
Let a Thousand Flowers Bloom
An Algebraic Representation for Edge Graphs

Jack Liell-Cocka and Tom Schrijversb
a University of Oxford, UK
b KU Leuven, Belgium

Abstract
Context Edge graphs are graphs whose edges are labelled with identifiers, and nodes can have multiple edges
between them. They are used to model a wide range of systems, including networks with distances or degrees
of connection and complex relational data.
Inquiry Unfortunately, the homogeneity of this graph structure prevents an effective representation in
(functional) programs. Either their interface is riddled with partial functions, or the representations are
computationally inefficient to process.
Approach We present a novel data type for edge graphs, based on total and recursive definitions, that prevents
usage errors from partial APIs and promotes structurally recursive computations. We follow an algebraic
approach and provide a set of primitive constructors and combinators, along with equational laws that identify
semantically equivalent constructions.
Knowledge This algebra translates directly into an implementation using algebraic data types, and its
homomorphisms give rise to functions for manipulating and transforming these edge graphs.
Grounding We exploit the fact that many common graph algorithms are such homomorphisms to implement
them in our framework.
Importance In giving a theoretical grounding for the edge graph data type, we can formalise properties such
as soundness and completeness of the representation while also minimising usage errors and maximising
re-usability.

ACM CCS 2012
Mathematics of computing → Graph theory;

Keywords algebra, graphs, functional programming

The Art, Science, and Engineering of Programming

Submitted September 26, 2023

Published February 15, 2024

doi 10.22152/programming-journal.org/2024/8/9
© Jack Liell-Cock and Tom Schrijvers
This work is licensed under a “CC BY 4.0” license
In The Art, Science, and Engineering of Programming, vol. 8, no. 3, 2024, article 9; 28 pages.

https://orcid.org/0009-0005-7121-8095
https://orcid.org/0000-0001-8771-5559
https://doi.org/10.22152/programming-journal.org/2024/8/9
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Let a Thousand Flowers Bloom

1 Introduction

Beyond illustrating thousands of flowers blooming, as demonstrated in Figure 1,
graphs are a core programming tool that captures a range of computing structures
and paradigms. Despite their universality, they continue to evade expression as a
total algebraic data type. Common algebraic data types such as lists and trees have
the liberty of a directional structure, as illustrated in Figure 2, which gives rise to a
canonical inductive data type definition. Conversely, graphs benefit from homogeneity
across their structure; no node or edge has priority over the others in the general case.
This leaves many graph frameworks riddled with partial functions, verbose interfaces,
or complex run times.

A common graph representation in computer systems is adjacency lists [7], but the
internal consistency of this representation is not statically checked which leads to
runtime errors. Erwig provides another alternative using inductive graphs and active
patterns [4], but the interface also contains partial functions and some underlying
operations are computationally inefficient – simply inserting a node takes O(n log n)
time for dense graphs. Oliveira and Cook give a representation of cyclic graphs using
fixpoints [12], but it has drawbacks of a non-intuitive portrayal, a lack of semantic
equality testing, and difficulty in dynamically modifying the graphs. On the other
hand, algebraic data types are expressed via total and recursive definitions. The lack
of partiality prevents usage errors from invalid inputs and the recursive nature of
the instantiation promotes structurally recursive computations. This also facilitates
automated testing and proving properties by induction. It is therefore unsurprising
that there have been additional attempts to represent graphs algebraically. Gibbons [5]
provides a base instance for representing graphs as an algebraic interface, where they
developed an initial algebra for constructing directed acyclic graphs, which captures
certain recursive computation patterns. This work does not, however, accommodate
undirected and cyclic graphs. More recently, Mokhov established an elegant algebra
of node graphs [10]. It enjoys properties corresponding closely to those of a semiring
and supports a rich algebraic graph library in Haskell that can be used to construct
a wealth of complex graphs. Mokhov extended the research to support edge labels
with a semiring structure [11]. A common theme among such extensions is this
enforcement of structural constraints. Different semirings produce different graphs,
but the additional structure restricts the nature of the edge labels and the versatility
of the graph. This paper aims to overcome this drawback.

Instead of extending the node graph algebra to include edges, we invert the problem
and develop an algebra for exclusively edge-indexed graphs, or edge graphs for short.
In doing so, the variety of the edge labels is no longer restricted, and graphs that do
not have node identifiers can be modelled. Our solution requires defining a novel
graph representation that gives edge identifiers precedence over node identifiers. A set
of constructors and equivalence relations encapsulating the structure is then defined,
producing the edge graph algebra. The algebra contains six graph constructors, which
are represented by the following algebraic data type:

9:2

Jack Liell-Cock and Tom Schrijvers

Figure 1 Graph of flowers blooming

data EdgeGraph a=
Empty
| Edge a
| Overlay (EdgeGraph a) (EdgeGraph a)
| Into (EdgeGraph a) (EdgeGraph a)
| Pits (EdgeGraph a) (EdgeGraph a)
| Tips (EdgeGraph a) (EdgeGraph a)

Informally, Empty represents the empty graph while Edge x is a single edge with
the label x. The Overlay constructor joins two graphs by unifying all nodes that have
overlapping incoming or outgoing edges. Into, Pits and Tips each extend the Overlay
operator in a different way. Into additionally connects each outgoing node in the
first graph to each incoming node in the second. Pits connects each outgoing node
in the first graph to each outgoing node in the second. And finally, Tips does the
same as Pits but for incoming nodes. These operations are closed over the set of edge
graphs and can be used to construct any edge graph. Moreover, each edge graph has
a unique representation from the operations up to their equational laws which will be
introduced later.

Given this unique representation of each graph, there is a unique mapping from an
edge graph to any other collection of operators which also satisfies the edge graph
axioms. Thus, graph algorithms may be translated to the problem of finding a model
of the edge graph algebra that captures the algorithm’s properties. We demonstrate
this process with some key graph algorithms such as extracting the underlying set of
edges, taking the transpose, and finding the shortest distances.

The rest of this paper is structured as follows. In Section 2 we outline previous work
in the field of algebraic representations of graphs. In Section 3 we introduce typical
graph representations along with our novel multigraph representation. The edge
graph algebra is constructed in Section 4 and additional properties of the algebraic
structure are shown. In Section 5 and 6, we provide Haskell implementations of the

9:3

Let a Thousand Flowers Bloom

(a) Example list as a graph (b) Example tree as a graph (c) Arbitrary graph

Figure 2 A range of common data types represented as graphs

algebra, and express and implement graph algorithms in the form of homomorphisms.
We outline future directions for this work and conclude in Section 7.

2 Literature Review

As outlined in Section 1, the literature is rich with attempts to characterise graphs
with algebras. Many of the ideas in this paper build on previously presented ideas,
thus a deeper recount of some key progressions in this field is warranted.

2.1 Directed Acyclic Multigraph Algebra

An algebra for directed acyclic multigraphs (which the paper refers to as a DAMG
pronounced ‘damage’) was developed by Gibbons [5]. As it is a loaded phrase, we note
to the reader that by the word algebra, we mean a collection of operators and constants
(such as + and 0) and equational laws that all terms satisfy (such as a+ b = b+ a and
a + 0 = a). Concerning type definitions, the constructors are seen as the operators
and constants, which in this case build graphs from smaller components. Rather than
define their algebra via a representation, Gibbons takes a more abstract approach
of letting the set of all graphs D be the union of all m, n ∈ N indexed graphs Dm,n

which individually represent the set of DAMGs with m inputs and n outputs. With this
definition, the constructors are given as:

1. The empty graph: ϵ ∈ D0,0

2. A single edge: e ∈ D1,1

3. A single vertex: vm,n ∈ Dm,n

4. A swap graph: sm,n ∈ Dm+n,n+m

5. A beside operator ‘|’: for x ∈ Dm,n and y ∈ Dp,q, then x | y ∈ Dm+p,n+q

6. A before operator ‘◁’: for x ∈ Dm,n and y ∈ Dn,p, then x ◁n y ∈ Dm,p

The interpretation of these constructors is that a vertex vm,n is a node with m inputs
and n outputs, edges e extend inputs or outputs, the beside operator composes graphs
in parallel and the before operator composes graphs in series. We sometimes drop the
subscript n from the before operator when it is obvious from the context or is true

9:4

Jack Liell-Cock and Tom Schrijvers

for all n. Finally, the swap operator allows for graphs beyond the planar variety by
connecting the first m input edges with the last m output edges and the last n input
edges with the first n output edges.

