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Abstract— We propose a multi-scale approach for computing
abstractions of dynamical systems, that incorporates both
local and global optimal control to construct a goal-specific
abstraction. For a local optimal control problem, we not only
design the controller ensuring the transition between every two
subsets (cells) of the state space but also incorporate the volume
and shape of these cells into the optimization process. This
integrated approach enables the design of non-uniform cells,
effectively reducing the complexity of the abstraction. These
local optimal controllers are then combined into a digraph,
which is globally optimized to obtain the entire trajectory. The
global optimizer attempts to lazily build the abstraction along
the optimal trajectory, which is less affected by an increase
in the number of dimensions. Since the optimal trajectory is
generally unknown in practice, we propose a methodology based
on the RRT* algorithm to determine it incrementally. Finally,
we provide a tractable implementation of this algorithm for the
optimal control of L-smooth nonlinear dynamical systems.

I. INTRODUCTION

Abstraction-based techniques have been a popular ap-
proach to safety-critical control of cyber-physical systems,
enabling complex specifications and dynamics to be taken
into account in the control design problem. Generally, these
methods involve discretizing both the state space and the
input space with uniform hyperrectangles [1]. The curse
of dimensionality, however, significantly affects the uniform
discretization of the entire state space due to the exponential
growth of the number of states with respect to the dimension.
Additionally, to account for the quantization error between
the actual state and the quantized state, it is required to over-
approximate the forward image of the cells under constant
discretized inputs. One of the main drawbacks of this ap-
proach is that, in the absence of incremental stability (δ-
GAS) [2], over-approximation increases the level of non-
determinism in the symbolic system, which could result in
an intractable or even unsolvable symbolic problem.

In [3], the authors propose to adapt the size of the
abstraction gradually but uniformly over the whole state
space. In [4], while the authors provide a strategy to lazily
(i.e., postponing heavier numerical operations) build an
abstraction along the optimal trajectory, the local control
design is performed combinatorially on a discretized input
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Fig. 1. Comparison between the classic approach and the smart state-
feedback abstraction for a planar system with state trajectory (blue line)
and value function (color map) obtained for the optimal control problem of
departing from XI and reaching XT while avoiding obstacles XO . Left:
Classic abstraction approach based on predefined grid discretization of the
entire state-space. Non-colored represents a region where no controller could
be designed. Right: Smart state-feedback abstraction lazily constructed with
locally optimized ellipsoids and controllers.

set, which is likely a source of non-determinism. More
recently, in [5], while the authors propose to design local
feedback controllers between nearby cells to eliminate the
non-determinism in the abstraction (i.e., the abstraction is
a weighted digraph instead of a hypergraph), it relies on a
predefined ellipsoidal cover of the entire state space, which
suffers from the curse of dimensionality.

In light of these shortcomings, we propose a new approach
that leverages the incremental construction of [4] and the
optimal control solution proposed in [5] by optimizing not
only the transitions but also the positioning and shape of the
cells along the optimal trajectory (see Figure 1). Precisely,
our solution relies on a Rapidly-Exploring Random Trees
(RRT) algorithm that lazily constructs the abstraction on the
basis of an ellipsoidal covering of the state space and a finite
set of local affine controllers. Unlike [1] and [3], one of the
key advantages of our approach is that, instead of discretizing
the input space, we use a finite set of local affine controllers
as our symbolic input set. For L-smooth nonlinear systems,
the combination of linearization and the Lipschitz constant
allows us to locally optimize such controllers using semi-
definite programming without the need for extensive dis-
cretization. Moreover, the proposed approach differs from
classic techniques as the partitioning is designed smartly,
building the abstraction iteratively, instead of adopting a
predefined uniform partition, which is suboptimal and prone
to the curse of dimensionality.

The RRT algorithm [6] is a sampling-based path plan-
ning algorithm [7], [8] that generates open-loop trajectories
for nonlinear systems. Therefore, these techniques are not
robust to perturbations and can only provide probabilistic
guarantees [9]. In [10], the authors propose a safety-critical
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path planner based on RRT and relying on control barrier
functions. In this same vein, the authors of [11] propose an
abstraction-based technique relying on the RRT algorithm
limited to deterministic systems with additional stability as-
sumptions (δ-GAS). In [12], the authors propose a reachable
set-based RRT planning algorithm that provides a formal
guarantee in the presence of bounded perturbations, does
not take into account the optimal control problem and is
limited to piecewise constant controllers. Furthermore, their
framework does not allow to optimize the shape of new
cells. Finally, the authors of [13] propose a forward control
strategy for reachability based on ellipsoids, an affine linear
approximation with an affine controller via LMIs resolution.

Our work differs from the previously mentioned works by
the following points. Firstly, our approach not only provides
a controller to solve a specific control problem, but also an
abstraction of the original system that can be reused as a
basis for solving other optimal control problems. Secondly,
our RRT algorithm does not act on states but on sets of
states, which makes it possible to build a robust controller
that provides formal guarantees even in the presence of noise.
Thirdly, in contrast with [13], our RRT algorithm operates in
a backward manner. In this configuration, the target set serves
as the root of the growing tree, offering the advantages of 1)
maximizing the volume of newly added ellipsoids, thereby
covering more of the state space with a single cell in the
abstraction, and 2) effectively handling obstacles in the state
space, as discussed later.

