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Speech emotion recognition from voice messages
recorded in the wild
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Abstract—Emotion datasets used for Speech Emotion Recog-
nition (SER) often contain acted or elicited speech, limiting
their applicability in real-world scenarios. In this work, we used
the Emotional Voice Messages (EMOVOME) database, including
spontaneous voice messages from conversations of 100 Spanish
speakers on a messaging app, labeled in continuous and discrete
emotions by expert and non-expert annotators. We created
speaker-independent SER models using the eGeMAPS features,
transformer-based models and their combination. We compared
the results with reference databases and analyzed the influence
of annotators and gender fairness. The pre-trained Unispeech-
L model and its combination with eGeMAPS achieved the
highest results, with 61.64% and 55.57% Unweighted Accuracy
(UA) for 3-class valence and arousal prediction respectively,
a 10% improvement over baseline models. For the emotion
categories, 42.58% UA was obtained. EMOVOME performed
lower than the acted RAVDESS database. The elicited IEMOCAP
database also outperformed EMOVOME in the prediction of
emotion categories, while similar results were obtained in valence
and arousal. Additionally, EMOVOME outcomes varied with
annotator labels, showing superior results and better fairness
when combining expert and non-expert annotations. This study
significantly contributes to the evaluation of SER models in real-
life situations, advancing in the development of applications for
analyzing spontaneous voice messages.

Index Terms—Speech emotion recognition, natural database,
valence, arousal, pre-trained model, speaker independent.

I. INTRODUCTION

HUMAN communication allows individuals to express not
only their ideas, but also their emotional state. In every-

day conversations, people utilize both information to adjust
their behavior, underscoring the importance of recognizing
emotions. Speech Emotion Recognition (SER) is a research
field that automatically identifies a person’s emotional state
from their voice. SER has potential applications for the study
of human-to-human communications, such as detecting stress
or depression in medical contexts. It is also relevant in human-
computer interactions, for example, improving the naturalness
of speech synthesis systems.

A key aspect of SER research is emotional databases
containing labeled samples from which to learn patterns cor-
relating with emotions. In the literature, emotions are modeled
using continuous or discrete emotion models [1]–[3]. The
discrete model is based on categories of basic emotions consid-
ered innate and universal, which can be combined to obtain
other emotions. For example, Ekman [4] proposed the “big
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six” basic emotions: fear, surprise, happiness, sadness, anger
and disgust. The dimensional model explains emotions using
continuous dimensions that represent fundamental properties
shared by all emotions. Various dimensional models exist,
depending on the number and type of dimensions consid-
ered. For instance, Russell’s circumplex model of affect [5]
uses two dimensions —valence and arousal— on a Cartesian
axis system. Valence represents the pleasantness (positive va-
lence) or unpleasantness (negative valence) of emotion, while
arousal measures its intensity, ranging from active/exciting
(high arousal) to passive/dull (low arousal). Each emotion
can be viewed as a combination of these two dimensions,
illustrated in Fig. 1. Both emotional models have strengths and
weaknesses, as described in [2]. SER literature predominantly
focuses on the discrete model due to its intuitive labeling since
individuals commonly use basic categories to express emotions
in everyday life. However, it struggles to accurately capture
some complex affective states. In contrast, the dimensional
model is less intuitive, but it provides greater flexibility in
categorizing a broader spectrum of emotions. It acknowledges
the complexity of emotional experiences, where individuals
may experience a mix of emotions rather than fitting into
discrete categories, and captures the dynamic by showing how
emotions relate to each other on a continuum.

Fig. 1. Russell’s circumplex model of affect. The outer circle illustrates where
prototypical emotions are normally located. From [6].
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Different databases exist depending on whether the samples
are acted, elicited/induced and natural/spontaneous speech as
described in several reviews [1]–[3]. Acted databases comprise
speech samples of actors simulating emotions, typically while
delivering predetermined sentences. Despite their prevalence
in literature, acted emotions tend to be stereotypical and
exaggerated, limiting their applicability in real-world sce-
narios. Elicited databases involve speech samples collected
in artificially induced situations to elicit specific emotional
states, for instance, listening to a story, watching a video or
conducting a guided discussion. While these samples offer
a closer approximation to genuine emotional expression, the
induction process has limitations and ethical implications. In-
dividuals may react differently to the same stimulus, requiring
an extra subjective assessment to identify the emotion in
the speech sample. Natural databases include speech samples
extracted from diverse sources, including films, radio/TV talk-
shows and occasionally therapy interviews. These databases
encounter several challenges. They typically contain audios
with overlapping voices and background noise, known as in-
the-wild conditions. Furthermore, individuals who are aware
of being recorded might unintentionally control their emotions
or express them unnaturally. Additionally, determining the
emotion in each sample necessitates an external subjective
evaluation. Natural databases, though infrequent in literature
and often private for ethical and legal reasons, are crucial for
recognizing genuine, real-life emotions.

To create speech emotion recognition models, different
approaches have been studied in the literature. Traditionally,
SER systems have leaned on so-called hand-crafted features,
i.e., acoustic properties such as prosodic or spectral features
extracted at frame level or aggregated using high-level statis-
tics functions [3]. With the advancements in deep learning,
it became possible to directly use the raw signal to train
the recognition models, capturing the temporal dynamics and
avoiding feature engineering. Techniques such as convolu-
tional neural networks and recurrent neural networks emerged
as the primary approach in SER [2]. Nevertheless, they have
been limited by the small size of the emotional datasets, which
is a major challenge for deep learning methods to achieve
optimal effectiveness [7]. In recent years, large pre-trained
models have emerged as a powerful framework that is gaining
significant attention in all speech-related domains, including
automatic speech recognition (ASR), speaker verification and
SER, among others [3], [8]. These transformer-based mod-
els (e.g., Wav2vec 2.0 [9] and HuBERT [10]) are trained
using self-supervised learning approaches on large unlabeled
datasets through pretext tasks. Then, they are used to extract
speech representations, even from long sequences at once,
overcoming the limitations of previous deep learning methods.
The learned speech representations are fed into simple neural
networks in downstream tasks, including SER, in which recent
works have obtained promising results [7], [8], [11], [12].

SER is still an open-ended problem due to its complexity.
Emotions are subjective internal states, which makes their
theoretical conceptualization difficult [13]. Consequently, an-
notating audios is a challenging task, as emotions can be
perceived differently between raters [14], as well as several

emotions can also be combined in the same utterance. This is
also reflected in the available emotional speech databases in
the literature, often constrained by small sizes and limitations
in recognizing real-life emotions. The availability of databases
is even more limited for languages other than English, such as
Spanish. A total of twelve Spanish databases are mentioned
in the literature, consisting of six private [15]–[20] and six
open for research, among which two are acted [21], [22],
one elicited [23] and three natural [24]–[26]. Furthermore, the
performance of the SER task is significantly influenced by the
data separation strategy used. Speaker-dependent (SD) models
are trained and tested using speech samples from the same
speakers, reaching accuracies of over 70% regardless of the
databases or emotion classes involved [3]. In contrast, speaker-
independent (SI) models use different subjects for training and
testing, so they are evaluated with unknown speakers. The
majority of SI models yield accuracies ranging from 29% to
65%, indicating the inherent difficulty of SER in these cases
[3]. Finally, another challenge for SER models is fairness, that
is, the difference in model results with respect to individuals
or population groups according to variables such as gender,
age or ethnicity [27]. Given the increasing concerns in society
about biases in ML systems [28], it is necessary to ensure
fairness in SER models.