Often with algebraic data types, different combinations of constructors can produce
the same instantiation from a semantic viewpoint. Hence, one may introduce laws
to quotient over equivalent constructions. There is usually little to enforce these
equivalences in programming languages, so it is up to the programmer to ensure
the functions treat semantically equal types the same. The set of axioms Gibbons
introduces to identify equivalent graph constructions are:
(D, |,ϵ) is a monoid.
◁ is associative (given it is correctly typed).
The abiding law, (a ◁m b) | (c ◁n d) = (a | c) ◁m+n (b | d).
The swapping laws (where we say m× x = (x | · · · | x

m times
)).

– sm,0 = m× e

– sm,n+p = (sm,n | (p× e)) ◁ ((n× e) | sm,p)
– sm,n ◁ (a | b) ◁ sp,q = b | a, where a ∈ Dn,p, b ∈ Dm,q

Gibbons showed that the algebra generated by these constructors and quotiented
by the axioms is equivalent to an enriched symmetric strict monoidal category [8]
and thus two DAMGs are semantically equal if and only if it can be proved so via the
axioms [3]. Given this soundness and completeness of the axioms, the DAMG algebra
is the free enriched strict symmetric monoidal category and thus there is a unique
homomorphism to any other algebra that satisfies the DAMG algebra axioms. This
unique mapping is called a catamorphism. In particular, a DAMG catamorphism h is a
tuple of constants, indexed constants and binary operators Lw, x , y, z,⊕,⊗M such that

h(ϵ) = w,

h(e) = x ,

h(vm,n) = ym,n,

h(sm,n) = zm,n,

h(a | b) = h(a)⊕ h(b),

h(a ◁ b) = h(a)⊗ h(b),

where the constants and operators canonically form an enriched symmetric strict
monoidal category. Immediate catamorphisms are the identity function Lϵ, e, v, s, |,◁M,
a vertex count function L0, 0,1,0,+,+M, and a graph transpose function (reversing
the direction of all of the edges) Lϵ, e, v, s′, |,▷M where s′m,n = sn,m and a ▷ b = b ◁ a. A
more interesting example given is a catamorphism which returns the length of the
shortest path from entry to exit, which for the sake of brevity we point the reader to
the original paper for the full specification.

2.2 Node Graph Algebra

The standard representation for node graphs is the relation representation (N , E),
where N is the set of nodes and E ⊆ N × N is the set of edges. The interpretation of
this representation is, an edge in the graph points from n ∈ N to m ∈ N if (n, m) ∈ E.
We denote the collection of all such relation representations as R. Mokhov introduces
an elegant algebra for graphs of this form [10].

The algebra is defined using four constructors, and their interpretation in the
relational representation is as follows:

9:5

Let a Thousand Flowers Bloom

1. The empty graph: ϵ = (;,;)
2. A singleton node: ṅ= ({n},;)
3. The overlay operator ‘+’: (N , E) + (N ′, E′) = (N ∪ N ′, E ∪ E′)
4. The connect operator ‘≫’: (N , E)≫ (N ′, E′) = (N ∪ N ′, E ∪ E′ ∪ N × N ′)
The intuition behind the constructors is that the empty and singleton graphs provide
the entry points into the graph construction. Then the overlay operator provides a way
of discretely joining graphs while the connect operator provides a way of introducing
connections between the nodes.

Mokhov introduces a minimal set of axioms that equate equivalent graphs with
syntactically differing constructions.
+ is commutative and associative.
(R,≫,ϵ) is a monoid.
≫ distributes over +.
The decomposition axiom, a≫ b≫ c = (a≫ b) + (a≫ c) + (b≫ c).

It can be deduced from these axioms that the + operator also has identity ϵ and is
idempotent. Thus, these axioms intriguingly reveal an algebraic structure similar to a
semiring. The difference is the sharing of the identity by the two binary operators
(preventing the annihilating zero element), and the additional decomposition axiom.

Beyond these core axioms, a range of other axioms can be introduced to recover
common graph classes. In particular, the further axiom that≫ is commutative gives
the class of undirected graphs. Reflexive graphs can be attained with the additional
axiom ṅ = ṅ≫ ṅ specifically on nodes. Transitive graphs result from adding the
axiom for all b ̸= ϵ, a≫ b+ b≫ c = (a≫ b) + (a≫ c) + (b≫ c). Finally, the algebra
can be extended to hypergraphs by replacing the decomposition axiom with an
appropriate hyper-decomposition. For example, for 3-hypergraphs, the decomposition
axiom becomes

a≫ b≫ c≫ d = (a≫ b≫ c) + (a≫ b≫ d) + (a≫ c≫ d) + (b≫ c≫ d).

2.3 Node and Semiring Edge Graph Algebra

The major setback of the node graph algebra developed by Mokhov [10] was the
inability to identify edges, which is necessary for many graph algorithms. To overcome
this drawback, Mokhov extended this research by introducing a Haskell tree type to
model classes of graph algebras [11]. We present their work in a purely algebraic way
to highlight the mathematical properties of their construction. Mokhov introduces an
algebra (N , ␣̇, {≫e}e∈E) where N is the set of nodes, ␣̇ injects the node identifiers into
singleton nodes in the graph, and≫e is a set of edge-indexed binary operators where
the set of edges has a semiring structure (E, 0, 1,⊕,⊗).

The edge identifiers in Mokhov’s algebra can come from an arbitrary semiring,
which permits a form of edge labelling. The axioms imposed on the algebra are:
≫0 is associative, commutative and idempotent
Decomposition axioms, which implies associativity of≫s for all s ∈ e

– (a≫s b)≫t c = (a≫s b)≫0 (a≫t c)≫0 (b≫t c),

9:6

Jack Liell-Cock and Tom Schrijvers

– a≫s (b≫t c) = (a≫s b)≫0 (a≫s c)≫0 (b≫t c).
Parallel composition axiom, (a≫s b)≫0 (a≫t b) = a≫s⊕t b.
Transitivity axiom, (a≫s b)≫0 (b≫t c) = (a≫s b)≫0 (a≫s⊗t c)≫0 (b≫t c).
Reflexivity axiom, ẋ = ẋ≫1 ẋ .

Many graph algorithms are equivalent to computing the transitive, reflexive clo-
sure of the graph edges over a given semiring. For example, Dijkstra’s algorithm
involves computing the closure of numerically labelled edges over the tropical semir-
ing (E,∞, 0,min,+) [9]. Hence, computing the transitive, reflexive closure of semiring
edge-labelled graphs subsumes many graph algorithms. However, this requires for-
ward knowledge of what is to be computed over the graph, and it does not allow for
reinterpretation of the edge labels later. Moreover, the user may not want to process
the graph via a semiring, and the algebra may induce confusion because the nodes
are unique identifiers whereas the edges are potentially duplicated data labels. The
algebra defined in our work does not have these drawbacks for the edge labels.