In Section II, we outline the fundamental concepts of our
control framework. Section III details a general method for
lazily constructing an abstraction using non-uniform cells,
without restricting the class of systems or cost function
templates. From Section IV onward, we present a particular
and optimized implementation tailored for a specific class of
L-smooth nonlinear systems with quadratic cost functions.
This approach relies on linearization to handle nonlinearities
and uses the Lipschitz constant to convert the problem into a
convex optimization formulation with LMIs as constraints.
Notation: Given two sets A,B, we define a single-valued
map as f : A → B, while a set-valued map is defined as
f : A → 2B , where 2B is the power set of B, i.e., the set
of all subsets of B. The image of a subset Ω ⊆ A under
f : A → 2B is denoted f(Ω). Given a matrix A ∈ Rm×n

and a set X ⊆ Rn, we define AX = {Ax | x ∈ X}.
We define F (X,U) as the set of single-valued functions
f : X → U . We denote by Sn+ the set of positive definite
matrices of dimension n. Also, A ≻ 0 represents that
A ∈ Sn+ and A ⪰ 0, that A ∈ ∂Sn+, i.e., A is positive
semidefinite. The function ∥ · ∥ : Rn → R denotes the
euclidean norm. The Minkowski sum of two sets A,B ⊂ Rn

is A ⊕ B = {a + b | a ∈ A, b ∈ B}. Given a bounded
set A, we define the Chebyshev center of A as CC(A) =
argminx∈A maxy∈A ∥x− y∥. An n-dimensional hyperrect-
angle of center c ∈ Rn and half-lengths h ∈ Rn

+ is denoted
as H(c, h) := {x ∈ Rn | |xi−ci| ≤ hi for i = 1, . . . , n}. An
n-ellipsoid with center c ∈ Rn and shape defined by P ∈ Sn+
is denoted as E(c,P) := {x ∈ Rn | (x− c)⊤P(x− c) ≤ 1}.

The n-dimensional Euclidean ball of radius r > 0 of center
c is denoted as B(c, r) := E(c, r−2In).

II. PROBLEM FORMULATION

To introduce the symbolic control formalism needed to
support the correctness of the proposed strategy, some defi-
nitions of the control framework are required.

Definition 1. A transition control system is a tuple S :=
(X ,U , F ) where X ⊆ Rnx and U ⊆ Rnu are respectively the
set of states and inputs and the set-valued map F : X ×U →
2X where F (x, u) give the set of states that may be reached
from a given state x under a given input u.

The use of a set-valued map to describe the transition map
of a system allows us to model perturbations and any kind
of non-determinism in a common formalism.

A tuple (x,u) ∈ X [0,T [×U [0,T−1[ is a trajectory of length
T ∈ N ∪ {∞} starting at x(0) ∈ X of the system S =
(X ,U , F ) if ∀k ∈ [0, T − 1[: u(k) ∈ U(x(k)) and x(k +
1) ∈ F (x(k), u(k)). The set of trajectories of S is called the
behavior of S, denoted B(S).

We consider static controllers, where the set of control
inputs enabled at a given state depends only on that state.

Definition 2. We define a static controller for a system S =
(X ,U , F ) valid on a subset Xv ⊆ X as a single-valued map
C : Xv → U such that ∀x ∈ Xv : C(x) ∈ U(x). We define
the controlled system, denoted as C × S , as the transition
system characterized by the tuple (Xv,U , FC) where x′ ∈
FC(x, u) ⇔ (u = C(x) ∧ x′ ∈ F (x, u)).

In this paper, we concentrate on reach-avoid specifications
as an illustrative example for the sake of clarity. However,
the proposed approach can be applied to enforce a broader
range of specifications.

Given a system S = (X ,U , F ) and sets XI ,XT ,XO ⊆ X ,
a reach-avoid specification is defined as

Σ = {(x,u) ∈ (X × U)∞ | x(0) ∈ XI ⇒ ∃N ∈ Z+ :

(x(N) ∈ XT ∧ ∀k ∈ [0, N [: x(k) /∈ XO)}, (1)

which enforces that all states in the initial set XI will reach
the target XT in finite time while avoiding obstacles in XO.
We use the abbreviated notation Σ = [XI ,XT ,XO] to denote
the specification (1). A system S together with a specifica-
tion Σ constitute a control problem (S,Σ). Additionally, a
controller C is said to solve the control problem (S,Σ) if
XI ⊆ Xv and B(C×S) ⊆ Σ. We consider an optimal control
problem whose goal is to design a controller C enforcing
reach-avoid specification Σ while minimizing a worst-case
cost function

L(C) = sup
x0∈XI

lC(x0) (2)

where lC(x) = 0 for x ∈ XT and

lC(x) = J (x, C(x)) + sup
x′∈F (x,C(x))

lC(x
′) for x ∈ Xv \ XT ,

where J : X × U → R+ is a given stage cost function.



In the context of optimal control, we recall the notion
of value function ([14, Definition 7]), which provides a
guaranteed cost for any closed-loop trajectory starting in a
given subset Xv ⊆ X which decreases with each time step.

Definition 3. A function v : X → R is a value function with
stage cost J (x, u) for system S = (X ,U , F ) in Xv ⊆ X if
v(x) is bounded from below within Xv and for all x ∈ Xv

there exists u ∈ U(x) fulfilling the Bellman inequality

v(x) ≥ J (x, u) + sup
x′∈F (x,u)

v(x′). (3)

Our abstraction-based approach relies on the notion
of state-feedback abstraction [5, Definition 1] which is
a specific instance of alternating simulation relation [15,
Definition 4.19] (see [5, Lemma 1]).