To fill the gap of existing literature on models trained
in real-world settings, this study focuses on speech emotion
recognition using a natural speech database we meticulously
collected, called the Emotional Voice Messages (EMOVOME)
database [29]. To the best of our knowledge, this is the
first Spanish database of spontaneous emotions in real voice
messages, and it is labeled by expert and non-expert anno-
tators. We created speaker-independent SER models using
acoustic features and state-of-the-art pre-trained models. We
conducted a comprehensive analysis to assess how various
EMOVOME properties influence the results of the SER mod-
els, comparing the results with the widely used Interactive
Emotional Dyadic Motion Capture (IEMOCAP) database [30]
and Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [31]. We explored the following Research
Questions (RQ):

• RQ1: What is the performance of SER models in
EMOVOME when utilizing classical acoustic features
versus state-of-the-art speech embeddings?

• RQ2: To what extent does the performance of
EMOVOME, a natural database, compare with elicited
and acted reference databases in the literature, such as
IEMOCAP and RAVDESS?

• RQ3: What impact do annotator labels exert on the per-
formance of SER models when dealing with challenging
natural databases like EMOVOME?

• RQ4: How does gender impact the fairness of SER
model outcomes in EMOVOME compared to reference
databases?

The rest of the paper is organized as follows. Section 2
provides a review of related works on SER. Section 3 describes
the databases used in this study. In Section 4, the methodology
applied to create the SER models is detailed, and Section
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5 reports the outcomes of these models. Section 6 discusses
the results of the stated hypothesis. The paper concludes by
summarizing the work and proposing future directions for SER
with realistic data.

II. RELATED WORK

There is a scarcity of research focused on SER using
Spanish databases. Table I summarizes the related literature.
For each of the twelve Spanish databases found, it indicates
the type of speech (acted, elicited or natural), the number of
samples (N), the number of speakers (Spk) with the gender
distribution (males/females), the labeled emotions and the
database access type (private, commercially available or free).
It also includes the Unweighted Accuracy (UA) and/or the
Weighted Accuracy (WA) of the monolingual SER models cre-
ated using these databases (results of multilingual and cross-
lingual models are not reported here since they represent more
challenging tasks and monolingual outperforms the others for
comparable number of training samples [32]). Four databases
contain mixed languages: the Emotional Speech Synthesis
database [22] is part of the INTERFACE project [33], in which
data in English, Slovenian, French and Spanish was collected;
RekEmozio [20] includes data in both Spanish and Basque;
CMU-MOSEAS [25] includes YouTube videos in Spanish,
Portuguese, German and French; and EmoFilm [26] includes
clips from both original English films and their Spanish and
Italian dubbed versions. LIRIS-ACCEDE [34] is also a multi-
lingual database, but it is mostly in English, with only a small
subset available in nine other languages (including Spanish).
Due to a lack of specific details on these partitions, they have
been excluded from the table. Additionally, EmoWisconsin
[35] and IESC-child [36] are emotional databases in Spanish;
however, they contain children’s speech. As our focus here is
on adult speech, they are not included in the table.

Most of the Spanish emotional databases contain speech
acted by professional or non-professional actors [15]–[22],
one is based on elicited responses [23] and three are natural
databases [24]–[26]. Six of the databases are private [15]–
[20], one is commercially available [22] and five are free
[21], [23]–[26]. This paper focuses on the natural databases
and, although the three existing ones are public, they have
some limitations. MOUD database [24] comprises 105 video
clips manually extracted from YouTube content in Spanish,
covering various topics, and with an average duration of 30s
each. Two annotators labeled these clips into three categories:
positive, neutral, or negative. Notably, the neutral class is
represented by only 4 samples, in contrast to 47 samples for
the positive class and 54 for the negative class. Addition-
ally, a large proportion of the speakers in the database are
female. As for CMU-MOSEAS [25], this database comprises
10000 Spanish sentences extracted from monologue videos
on YouTube, with an average sentence duration of 6.7s. Each
sentence was annotated by 3 annotators using different labels,
including sentiment and the six Ekman’s emotions. The article
asserts attempts to achieve gender balance in videos across
languages and regions but lacks specific details on the final
distribution. Furthermore, despite the public availability of the

database, the original clips are not disclosed, and only high-
level features are made accessible. Both the MOUD and CMU-
MOSEAS databases share two common constraints. Firstly,
their speakers record videos for YouTube, and awareness of
being recorded might lead to unintentional emotional control
or unnatural expression in response to the artificial situation
[43]. Secondly, the nature of YouTube videos in both databases
involves monologues, potentially lacking the naturalness found
in conversational contexts, as highlighted in [44]. Finally,
EmoFilm database [26] includes clips from original English
films and their Spanish and Italian dubbed versions. The
definition of natural databases includes speech extracted from
films. However, films inherently involve acting, and as such,
the emotions depicted are portrayed by actors. This holds true
for the original films and their dubbed versions, potentially
rendering the emotional expressions even more overacted in
the latter. Therefore, this database may not be suitable for
recognizing real emotions, as noted by their authors [26].

The performance of SER models in Spanish databases is
conditioned by the type of data used. For acted databases,
the accuracy is equal or greater than 90% (e.g. [18], [19],
[21], [38]–[41]). An exception is the work in [37], in which
they used the RekEmozio database to classify seven emotion
categories and achieved 74.82% accuracy. However, they used
a speaker-independent approach, which is known to yield
comparatively lower results [3]. This trend is also reflected
in [23], where they used the elicited database EmoSpanishDB
to classify seven emotion categories and obtained 56.3% and
42.1% UA for speaker-dependent and speaker-independent, re-
spectively. The difference between both approaches decreased
when they used EmoMatchSpanishDB, a refined version of
the database obtained by eliminating labeled samples that did
not match the original elicited emotion, achieving an accuracy
of 65.0% and 64.2% UA for SD and SI, respectively. Finally,
natural databases have the lowest scores. Using only the audio
modality, in [24] they achieved an accuracy of 46.75% in
differentiating between positive and negative samples. In the
study by [17], an accuracy of 55% was achieved for the
classification of five emotions using a model trained on acted
and tested on natural data. Higher scores were achieved with
the EmoFilm database, which may be due to the inherent
acted nature of the samples. In [32], they obtained 69.15% and
70.76% UA and WA, respectively, using a speaker-independent
approach. In [42], the score increased to 85.0% WA, and
91.8% and 97.7% for female and male versions of the models.