It is also worth noting that when E is the boolean semiring ({0,1}, 0, 1,∧,∨), the
algebra aligns with the one for transitive, reflexive node graphs outlined in Section 2.2
without the empty graph, where≫0 = + and≫1 = ≫. In particular, the containment
law, (a≫1 b)≫0 a≫0 b = a≫1 b, is derivable from the parallel composition axiom, and
distributivity of≫1 over≫0, is derivable from the decomposition axioms. The lack of
the empty graph is made up by the containment law, which we will see in Section 2.4
is an equivalent formulation of the algebra that doesn’t reference the empty graph. As
one would expect, dropping the transitive and reflexive axioms recovers the original
node graph algebra.

2.4 United Monoids

Mokhov also introduces an algebraic structure called the united monoid [11] which are
a reoccuring concept in graph algebras. A united monoid (X ,ϵ,⊕,⊗) is a commutative
monoid (X ,ϵ,⊕) and a monoid (X ,ϵ,⊗) such that ⊗ distributes over ⊕. That is, it is a
semiring with identified units, without the annihilation axiom. Given this formulation,
a commutative united monoid refers to the case where ⊗ is commutative. In any
united monoid, ⊕ is idempotent,

a⊕ a = (a⊗ ϵ)⊕ (a⊗ ϵ) = a⊗ (ϵ ⊕ ϵ) = a⊗ ϵ = a.

It also turns out that identifying the two units is equivalent to the containment axiom
(a ⊗ b)⊕ a = a ⊗ b, which means that monoids can be united without reference to
their identities, permitting the possibility of united semigroups. Some examples of
united monoids in graph algebras and wider literature are given in [11].

3 Representations of Edge Graphs

In this section, we recall a range of common graph representations and discuss
their inadequacy towards the problem we face. We necessarily introduce a new

9:7

Let a Thousand Flowers Bloom

graph representation for edge graphs and demonstrate its relation with the former
representations. Throughout the rest of this paper, there is often a need to distinguish
between the two ends of an edge. To avoid the polysemous term “tail”, we say that
an edge points from the pit to the tip. That is, edge a points into edge b if the tip of a
and the pit of b share the same node. Similarly, an edge originates (or terminates)
from a node if it shares its pit (or tip) with the node. Additionally, our edge graph
representation will require numerous operations over pairs of sets, so we use the −2

notation to “lift" a set operator to pairs of sets. For example, for pi the functions which
project the i-th element of a tuple,

x ∪2 y
def
= (p1(x)∪ p1(y), p2(x)∪ p2(y)),

x ⊆2 y
def
= p1(x) ⊆ p1(y)∧ p2(x) ⊆ p2(y),

⋃2 X
def
=
�⋃

{p1(x) | x ∈ X },
⋃

{p2(x) | x ∈ X }
�

.

3.1 Typical Graph Representations

The standard representation for node graphs is the relation representation (N , E),
outlined in Section 2.2. This representation can be extended to distinguish edges
(and thus subsume multigraphs) by appending a set of edge identifiers L to the edge
pairs to form a triple E ⊆ N × N × L. This is an unsatisfying representation because
it does not enforce that each edge identifier is used exactly once. So edges between
two different pairs of nodes may have the same identifier, and the full set of edge
identifiers may not be used in the graph, leaving superfluous data. A more complete
representation of multigraphs is given by the tuple (N , E,π,τ), where N is the set of
nodes, E the set of edges, and π,τ : E → N select the pit and tip of each edge. We
denote the set of all such multigraph representations G. This construction, however,
still relies on the set of nodes to imbue the graph with relational information. Hence,
drawbacks remain with this representation from the perspective of edge graphs. In
particular, if the nodes are indistinguishable or vacant, this representation breaks
down. Thus, the necessity of a representation independent of the nodes arises.

3.2 Flow Representation

In the relation representation, the set N of nodes is explicit, and the edges are
constructed secondarily from them. This definition is inverted to accommodate a
graph with only edge identifiers. The edge graph is represented by an explicit set E of
edges which are used to construct the nodes. Each node is designated by a pair of
subsets of E, corresponding to the node’s associated pits and tips. The graph is then
defined as a collection of these nodes adhering to some coherence conditions.

Definition 1. A flow representation for a set of edges E is a subset γ ⊆ P (E)×P (E)
such that
1.
⋃2
γ= (E, E)

2. ∀x ̸= y ∈ γ, x ∩2 y = (;,;)
3. (;,;) ̸∈ γ

9:8

Jack Liell-Cock and Tom Schrijvers

1

543

7

6

2

Figure 3 A simple directed edge graph

where P is the powerset operator. The collection of all such flow representations is
denoted Γ .

Informally, condition 1 says if an edge originates from a node, there better be a node
that it terminates at (and visa versa). Moreover, the set of all of these originating and
terminating edges is the full set E, so we don’t have superfluous identifiers. Condition 2
states that an edge can only have its pit or tip coinciding with a single node: it doesn’t
make sense for an edge to be originating (or terminating) at more than one node.
Finally, an isolated node – one without any tips or pits – is prohibited in an edge graph,
so condition 3 stipulates that either the pits or tips of a node must be non-empty.
The graph representation does not need to be augmented by the underlying set of
edges because it is recoverable from the node representation. This representation
is a coherent representation of edge graphs in that each edge graph has a unique
flow representation and each flow representation gives rise to a unique edge graph.
Further details are given in Theorem 6.

Example 2. The edge graph in Figure 3 has the flow representation

γ= {(;, {1, 3}), ({1,2}, {4,5}), ({6}, {2}), ({3, 4}, {7}), ({5,7}, {6})}.

For example, the bottom right node has incoming edges {5,7} and outgoing edges
{6} which is captured by the last element ({5, 7}, {6}) of γ.

3.3 Nodal Flow Representation

The edge graph representation outlined in Section 3.2 can be canonically extended to
include nodes.With this extension, an isomorphismwith themultigraph representation
presented in Section 3.1 is recovered, as stated in Theorem 4.

Definition 3. A nodal flow representation for a set of edges E and nodes N is the
subset γ ⊆ P (E)×P (E)× N such that
1.
⋃

x∈γ p1(x) = E ∧
⋃

x∈γ p2(x) = E ∧ {p3(x) | x ∈ γ}= N ,
2. ∀x ̸= y ∈ γ, p1(x)∩ p1(y) = ; ∧ p2(x)∩ p2(y) = ; ∧ p3(x) ̸= p3(y).
The collection of all such nodal flow representations is denoted Γ ∗.

Note that the condition that either the set of tips or pits for a given node must be
non-empty is no longer required because it is now possible to have isolated nodes.

9:9

Let a Thousand Flowers Bloom

Instead, we must specify that the full set of nodes is used in the graph, and no node
identifier is used for two distinct nodes.

3.4 Coherence of the Flow Representations

To show the coherence of the flow representation for edge graphs, we first present the
isomorphism between the nodal flow representation and the multigraph representa-
tion. We will then argue for an equivalence relation on the multigraph representation
to quotient over graphs with analogous information from the perspective of an edge
graph, and show that the flow representation is isomorphic to these equivalence
classes of the multigraph representation. The proof of both isomorphisms is in the
Appendix.

Theorem 4. G is isomorphic to Γ ∗.

The benefit of the nodal flow representation is the ease of expression when the
nodes are discarded because it does not rely on them for the relational information.
The method of restricting a nodal flow representation to a flow representation is
given by the function f ◦ (p1 × p2), where f (X) = {x ∈ X | x ̸= (;,;)} and pi are the
projections to the i-th elements of a tuple. Intuitively, each element of γ is projected
to remove the node, and any remaining pairs of empty pits and tips are filtered out.