Definition 4. Consider a system S = (X ,U , F ). A state-
feedback abstraction S̃ of S is a system S̃ = (X̃ , Ũ , F̃ ) that
satisfies the following conditions: X̃ ⊆ 2X , Ũ ⊆ F (X ,U)
and

∀ξ ∈ X̃ , ∀κ ∈ Ũ : F̃ (ξ, κ) = {ξ+}

where
ξ+ ⊇ {x′ ∈ F (x, κ(x)) | x ∈ ξ}. (4)

A value function v : X → R with stage cost J for S
can be derived from a value function ṽ : X̃ → R for its
state-feedback abstraction S̃ [5, Theorem 1]

v(x) = min{ ṽ(ξ) : ξ ∈ X̃ , x ∈ ξ} (5)

with any cost function J̃ that verifies

J̃ (ξ, κ) ≥ J (x, κ(x)), ∀x ∈ ξ. (6)

Based on the fact that any state-feedback abstraction S̃
is a deterministic system by definition and that the set Ũ
contains static (memoryless) state-feedback controllers, the
state-feedback abstraction allows a specific concretization
scheme, presented in the following proposition.

Proposition 1. Let S be a system and S̃ a corresponding
state-feedback abstraction. Additionally, consider specifica-
tions Σ = [XI ,XT ,XO] with stage cost J for S and
Σ̃ = [ξI , ξT , ξO] with stage cost J̃ for S̃ such that

XI ⊆ ξI , ξT ⊆ XT , XO ⊆ ξO (7)

and satisfying (6). If C̃ : X̃v → Ũ with X̃v = X̃ is a controller
that solves the control problem (S̃, Σ̃), then for any value
function ṽ of S̃, the controller C : Xv → U , defined as

C(x) = κ(x), κ = C̃(ξ∗), ξ∗ = argmin{ṽ(ξ) : ξ ∈ X̃ , x ∈ ξ}
(8)

with Xv = ∪ξ∈X̃v
ξ, solves the control problem (S,Σ).

In addition, the value function v of S defined according
to (5) provides an upper bound on the cost function (2),
i.e., v(x0) ≥ L(C) for any x0 ∈ XI .

Proof. The proof holds from the definitions of the specifica-
tions and the state-feedback abstraction.

In the next section, we present a method to solve the fol-
lowing problem: to lazily build a state-feedback abstraction S̃
of the original system, addressing an optimal control problem
with reach-avoid specification Σ and cost function L.

III. RRT*-BASED ABSTRACTION

The nonlinear nature of the system and of the reach-avoid
specification makes it extremely difficult to solve the optimal
control problem directly. Therefore, to approximately solve
this problem our abstraction-based approach will split it
up into several convex subproblems. The approach involves
using a RRT (Rapidly-Exploring Random Trees) algorithm
that grows a state-feedback abstraction S̃ of S with an
underlying tree structure from the target set to the initial
set. The nodes of this tree represent abstract states, each of
which is a set ξ ∈ 2X and transitions from child nodes to
their parents are handled by local state-feedback controllers
κ ∈ F (X ,U). While the strategy presented is theoretically
applicable to any set templates for X̃ and function templates
for Ũ , we propose a practical implementation (Algorithm 1)
using ellipsoids and affine functions templates, respectively,
to take advantage of the power of LMIs. The functions that
implement Algorithm 1 are described as follows:

• getAbsSpecification(Σ) returns abstract spec-
ification, i.e., conservative ellipsoids ξI , ξT , ξO satisfy-
ing (7).

• getConState(X) returns a candidate concrete state
c ∈ X .

• getKClosestAbsStates(X̃ , A, K) returns the
K abstract states of X̃ closest to the set A according
to Euclidean distance.

• solveLocalProblem(c, ξ+) returns ξ = E(c,P),
a controller κ such that ∀x ∈ ξ : F (x, κ(x)) ⊆ ξ+ and
κ(ξ) ⊆ U , and an upper bound J̃ on the transition cost
from ξ to ξ+, i.e., J̃ ≥ maxx∈ξ J (x, κ(x)).

• handleObstacles(ξ, ξO) given ξ = E(c,P),
returns a new ellipsoid ξs = E(c, γP) where γ ≥ 1
is the smallest value such that ξs does not intersect any
obstacles, i.e. ξs ∩ ξO = ∅.

• getAbsValueFunction(S̃, ξT) returns a value
function ṽ for S̃ such that ṽ(ξT ) = 0 and which is
strictly positive for the other abstract states.

• newTransition(ξ′, ξ) returns a controller κ that
maps points from a given ellipsoid ξ′ to another given
ellipsoid ξ, and the associated transition costs J̃ ′.

As mentioned in the introduction, our RRT algorithm
works backwards in the sense that the abstraction is ini-
tialized with the target set ξT , and when designing a new
transition, the optimized cells are preceding ones (in terms
of the controlled system trajectory). This allows us to
maximize the volume of the preceding ellipsoid, covering
a larger portion of the state space with a single abstract
state—a feature not achievable in the forward approach,
which focuses on minimizing the volume of the destination
ellipsoid [13]. In addition, the backward approach makes it
possible to decouple the design of the preceding ellipsoid ξ
and the controller κ from obstacle handling. Indeed, when a



Algorithm 1: Lazy construction of an ellipsoid-
based abstraction S̃ of S = (X ,U , F ) and
of an abstract value function ṽ that solves the
specification Σ = [XI ,XT ,XO].

