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ABSTRACT
The paper presents the DEF-AI-MIA COV19D Compe-

tition, which is organized in the framework of the ’Domain
adaptation, Explainability, Fairness in AI for Medical Image
Analysis (DEF-AI-MIA)’ Workshop of the 2024 Computer
Vision and Pattern Recognition (CVPR) Conference. The
Competition is the 4th in the series, following the first three
Competitions held in the framework of ICCV 2021, ECCV
2022 and ICASSP 2023 International Conferences respec-
tively. It includes two Challenges on: i) Covid-19 Detection
and ii) Covid-19 Domain Adaptation. The Competition use
data from COV19-CT-DB database, which is described in
the paper and includes a large number of chest CT scan se-
ries. Each chest CT scan series consists of a sequence of
2-D CT slices, the number of which is between 50 and 700.
Training, validation and test datasets have been extracted
from COV19-CT-DB and provided to the participants in both
Challenges. The paper presents the baseline models used
in the Challenges and the performance which was obtained
respectively.

Index Terms— deep neural networks, domain adapta-
tion, explainability, AI, diagnosis, 4th COVID-19 Competi-
tion, COV19-CT-DB database

1. INTRODUCTION

In the past few years, Deep Learning (DL) techniques have
made rapid advances in many medical image analysis tasks.
In pathology and radiology applications, they managed to
increase the accuracy and precision of medical image assess-
ment, which is often considered subjective and not optimally
reproducible. This is due to the fact that they can extract
more clinically relevant information from medical images
than what is possible in current routine clinical practice by
human assessors. Nevertheless, considerable development
and validation work lies ahead before AI-based methods can
be fully integrated ad used in routine clinical tasks.

Of major importance is research on domain adaptation,
fairness and explainability in AI-enabled medical image anal-

ysis. This research constitutes the main target of the Do-
main adaptation, Explainability and Fairness in AI for Med-
ical Image Analysis (DEF-AI-MIA) Workshop, to be held in
the 2024 Computer Vision and Pattern Recognition (CVPR)
International Conference. The DEF-AI-MIA workshop aims
to foster discussion and presentation of ideas to tackle these
challenges in the field, as well as identify research opportu-
nities in this context. It is the fourth in the AI-MIA series
of Workshops, which includes the Workshops held at IEEE
ICASSP 2023, ECCV 2022 and ICCV 2021 Conferences.

This Workshop’s focus is also motivated by recent actions
and regulatory policies developed in Europe and considered
worldwide. GRNET, the Greek National Infrastructures for
Research and Technology, has implemented the integration
of public hospital units in GRNET academic network, to sup-
port research and clinical activities in medicine and biology,
also providing an archiving service for data produced by the
imaging devices of the hospitals at the GRNET health data
centers. At the European level, EU has been regulating a Eu-
ropean Health Data Space, which: a) fosters a genuine single
market for electronic health record systems, relevant medical
devices and high risk AI systems (primary use of health data),
b) generates a consistent, trustworthy and efficient set-up for
the use of health data for research and innovation (secondary
use of health data; GRNET is involved in the implementation
of this set-up). The above are linked to the recent EU AI-
Act regulatory framework for AI, which classifies AI systems
used in different applications according to the risk they pose
to users. These are under consideration, by the public and the
private sector, in Europe, USA and other countries all over the
world.

Topics covered in the workshop are domain adaptation,
explainability, fairness, for trustworthiness in AI-enabled
medical imaging which include a digital pathology and radi-
ology images; use of self-supervised and unsupervised meth-
ods to enforce shared patterns emerging directly from data,
develop strategies to leverage few (or partial) annotations,
promoting interpretability in both model development and/or
results obtained, ensure generalizability to data coming from
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multi-centers, multi-modalities or multi-diseases, in edge, or
cloud frameworks, and robustness to out of distribution data.

Technologies and topics to be addressed in the DEF-
AI-MIA Workshop include the following: explainable 2-D
& 3D-CNN, CNN-RNN, transformer, foundation models,
multimodal Large Language Models, unsupervised, self-
supervised Machine Learning (ML) models for medical di-
agnosis; sensing “salient features” of AI/ML models related
to decision-making, in spatial (images), temporal (video),
volumetric (3-D) data; optimal visualization of salient fea-
tures and areas in the input data; Low/Middle/High level
feature extraction & analysis for model interpretatability and
explainability; explanation of which features and at what
time, or slice, or respective intervals, are the most promi-
nent for the provided decision in temporal and 3-D data;
explainable data correlations for predictions in data streams
of multimodal data; joint optimization of positive and neg-
ative saliencies; global and local models for prediction or
classification; attention and self-attention mechanisms in
DL/AI approaches; interpretability at training time through
adversarial regularization; learning new data (from multi-
ple sources) by leveraging knowledge already extracted and
codified, through domain adaptation; generalizable ML/DL
methods when the training medical image datasets are small;
generalizable ML/DL methods in cases of images with po-
tential domain shift; unsupervised, weakly supervised and
semi-supervised model adaptation; uncertainty estimation
and quantification, self-training; adaptation and prompt engi-
neering in Foundation Models (e.g., LLMs) for explainable
decisions and prediction; algorithmic fairness; zero/one shot
learning, avoidance of catastrophic forgetting.