Regarding the techniques used to create the SER models,
a noteworthy paradigm shift involves leveraging large pre-
trained models in emotion recognition tasks. The study in
[32] used the pre-trained wav2vec2-large-robust model fine-
tuned on MSP-Podcasts dataset from [11] to extract speech
embeddings. These embeddings were then fed into a support
vector machine to create the models, obtaining 69.15% un-
weighted accuracy for five emotion categories on the EmoFilm
database. To our knowledge, this is the only previous study
using pre-trained models for monolingual SER models in
Spanish. Nevertheless, an increasing number of recent pub-
lications have focused on the use of pre-trained models with
English databases (predominantly relying on acted datasets)
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for categories of emotions and less frequently for dimensions.
As for studies on emotion category prediction, a very recent

study [11] summarized the state-of-the-art results for 4-class
emotion classification in the widely used IEMOCAP database,
including studies using the pre-trained wav2vec 2.0 and Hu-
BERT models. Comparing the cross-validation results, the
unweighted accuracy values range from 60.0% to 74.3%, while
the weighted average recall values vary from 62.6% to 79.6%,
both top models. Overall, HuBERT surpassed the performance
of the wav2vec 2.0 models. Other works have explored several
pre-trained models and emotional databases. In [45], they used
eight pre-trained models (including wav2vec 2.0) and four
databases (CREMA-D, TESS, SAVEE, Emo-DB) to predict
6-7 emotions. The results showed that pre-trained models
for speaker recognition (x-vector and ECAPA) achieved the
highest scores, possibly due to their learned ability to identify
unique features within an individual’s speech. Subsequently,
UniSpeech-SAT achieved the best results, a model pre-trained
using multitask learning, including the speaker identity. In
another study [46], the authors compared nineteen pre-trained
models (including wav2vec 2.0, HuBERT, UniSpeech-SAT
and wavLM) and five datasets (IEMOCAP, MSP-IMPROV,
MSP-PODCAST, CMU-MOSEI, JTES) to predict 4-6 emotion
categories using a speaker-independent approach. They found
that the best scores were achieved with WavLM, UniSpeech-
SAT, and HuBERT, all three in the large version.

As for studies on emotion dimension prediction, [7] used
a multimodal model (audio + text) as a teacher to fine-tune

HuBERT embeddings to predict valence, arousal and domi-
nance on MSP-Podcast database [47]. They obtained state-of-
the-art Concordance Correlation Coefficient (CCC) values of
0.757, 0.627 and 0.671 for arousal, valence and dominance,
respectively. The previous state-of-the-art performance for
valence was 0.377 [48], so 0.627 represents a substantial
improvement. They also replicated the results for the IEMO-
CAP database, achieving again state-of-the-art CCC results
for valence (0.667), arousal (0.582) and dominance (0.545).
In [11], the authors conducted an exhaustive analysis using
different variants of the pre-trained wav2vec 2.0 and HuBERT
models for valence, arousal and dominance prediction on
the MSP-Podcast database. They obtained the best result in
the literature for valence prediction using only audio, with a
wav2vec2-large-robust model that achieved a CCC of 0.638.
Notably, their results showed that data used for pre-training
the models and the fine-tuning of the transformer layers had
a strong influence on valence prediction. Both factors played
a role in shaping the models’ ability to implicitly incorporate
linguistic information embedded in the audio signal. This, in
turn, accounts for their success in valence prediction, achiev-
ing similar performance to multimodal models that integrate
explicit textual information.

Finally, research on evaluating model fairness is limited,
particularly in the context of pre-trained models [27]. Some
previous works have investigated gender-based fairness in
Spanish databases, revealing differences in model performance
between females and males. In [38], the authors reported a

TABLE I
SPEECH EMOTION RECOGNITION MODELS IN SPANISH. THE ASTERISK (*) INDICATES IF THE DATABASE IS MULTILINGUAL, BUT THE INFORMATION
CORRESPONDS TO THE SPANISH PARTITION. THE “BIG SIX” BASIC EMOTIONS ARE: FEAR, SURPRISE, HAPPINESS, SADNESS, ANGER, AND DISGUST.

Database Type N Spk (M/F) Emotions Access UA (%) WA (%)
Iriondo et al. [15] Acted 336 8 (4/4) Big six + desire Private - -
Spanish Emotional
Speech [16] Acted 1288 1 (1/0) Happy, sad, cold

anger, surprise Private - -

Martı́nez & Cruz [17]
Acted +
natural
(films)

300 +
80

15 (-/-) +
N/A (-/-)

Happy, sad, anger,
neutral, fear Private - 55 (tested on natural

partition) [17]

Emotional Mexican
Spanish speech [18] Acted 240 6 (3/3) Happy, sad, anger,

neutral Private ≥ 95 [18] -

Spanish Expressive
Voices [19] Acted 3890 2 (1/1) Big six + neutral

(cold/hot anger) Private - 95 [19]

RekEmozio * [20] Acted 2618 10 (5/5) Big six + neutral Private - SI: 74.82 [37]

Mexican Emotional
Speech Database [21] Acted 3456

8 (4/4) +
8 (3/5)
children

Happy, sad, anger,
neutral, fear,
disgust

Free
89.49 female [21]
93.90 male [21]
83.30 children [21]

-

Emotional speech
synthesis [22] (from
INTERFACE * [33])

Acted 5520 2 (1/1)
Happy, sad, anger,
neutral, fear,
boredom, disgust

Comm.
avail.

90.9 female [38]
89.4 male [38]

91.16 [39]
91.51 [40]
94.01 [41]

EmoSpanishDB,
EmoMatchSpanishDB [23] Elicited 3550,

2020 50 (30/20) Big six + neutral Free SD: 56.3, SI: 42.1 [23]
SD: 65.0, SI: 64.2 [23] -

MOUD [24] Natural
(YouTube) 550 105 (21/84) Positive, neutral,

negative Free - 46.75 (audio, positive
vs negative) [24]

CMU-MOSEAS * [25] Natural
(YouTube) 10000 341 (-/-) Big six, sentiment,

subjectivity, others Free - -

EmoFilm * [26] Natural
(films) 342 57 (33/24) Happy, sad, angry,

fear, contempt Free SI: 69.15 [32]

SI: 70.76 [32]
85.0 [42]
91.8 female [42]
97.7 male [42]

Ours (EMOVOME) [29]
Natural
(voice
messages)

999 100 (50/50) Valence, arousal
Big six + neutral Free

SI: 49.27% (audio,
3-class valence) [29]
SI: 44.71% (audio,
3-class arousal) [29]

-
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female accuracy of 90.9% and a male accuracy of 89.4%, yet
the database only included one male and one female speaker.
Conversely, [21] and [42] showed a different pattern, with
males achieving higher accuracy than females. Specifically,
[21] presented 89.49% for females and 93.90% for males
(with 4 female and 4 male speakers), while [42] obtained
91.8% for females and 97.7% for males using pre-trained
models (with 33 male and 24 female speakers). The same
trend has been found in some works on SER for English data.
In [27], they studied the fairness of SER systems using pre-
trained models and observed a reduction of 0.234 in CCC
for arousal among females as opposed to males on MSP-
Podcast. In [11], they found that pre-trained models tend to
exhibit greater fairness in predicting arousal and dominance
than in valence. Notably, for valence, the majority of models
showed higher CCC for females than for males. Nevertheless,
overall the speech representations obtained with pre-trained
models seem to be invariant to domain, speaker, and gender.
Additionally, the authors in [11] also explored fairness across
individual speakers and found that different pre-trained models
show overall consensus on categorizing speakers as ‘good’ or
‘bad’, obtaining lower CCC values for some individuals in
the latter group. These findings underline the importance of
incorporating fairness assessment in future research.