1 Σ̃ ← getAbsSpecification (Σ) ;
2 ξI , ξT , ξO ← Σ̃;
3 X̃ ← {ξT } ;
4 while not exists ξ ∈ X̃ : ξI ⊆ ξ do
5 c ← getConState(X) ;
6 ξ+ ← getKClosestAbsStates(X̃ , {c}, K=1);
7 ξ, κ, J̃ ← solveLocalProblem(c, ξ+);
8 if not feasible then return to Line 5. ;
9 ξs ← handleObstacles(ξ, ξO);

10 X̃ , Ũ ← X̃ ∪ {ξs}, Ũ ∪ {κ};
11 F̃ (ξs, κ) = {ξ+};
12 J̃ (ξs, κ) = J̃ ;
13 S̃ ← (X̃ , Ũ , F̃ );
14 ṽ ← getAbsValueFunction(S̃, ξT );
15 improveAbs(S̃, ṽ, ξs, J̃ );
16 return S̃, ṽ;

Algorithm 2: Update of the abstraction for the
RRT* variant.

function improveAbs(S̃, ṽ, ξ, J̃ ):
1 ξlist ← getKClosestAbsStates(X̃ , ξ, K≥1);
2 for ξ′ ∈ ξlist do
3 κ′, J̃ ′ ← newTransition(ξ′, ξ);
4 if J̃ ′ + ṽ(ξ) < ṽ(ξ′) then
5 Ũ ← Ũ ∪ {κ′};
6 F̃ (ξ′, κ′) = {ξ};
7 J̃ (ξ′, κ′) = J̃ ′;

end
end

preceding ellipsoid ξ returned by solveLocalProblem
intersects an obstacle, it can be shrunk into ξs ⊆ ξ and
the same controller κ still ensures a transition to ξ+. This
decoupling is not feasible in the forward approach.

The function improveAbs implements the RRT* variant.
When a new abstract state ξs is added, new transitions are
computed from the closest existing abstract states to ξs in
order to eventually reduce the path cost to the target set ξT .

The function getConState is a heuristic used to gen-
erate a concrete state from which a new ellipsoid is added to
the abstraction. Although the specific implementation of this
function does not affect the correctness of Algorithm 1, it can
be used to guide the exploration of the state space and the
construction of the abstraction in order to reduce the number
of abstract states. For example, a simple but effective strategy
involves sampling points predominantly in the direction of
the initial set XI .

The following theorem guarantees the validity of the
approach.

Theorem 1. Consider the system S̃ = (X̃ , Ũ , F̃ ) and its
value function ṽ generated by Algorithm 1. Then 1) S̃ is a

state-feedback abstraction of S; 2) there exists a controller
C̃ that solves (S̃, Σ̃); 3) the controller C defined according
to (8) solves (S,Σ); 4) the function v derived from ṽ
according to (5) is a value function for S with Xv = ∪ξ∈X̃ ξ.

Proof. 1) The transition map F̃ is constructed accord-
ing to F̃ (ξs, κ) = {ξ+}, where solveLocalProblem
guarantees that ∀x ∈ ξ : F (x, κ(x)) ⊆ ξ+, and
handleObstacles ensures that ξs ⊆ ξ, which (always)
implies ∀x ∈ ξs : F (x, κ(x)) ⊆ ξ+. Consequently, F̃
satisfies the condition (4).

2) Firstly, for all ξ ∈ X̃ , there exists a path from ξ
to ξT since X̃ is initialized with ξT and newly added
transitions are always directed to an existing abstract state
in X̃ . In addition, these paths avoid obstacle ξO thanks
to handleObstacles. Secondly, the ending condition
of Algorithm 1 guarantees that ξI ⊆ ξ for some ξ ∈ X̃ .
As a result, there exists a controller C̃ that solves (S̃, Σ̃)
where Σ̃ = [ξI , ξT , ξO].

3) Since S̃ is a state-feedback abstraction of S and Σ̃
satisfies (7) according to getAbsSpecification, then,
by Proposition 1, the controller (8) solves (S,Σ).

4) This follows directly from the fact that the abstract
stage cost function J̃ satisfies (6) since it is defined by
the upper bounds costs of the local transition according to
solveLocalProblem.

The abstract value function ṽ is derived in
getAbsValueFunction by computing the shortest path
to ξT , which can be done efficiently since ξT is the root of a
tree. The optimization problem in handleObstacles and
the inclusion test in Line 4 of Algorithm 1 can be efficiently
addressed by solving a convex scalar optimization problem,
as outlined in [16, Corollary 2] and [16, Algorithm 1],
respectively. Finally, the functions solveLocalProblem
and newTransition can be implemented efficiently by
solving a convex optimization problem as described in the
following section.

IV. LOCAL CONTROLLER DESIGN

In this section, we provide a practical and efficient imple-
mentation of the function solveLocalProblem in Line 7
of Algorithm 1 for the following general class of systems.