2. THE 4TH COV19D COMPETITION

A variety of technologies have been developed for early di-
agnosis of Covid-19, based on medical image analysis, espe-
cially focusing on 3-D chest CT scans. Special interest has
been given to combined segmentation and classification ap-
proaches [1], targeting detection of abnormalities, including
consolidation, ground-glass opacities, interlobular septal lung
thickening, mostly under pleura.

The 4th COV19D Competition is the 4th in the series
of COV19D Competitions following the first 3 Competitions
we organized in the framework of ICCV 2021 [2], ECCV
2022 [3] and ICASSP 2023 [4] Workshops respectively. It in-
cludes two Challenges: i) Covid-19 Detection Challenge and
ii) Covid-19 Domain Adaptation Challenge.

Both Challenges are based on the COV19-CT-DB database,
briefly described next, including 3-D chest CT scan series.
Each chest CT scan series consists of a sequence of 2-D CT
slices, the number of which is between 50 and 700.

2.1. Covid-19 Detection Challenge

Many CT scans have been aggregated, each one of which
has been manually annotated in terms of Covid-19 and non-
Covid-19 categories. The resulting dataset is split into train-
ing, validation and test partitions. The training and validation
sets along with their annotations have been provided to the
Competition participating teams to develop AI/ML/DL mod-
els for Covid-19 and non-Covid-19 prediction. Performance
of the different approaches will be evaluated on the test set in
terms of the ‘macro’ F1 score.

2.2. Covid-19 Domain Adaptation Challenge

CT scans have been aggregated from various hospitals and
medical centres. Each CT scan has been manually annotated
with respect to Covid-19 and non-Covid-19 categories. The
resulting dataset is split into training, validation and test parti-
tions. Participants have been provided with a training set that
consists of: i) the annotated data of the 1st Challenge which
are aggregated from some hospitals and medical centres (case
A); ii) a small number of annotated data and a larger number
of non-annotated data (case B), all of which are aggregated
from other hospitals and medical centres and their distribution
is different from that of case A. Participants have been also
provided with a validation set that consists of a small number
of annotated data of case B. Competition participating teams
develop AI/ML/DL models for Covid-19 prediction. Perfor-
mance of the different approaches will be evaluated on a test
set (that contains data of case B) in terms of the ‘macro’ F1
score.

3. THE COV19-CT-DB DATABASE

COV19-CT-DB [5], which we have developed, contains 3-
D chest CT scans, collected in various medical centers. The
database includes 7,756 3-D CT scans; 1,661 are COVID-19
samples, whilst 6,095 refer to non COVID-19 ones. There are
about 2,500,000 images included in these datasets. All have
been anonymized. 724,273 images refer to the COVID-19
class, whilst 1,775,727 slices belong to non COVID-19 class
[6].

Table 1 presents a summary of the main elements of
COV19-CT-DB.

Table 1. COV19-CT-DB: main elements
Elements Values

number of 3-D CT scans
1,661 COVID

6,095 non-COVID

number of 2-D images
724,273 COVID

1,775,727 non-COVID
number of images in scan series 50 - 700

size of images 512× 512



Figure 1 analyzes the length of the CT scan series, pre-
senting their histogram. This shows the differences regard-
ing the length of 3-D CT scans in COV19-CT-DB; these are
caused by various reasons, including the requested resolution
analysis, or the specific features of the used equipment.

Fig. 1. COV19-CT-DB: 3-D scan length histogram

It should be mentioned that for explainability purposes
[7, 8, 9], an anchor set was generated for the COV19-CT-DB
database [5]. This included 11 anchors, each representing a
respective 3-D CT scan obtained through an appropriate clus-
tering procedure. Figure 2 shows a series of slices from a
COVID-19 case, whereas Figure 3 shows a series of slices
from a non COVID-19 case.

The first Challenge on COVID-19 detection is based on
extract of this database. The training set contains, in total,
1358 3-D CT scans. The validation set consists of 326 3-D
CT scans. The number of COVID-19 and of Non-COVID-19
cases in each set are shown in Table 2.

Table 2. Data samples in each Set in Covid-19 Detection
Challenge

Set Training Validation
COVID-19 703 170

Non-COVID-19 655 156

The second Challenge on COVID-19 Domain Adaptation
is also based on extract from this database. The CT scans
utilized have been sourced from a variety of hospitals and
medical centers, providing a diverse range of data for anal-
ysis. The dataset has been partitioned into distinct training,
validation and test subsets.