Definition 5. Define equivalence ∼ by (N , E,π,τ) ∼ (N ′, E,π′,τ′) if there exists
functions φ : eN ⇆ eN ′ : φ′ such that φ ◦π|

eN = π
′|
eN ′ , φ ◦ τ|eN = τ

′|
eN ′ , ψ ◦π

′|
eN ′ = π|eN ,

andψ◦τ′|
eN ′ = τ|eN , where eN = π(E)∪τ(E) ⊆ N , eN ′ = π′(E)∪τ′(E) ⊆ N ′ and (without

loss of generality) π|
eN is the restriction of function π : E→ N to E→ eN .

We argue that semantically equal multigraph representations from the perspective
of edge graphs are captured by this equivalence relation. Informally, it identifies edge
graphs up to the renaming of nodes that preserve the structure in the images of π, τ,
π′, and τ′. The only nodes not in any of the images of these functions are isolated
nodes and thus are irrelevant from the edge graph viewpoint. The following theorem
validates the coherence of the flow representation.

Theorem 6. G/∼ is isomorphic to Γ .

4 The Algebra

This section defines the algebraic structure of edge graphs. Algebraic characterisations
are useful in the context of data types for proving properties and automated testing.
The algebra consists of six constructors. Many combinations of these constructors
correspond to the same graph which motivates the introduction of a set of equational
laws to identify these semantically equivalent constructions. Similar to the graph
algebras defined by Mokhov [11], the combinators form a set of united monoids. We
additionally introduce a set of laws to describe the cohesion between these structures.

9:10

Jack Liell-Cock and Tom Schrijvers

1 2 =
1 3+ 1

2

3

Figure 4 Illustration of pairwise union

4.1 Constructors

Our method of building an abstract interface aims to give a canonical representation
for every edge graph while maintaining simple axiom schemes that equate equivalent
terms. Thus, the construction begins with the most basic graph, the empty graph ϵ = ;.
A graph with a single edge e ∈ E is denoted by e⃗ ∈ Γ and has the flow representation
{({e},;), (;, {e})}. The two pairs represent the pit and tip of the single edge. These
constructors are the base cases of the graph assembly.

Complexities arise in building the binary operators. In the node graph algebra, the
binary operators were defined via unioning the components of the relation representa-
tion R= (N , E). This is not feasible in the flow representation because it is not closed
under unions. Hence, an operator is required to reduce the edge graphs by pairwise
unioning all nodes that share an incoming or outgoing edge. We denote this operator
with the symbol +. The following gives an example of an application of the operator
which is also illustrated in Figure 4.

{(;, {1}), ({1}, {2}), ({2},;)}+ {(;, {1}), ({1}, {3}), ({3},;)}
= {(;, {1}), ({1}, {2,3}), ({2},;), ({3},;)}

This operator can be defined explicitly by realising that graph union on R is the
least upper bound on the partially ordered set (henceforth referred to as a poset) of
node graphs with inclusion relation ⊆2. Hence, the objective is to enrich the edge
graphs Γ with an ordering relation too.

Definition 7. For two graphs γ,δ ∈ Γ , γ⪯ δ if for all x ∈ γ, there exists a y ∈ δ such
that x ⊆2 y.

This relation is reflexive, antisymmetric and transitive, so (Γ ,⪯) defines a poset.
Furthermore, for two edge graph representations γ,δ ∈ Γ , let ∼ be a relation on the
elements of γ∪δ where x ∼ y ⇐⇒ x ∩2 y ̸= (;,;). That is, two nodes are related if
they share a pit or tip. This relation is reflexive and symmetric. Let ∼∗ be its transitive
closure and define the join operator to be the set of unioned equivalence classes,
γ+δ =

¦

⋃2 X | X ∈ γ∪δ/∼∗
©

.

Proposition 8. (Γ ,ϵ,+) is a bounded join-semilattice.

Proof. We show that γ+δ is the least upper bound of γ and δ. Firstly, given x ∈ γ, let
[x] ∈ γ∪δ/∼∗ be its equivalence class. By definition, x ⊆2

⋃2[x] and
⋃2[x] ∈ γ+δ.

So γ⪯ γ+δ. By the symmetry of the + operator, δ ⪯ γ+δ too. Next, we must show
that γ+δ is the least upper bound. Let ζ be another upper bound of γ and δ. Take

9:11

Let a Thousand Flowers Bloom

some X ∈ γ+ δ/∼∗, so for all x ∈ X , there exists a y ∈ ζ such that x ⊆2 y. But all
of these x ∈ X have transitively overlapping pits or tips. So for ζ to be well defined,
it must be a single by ∈ ζ with x ⊆2

by for all x ∈ X . So
⋃2 X ⊆2

by, and γ+ δ ⪯ ζ as
required. Finally, it is trivial that ϵ is the least element of (Γ ,⪯).

Thus, the + operator joins two graphs by taking the simplest graph structure
coherent with both arguments. So we define the overlay operator precisely as this.

Definition 9. The overlay operator, γ+δ, is given by the least upper bound of γ and
δ in (Γ ,⪯).

Operators into, pits and tips, denoted by≫, ⋄ and ×, respectively, are defined using
this least upper bound construction as well. Firstly, we define some intermediate
helper functions ci , cp, ct : E × E→ Γ which construct a graph of two edges connected
from tip to pit, at the pits, and at the tips, respectively. Note, only the into operator
needs to handle the case where the edges coincide because the output of cp and ct

reduces correctly to a single edge in the flow representation (by the uniqueness of
elements in sets) when the inputs are equal.

ci(d, e) =

�

{(;, {d}), ({d}, {e}), ({e},;)} if d ̸= e
{({d}, {d})} if d = e

cp(d, e) = {(;, {d, e}), ({d},;), ({e},;)}
ct(d, e) = {(;, {d}), (;, {e}), ({d, e},;)}

These functions, along with the underlying function |−| : Γ → E which takes the
underlying edges of a graph, allow for the definition of the into, pits and tips operators.

Definition 10. The into, pits and tips operators are given by

δ≫ γ def
= δ+ γ+

∑

d∈|δ|

∑

e∈|γ|

ci(d, e),

δ ⋄ γ def
= δ+ γ+

∑

d∈|δ|

∑

e∈|γ|

cp(d, e),

δ× γ def
= γ+δ+

∑

d∈|δ|

∑

e∈|γ|

ct(d, e).

For convenience, precedence order is given as pits, tips, into and finally overlay, e.g.
a+ b ⋄ d≫ d is equivalent to a+ ((b ⋄ c)≫ d).

Example 11. Some simple edge graphs which are illustrated in Figure 5 are:
1. 1⃗+ 2⃗ is the graph with two isolated edges
2. 1⃗≫ 2⃗ is the graph with edge 1 pointing into edge 2

3. 1⃗ ⋄ 2⃗ is the graph with two edges joined at the pit
4. 1⃗× 2⃗ is the graph with two edges joined at the tip
5. 1⃗≫ 1⃗ is a petal graph – a single edge looped on itself
6. (1⃗+ 2⃗)≫ (3⃗+ 4⃗) is a cross graph, with two edges terminating at the node the other

two edges originate from

9:12

Jack Liell-Cock and Tom Schrijvers

1
1

2
2

+ =

(a) 1⃗+ 2⃗

1 1 22
≫ =

(b) 1⃗≫ 2⃗

1 1 22
◇ =

(c) 1⃗ ⋄ 2⃗

1 1 22
× =

(d) 1⃗× 2⃗

1 1
≫ =

1

(e) 1⃗≫ 1⃗

1

1 3
≫ =

2

+

3

4

+
2 4

(f) (1⃗+ 2⃗)≫ (3⃗+ 4⃗)

Figure 5 Some simple edge graph constructions

4.2 The Axioms

As alluded to earlier, many constructions using the given primitives correspond to
the same graph. For example, 1⃗= 1⃗+ ϵ and 1⃗+ 2⃗= 2⃗+ 1⃗. This section completes the
definition of the edge graph algebra by developing a set of equational laws to identify
such equivalences.