We consider nonlinear discrete-time system S =
(X ,U , F ) with bounded disturbances, i.e.,

F (x, u) = {f(x, u, w) | w ∈ W} (9)

where X ⊆ Rnx , U ⊆ Rnu , f : X × U × W → X is
a continuous nonlinear function whose Jacobian is globally
Lipschitz continuous 1, and W ⊆ Rnw is a bounded poly-
topic set. The control input takes values in the intersection
of (possibly degenerated) ellipsoids

U =
⋂

k=1,...,Nu

Uk (10)

1Note that similar results can be adapted for the locally Lipschitz
continuous case.



with Uk = {u ∈ Rnu : ∥Uku∥ ≤ 1} for some matrix Uk

of appropriate dimensions. The exogenous input takes values
inside the convex hull of a set of points

W = co{w1, . . . , wNw
} (11)

with 0 ∈ W and introduces a level of non-determinism to
the system, which can either capture non-modeled behaviors
or adversarial disturbances. We consider a general quadratic
stage cost function of the form

J (x, u) =
(
x⊤ u⊤ 1

)
Q
(
x⊤ u⊤ 1

)⊤
(12)

defined for some given matrix Q ≻ 0.
Therefore, the objective of this section is to design a

controller κ to map all the states of ξ ∈ 2X into ξ+ ∈ 2X

despite exogenous noise, i.e.,

∀x ∈ ξ ∀w ∈ W : f(x, κ(x), w) ∈ ξ+ (13)

and such that the inputs of the closed loop system lie within
the admissible input set U , i.e.,

κ(ξ) ⊆ U . (14)

A. Specific approximation scheme

Since optimizing directly on the nonlinear dynamics f is
a challenging problem, we rely on the linearized function f̃
around a point p̄ = (x̄, ū, w̄) ∈ X × U ×W:

f̃(x, u, w) = Ax+Bu+Ew + g (15)

with A = Jf,x(p̄), B = Jf,u(p̄), E = Jf,w(p̄), g =
f(x̄, ū, w̄)−Ax̄−Bū−Ew̄, where Jf,x(p̄) is the Jacobian
matrix of f with respect to the variables x evaluated at p̄.

We can derive a component-wise bound on the lineariza-
tion error [17, Lemma 1.2.3], i.e., ∀(x, u, w) ∈ X ×U ×W :

f(x, u, w) ∈ {f̃(x, u, w)} ⊕ Ω(x, u, w) (16)

where Ω(x, u, w) = H(0, 1
2Lrp̄(x, u, w)

2) with L ∈ Rnx

representing the vector of Lipschitz constants of component
functions fi and

rp̄(x, u, w)
2 = ∥x− x̄∥2 + ∥u− ū∥2 + ∥w − w̄∥2. (17)

Therefore, to enforce the condition (13), we can impose
the following stronger condition

∀x ∈ ξ ∀w ∈ W : {f̃(x, κ(x), w)} ⊕ Ω(x, κ(x), w) ⊆ ξ+. (18)

In order to keep the future optimization problem tractable
(convex), we use a common error bound corresponding to
the "worst case" to impose the more conservative condition

∀x ∈ ξ ∀w ∈ W : {f̃(x, κ(x), w)} ⊕Hr ⊆ ξ+, (19)

with Hr := H(0, 1
2Lr

2) and r :=
max(x,w)∈ξ×W rp̄(x, κ(x), w).

Condition (19) can be reformulated as

q(ξ)⊕EW ⊕Hr ⊆ ξ+ (20)

where q(x) := f̃(x, κ(x), w̄). This provides a geometric
interpretation of the different sources of conservatism. The
term q(ξ) corresponds to the closed-loop image of ξ in the

linearized model with nominal noise (w̄), the second term
EW corresponds to the exogenous noise, and the third term
Hr is responsible for the linearization error.

We first propose the following lemma, which provides
sufficient conditions to design κ satisfying (13).

Lemma 1. Let a system (9) with exogenous input set (11), a
controller κ, two sets ξ and ξ+ and a linearization point p̄.
If the following conditions are satisfied

ξ ⊆ B(x̄,
√
δX), (21)

κ(ξ) ⊆ B(ū,
√
δU ), (22)

∀x ∈ ξ ∀w ∈ W : {f̃(x, κ(w), w)} ⊕Hr ⊆ ξ+, (23)

with r2 = δX + δU + δW for some δX , δU ≥ 0 and δW :=
maxw∈W ∥w − w̄∥2, then (13) holds.

Proof. The result follows directly from this sequence of
implications

(21), (22), (23) ⇒ (19) ⇒ (18) ⇒ (13).

However, the converse result does not generally hold. The
conservatism arises from two sources. Firstly, we use the
continuity property yielding the upper-bound (16). Secondly,
we consider the worst linearization error for all points of ξ,
which corresponds to the error of the farthest point from the
linearization point as shown in (21) and (22).

The linearization point that minimizes the linearization
error (r) is determined by p̄∗ = CC(ξ × κ(ξ) × W), the
Chebyshev center of ξ × κ(ξ) × W . However, given that
the controller κ is part of the optimization process, we opt
for the choice: p̄ = CC(ξ × U × W) which represents the
optimal choice for minimizing the linearization error when
κ is arbitrary.

B. Discretization and controller templates

An important classic result recalled in this section is the
so-called S-procedure [18, Theorem 2.2].

Lemma 2 (S-procedure [18]). Let qi : Rn → R : x →
qi(x) = x⊤Pix + 2g⊤i x + si for i = 0, 1 be two quadratic
functions and suppose that there is a x̄ such that q1(x̄) < 0.
Then the following two statements are equivalent

(i) ∀x ∈ Rn : q1(x) ≤ 0 ⇒ q0(x) ≤ 0

(ii) ∃λ ≥ 0 : λ

(
P1 g1
g⊤1 s1

)
⪰
(
P0 g0
g⊤0 s0

)
.