III. SPEECH EMOTION DATABASES

This research used three databases: EMOVOME, IEMO-
CAP and RAVDESS, detailed below. A comparison of the
main features is presented in Table II, indicating the type of
speech (acted, elicited or natural), the language, the labeled
emotions categories or dimensions, the number of samples
(N), the number of speakers (Spk) with the gender distribution
(males/females), the mean number of samples per speaker
(N/Spk) and the sample duration (mean and range).

A. Emotional Voice Messages database (EMOVOME)

The Emotional Voice Messages (EMOVOME) database [29]
was created from scratch for this work to obtain emotional
speeches in real-world conditions. It contains 999 audio mes-
sages collected from real WhatsApp conversations of 100
Spanish speakers (50 female, 50 male). Voice messages were
produced in-the-wild conditions before participants were re-
cruited, avoiding any conscious bias due to the laboratory
environment. Samples were labeled by two clinical psycholo-
gists (considered experts in the task of recognizing emotions)
and three other annotators (deemed non-experts) in terms of
valence and arousal using a 5-point scale. The experts labeled
half of the audios each, so henceforth it will be considered

a single expert label. The labels were processed to obtain
three categories for arousal (high, neutral and low) and valence
(positive, neutral and negative). They were finally aggregated
by majority voting to obtain a single label per audio, giving
priority to the expert’s label in case of a tie. The expert also
labeled the audios in the following categories: happy, angry,
fearful, sad, surprise, disgust and neutral. In this work, only the
four most frequent emotions were used for classification, i.e.,
happy, angry, neutral and surprise. Details of the experimental
procedure used for data collection and labeling are described
in [29]. To the best of our knowledge, EMOVOME is the first
collection of spontaneous emotions from real voice messages.

B. Interactive Emotional Dyadic Motion Capture database
(IEMOCAP)

The Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) database [30] stands out as a benchmark dataset for
studying emotional expression and communication. It contains
dyadic interactions of 10 English-speaking actors engaged in
scripted and improvised dialogues designed to elicit different
emotions. In this work, only the audio files corresponding
to the segmentation of the conversations into utterances were
used to create the SER models. This set includes 10039 utter-
ances annotated into 9 emotion categories and 3 dimensions.

To align the classification results with the EMOVOME
database, valence and arousal scores were stratified into three
categories. Samples with a score below 2.5 were considered
negative/low valence/arousal. Those samples with scores be-
tween 2.5 and 3.5 were considered neutral valence/arousal. Fi-
nally, we considered samples as positive/high valence/arousal
if the score was greater than 3.5. Moreover, to facilitate
comparison with the literature, only the four most frequent
emotions were used for the classification into categories, i.e.,
angry, neutral, sad, happy and excited (the latter two were
merged, following previous studies).

C. Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS)

The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) [31] is a multimodal database that
contains speech and song recordings expressing different emo-
tional states. In this investigation, the voice-only data from
RAVDESS was used. In this set, 24 actors pronounce two
phrases (“Kids are talking by the door” and “Dogs are sitting
by the door”) with different emotional intentions in a recording
studio. Actors vocalized each statement in normal and strong
emotional intensity for each of the eight emotions (except for
neutral), resulting in 1440 samples.

TABLE II
COMPARISON OF THE EMOTION DATABASES USED IN THIS WORK: EMOVOME, RAVDESS AND IEMOCAP.

Database Type Language Dimensions Categories N Spk (M/F) N/Spk Sample duration
Mean Range

EMOVOME Natural Spanish Valence, arousal Big six + neutral 999 100 (50/50) 10 17.59s 1-60s

IEMOCAP Elicited,
acted English Valence, arousal,

dominance
Big six + neutral,
frustration, excited 10039 10 (5/5) 1004 4.59s 1-35s

RAVDESS Acted English - Big six + neutral, calm 1440 24 (12/12) 60 3.70s 3-5s
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To compare the classification results with the EMOVOME
database, the emotion labels were transformed from the dis-
crete emotional model to the dimensional emotional model,
as also studied in [49]. For this purpose, the eight emotion
categories were converted into valence and arousal dimensions
following their distribution in Russell’s circumplex model of
affect [5] (see Fig. 1). The label conversion in the valence
dimension was the following: negative (sad, angry, fearful, dis-
gust), neutral (neutral, surprised) and positive (happy, calm).
Likewise, the label conversion for the arousal dimension was:
low (calm, sad), neutral (neutral, disgust) and high (happy,
angry, fearful, surprised).

IV. METHODS

Three approaches were implemented to create the SER
models. First, a standard feature set with classical machine
learning algorithms was used as a baseline (Section IV-A).
Then, pre-trained models were used as feature extractors,
followed by a linear layer for classification (Section IV-B).
Finally, a combination of the pre-trained models and the
standard features was analyzed (Section IV-C).

To evaluate the three methods, the speech databases were
divided into 80% for development and 20% for testing using a
speaker-independent approach. Details of the label distribution
in each partition are provided in Table III. To facilitate
reproducibility and comparison of results, for test, we used:
the test set in [29] for EMOVOME; session 5 for IEMOCAP;
and “fold 0” proposed in [50] for RAVDESS. Additionally,
parameter tuning also employed a SI cross-validation scheme,
utilizing the StratifiedGroupKFold from Scikit-learn [51], with
4 folds for IEMOCAP and 5 folds for EMOVOME and
RAVDESS. Folds are formed by grouping all audio samples
from the same subject into a single fold, ensuring a roughly
equal distribution of labels within each fold. All methods
were assessed using two evaluation metrics. Accuracy, also
called weighted accuracy (WA), evaluates the ratio of correctly
predicted class samples to the total samples. WA is suitable for
balanced datasets but less so for imbalanced ones, as it gives
more weight to classes with more samples. In SER literature,
unweighted accuracy (UA) is often preferred, representing the
average of individual class accuracies. The Python libraries
LibROSA, Scikit-learn, TensorFlow and Keras were used to
implement the models.

A. Baseline: eGeMAPS and machine learning

As a first approach, we repeated the baseline method pro-
posed in [29] using long-term acoustic features and machine
learning algorithms. First, audio samples in EMOVOME were
resampled to 44.1 kHz, while for RAVDESS and IEMOCAP,
the sample rate was kept at 48 kHz and 16 kHz, respectively.
Next, the extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [52] was extracted using the openSMILE
toolkit [53]. The 88 features per audio were normalized by
subtracting the mean and dividing by the standard deviation
of the development samples. For feature selection, high-
correlated features (p > 0.95) were first eliminated using
Pearson’s correlation matrix, and a filter method was then used
to select 25%, 50% or 75% of the features based on the highest
ANOVA F-values. Finally, Support Vector Machine (SVM)
and K-Nearest Neighbours (KNN) models were fitted on
the development set according to the cross-validation scheme
indicated above, tuning the combination of hyperparameters
detailed in [29]. The chosen combination of features and
hyperparameters was used to train a model on the entire
development set, followed by an evaluation of the test set.