Verifying that (Γ ,+,ϵ), (Γ ,≫,ϵ), (Γ ,⋄,ϵ) and (Γ ,×,ϵ) are all monoids is straight-
forward from the definitions. Moreover, so is that +, ⋄ and × are commutative and
+ is idempotent. Hence, the elements of (Γ ,+,ϵ) are isomorphic to the sets of the
underlying edges E. In fact, the latter three monoids are all united with the (Γ ,+,ϵ)
monoid in the sense of Section 2.4. For this reason, we call the set of binary operators
excluding the + operator the connect operators. The association to the connect operator
in Mokhov’s original node graph algebra [10] is deeper than just the name which we
plan to explore in a later paper. Furthermore, decomposition schemas similar to the
ones defined for semiring edge graphs [11] hold:

a □ (b ■ c) = a □ b+ a □ c + b ■ c

(a □ b) ■ c = a □ b+ a ■ c + b ■ c

where □ and ■ are any of the connect operators. In the case where □ and ■ represent
the same operator, this schema generalises the associativity of≫, ⋄ and ×.

These three united monoids and the decomposition schemas are almost sufficient
to quotient the edge graph algebra to align with the intuitive description given in
Section 4.1. All that is left is to define the relationships between the united monoids.

9:13

Let a Thousand Flowers Bloom

4.2.1 The Transitive Axioms
The first set of additional axioms comes from the understanding that three edges
meeting at a single node may be constructed by connecting any two different pairs of
the three edges. That is, 1⃗ ⋄ 2⃗+ 2⃗ ⋄ 3⃗ = 1⃗ ⋄ 2⃗+ 1⃗ ⋄ 3⃗. These equivalent constructions
can be identified by equating each pairwise construction to its transitive form. That is,
for all a ̸= ϵ,

a ⋄ b+ a ⋄ c = a ⋄ b ⋄ c,

b≫ a+ a ⋄ c = b≫ a ⋄ c,

a≫ b+ a≫ c = a≫ b ⋄ c,

a× b+ a≫ c = a× b≫ c,

b≫ a+ c≫ a = b× c≫ a,

a× b+ a× c = a× b× c.

The specification that a is non-empty is because the transitive connection must be via
one or more edges. Therefore, the empty graph, which has no edges, cannot act as
this link. Otherwise, each axiom would reduce the ⋄ or × operator to be equivalent to
the + operator. For example, if a = ϵ in the first axiom, this would result in

b+ c = ϵ ⋄ b+ ϵ ⋄ c = ϵ ⋄ b ⋄ c = b ⋄ c.

4.2.2 The Reflexive Axioms
The astute reader will observe there is one final set of constructions using the graph
operators which is equivalent but not provably so via the previous axioms. When
a single edge is merged with itself via the ⋄ (or ×) operator, its one pit (or tip) is
combined with itself and thus has no effect.

x⃗ ⋄ x⃗ = x⃗ + x⃗ + cp(x , x) = x⃗ + x⃗ + x⃗ = x⃗

This equality can be instilled by a final pair of axioms, x⃗ ⋄ x⃗ = x⃗ and x⃗ × x⃗ = x⃗ .

4.2.3 All Together Now
As a brief overview, the axioms for the edge graph algebra are:
(Γ ,ϵ,+,≫) is a united monoid.
(Γ ,ϵ,+,⋄) is a commutative united monoid.
(Γ ,ϵ,+,×) is a commutative united monoid.
All nestings of≫, ⋄ and × decompose via + (which implies + is idempotent [10]).
≫, ⋄ or × operators may be merged via the six transitive axioms.
x⃗ ⋄ x⃗ = x⃗ and x⃗ × x⃗ = x⃗

A tuple (Γ ,ϵ, ␣⃗,+,≫,⋄,×)which satisfies these axioms is called an edge graph algebra.
These axioms together are enough to completely quotient the edge graph algebra to
align with the intuitive description given in Section 4.1. These axioms give a sound
and complete representation of edge graphs in the sense that if there is an equational
proof that two terms in the algebra are equal they represent the same graph, and if
two terms represent the same graph then there is an equational proof of this using

9:14

Jack Liell-Cock and Tom Schrijvers

the axioms. The proof of the following theorem along with some other notable laws
derivable from the above axioms are given in the Appendix.

Theorem 12 (Soundness and Completeness). The flow representation is isomorphic to
the free edge graph algebra (Γ ,ϵ, ␣⃗,+,≫,⋄,×).

For some intuition behind this theorem, we give the canonical representation of the
edge graph in Figure 3 in our edge graph algebra. That is, the result from passing γ
from Example 2 through this isomorphism.

Example 13. The edge graph in Figure 3 can be represented canonically in the edge
graph algebra as

γ= ϵ≫ 1⃗ ⋄ 3⃗+ 1⃗× 2⃗≫ 4⃗ ⋄ 5⃗+ 6⃗≫ 2⃗+ 3⃗× 4⃗≫ 7⃗+ 5⃗× 7⃗≫ 6⃗

4.3 Partial Order

Given the idempotent + operation, a partial order can be defined on the set of edge
graphs.

Definition 14. a ⊆ b ⇐⇒ a+ b = b

As it turns out, this coincides with the poset relation ⪯ from Section 4.1 because
a ⪯ b ⇐⇒ a + b = b follows from the definition of + via the least upper bound
in (Γ ,⪯). The following partial-order theorems also immediately follow from this
definition via the idempotent operation:

Least element: ϵ ⊆ a

Binary operation order: (a ⊆ a □ b)∧ (a ⊆ b □ a) where □ is any binary operator.
Monotony: a ⊆ b =⇒ (a □ c ⊆ b □ c) ∧ (c □ a ⊆ c □ b) where □ is any binary
operator.

4.4 Subtraction

To define graph subtraction, we introduce a set of layered edge graphs Γ \ Γ = {(a, b) |
a, b ∈ Γ , b ⊆ a} with objects a graph and subgraph pair. We denote these pairs as
a \ b ∈ Γ \ Γ .

Definition 15. The partial order on layered graphs is defined by

a \ b ⊑ c \ d ⇐⇒ a ⊆ c ∧ d ⊆ b.

Informally, the layered graphs can be considered as the second graph destructively
interfering with the first. Thus, there is a functor · \ ϵ : Γ → Γ \ Γ which freely lifts a
graph to a layered graph.

Definition 16. Graph subtraction is defined by the adjunction (−) ⊣ (· \ ϵ), where
(−) : Γ \ Γ → Γ is the functor defined by a \ b 7→ a− b. That is,

a ⊆ b− c ⇐⇒ a \ ϵ ⊑ b \ c. (1)

Similar reasoning can be used to define subtraction on the node graphs [10]. We
recover a− ϵ = a and a− a = ϵ as expected in both cases.

9:15

Let a Thousand Flowers Bloom

5 Instantiations

There is no point in defining abstract algebra if we cannot instantiate our ideas into
usable code. This section introduces the abstract interface for the edge graph algebra
via a Haskell type class and outlines some implementation schemes for the class.