In this paper, we discretize the state space using ellipsoids,
i.e.,

ξ = E(c,P), ξ+ = E(c+,P+)

with c, c+ ∈ Rnx and P,P+ ∈ Sn+, and we consider affine
controllers of the form

κ(x) = K(x− c) + l (24)

where K ∈ Rnu×nx and l ∈ Rnu .



Therefore, in this setting, we obtain x̄ = CC(ξ) = c, and,
for the sake of clarity throughout the rest of the paper, we
assume that w̄ = CC(W) = 0.

The following theorem provides conditions based on
Lemma 1 to guarantee the existence of a valid controller
satisfying (13) and (14).

Theorem 2. The system (9) with control input set (10)
and exogenous input set (11) under the constrained affine
control law (24) satisfies the condition that x(k + 1) ∈
ξ+ = E(c+,P+) for all x(k) ∈ ξ = E(c,P), if, given
the linearized system (15) around the point p̄ = (c, ū, 0)
with ū ∈ U , there exist L ∈ Snx

+ ,F ∈ Rnx×nu and scalars
δX ≥ 0, δU ≥ 0, ϕ ≥ 0, βij ≥ 0, τk ≥ 0 such that(

I L
• δXI

)
⪰ 0 (25)ϕI 0 F⊤

• δU − ϕ (l − ū)⊤

• • I

 ⪰ 0 (26)

βijI 0 (AL+BF)⊤

• 1− βij µ⊤ + V ⊤
i + (Ewj)

⊤

• • P−1
+

 ⪰ 0,

for i ∈ {1, . . . , 2nx}, j ∈ {1, . . . , Nw} (27)τkI 0 F⊤U⊤
k

• 1− τk l⊤U⊤
k

• • I

 ⪰ 0, for k ∈ {1, . . . , Nu}

(28)

where µ = g + Ac + Bl − c+, Vi for i = 1, . . . , 2nx are
the vertices of H(0, 1

2Lr
2) with r2 = δX + δU + δW and

δW = maxi=1,...,Nw
{∥wi∥2}. From which we have

P = L−2, K = FL−1.

Proof. Given Lemma 1, it is sufficient to establish the
following equivalences

(21) ⇔ (25), (22) ⇔ (26), (23) ⇔ (27), (14) ⇔ (28).

The closed-loop dynamics can be expressed as

f̃(x, κ(x), w) = Āx+ b̄+Ew

with
Ā = A+BK, b̄ = g +Bl −BKc.

We define the matrix Θ as

Θ =

L c 0
• 1 0⊤

• • I

 .

Using respectively the S-procedure (Lemma 2), the fact
that P = L−2 with L ≻ 0 and the Schur Complement
Lemma [19], we have

(21) ⇔ δXP− I ⪰ 0 ⇔ I− δ−1
X L2 ⪰ 0 ⇔ (25).

By using the S-procedure, equation (22) can be expressed

as the existence of ϕ ≥ 0 that satisfies the inequality

ϕ

(
P −Pc
• c⊤Pc− 1

)
⪰(

K⊤K K⊤(l − ū−Kc)
• (l − ū−Kc)⊤(l − ū−Kc)− δU

)
.

By further algebraic manipulations and using the Schur
Complement Lemma, this inequality can be written asϕP −ϕPc K⊤

• ϕ(c⊤Pc− 1) + δU (l − ū−Kc)⊤

• • I

 ⪰ 0.

Then, by applying the congruent transformation of matrix
Θ, i.e., multiplying the above inequality to the right by Θ
and to the left by Θ⊤, we obtain equation (26).

Since a polytope is contained in a convex set if and only if
its vertices are contained in this set, equation (23) is satisfied
∀w ∈ W if and only if it is satisfied for the vertices of W .
Hence, (23) is equivalent to

∀j ∈ {1, . . . , Nw} ∀x ∈ ξ : {f̃(x, κ(x), wj)} ⊕Hr ⊆ ξ+

where wj are the vertices of W . By using the S-procedure,
equation (23) can be expressed as the existence of βij ≥ 0
that satisfies the inequality

βij

(
P −Pc
• c⊤Pc− 1

)
⪰(

Ā⊤P+Ā Ā⊤P+(b̄+Ewj + Vi − c+)
• (b̄+Ewj + Vi − c+)⊤P+(b̄+Ewj + Vi − c+)− 1

)
for i ∈ {1, . . . , 2nx} and j ∈ {1, . . . , Nw}. By further
algebraic manipulations and using the Schur Complement
Lemma, this inequality can be written as(

βijP −βijPc Ā⊤

• βij(c
⊤Pc− 1) + 1 (b̄+Ewj + Vi − c+)

⊤

• • P−1
+

)
⪰ 0.

Then, by applying the congruent transformation of matrix
Θ, we obtain equation (27).

By using the S-procedure, equation (14) can be expressed
as the existence of τk ≥ 0 that satisfies the inequality

τk

(
P −Pc
• c⊤Pc− 1

)
⪰(

U⊤
k K

⊤KUk K⊤U⊤
k Uk(l −Kc)

• (l −Kc)⊤U⊤
k Uk(l −Kc)− 1

)
for k ∈ {1, . . . , Nu}. By further algebraic manipulations and
using the Schur Complement Lemma, this inequality can be
written asτkP −τkPc K⊤U⊤

k

• τk(c
⊤Pc− 1) + 1 (l −Kc)⊤U⊤

k

• • I

 ⪰ 0.

Finally, by applying the congruent transformation of matrix
Θ, we obtain equation (28).