B. Pre-trained model embeddings

We evaluated several pre-trained models with different ar-
chitectures, pre-training methodologies and pre-training audio
data, indicated in Table IV. First, several variations of the
widely used Wav2vec 2.0 model were selected. Considering
that EMOVOME is in Spanish, and we wanted to compare it
with other two databases in English, we selected models pre-
trained using a multilingual approach: facebook/wav2vec2-xls-
r-300m (w2v2-xlsr-128) [54] pre-trained on 436k hours of
audios in 128 languages, and facebook/wav2vec2-large-xlsr-
53 (w2v2-xlsr-53) [55], pre-trained on 56k hours of audios
in 53 languages. Both models included Spanish in the pre-
training data. Despite prior research suggesting that fine-tuning
models for automatic speech recognition do not help with
speech emotion recognition [12], [56], we decided to include
a fine-tuned model for Spanish ASR. This decision aimed to
explore whether this approach outperforms the utilization of a
pre-trained model in a different language since [56] and [12]
used pre-trained models in the same language as the database
tested (English). Therefore, we also used the fine-tuned ver-

TABLE III
DATA DISTRIBUTION IN TRAINING AND TEST PARTITIONS OF EMOVOME, IEMOCAP AND RAVDESS.

Database Spk (M/F) Valence Arousal Categories
Negative Neutral Positive Low Neutral High hap ang neu sur sad fea dis cal

Training
EMOVOME - E 80 (40/40) 251 247 309 265 347 195 264 157 184 105 - - - -
EMOVOME - N 80 (40/40) 219 363 219 76 244 411 - - - - - - - -
EMOVOME - C 80 (40/40) 241 305 261 148 328 331 - - - - - - - -
IEMOCAP 8 (4/4) 2622 3725 1522 1023 5405 1441 1194 933 1324 - 839 - - -
RAVDESS 19 (10/9) 608 228 304 304 228 608 152 152 76 152 152 152 152 152
Test
EMOVOME - E 20 (10/10) 59 46 87 34 76 82 78 42 41 13 - - - -
EMOVOME - N 20 (10/10) 56 70 66 13 51 128 - - - - - - - -
EMOVOME - C 20 (10/10) 57 62 73 13 70 109 - - - - - - - -
IEMOCAP 2 (1/1) 799 883 488 258 1503 409 442 170 384 - 245 - - -
RAVDESS 5 (2/3) 160 60 80 80 60 160 40 40 20 40 40 40 40 40
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sion facebook/wav2vec2-large-xlsr-53-spanish (w2v2-xlsr-53-
spa) [55] to obtain the embeddings. We also included a model
pre-trained using noisy audios, the model facebook/wav2vec2-
large-robust (w2v2-L-robust) [57], as it may be useful for
the EMOVOME database despite being in English. As a
widely-used alternative to Wav2Vec2, we used a HuBERT
model, particularly the large version facebook/hubert-large-
ll60k (hubert-L) [10]. Additionally, recent studies [45], [58],
[59] have indicated that including information about the
speaker is helpful for speech emotion recognition. Therefore,
following these investigations, two more models were selected:
Microsoft’s UniSpeech-SAT-Large (unispeech-L) [60] and a
Statistics Pooling Time Delay Neural Network to obtain x-
vector embeddings [61]. The former is a model pre-trained
using multitask learning, including also the speaker identity
during training. The latter provides a speaker embedding
learning during a speaker verification task. All the pre-trained
models are available in HuggingFace. The x-vector also re-
quires the Speechbrain toolkit [62]. All of them require the
input audio to be resampled to 16 kHz.

TABLE IV
PRE-TRAINED MODELS USED IN THIS STUDY.

Model name HuggingFace name
w2v2-xlsr-128 facebook/wav2vec2-xls-r-300m
w2v2-xlsr-53 facebook/wav2vec2-large-xlsr-53
w2v2-xlsr-53-spa facebook/wav2vec2-large-xlsr-53-spanish
w2v2-L-robust facebook/wav2vec2-large-robust
hubert-L facebook/hubert-large-ll60k
unispeech-L microsoft/unispeech-sat-large
x-vector speechbrain/spkrec-xvect-voxceleb

Previous investigations have adapted the architecture of
the pre-trained models by adding a classification head and
fully or partially fine-tuning the model. Nevertheless, this
process requires high computational resources due to the
large size of some models and the audio lengths (particularly
in EMOVOME). For this reason, the embedding extraction
process was implemented offline, saving the audio embed-
dings in independent files. For all pre-trained models except
for the x-vectors, we extracted the last hidden state of the
last transformer layer. As a result, we obtained a vector of
dimensions (X, 1024), where X varies depending on the audio
length. Following previous research [11], [56], we applied the
average over the time dimension to obtain a 1024-dimension
vector per audio sample. For x-vectors, the pre-trained model
has a built-in statistics pooling layer that computes the mean
and standard deviation of information from the last frame-
level layer. These statistics are combined and input into a
512-dimensional hidden layer that is finally used to obtain
the embeddings. As a result, the pre-trained model consis-
tently outputs a 512-dimensional vector, independent of audio
length, eliminating the need for extra aggregation strategies.
Subsequently, we trained a neural network comprised solely
of a linear layer, which took the embeddings as input and
produced the output corresponding to the number of labels.
This architecture, proven effective in previous literature [56],
simplifies the model while still capturing essential features
in the merged embeddings. The model was trained during a

maximum of 3000 epochs during cross-validation using Adam
optimization, a learning rate of 0.001 and a batch size of
128. The early stopping callback was applied, set to monitor
the validation loss with a patience of 50. For the selected
hyperparameters, a final model was trained on the development
set for a fixed number of epochs selected based on the cross-
validation results and evaluated on the test.

C. Pre-trained model embeddings and eGeMAPS

We integrated previous methods by combining speech
embeddings with the eGeMAPS feature set. The 1024-
dimensional embeddings (except for the x-vector, which is
512-dimensional) were concatenated with the 88 eGeMAPS
features. The combined set underwent normalization before
being fed into the neural network, which consists of a linear
layer, following the procedure detailed in the previous section.

V. RESULTS

The cross-validation results, depicted in Fig. 2, provide
a comprehensive overview of the performance across the
different databases and emotion labels. In this visualization,
the unweighted accuracy of the optimal baseline model using
acoustic features and machine learning (called eGeMAPS)
is indicated in gray. Adjacent to this baseline, the results
for all models employing pre-trained models (named Em-
beddings) are displayed, along with a third column with the
method integrating the speech embeddings extracted from pre-
trained models and the eGeMAPS features together (called
Emb+eGeMAPS). The figure indicates the mean and standard
deviation of the UA across the five folds (four folds in the
case of IEMOCAP).