5.1 Abstract Interface

While the edge graph can be encapsulated by the data type EdgeGraph introduced in
Section 1, we present a shallow embedding to maximise the usability of the code. The
edge graph constructors can be defined in terms of a type class (so long as the type
instances adhere to the axioms given in Section 4.2.3).

class EdgeGraph g where
type Edge g :: ∗
empty :: g
edge :: Edge g→ g
(+) :: g→ g→ g -- overlay
(≫) :: g→ g→ g -- into
(⋄) :: g→ g→ g -- pits
(×) :: g→ g→ g -- tips

The associated type Edge g corresponds to the set of edges. The remaining functions
correspond to the graph construction operations defined in Section 4.1. This interface
immediately permits a wealth of utility functions for constructing graphs. Functions
to convert a list of edges to a discrete graph, a flower graph, a graph with all edges
sharing a pit, and a graph with all edges sharing a tip (illustrated in Figure 6a, 6b, 6c,
and 6d, respectively) are given by:

discreteGraph, flowerGraph, pitGraph, tipGraph :: EdgeGraph g⇒ [Edge g]→ g
discreteGraph= foldr ((+) ◦ edge) empty

flowerGraph [] = empty
flowerGraph xs = foldr ((≫) ◦ edge) (edge (head xs)) xs

pitGraph= foldr ((⋄) ◦ edge) empty

tipGraph= foldr ((×) ◦ edge) empty

A graph with a single intersecting node can be constructed from a list of edges
terminating at the node and a list of edges originating at the node, shown in Figure
6e.

intoGraph :: EdgeGraph g⇒ [Edge g]→ [Edge g]→ g
intoGraph ts ps= tipGraph ts≫ pitGraph ps

Finally, an arbitrary graph can be defined given a list of nodes (defined by a pair of
lists containing the originating and terminating edges at each node) with the function:

type Node g= ([Edge g], [Edge g])

9:16

Jack Liell-Cock and Tom Schrijvers

(a) Example discrete graph (b) Example flower graph

(c) Example pit graph (d) Example tip graph (e) Example into graph

Figure 6 A range of basic graph constructions

mkEdgeGraph :: EdgeGraph g⇒ [Node g]→ g
mkEdgeGraph= foldr ((+) ◦ uncurry intoGraph) empty

Even if the input list of pairs is ill-specified for a graph (i.e. two pairs might share the
same pits or tips), the interface will automatically handle this by unifying the nodes
as required. That is, all of the functions defined above are total and fully polymorphic
which inhibits usage errors and maximises re-usability.

5.2 Deep Embedding

The edge graph algebra can be instantiated into a simple algebraic data type using a
deep embedding.

data DeepGraph a=
Empty
| Edge a
| DeepGraph a :+: DeepGraph a
| DeepGraph a :≫: DeepGraph a
| DeepGraph a :⋄: DeepGraph a
| DeepGraph a :×: DeepGraph a
deriving (Show)

instance EdgeGraph (DeepGraph a)where
type Edge (DeepGraph a) = a

9:17

Let a Thousand Flowers Bloom

empty = Empty
edge = Edge
(+) = (:+:)
(≫) = (:≫:)
(⋄) = (:⋄:)
(×) = (:×:)

Semantics may be reinstated to the deep embedding by folding over it [2, 6].

foldShallow :: EdgeGraph g⇒ DeepGraph (Edge g)→ g
foldShallow Empty = empty
foldShallow (Edge x) = edge x
foldShallow (x :+: y) = foldShallow x+ foldShallow y
foldShallow (x :≫: y) = foldShallow x≫ foldShallow y
foldShallow (x :⋄: y) = foldShallow x ⋄ foldShallow y
foldShallow (x :×: y) = foldShallow x× foldShallow y

The data type DeepGraph does not yet fully capture the algebra because there is
a syntactic difference between axiomatically equivalent graphs. Thus to implement
DeepGraph as a function of the Eq type class, say, it must be reinterpreted to a repre-
sentation where the syntactic structures are semantically equal – such as FlowGraph
defined in Section 5.3:

instance Ord a⇒ Eq (DeepGraph a)where
g≡ g′ = foldShallow g≡ (foldShallow g′ :: FlowGraph a)

Much like the deep embedding of node graphs [10], the deep embedding of the
edge graph can represent some graphs more compactly. The flow instantiation stores
a duplicate copy of each edge to track the nodes associated with the pit and tip of the
edge. The deep embedding is not restricted to this double trace and can, in the best
case, store edge graphs with a single entry for each edge. However, the form of such
edge graphs entails a low number of connection nodes. This often means most edges
are discrete or form tight loops (i.e. a thousand flowers bloom). Thus, efficient deep
representations are not very applicable given the impractical shape of edge graphs.

5.3 Flow Implementation

Another instantiation of the edge graph algebra follows the flow representation of
edge graphs defined in Section 3.2. The underlying data type follows directly from
the definition of Γ .1

data Node a= Node {tips :: Set a, pits :: Set a} deriving (Eq, Ord, Show)
type FlowGraph a= Set (Node a)

1 In the following Haskell definitions, we import Set and Map modules fully qualified. We also
note that the Haskell Set and Map libraries require an Ord constraint on the elements (or
the keys in the case of Map) which is the primary reason for the Ord type constraints on
the following functions.

9:18

Jack Liell-Cock and Tom Schrijvers

Following the graph type above, we define additional utility functions that construct
an empty node, take the union of two nodes, determine if two nodes share a common
pit or tip, and embed a value into a node with a single pit or tip.

emptyN :: Ord a⇒ Node a
emptyN = Node Set.empty Set.empty

unionN :: Ord a⇒ Node a→ Node a→ Node a
unionN (Node ts ps) (Node ts′ ps′) = Node (Set.union ts ts′) (Set.union ps ps′)

disjointN :: Ord a⇒ Node a→ Node a→ Bool
disjointN (Node ts ps) (Node ts′ ps′) = Set.disjoint ts ts′ ∧ Set.disjoint ps ps′

pitN, tipN :: Ord a⇒ a→ Node a
pitN x = Node Set.empty (Set.singleton x)
tipN x = Node (Set.singleton x) Set.empty

The core of the implementation of overlay in the flow instantiation comes from a
variation of the union-find algorithm, which aggregates all nodes that share the same
pit or tip.

overlay :: Ord a⇒ FlowGraph a→ FlowGraph a→ FlowGraph a
overlay = foldr f

where f n acc= if null (tips n) ∧ null (pits n) then acc
else Set.insert (foldr unionN n common) uncommon

where (uncommon, common) = Set.partition (disjointN n) acc

Finally, the≫, ⋄ and × implementations use the overlay algorithm along with their
outline in Definition 10. First, the functions ci, cp, ct , |−| (or und) and a helper function
connect are defined.

ci, cp, ct :: Ord a⇒ a→ a→ FlowGraph a
ci x y
| x ≡ y = Set.singleton (Node (Set.singleton x) (Set.singleton x))
| otherwise= Set.fromList [pitN x, Node (Set.singleton x) (Set.singleton y), tipN y]

cp x y = Set.fromList [tipN x, tipN y, Node Set.empty (Set.fromList [x, y])]
ct x y = Set.fromList [pitN x, pitN y, Node (Set.fromList [x, y]) Set.empty]

und :: Ord a⇒ FlowGraph a→ Set a
und= foldr (Set.union ◦ tips) Set.empty

connect :: Ord a⇒ (a→ a→ FlowGraph a)
→ FlowGraph a→ FlowGraph a→ FlowGraph a

connect c g g′ =
let f x acc=

let f ′ x′ = overlay (c x x′)
in foldr f ′ acc (und g′)

in foldr f (overlay g g′) (und g)

Then, the overall instantiation of the flow representation of the edge graph in
Haskell is:

9:19

Let a Thousand Flowers Bloom

instance Ord a⇒ EdgeGraph (FlowGraph a)where
type Edge (FlowGraph a) = a
empty = Set.empty
edge x = Set.fromDistinctAscList [pitN x, tipN x]
(+) = overlay
(≫) = connect ci

(⋄) = connect cp

(×) = connect ct

6 Catamorphisms

Theorem 12 showed the flow representation is isomorphic to the free edge graph
algebra. That is, the flow representation forms the smallest algebra closed under
the constructors in which all axioms from Section 4.2.3 hold. Therefore, there is a
unique homomorphism to any other algebra that adheres to the axioms. We call this
an edge graph catamorphism. In particular, a function h : Γ → B is an edge graph
catamorphism if there exists a constant e : B, unitary function f : E → B and four
binary functions o, i, p, t : B × B→ B such that

h(ϵ) = e,

h(a⃗) = f (a),

h(a+ b) = o(h(a), h(b)),

h(a≫ b) = i(h(a), h(b)),

h(a ⋄ b) = p(h(a), h(b)),

h(a× b) = t(h(a), h(b)),

with these functions adhering to the axioms in Section 4.2.3 in the natural way. We
write Le, f , o, i, p, tM for such a set of functions defining a catamorphism.