The extension presented in Theorem 2 builds upon [5,
Theorem 2] by incorporating the linearization error while



maintaining convexity when considering the parameters of
the initial ellipsoids ξ as optimization variables. It is worth
noting that in [5, Theorem 2], the problem is no longer
an LMI if we consider P as a variable. However, as
demonstrated by Theorem 2, the optimization problem can
be rendered convex through a congruent transformation when
considering the square root of P−1 as the variable of interest.
If f is an affine function, the LMIs from Theorem 2 can
be simplified to the ones presented in [5, Theorem 2] by
applying a congruent transformation.

We can visualize the terms of the Minkowski sum in (20)
for our specific setting in Figure 2. As the diameter of ξ
increases (i.e., 2

√
δX ), the half-lengths of Hr also increase.

Consequently, the controller κ must become more aggressive
to ensure that the diameter of ξ̃+ := q(ξ), defined after (20),
decreases. However, this might cause an increase in the
magnitude of the control input, yielding a larger value of
δU (see Figure 3), which, in turn, amplifies the half-lengths
of Hr.

C. Optimal control

Since our aim is not only to design κ to minimize a
cost function, but also to optimize the shape P of the
starting ellipsoid ξ, we introduce a performance objective
that involves minimizing a cost function (12) and maxi-
mizing the hypervolume of the preceding ellipsoid ξ. As a
reminder [19, Section 2.2.4], we can maximize the volume of
an ellipsoid ξ = E(c,P) by minimizing the convex function
− log(det(L)) where L is the square root of P−1, i.e.,
P−1 = L2.

The correctness and efficiency of the global RRT* algo-
rithm (Algorithm 1) are guaranteed by the following result.

Corollary 1. For a given point c and target set ξ+ =
E(c+,P+), with a stage cost function J (12) where Q =
S⊤S and λ ∈ [0, 1], the solution of the convex optimization
problem

inf
L≻0,F,l,δX≥0,δU≥0,

ϕ≥0,βij≥0,τk≥0,γ≥0,J̃

λJ̃ + (1− λ)(− log(det(L))) (29)

s.t. (25), (26), (27), (28),γI 0 [L,F⊤, 0]S⊤

• J̃ − γ [c⊤, l⊤, 1]S⊤

• • I

 ⪰ 0 (30)

satisfies
J̃ ≥ max

x∈ξ
J (x, κ(x)) (31)

where the controller κ(x) := K(x − c) + l ∈ U with K =
FL−1 ensures a transition from ξ = E(c,P) with P = L−2

to ξ+, as in Theorem 2.

Proof. Same as in [5, Corollary 1].

Note that unlike [5, Corollary 1], the inequality (31) is
generally not tight.

The parameter λ governs the weight assigned to each cri-
terion. Increasing its value will prioritize cost minimization,

Fig. 2. Local transition from ellipsoid ξ to ellipsoid ξ+. The affine
controller κ enforces that ∀x0 ∈ ξ and ∀w ∈ W: f(x0, κ(x0), w) ∈
{f̃(x0, κ(x0), 0)}⊕EW⊕Hr ⊆ ξ+ where W is the polytopic noise and
Hr = H(0, 1

2
Lr2) is the noise resulting from the linearization (19) where

r2 = δX + δU + δW . The set ξ̃+ = q(ξ) with q(x) = f̃(x, κ(x), 0) (see
(20)) is an ellipsoid since an affine transformation of an ellipsoid is also an
ellipsoid and the set EW is a polytope since the linear transformation of a
polytope is a polytope.

Fig. 3. Input space of the system S (blue) and the set of inputs actually
used by the controller κ on the ellipsoid ξ (green). The input space is
denoted by U = U1 ∩ U2 ∩ U3 where U1,U2,U3 are ellipsoids, and Ũ =
κ(ξ) represents the set of inputs used by κ on ξ. The controller κ is designed
such that Ũ ⊆ U .

leading to a preference for reducing the volume of ξ. Con-
versely, decreasing λ will prioritize maximizing the volume
of the starting ellipsoid ξ, requiring larger control gains while
mapping all states of ξ into ξ+. This also represents an
exploitation/exploration trade-off, as maximizing the volume
allows us to explore a larger portion of the state space,
and minimizing the cost provides better (finer) solutions for
already explored areas. Because of that, λ can be chosen
adaptively throughout the execution. A comprehensive study
on how to fine-tune this meta-parameter is beyond the scope
of this paper. However, a basic approach is to start with
a smaller λ to encourage designing larger cells (potentially
leading faster to a feasible controller), and then increase its
value to favor smaller cells (with eventually lower transition
costs).

V. NUMERICAL EXPERIMENTS

A. One single transition

In this example we study aspects of determining a single
transition for a given target set ξ+ = E(c+,P+) and initial
point c with

c+ =

(
4
4

)
, P+ =

(
2 0.2
0.2 0.55

)
, c =

(
1
1

)
.