Regarding the baseline eGeMAPS models, the lowest UA
values are from the EMOVOME database, with 41-44% for
valence, 41-51% for arousal and 31.42% for four categories.
IEMOCAP achieves 50.20%, 53.21% and 59.50% for valence,
arousal and categories, respectively. RAVDESS achieves the
highest UA results for valence and arousal, with 57.19%
and 62.48%, respectively. For the eight categories, it obtains
45.52%. Overall, SVC was preferred to KNN in most cases.

The embedding approach demonstrates a notable enhance-
ment in the models’ performance compared to the baseline
method. Again, EMOVOME yields the lowest scores, with
UA values in the range 54-60% and 49-59% for valence and
arousal, respectively, and 43.30% for the 4-way classifica-
tion. IEMOCAP models have UA results of 61.73%, 57.68%
and 68.79% for valence, arousal and categories, respectively.
RAVDESS again reaches top UA values, with 71.91%, 74.09%
and 67.81% for valence, arousal and categories, respectively.
In general, unispeech-L consistently demonstrated superior
performance compared to alternative options. Using pre-
trained embeddings results in an enhancement of approxi-
mately 10% in the UA across all combinations.

Finally, the Emb+eGeMAPS method obtains similar results
to the previous approach. EMOVOME achieves similar results
in both valence and arousal (53-59% and 52-60% respec-
tively), while the UA in 4-emotions classification decreases
(40.22%). A possible reason is that EMOVOME was recorded
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Fig. 2. Cross-validation results for the three methods implemented (eGeMAPS, Embeddings and Emb+eGeMAPS) across the different databases (EMOVOME,
IEMOCAP and RAVDESS) and emotion labels (valence, arousal and categories of emotions).

in-the-wild conditions. Therefore, eGeMAPS features may
be affected by microphone quality and background noise
[52]. Conversely, IEMOCAP and RAVDESS were recorded
in a controlled environment, and the UA values increased
around 1-3% compared to the previous approach (except
for the emotion categories with IEMOCAP, which slightly
decreased). IEMOCAP achieves 62.48%, 60.41% and 68.04%
for valence, arousal and categories, respectively. RAVDESS
obtains 72.70%, 75.27% and 69.58% for valence, arousal and
categories, respectively. Again, unispeech-L is the best option
in the majority of cases, but now the other pre-trained mod-
els, which exhibited lower results in the previous approach,
demonstrated significant improvement when combined with
the eGeMAPS features, particularly in the cases of w2v2-xlsr-
53 and w2v2-L-robust.

Using the hyperparameters of the models obtaining the
highest UA in cross-validation, we trained new models us-
ing the development set and evaluated them on the test
set. The results are shown in Table V and VI for valence
and arousal prediction, respectively. The tables include the

model achieving the highest cross-validation results among
the three implemented methods: eGeMAPS, Embeddings and
Emb+eGeMAPS. The test results follow the trends found in
cross-validation, with RAVDESS outperforming IEMOCAP
and EMOVOME across the two dimensions (73.54% in va-
lence and 71.94% in arousal). IEMOCAP UA scores are higher
than EMOVOME scores in arousal prediction (61.20% vs.
43.57-58.73% respectively), whereas, for valence prediction,
IEMOCAP and EMOVOME achieve similar results (60.40%
for the former and 57.53-61.64% for the latter). In the case
of EMOVOME, we also explored the difference between
expert (E) and non-expert (N) annotations, as well as their
combination (C). Table V and VI show a comparison of results
among them in the EMOVOME database, and their confusion
matrix is represented in Fig. 3.

An important limitation in IEMOCAP and RAVDESS is
the label transformation applied to obtain the valence and
arousal categories for their comparison with EMOVOME.
For IEMOCAP, we selected two thresholds to categorize the
continuous valence and arousal scores into the three categories
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TABLE V
TEST RESULTS FOR 3-CLASS VALENCE PREDICTION. “PTM” SPECIFIES

THE PRE-TRAINED MODEL APPLIED. FOR EMOVOME, THE TYPE OF
RATER IS INDICATED: EXPERT (E), NON-EXPERT (N), OR COMBINED (C).

Database Method PTM WA UA
EMOVOME - E Embeddings Unispeech-L 59,38 57,53
EMOVOME - N Emb+eGeMAPS Unispeech-L 61,46 61,36
EMOVOME - C Embeddings Unispeech-L 62,50 61,64
IEMOCAP Emb+eGeMAPS Unispeech-L 62,35 60,04
RAVDESS Emb+eGeMAPS Unispeech-L 77,33 73,54

TABLE VI
TEST RESULTS FOR 3-CLASS AROUSAL PREDICTION. “PTM” SPECIFIES

THE PRE-TRAINED MODEL APPLIED. FOR EMOVOME, THE TYPE OF
RATER IS INDICATED: EXPERT (E), NON-EXPERT (N) OR COMBINED (C).

Database Method PTM WA UA
EMOVOME - E Emb+eGeMAPS Unispeech-L 42,71 43,57
EMOVOME - N Emb+eGeMAPS Hubert-L 70,83 58,73
EMOVOME - C Emb+eGeMAPS Unispeech-L 65,62 55,57
IEMOCAP Emb+eGeMAPS Unispeech-L 74,38 61,20
RAVDESS Emb+eGeMAPS Hubert-L 77,00 71,94

Fig. 3. Confusion matrix for the test samples for valence and arousal
prediction on EMOVOME. The rater is indicated: expert (E), non-expert (N)
or combined (C).

studied. The model misclassifies those samples close to the
thresholds, as shown in Fig. 4, where the bars indicate the
distribution of the original valence and arousal values in
IEMOCAP for the test samples, and the legend refers to

the categories formed by converting labels. In the case of
RAVDESS, we used Russell’s circumplex model of affect to
derive the valence and arousal categories. Fig. 5 shows the
distribution of the original emotion categories in RAVDESS
for the test samples, the darker colors indicate the misclassified
samples, and the legend refers to the categories resulting from
the transformation of labels.
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Fig. 4. Prediction errors in the test for valence and arousal in IEMOCAP.
The darker colors indicate the misclassified samples.
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Fig. 5. Prediction errors in test for valence and arousal in RAVDESS. The
darker colors indicate the misclassified samples.

Considering the emotion categories, test results for the three
databases are presented in Table VII. It includes the model
achieving the highest CV results among the three implemented
methods. RAVDESS obtains the highest UA score (75.00%),
followed by IEMOCAP (69.58%) and EMOVOME (42.58%).
To evaluate which emotions are misclassified, Fig. 6 shows
the confusion matrix for each database.

TABLE VII
TEST RESULTS FOR EMOTION CATEGORIES PREDICTION.
“PTM” SPECIFIES THE PRE-TRAINED MODEL EMPLOYED.

Database Method PTM WA UA
EMOVOME - E Embeddings Unispeech-L 54,60 42,58
IEMOCAP Embeddings Unispeech-L 70,59 69,58
RAVDESS Emb+eGeMAPS Unispeech-L 74,67 75,00
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Fig. 6. Confusion matrix for the test samples for emotion category prediction
on EMOVOME, IEMOCAP and RAVDESS.

Finally, we evaluated model fairness in terms of gender by
calculating the difference between the UA for male speakers
(UAM ) and the UA for female speakers (UAF ) on the test
set, which is presented in Fig. 7. A positive difference means
that the model had a better performance for male speakers.
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Fig. 7. Evaluation of gender fairness for the three labels and databases.