Examples of Catamorphisms Some trivial examples of catamorphisms are immediate.
The identity function on Γ is Lϵ, ␣⃗,+,≫,⋄,×M. The underlying functor |−|, which
reduces a graph to its underlying set of edges, is given by L;, {·},∪,∪,∪,∪M. The
transpose of a graph is given by Lϵ, ␣⃗,+,≪,×,⋄M where a≪ b = b≫ a.

An example beyond the trivialities is a shortest path function which returns the
minimum distance to traverse between two edges if it is possible to navigate between
them. For clarity, we express the fold via a Haskell implementation on the deep
embedding. The algebra into which the edge graph will be folded over is the shortest
paths algebra, SP, which is a map of the minimum distance between two pits/tips if
they can be navigated via the edge graph. For efficiency, the fold is implemented over
the product of the underlying and shortest paths algebra, because the underlying set
is used in most of the shortest path algebra operators. In the end, the underlying set
is discarded, hence this fold is a type of zygomorphism [13].

data End a= Pit a | Tip a deriving (Show, Eq, Ord)
type SP a=Map (End a, End a) a
type USP a= (Set a, SP a)

We define the overlay operator in this algebra by the overlayUSP function which
simply unions the underlying edge set and unions over the shortest paths, taking

9:20

Jack Liell-Cock and Tom Schrijvers

the minimum path on conflicts. The into, pits and tips operators are defined via a
generalised connectUSP function which assigns zero distance between a pit/tip in the
first graph and a pit/tip in the second. The edge ends are configurable to allow the
function to handle each connect operator case. These are not the complete algebra
operators, however, because aggregating two graphs or identifying two nodes may
produce new navigable paths. Hence closureUSP performs the transitive, reflexive
closure on the USP type.

overlayUSP :: Ord a⇒ USP a→ USP a→ USP a
overlayUSP (s, m) (s′, m′) = (Set.union s s′, Map.unionWith min m m′)

connectUSP :: (Ord a, Num a)⇒
(a→ End a)→ (a→ End a)→ USP a→ USP a→ USP a

connectUSP e e′ (s, m) (s′, m′) =
let f x acc=

let g x′ acc′ =
Map.insertWith min (e x, e′ x′) 0 (Map.insertWith min (e′ x′, e x) 0 acc′)

in foldr g acc s′

in (Set.union s s′, foldr f (Map.unionWith min m m′) s)

closureUSP :: (Ord a, Num a)⇒ USP a→ USP a
closureUSP (s, m) =

let f (s, e) x acc=
let g (s′, e′) x′ acc′

| e≡ s′ =Map.insertWith min (s, e′) (x+ x′) acc′

| otherwise= acc′

in Map.foldrWithKey g acc m
m′ =Map.foldrWithKey f m m

in if m′ ≡m then (s, m′) else closureUSP (s, m′)

Then shortestPaths algorithm can be defined succinctly as:

shortestPaths :: (Ord a, Num a)⇒ DeepGraph a→ SP a
shortestPaths= snd ◦ closureUSP ◦ h where

h Empty = (Set.empty, Map.empty)
h (Edge x) = (Set.singleton x,

Map.fromList [((Pit x, Pit x), 0), ((Pit x, Tip x), x), ((Tip x, Tip x), 0)])
h (x :+: y) = overlayUSP (h x) (h y)
h (x :≫: y) = connectUSP Tip Pit (h x) (h y)
h (x :⋄: y) = connectUSP Pit Pit (h x) (h y)
h (x :×: y) = connectUSP Tip Tip (h x) (h y)

Note that the current implementation uses the same value for the identifier and
length of the edge. Hence, the algorithm cannot process a graph with two edges of
equal length because they would be interpreted as the same edge. This could be solved
by adding a function that maps the identifiers to a length to allow the identifiers to
be unique, but for the sake of brevity and clarity, we omit this extension.

Additionally, the literal translation of the fold should apply closureUSP after each
application of the overlayUSP or connectUSP functions. However, by realising that

9:21

Let a Thousand Flowers Bloom

performing the closure of the shortest paths does not generate new information,
applying closureUSP once at the end is equivalent to invoking it at every fold step. In
effect, we are applying the fold fusion law in reverse. Hence this function is not an
explicit fold, but it is more efficient and equivalent to one.

Finally, the shortest paths algorithm can be generalised to any semiring algorithm
by letting min be the semiring sum, + the semiring product, and 0 the product
identity. The unnavigable paths are implicitly given the semiring sum identity. Semiring
algorithms solve a broad range of algebraic path problems – a large class of graph
algorithms [1]. For example, the min-max path algorithm, which finds the path with
the smallest maximal edge between two nodes, is also expressible via an edge graph
algebra fold by replacing + with max; if edge weights represent fuel requirements
between refills, this computes the fuel capacity required for a journey. Conversely,
the max-min path algorithm solves the “low bridge” problem. We leave algorithm
implementations beyond this class as future work but note that any edge graph
algorithm is necessarily a homomorphism by the soundness and completeness of the
algebra. Otherwise, the algorithm would produce different results for semantically
equivalent graphs.

7 Conclusion

We have presented a novel representation for edge-indexed graphs that facilitates
node-less presentations. We have formed a sound and complete algebra for this
representation, and derived and implemented some natural graph algorithms as
catamorphisms. An interesting question is whether this algebra may be generalised
towards other graph algebras [10, 11] given the many shared themes between them.
We are confident that our edge graph algebra can be extended to a hypergraph algebra
by numerically labelling the ends of the graph edges instead of using the names pits
and tips. We have the beginnings of an elegant formulation of the algebra in this
format, but finding a canonical form and validating the axioms are sound and complete
remains future work. We are hopeful this unified formal description of graphs can
subsume this body of work.

Acknowledgements We would like to thank Jeremy Gibbons for his invaluable discus-
sions throughout the development of this work. The edge graph algebra would likely
not exist without his early guidance and later reviews. Additionally, we are grateful
to Sam Staton, Johannes Hartmann, Nicolas Wu and the anonymous reviewers for
their feedback and helpful suggestions. Tom Schrijvers was partly funded by the FWO
sabbatical bench fee K801223N.

9:22

Jack Liell-Cock and Tom Schrijvers

A Proof of Graph Representation Isomorphisms

Proof. (Theorem 4). Firstly, given a multigraph representation g = (N , E,π,τ), we
can construct a nodal flow representation by

γ= {({e ∈ E | τ(e) = n}, {e ∈ E | π(e) = n}, n) | n ∈ N}

This satisfies the first condition of the nodal flow representation. Taking the union
over the first two projections amounts to the preimage of τ and π for all of N which is
E. The union of the third projection is simply N as required. The second restriction is
similarly satisfied because it amounts to saying that the intersection of the preimages
of τ and π for distinct elements of N are disjoint, which is true for any function.

Next, given a flow representation γ, we can construct N and E via

N = {x3 | (x1, x2, x3) ∈ γ},

E =
⋃

{x1 | (x1, x2, x3) ∈ γ}=
⋃

{x2 | (x1, x2, x3) ∈ γ}.