239 3-D CT scans have been annotated and provided as
training set to the participants, with 178 3-D CT scans consti-
tuting the validation set. In addition, 494 3-D CT scans have
been provided without annotations, as shown in 3 so that they
can be used by the participants in the adaptation process.

Table 3. Data samples in each Set in Covid- 19 Domain
Adaptation Challenge

Set Training Validation
COVID-19 120 65

Non-COVID-19 119 113
Non-annotated 494 -

4. THE BASELINE CONFIGURATIONS

4.1. COVID-19 detection & domain adaptation baselines

The baseline architecture adopted for both Challenges, namely
the COVID-19 Detection Challenge and the Covid-19 Do-
main Adaptation Challenge, is a CNN-RNN architecture
[5, 10, 11, 12].

The input 3-D CT scans have been padded to achieve a
uniform length t, ensuring that every 3-D CT scan contains
t slices. The entire unsegmented sequence [13] of 2-D slices
from a CT scan is then fed into the CNN component. This
CNN component conducts localized analysis on a per-2D-
slice basis, primarily extracting features from the lung re-
gions. The objective is to facilitate diagnosis using the entire
3-D series of CT scans, mirroring the annotations provided by
medical experts.

Subsequently, the RNN component analyzes the CNN
features of the complete 3-D CT scan, sequentially traversing
from slice 0 to slice t−1. The outputs of the RNN component
are forwarded to a Fully Connected layer and subsequently
to an output layer utilizing a softmax activation function to
provide the COVID-19 diagnosis. We also include a Dropout
layer before the Fully Connected one.

In the second Challenge (Covid-19 Domain Adaptation),
we employed Monte Carlo Dropout to assess uncertainty
while training the CNN-RNN architecture using data from
both case A (annotated) and case B (annotated). Monte Carlo
Dropout is a technique that involves performing multiple
forward passes through the network with dropout activated
during inference, allowing us to capture the model’s inherent
uncertainty. Subsequently, we annotated the non-annotated
data from case B based on the model’s predictions, specifi-
cally considering COVID instances where the model exhib-
ited a high confidence level. This approach enabled us to
leverage the model’s uncertainty estimates to adapt to the
non-annotated data of case B.

4.2. Pre-Processing & Implementation Details

In the pre-processing stage, all 2-D CT slices have been ex-
tracted from respective DICOM images. Next, voxel intensity
values were computed through a window of 350 Hounsfield
units (HU)/−1150 HU; they were then normalized in the
range [0, 1]. Data augmentation was also performed, includ-
ing random rotation in [-10◦, 10◦] and horizontal flip [14, 15]



Fig. 2. Slices from a COVID-19 case in COV19-CT-DB

Fig. 3. Slices from non COVID-19 case in COV19-CT-DB

to extract region of interests, such as lung areas in the 2-D
images.

As far as implementation of the baseline approach is con-
cerned, the following models have been used: i) we adopted
the CNN ResNet50 model; on top of it we included a global
average pooling, as well as a batch normalization layer and
dropout (with keep probability 0.8), ii) we used a single one-
directional GRU RNN layer comprising 128 neurons. The
model input consisted of the 3-D CT scans. Each 2-D image
was resized from its size of 512× 512× 3 to 224× 224× 3.
We selected a confidence threshold of 70% to determine high-
confidence annotations for non-annotated data in the Domain
Adaptation Challenge.

Batch size was equal to 5 (i.e, at each iteration our model
processed 5 CT scans) and the input length ’t’ was 700 (the
maximum number of slices found across all CT scans). We
utilized the softmax cross entropy as loss function for train-
ing both baseline methods. Adam optimizer was used with
learning rate 10−4. Training was performed on a Tesla V100
32GB GPU.

5. EXPERIMENTAL RESULTS

This section describes a set of experiments evaluating the per-
formance of the baseline configurations.

Table 4 shows the performance of the network over the
validation sets in both Challenges, after training with the
training datasets, taking into account that there exists only a
single label for the whole CT scan and no labels for each CT
scan slice [5].

In both Challenges , the performance of the baseline meth-
ods were evaluated in terms of the macro F1 score. The macro
F1 score is defined as the unweighted average of the class-
wise/label-wise F1-scores, i.e., the unweighted average of the
COVID-19 class F1 score and of the non-COVID-19 class F1
score.

6. CONCLUSIONS AND FUTURE WORK

In this paper we present the 4th COV19D Competition and
particularly the two Challenges that it contains: the first on



Table 4. Performance of baseline model in each Challenge
Challenge ’macro’ F1 Score

COVID-19 Detection 0.78
COVID-19 Domain Adaptation 0.73

COVID-19 detection and the second on COVID-19 domain
adaptation. We provide a short description of the COV19-CT-
DB, extracts from which are used in the two Challenges. We
also present the baseline approaches and their performance in
the Challenges.
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