flow of inelastic particles with emission is well-defined outside the set E0 ∪ Fδ on [0, 2δ], where:

Fδ = T elas.
−δ (Eδ ∩ Tδ(E

c
0)) ∪ T inel.

−δ (Eδ ∩ Tδ(E
c
0)) . (24)

We define also F0 as E0, and Fkδ is defined inductively: at time 2δ, we consider the pathological set E2δ,
on the complement of which we can define the dynamics of the particles until 3δ, and that has his measure
estimated exactly as in (23). Then, we pull back E2δ at the initial time, which provides F2δ, with:

F2δ = T elas.
−δ

(

T elas.
−δ (E2δ ∩ T2δ(E

c
0 ∩ F c

δ ))
)

∪ T elas.
−δ

(

T inel.
−δ (E2δ ∩ T2δ(E

c
0 ∩ F c

δ ))
)

∪ T inel.
−δ

(

T elas.
−δ (E2δ ∩ T2δ(E

c
0 ∩ F c

δ ))
)

∪ T inel.
−δ

(

T inel.
−δ (E2δ ∩ T2δ(E

c
0 ∩ F c

δ ))
)

. (25)

In the same way, we define F3δ, composed of 8 terms, and so on, until F(n−1)δ, composed of (a priori) 2(n−1)

terms. Finally, we introduce:

A(δ) =

n−1
⋃

k=0

Fkδ. (26)

On the complement of A(δ), the dynamics of the inelastic hard spheres with emission is well-defined on the
whole time interval [0, T ]. We now have to estimate the measure of the set A(δ).

To estimate |A(δ)|, we need an a priori bound on the number of collisions of the trajectories we defined.
For any initial configuration ZN /∈ A(δ), well-defined on [0, T ], the maximal number of inelastic collisions is
strictly smaller than R2

2/ε0. Let K = K(ε0, R2) be the largest integer strictly smaller than R2
2/ε0.

In between two consecutive inelastic collisions, by definition the system can experience only elastic collisions.
Now, there exists a universal bound, depending only on the number of particles N , denoted by CHS(N), on
the maximal number of collisions that a system of elastic hard spheres can undergo (see Theorem 1.3 in [3]).
Therefore, the trajectory starting from ZN can experience at most:

K + (K + 1)CHS = CIHS (27)

collisions (elastic and inelastic). This bound is also universal, in the sense that it depends only on N and R2,
but not on the initial configuration ZN (taken in BXN

(0, R1)×BVN
(0, R2)), nor the time T , nor the cut-off

parameter δ.
We can now estimate |A(δ)|. We have:

|A(δ)| ≤
n−1
∑

k=0

|Fkδ | . (28)
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Since both of the transports T elas.
−δ and T inel.

−δ preserve the measure in the phase space, the measure of |Fkδ|
is given by |Ekδ|, times the number of preimages of the set Ekδ used to define Fkδ. Here, we do not use
|Fkδ| ≤ 2k|Ekδ |, which is too rough. Instead, let us observe that the number of the possible preimages of
Ekδ that define Fkδ is given by the number of the admissible compositions of the two backwards transports
T elas.
−δ and T inel.

−δ . In order to reach the time kδ, we proceed to k iterations, for which at most one collision,
either elastic, or inelastic, takes place. Therefore, the trajectory t 7→ Tt(ZN ) (for t ∈ [0, kδ]) starting from a
configuration ZN is described in particular by the number p of collisions that such a trajectory undergoes on
the time interval ]0, kδ], where 0 ≤ p ≤ k. In addition, we know that p ≤ CIHS. Besides, such a trajectory
can experience at most K inelastic collisions, and after labelling the collisions j ∈ {1, . . . , p}, the repartition
of such inelastic collisions among all the collisions is another characteristic of the trajectory. We can then
partition the set of initial configuration F c

0 ∩ · · · ∩ F c
(k−1)δ into cells Cp,q,Q, where

0 ≤ p ≤ min(k, CIHS), 0 ≤ q ≤ min(p,K), Q ⊂ {1, . . . , p} with |Q| = q,

characterized as follows:

Cp,q,Q =
{

ZN ∈ F c
0 ∩ · · · ∩ F c

(k−1)δ / t 7→ Tt(ZN ) has p collisions on ]0, kδ], q of them are inelastic,

and the label of such inelastic collisions are the elements of Q.
}

(29)

We can now consider the intersection between the pathological set Ekδ at time kδ with the image by Tkδ of
the cells Cp,q,Q. Restricted to each of the cells Cp,q,Q, the transport Tkδ is injective, and we have:

{

ZN ∈ Cp,q,Q / Tkδ(ZN ) ∈ Ekδ

}

= T
Cp,q,Q

−kδ (Ekδ ∩ Tkδ(Cp,q,Q)) , (30)

where T
Cp,q,Q

−kδ is the inverse of the transport Tkδ restricted to the cell Cp,q,Q. Such an inverse is defined as
follows: from a configuration ZN , we apply the free transport backwards, until the first collision. If p ∈ Q,
we apply the inverse inelastic scattering, which correspond to (2), where ε0 is replaced by −ε0. If p /∈ Q, we
apply the elastic scattering. We apply again the backwards free flow, until the second collision, and we choose
again the scattering depending if p − 1 belongs to Q or not. Repeating the operation, after p collisions, we

will define the transport T
Cp,q,Q

−kδ for a time kδ on the image of the cell Cp,q,Q by the transport Tkδ of inelastic
particles with emission, and such that:

∀YN ∈ Cp,q,Q and ∀ZN ∈ Tkδ(Cp,q,Q), Tkδ(YN ) = ZN ⇔ T
Cp,q,Q

−kδ (ZN ) = YN . (31)

The inverse transport T
Cp,q,Q

−kδ preserves the measure, and we have therefore:

|Fkδ | =
∣

∣

∣(Tkδ)
−1
Ä

Tkδ(F
c
(k−1)δ) ∩ Ekδ

ä

∣

∣

∣ =
∣

∣

∣

⋃

0≤p≤min(k,CIHS)
0≤q≤min(p,K)
Q⊂{1,...,p}

|Q|=q

(Tkδ)
−1

(Tkδ(Cp,q,Q) ∩ Ekδ)
∣

∣

∣

≤
min(k,CIHS)
∑

p=0

min(p,K)
∑

q=0

∑

Q⊂{1,...,p}
|Q|=q

∣

∣

∣
T

Cp,q,Q

−kδ (Ekδ)
∣

∣

∣
=

min(k,CIHS)
∑

p=0

min(p,K)
∑

q=0

∑

Q⊂{1,...,p}
|Q|=q

|Ekδ |, (32)

so that, using that the total number of collisions is uniformly bounded, as well as the number of inelastic
collisions, we deduce in the end:

|A(δ)| ≤
n−1
∑

k=0

(

(CIHS + 1)

K
∑

q=0

Ç

CIHS

q

å

)

|Ekδ| ≤ C(N, T,R1, R2)nδ
2 = C(N, T,R1, R2)δ. (33)

We can now consider the intersection of the pathological sets |A(δ)| when δ is sent to zero, which provides a
set of zero measure in BXN

(0, R1)×BVN
(0, R2), such that the flow of inelastic hard spheres with emission is

defined on its complement on [0, T ]. Repeating the argument for three countable sequences (R1,n)n, (R2,n)n
and (Tn)n that all tend to infinity as n goes to infinity, we complete the proof of Theorem 2.
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Remark 2. Let us note that the proof of Alexander’s theorem can be directly adapted for systems of inelastic
hard spheres with emission without using the strong result of [3], provided that the total energy of the system
is small. Namely, if we assume that the initial energy is so small that only a single inelastic collision can
take place, the proof that can be found in [7] can be adapted in the following way. The measure of the set
A(δ) goes to zero as δ, which is more than enough to conclude, since any rate of convergence to zero would
have been enough. Then, one can consider non-uniform time steps, that depend not only on the number of
sub-intervals used to decompose [0, T ], but also on the k-th iteration of the process that allowed to define the
transport. For instance, one can consider:

δn(k) =
T

k ln(n)
· (34)

In that case, considering k iterations of the process allows to reach the final time:
n
∑

k=1

δn(k) =

n
∑

k=1

T

k ln(n)
∼ T, (35)

while at each iteration the measure of the sets Ekδ is now estimated as:

|Ekδ| ≤ C(N, T,R1, R2) (δn(k))
2
. (36)

The assumption on the initial kinetic energy ensures that the sets Fkδ are defined with all the compositions of
k transports, chosen among T elas.

−δ and T inel.

−δ , such that at most one inelastic collision can take place. This
provides:

|A(δ)| ≤
n−1
∑

k=0

k |Ekδ | (37)

≤ C(N, T,R1, R2)
n−1
∑

k=0

k
1

k2 ln2(n)
∼ C(N, T,R1, R2)

ln(n)
, (38)

which is indeed a vanishing quantity as the number of the time steps n goes to infinity.

Remark 3. Our proof of Theorem 2 shows that an Alexander’s-like result holds for any system of particles
that can undergo only a finite number of inelastic collisions, uniformly on any compact set of the phase space,
and such that the scattering S is not shrinking too much the measure, namely, such that:

|S(A)| ≥ CK |A|, (39)

where CK is a local constant, that may depend on the compact set K of the phase space on which we consider
the restriction of the scattering mapping S. Indeed, to prove Alexander’s theorem for the system of inelastic
hard spheres with emission, we did not need that the measure was preserved.