VI. DISCUSSION

In this work, we have developed speech emotion recognition
models for EMOVOME, a natural database comprising sponta-
neous emotions from real voice messages collected in the wild.
We have compared different methodologies to create the SER
models, and we have explored the influence of annotators’
labels and the speaker’s gender on their performance. Addi-
tionally, we have compared the results with two other reference
databases in the literature, IEMOCAP and RAVDESS. The UA
is used for comparison in all cases since it is more suitable
for assessing unbalanced data. The subsequent subsections
individually address each of the research questions, and we
finally discuss the limitations and future research directions.

A. RQ1: What is the performance of SER models in
EMOVOME when utilizing classical acoustic features versus
state-of-the-art speech embeddings?

We compared three methods used to create the SER models:
the baseline using acoustic features and machine learning
(eGeMAPS), the pre-trained models (Embeddings) and the
integration of pre-trained models and eGeMAPS features
(Emb+eGeMAPS). As shown in Fig. 2, overall, the embedding
approach significantly improves model performance compared
to the non-transformer baseline, leading to an approximately
10% improvement in unweighted accuracy across all com-
binations. Unispeech-L consistently showcased better results
than other pre-trained models (as shown in [45]), closely fol-
lowed by hubert-L (which also outperforms wav2vec2 models
in previous studies [11]). Interestingly, for the EMOVOME
database, these two pre-trained models are followed by w2v2-
xlsr-53-spa for valence and categories prediction and by x-
vectors for arousal prediction. For the English databases,
w2v2-xlsr-53-spa was surpassed by w2v2-xlsr-128 and x-
vectors, and in general, the models pre-trained on multiple
languages performed worse than those trained on English-
only data (as in [11]). The lowest scores for all databases
correspond to w2v2-xlsr-53 and w2v2-L-robust. The former
also obtained the worst results in [63] for a multilingual
model with Spanish and English among several pre-trained
multilingual models. As for w2v2-L-robust, it obtained the
best results on IEMOCAP in [11], but the model was trained
on the MSP-Podcast corpus and was only tested on IEMOCAP.
As for the Emb+eGeMAPS method, it shows similar CV
results to the embeddings for the EMOVOME database, and
UA values slightly increase (max. 3%) for IEMOCAP and
RAVDESS in some cases. One potential explanation is that
EMOVOME was recorded in natural, uncontrolled conditions,
which might impact the reliability of eGeMAPS features,
unlike the other two databases that were conducted in a
controlled environment. Unispeech-L is again the top choice
in most cases, but notably, other pre-trained models that
initially performed lower (e.g. w2v2-xlsr-53 and w2v2-L-
robust) show significant improvement when combined with
eGeMAPS features. Test results mirror cross-validation trends,
with RAVDESS consistently outperforming IEMOCAP and
EMOVOME across the three predictions. In arousal prediction,
IEMOCAP UA scores are higher than EMOVOME, while
similar results are observed for valence prediction between
IEMOCAP and EMOVOME.

Considering the test results (see Tables V, VI, VII), they fol-
low the trends found in cross-validation, obtaining similar per-
formance scores. In summary, we found that Embeddings and
Emb+eGeMAPS give similar results for the top-performing
pre-trained model, i.e., Unispeech-L. Both approaches improve
the speech baseline models presented in [29] in approximately
10% UA for the combined label in valence (61.64% vs
49.27%) and arousal (55.57% vs 44.71%). These results also
improve the test UA score obtained in [29] using the transcrip-
tions for arousal (47.43%). Nevertheless, our speech-based
models for valence do not surpass the transcription-based
model presented in [29] (61.15%). This suggests that both
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speech and text modalities offer complementary information
across various emotion dimensions, underscoring the benefit
of adopting a dimensional model approach for emotions.

B. RQ2: To what extent does the performance of EMOVOME,
a natural database, compare with elicited and acted reference
databases in the literature, such as IEMOCAP and RAVDESS?

We compared the results of our natural database,
EMOVOME, with other two databases of different natures.
We selected the well-known IEMOCAP database, including
elicited speech, and RAVDESS, comprising acted recordings.
We compared them in valence and arousal dimensions (see
Tables V and VI), and emotion categories (see Table VII).

Considering the prediction of emotion categories, the test
results follow the trend in cross-validation, where EMOVOME
obtains the lowest evaluation metric (45.58% UA), followed by
IEMOCAP (69.58% UA) and finally RAVDESS (75.00% UA)
(even though the first two classify 4 emotions and the later 8
emotions). Although IEMOCAP contains elicited speech, part
of the data consists of actors performing scripted dialogues,
which could lead us to expect higher classification results.
However, there is a notable difference between IEMOCAP
and RAVDESS. The former contains utterances whose text
content is different throughout the database, i.e., it is text-
independent (same as EMOVOME). Conversely, RAVDESS
is text-dependent, as the actors portrayed emotions using
two fixed sentences. This could have caused the models for
RAVDESS to prioritize variations related to emotion rather
than differences in semantic content. Consequently, there is a
performance gap in IEMOCAP compared to the other acted
databases, as highlighted in [64]. Nevertheless, our classifi-
cation results (70.59% WA, 69.58% UA) are comparable to
the state of the art for IEMOCAP, which is in the range
from 60.0% to 74.3% UA [11], especially considering that
we implemented a speaker-independent approach, unlike other
previous studies. Additionally, we examined the misclassified
emotions for each database in Fig. 6. For EMOVOME, surprise
is not correctly predicted in any case and is mainly confused
with happy and neutral emotion, but this category is underrep-
resented in the data (see Table III). In the case of IEMOCAP,
all emotions are mainly mistaken for the neutral category. For
RAVDESS, the majority of emotions are accurately classified
(>72%), except for happy, which is sometimes misclassified
as angry, and sad, which is mistaken for calm.

Regarding the test results for arousal and valence dimen-
sions, the SER models for the EMOVOME database achieve
UA values of 61.64% for valence and 55.57% for arousal, con-
sidering the combined label between expert and non-experts.
Surprisingly, the IEMOCAP database obtains similar values
to EMOVOME, particularly 60.04% for valence and 61.20%
for arousal. As for RAVDESS, the UA values are 73.54%
and 71.94% for valence and arousal, respectively. Initially, one
might have anticipated better outcomes in valence, given that
earlier studies [11], [65] found that pre-trained models inher-
ently capture linguistic information in the audio signal, aiding
valence prediction. However, in our approach, we utilized
pre-trained embeddings solely as feature extractors to obtain