Consider the nonlinear system (9) given by

f(x, u, w) =

(
1.1x1 − 0.2x2 − ρx3

2 + u1 + w1

0.2x1 + 1.1x2 + ρx3
1 + u2 + w2

)
(32)



Fig. 4. (Section V-A) Solution provided by Corollary 1 for ωmax = 0.1,
ρ = 0.0005 and λ = 0.01. Left: Value of the cost function J (x, κ(x))
for the closed-loop system (color map) and the ellipsoids ξ+ (red) and
ξ̃+ (green). Right: The sets U1, U2, and U3 (blue), and their intersection
U (dark blue). The set Ũ := κ(ξ) (green) represents the inputs actually
employed by the controller κ on ξ. The upper bound on the transition cost
J̃ = 28.1 and the volume of the starting ellipsoid vol(ξ) = 6.65.

where ρ ≥ 0. The control input u is constrained by the set
U = U1 ∩ U2 ∩ U3 with

U1 = H
(
0,
(
4
5

))
,U2 = B(0, 5),U3 = H

(
0,
(
0.05 0
0 0.033

))
and the exogenous input w by the set W =
H(0, (ωmax, ωmax)

⊤) with ωmax ≥ 0. The level of
non-linearity in the system is determined by the parameter
ρ, where ρ = 0 corresponds to an affine dynamical system.
On the other hand, the presence of noise is controlled
by the parameter ωmax, where ωmax = 0 corresponds to a
deterministic system.

For several different values of ρ, ωmax and λ, we solved
the optimization problem of Corollary 1 considering the
quadratic cost function (12) with Q = diag(I, I, 1), i.e.,
J (x, u) = x⊤x+ u⊤u+ 1.

On average, each solution to Corollary 1 was found in
0.0176 seconds on an Intel® Core™ i7-10610U CPU 1.80
GHz ×8 with 16 GB of memory and using the Julia JuMP
[20] interface with the Mosek solver on Windows 10.

Firstly, observing the left-hand side of Figure 4, we can
deduce that while J̃ is an upper bound for the cost of the
transition from ξ to ξ+, in practice this cost is considerably
lower for a significant part of the cell. As expected, by
comparing Figure 4 and Figure 5, the worst case cost J̃
of the controller decreases as λ increases. This is achieved
by reducing both the size of the initial ellipsoid ξ and the
maximum magnitude of the inputs actually used by the
controller κ on ξ. Finally, comparing the results of Figure 4
and Figure 6, we notice that when we increase the non-
linearity (ρ) and the noise bound (ωmax), the controller has
to produce a smaller ellipsoid ξ̃+ more centered in ξ+, and
to do so, it must reduce the size of the initial ellipsoid.

Figure 7 illustrates that as the values of ωmax and ρ
increase, the Pareto front of the bi-objective function (29)
consistently exhibits worse outcomes, i.e., higher costs and
smaller volumes of the initial ellipsoid, across all values of
the weighting parameter λ.

Fig. 5. (Section V-A) Solution provided by Corollary 1 for ωmax = 0.1,
ρ = 0.0005 and λ = 0.3. We have J̃ = 18, vol(ξ) = 1.44.

Fig. 6. (Section V-A) Solution provided by Corollary 1 for ωmax = 0.15,
ρ = 0.001 and λ = 0.01. We have J̃ = 26.56, vol(ξ) = 3.82.

B. Optimal control

In this example we provide one possible application of
the approach for the optimal control of the two-dimensional
dynamical system S introduced in Section V-A with ρ =
0.005, ωmax = 0.1, and the same stage cost function, which
penalizes states and inputs that are distant from the origin.

A first feasible solution S̃1 (see Figure 8) was found after
18 seconds with only 8 cells and 7 transitions created, in
the same computational setup as in the previous example.
We can continue to expand the tree to explore other paths in
the state-space as illustrated with abstraction S̃2 in Figure 8
(right). As anticipated, the controller exhibits a preference
for solutions that pass near the origin while circumventing
the obstacle.

Given x0 = (−10,−10) ∈ XI , the guaranteed total cost
by S̃1 is v1(x0) = 1732 whereas the true total cost of this
specific trajectory is 1337. For S̃2, the guaranteed total cost is
v2(x0) = 992 whereas the true total cost is 875. The control
cost guaranteed by S̃2 is better than by S̃1 for two main
reasons: 1) we continued to improve the abstraction using

Fig. 7. (Section V-A) Pareto front of the bi-objective function (29) for
different values of ρ and ωmax. Each curve decreases as the value of λ
increases from 0 to 1. Left: ωmax = 0.1. Right: ρ = 0.0005.



Fig. 8. (Section V) Solution obtained from Algorithm 1 (left) and from
the improved RRT* version (right). The initial set XI , target set XT and
obstacles XO are respectively in green, red and black. The color map
illustrates the value function v for S. Left: Construction of S̃1 and v1
stops as soon as a feasible solution is found. Right: Continue to extend and
improve the abstraction S̃2 and the value function v2. We added a bound
on the cell volume to easily visualize the entire tree.

the RRT* variant, and 2) because by considering smaller
cells, the cost of transitioning from one cell to another in
the worst case is lower. Nevertheless, a similar part of the
state space is covered by both abstractions, which is achieved
with far fewer cells for S̃1.

VI. CONCLUSION

We provided a tractable algorithm for the optimal control
of L-smooth nonlinear dynamical systems. Firstly, the pro-
posed algorithm circumvents the necessity of discretizing the
input space by employing a set of local feedback controllers.
This is done to ensure deterministic transitions, thereby
eliminating the non-determinism associated with abstraction,
a common limitation in classic approaches. Secondly, the
combined use of ellipsoid-based covering and affine local
controllers leverages the power of LMIs and convex opti-
mization, allowing the creation of larger and non-standard
cells. Thirdly, the use of a lazy approach and non-uniform
cells significantly reduces the complexity of the abstraction,
i.e., the number of abstract states, when addressing a specific
control problem.

As future work, we plan to demonstrate the efficiency
of this approach on higher-dimensional nonlinear dynamical
systems.
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