4.2 Comparison with the model of inelastic hard spheres, with constant resti-

tution coefficient

Concerning the “classical” model of inelastic hard spheres, the post-collisional velocities are computed ac-
cording to:



















v′ = v − (1 + r)

2
(v − v∗) · ωω =

v + v∗
2

+
1

2
[(v − v∗)− (1 + r)(v − v∗) · ωω] ,

v′∗ = v∗ +
(1 + r)

2
(v − v∗) · ωω =

v + v∗
2

− 1

2
[(v − v∗)− (1 + r)(v − v∗) · ωω] ,

(40)

with r ∈ [0, 1[ (the so-called restitution coefficient) is a fixed positive real number. In this case, obtaining
an Alexander-like theorem is still an open question. It is an important problem, for this model is used as
a simplified description of granular media at microscopic scale (see [10], [4]). The phenomenon of inelastic
collapse, consisting in infinitely many collisions in a finite time, typical of the model of collision (40), is the
main obstruction to obtain an Alexander-like theorem for such a model. Concerning the inelastic collapse in
dimensions larger than 1, let us mention [9], [12] and [5], [6]. Even for system of three particles, the inelastic
collapse can take place, and such a phenomenon is still not well understood.
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4.3 Interpretation of the result of Theorem 1

The result of Theorem 1 might look surprising at first glance. However, there is a way to interpret the result,
in terms of conformal mappings. Denoting indeed by m and w the respective quantities:

m =
1

2
(v + v∗), w = v∗ − v, (41)

the collision mapping (2) can be rewritten, in frame of the center of mass, as:

(m,w) 7→
Ç

m, 2σ(w)

…

∣

∣

∣

w

2

∣

∣

∣

2
− ε0

å

, (42)

where σ(w) is the symmetry of the unit vector w/|w| with respect to the orthogonal of ω = (x∗−x)/|x∗−x|.
Now, if we use the polar coordinates, choosing any unit orthogonal vector to ω and defining such a vector as
the first axis (i.e., of angle 0), the mapping:

w 7→ 2σ(w)

…

∣

∣

∣

w

2

∣

∣

∣

2

− ε0

can be rewritten as:

f : (ρ, θ) 7→ (fρ(ρ, θ), fθ(ρ, θ)) =
Ä
√

ρ2 − 4ε0,−θ
ä

. (43)

The infinitesimal element of surface [ρ0, ρ0+dρ]×[θ0, θ0+dθ], written in polar coordinates, has the infinitesimal
surface |ρ0 dρ dθ|, and its image has the infinitesimal surface:

|fρ(ρ0, θ0) · ∂ρfρ(ρ0, θ0) dρ · ∂θfθ(ρ0, θ0) dθ| .
But since we have:

fρ(ρ0, θ0)∂ρfρ(ρ0, θ0)∂θfθ(ρ0, θ0) =
»

ρ20 − 4ε0
ρ0

√

ρ20 − 4ε0
(−1) = −ρ0, (44)

we deduce that the mapping f preserves the measure, and so does the scattering mapping (2).

Such a computation can also be carried on in larger dimension using spherical coordinates, which provides
similar collision models, preserving the measure in the phase space, but losing some kinetic energy during
the collisions. In dimension d = 3 for instance, considering the mapping f , written in spherical coordinates
(ρ, θ, ϕ) (with θ ∈ [−π/2, π/2] and ϕ ∈ [0, 2π]) such that:

f : (ρ, θ, ϕ) 7→
(

(

ρ3 − 4ε0
)1/3

,−θ, ϕ
)

, (45)

the image by f of the infinitesimal volume [ρ0, ρ0 + dρ]× [θ0, θ0 + dθ]× [ϕ0, ϕ0 + dϕ] has the measure:

(

(fρ)
2∂ρfρ dρ

)

· (cos θ0∂θfθ dθ) · (∂ϕfϕ dϕ) =
(

ρ30 − 4ε0
)2/3 3ρ20

3 (ρ30 − 4ε0)
2/3

· (cos θ0∂θfθ dθ) · (∂ϕfϕ dϕ)

= ρ20 cos θ0 dθ dϕ. (46)

The mapping f preserves the measure, and the same conclusion follows accordingly for the scattering map-
ping (2) in dimension 3. It is clear that one can construct such examples for any arbitrary dimension. Let
us observe that although such particle models conserve the measure in the phase space, and loses a positive
quantity of kinetic energy in any collision that is energetic enough, the way in which the particles lose kinetic
energy in the particle model we consider here (defined using (45)) becomes less natural than (5), that holds
only in dimension d = 2.
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[6] Théophile Dolmaire, Juan J. L. Velázquez, “Properties of some dynamical systems for three collapsing
inelastic particles”, to appear.

[7] Isabelle Gallagher, Laure Saint-Raymond, Benjamin Texier, From Newton to Boltzmann: Hard Spheres
and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, 18, European Mathematical
Society (EMS), Zürich (2013).
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