speech embeddings without fine-tuning the transformer layers
for SER. This step has proven to be fundamental for the mod-
els to effectively learn the semantic content [11]. Furthermore,
the data used for pre-training significantly impacts the models’
capacity to capture linguistic information, with the inclusion
of multi-lingual data adding complexity to the task [11]. These
considerations might explain the relatively minor differences
observed between valence and arousal predictions. In the
case of RAVDESS, the use of fixed semantic content during
recording prevented pre-trained models from leveraging text
information for valence prediction. Furthermore, an important
limitation in both IEMOCAP and RAVDESS is the label trans-
formation applied to obtain the valence and arousal categories,
as well as the unbalanced distribution of samples (see Table
III). In the case of IEMOCAP, errors in the test occur mostly
around the thresholds selected to obtain the categories (see Fig.
4). Moreover, the arousal data is highly imbalanced, primarily
dominated by samples in the neutral category. However, for
valence, there is a relatively more balanced distribution across
the three categories. For RAVDESS, in valence prediction, the
majority of errors are related to the happy and calm category
(see Fig. 5). Calm was categorized as positive, but it is close
to the neutral valence. This ambiguity may have influenced the
model’s positive valence predictions, especially considering
these samples constitute half of the training data of this class.
In arousal prediction, the model tends to make numerous errors
in predicting disgust and sad. While disgust was labeled as
neutral arousal, its proximity to neutral activation allows for
variations, contributing to prediction inaccuracies. The same
applies to sadness, as it is also close to neutral activation, and
we consider it to be in the low arousal category. These findings
suggest that predicting dimensions is more challenging than
predicting categories.

In summary, the EMOVOME database achieves lower re-
sults than other reference databases in the literature. Both
RAVDESS and IEMOCAP outperform EMOVOME in emo-
tion categories, and the former also obtains higher valence
and arousal prediction results. However, EMOVOME and
IEMOCAP exhibit more comparable results in valence and
arousal, possibly owing to their text-independent nature (unlike
RAVDESS) and the approach used to transform the original
labels in IEMOCAP into valence and arousal categories.

C. RQ3: What impact do annotator labels exert on the perfor-
mance of SER models when dealing with challenging natural
databases like EMOVOME?

Research on evaluating the influence of annotators’ demo-
graphics on SER is limited, but evidence suggests that biases
can arise based on their gender, age or educational level [14].
We hypothesize that this bias may be more pronounced when
evaluating natural databases (such as EMOVOME) since they
do not contain stereotypical emotion (unlike acted databases),
and thus can be more challenging to label. In this work, we
explore the difference between expert (E) and non-expert (N)
annotations, as well as their combination (C) (see Table V and
VI). Clinical psychologists, given their professional training
and expertise, possess the necessary skills to recognize and
interpret emotions, thus can be considered experts in the task.
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Surprisingly, the SER models using the expert’s labels
achieved the lowest results for both valence and arousal. Non-
experts got higher UA values in arousal prediction (58.73%),
compared to the combined labels (55.57%) and the expert’s
labels (43.57%). For valence, the combined label obtained
the highest UA score (61.64%), closely followed by the non-
experts (61.36%) and lastly the expert (57.53%). It is worth
highlighting that despite the expertise of clinical psychologists
in the task, emotions remain highly subjective, and they can
be influenced by individual experiences [14]. In fact, an exam-
ination of the confusion matrix (see Fig. 3) reveals discernible
biases towards specific emotion categories in both valence and
arousal results, potentially shaping what the SER models learn.
For valence, the model trained on expert labels shows a bias
towards positive valence. Conversely, the model trained on
non-expert labels tends to misclassify neutral samples as either
positive or negative. The combined label model mitigates the
bias towards positive expert categories but increases misclassi-
fication for negative and neutral categories. In arousal, unlike
valence, there’s an unbalanced data distribution (see Table III).
Expert labeled 43% of training data as neutral arousal, leading
the model to often assign this category to test samples. Non-
experts show a bias toward high arousal. Combining labels
mitigates expert bias toward the neutral class and reduces non-
expert bias toward the positive category. Consequently, the
model is trained with fewer low arousal samples, leading to
lower accuracy in this category.

Overall, the annotators’ biases may cause differences in UA
scores to up to 4% for valence and 15% for arousal. The
better performance of the models based on the non-experts
and the combined labels may be due to the higher number
of annotators included, which may reduce individual biases in
their interpretation of emotions.

D. RQ4: How does gender impact the fairness of SER model
outcomes in EMOVOME compared to reference databases?

There is limited research on evaluating model fairness,
particularly in the context of pre-trained models [27]. Our
focus here is on gender, given the insufficient information
for other attributes considered in the reference databases. We
measure fairness by calculating the difference between the UA
for the male speakers and the UA for the female speakers (see
Fig. 7). For the EMOVOME database, models trained using
expert labels exhibit a notable bias towards males, as the UA is
around 10% higher for males in valence and arousal prediction
and 1.7% in emotion categories prediction. The use of non-
expert labels resulted in an increase in UA for males of 4.6%
valence, but it was 1.9% higher for females on arousal. Inter-
estingly, the combined label yielded the most similar results
for both genders, with 0.3% for valence and 1.4% for arousal.
In the case of IEMOCAP, again, UA was higher for male
speakers in valence (4%) but lower in arousal (-3.4%). For
categories, the UA for males was +5.9% compared to females.
Finally, RAVDESS presents the highest difference between
both genders, with the UA for females being 29.7% higher
for females compared to males. For arousal and valence, the
results are also higher for females (1% and 6.5%, respectively).

Overall, SER models obtain better test results for male
speakers in EMOVOME, following previous studies in Spanish
databases [21], [42]. In the reference databases, IEMOCAP
aligns with the observed trend, while RAVDESS shows the
opposite results. However, it’s important to note that both
databases have a limited number of speakers in the test set
(two for IEMOCAP and five for RAVDESS), so no significant
conclusions can be drawn from these results.

E. Limitations and future work
This section addresses the identified limitations, offering in-

sights into areas for potential improvement in future research.
Firstly, enhancing the annotation process of EMOVOME sam-
ples in emotion categories may involve introducing new raters
to alleviate potential individual biases that could impact SER
models. Similarly, expanding the pool of non-expert labels
with more raters may help mitigate bias and achieve a more
balanced data distribution regarding arousal. Additionally,
other databases, such as EmoSpanishDB or MOUD, could be
explored to increase the number of training samples and assess
potential improvements in model performance. Furthermore, in
the creation of SER models based on pre-trained models, the
current use of average time pooling as an aggregation approach
may exhibit suboptimal performance, particularly noticeable
in the EMOVOME database, where audio duration exhibits
significant variability. Future research endeavors will focus on
refining time aggregation methods and exploring alternative
techniques to address these challenges effectively.

VII. CONCLUSIONS AND FUTURE WORK

A comprehensive study was conducted to assess the in-
fluence of different properties of EMOVOME, a natural
speech database representative of real-world settings created
for this work, on the performance of speaker-independent SER
models. Superior results were achieved with state-of-the-art
pre-trained transformer-based models compared to baseline
models based on acoustic features. However, these results
demonstrated lower performance compared to the SER models
trained on the acted RAVDESS database. For the elicited
IEMOCAP database, the prediction of emotion categories out-
performed EMOVOME, but similar results were obtained for
predicting valence and arousal. Notably, we found variations
in EMOVOME results depending on the labels provided by
different annotators, with superior outcomes observed when
utilizing combined labels from both expert and non-experts.
Interestingly, this combined label also yielded the most equi-
table results when assessing gender fairness, even though SER
models generally performed better for male speakers.
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