Then, because the set of first and second projections of the elements of γ are disjoint
covers of E, τ : E→ N can be constructed setting τ(e) = x3 for the unique (x1, x2, x3) ∈
γ such that e ∈ x1. Similarly, π : E→ N can be constructed by setting π(e) = y3 for the
unique (y1, y2, y3) ∈ γ such that e ∈ y2. These two mappings between the multigraph
and nodal flow representations are inverses of each other, hence G ∼= Γ ∗.

Proof. (Theorem 6). Let [(N , E,π,τ)] be the equivalence class of the multigraph
g = (N , E,π,τ). The goal is to construct a representative bg = (ÒN , E, bπ, bτ) of this
equivalence class which has a one-to-one correspondence with an element from Γ .
First, define eN ⊆ N as above so it is the set of non-isolated nodes in g. As each
non-isolated node corresponds to a unique pair of pits and tips, we can construct the
isomorphism χ : eN ∼−→ ÒN by

n 7→ ({e ∈ E | τ(e) = n}, {e ∈ E | π(e) = n}),

where ÒN is defined as the image of χ. Let bπ= χ ◦π|
eN and bτ= χ ◦τ|

eN , so π|eN = χ
−1◦ bπ

and τ|
eN = χ

−1 ◦ bτ. As bπ= bπ|
ÒN and bτ= bτ|

ÒN by definition, letting φ = χ and φ′ = χ−1

produces the equivalence g ∼ bg. A flow representation can be constructed from
bg = (ÒN , E, bπ, bτ) simply by taking γ= ÒN .

Next, from an arbitrary γ ∈ Γ , a multigraph equivalence class [(N , E,π,τ)] can be
recovered by taking

N = γ,

E =
⋃

{x1 | (x1, x2) ∈ γ}=
⋃

{x2 | (x1, x2) ∈ γ}.

Then again set τ(e) = (x1, x2) for the unique (x1, x2) ∈ γ such that e ∈ x1 and
π(e) = (y1, y2) for the unique (y1, y2) ∈ γ such that e ∈ y2. This reconstructs a
multigraph of the form of the representative bg in the equivalence class, so these
mappings between G/∼ and Γ are inverses of each other, and hence G/∼ ∼= Γ .

9:23

Let a Thousand Flowers Bloom

B Further Edge Graph Algebra Laws

A range of further laws can be constructed from the set of edge graph algebra axioms.
We outline a few key ones.

B.1 Extended Transitive Law

The extended transitive law states that any two overlayed graphs sharing a non-empty
subgraph on the same side of an into operator may be merged via that subgraph. This
is a key lemma used to prove the normal form of the edge graphs in Theorem 12.

Lemma 17. For a ̸= ϵ,

a× b≫ c + a× d≫ f = a× b× c≫ d ⋄ f ,

b≫ a ⋄ c + d≫ a ⋄ f = b× c≫ a ⋄ d ⋄ f .

Proof. We prove the first equality, the second follows similar reasoning. For a ̸= ϵ,

a× b≫ c + a× d≫ f

= { transitive axiom }
a× b+ a≫ c + a× d + a≫ f

= { transitive axioms }
a× b× d + a≫ c ⋄ f

= { transitive axiom }
a× b× d≫ c ⋄ f

B.2 Self-Loop Law

The self-loop law states that if a graph is looped onto itself, it can move across the≫
operator.

Proposition 18. a ⋄ b≫ c + a≫ a = b≫ a× c + a≫ a

Proof. The proof for a = ϵ is trivial. For non-empty a,

a ⋄ b≫ c + a≫ a

= { decomposition axiom }
a ⋄ b+ a≫ c + b≫ c + a≫ a

= { transitive axiom }
a ⋄ b+ a≫ c × a+ b≫ c

= { transitive axiom }
a ⋄ b≫ c × a+ b≫ c

= { transitive axiom }

9:24

Jack Liell-Cock and Tom Schrijvers

a ⋄ b≫ a+ a× c + b≫ c

= { transitive axiom }
a≫ a+ b≫ a+ a× c + b≫ c

= { decomposition axiom }
b≫ a× c + a≫ a

All of the transitive applications are over a, or a graph containing a, and thus are over
non-empty graphs as required.

B.3 Containment Laws

The containment laws are properties of united monoids. The proof follows from the
united units and distributivity [11].

Proposition 19. For □ any of≫, ⋄ or ×,

a □ b = a □ b+ a = a □ b+ b = a □ b+ a+ b.

C Proof of Soundness and Completeness

Here we give the proof of the soundness and completeness for the edge graph algebra
axioms. We first prove a simple lemma regarding the edge graph ordering which will
be used in the main proof. Lemma 17 from the previous section is also required.

Lemma 20. For an edge graph γ ∈ Γ , if x ∈ |γ|, then γ+ x⃗ = γ.

Proof. For a graph γ ∈ Γ , x ∈ |γ| implies x⃗ ⊆ γ, and the result follows immediately
from the definition of the order.

Proof. (Soundness and Completeness). The mapping of the flow representation to the
algebra is simple. Given a flow graph representation γ, the algebraic representation
can be formulated as

∑

(T,P)∈γ

τ
t∈T

t⃗≫
∏

p∈P

p⃗

!

, (2)

where
∑

,τ and
∏

are the reductions for +, ⋄ and ×, respectively. In the other
direction, any algebraic graph representation can be converted into the above format
(from which the flow representation can be easily extracted) via the following steps.
We apply the conversion steps to an example graph,

1⃗ ⋄ (2⃗≫ 3⃗) + 1⃗× (4⃗ ⋄ 5⃗+ ϵ) + 3⃗ ⋄ 1⃗+ 6⃗× 6⃗,

along the way for clarity.
1. Collapse any ϵ as it is unital to all binary operators. If only a single ϵ remains, the

conversion is complete giving γ= ; in the above representation.

1⃗ ⋄ (2⃗≫ 3⃗) + 1⃗× (4⃗ ⋄ 5⃗) + 3⃗ ⋄ 1⃗+ 6⃗× 6⃗

9:25

Let a Thousand Flowers Bloom

2. Use the distributivity and decomposition axioms to unnest the≫, ⋄ and × operators
to give edges joined by no more than one connect operator.

1⃗ ⋄ 2⃗+ 1⃗ ⋄ 3⃗+ 2⃗≫ 3⃗+ 1⃗× 4⃗+ 1⃗× 5⃗+ 4⃗ ⋄ 5⃗+ 3⃗ ⋄ 1⃗+ 6⃗× 6⃗

3. Collapse duplicates using the idempotency of overlay, and pits and tips on singleton
edges.

1⃗ ⋄ 2⃗+ 1⃗ ⋄ 3⃗+ 2⃗≫ 3⃗+ 1⃗× 4⃗+ 1⃗× 5⃗+ 4⃗ ⋄ 5⃗+ 6⃗

4. Apply (ϵ≫−) to any pits operations, (−≫ ϵ) to any tips operations, and split
singular edges, x⃗ = ϵ≫ x⃗ + x⃗≫ ϵ using idempotency of + and unital ϵ.

ϵ≫ 1⃗ ⋄ 2⃗+ ϵ≫ 1⃗ ⋄ 3⃗+ 2⃗≫ 3⃗+ 1⃗× 4⃗≫ ϵ + 1⃗× 5⃗≫ ϵ + ϵ≫ 4⃗ ⋄ 5⃗+ ϵ≫ 6⃗+ 6⃗≫ ϵ

5. Use Lemma 17 to aggregate all into operators sharing an edge on the same side.
Note that some of the variables in the lemma statement may be implicitly empty.

2⃗≫ 1⃗ ⋄ 2⃗ ⋄ 3⃗+ 1⃗× 4⃗× 5⃗≫ ϵ + ϵ≫ 4⃗ ⋄ 5⃗+ ϵ≫ 6⃗+ 6⃗≫ ϵ

6. For any edges appearing only once, use Lemma 20 to extract another singular copy.

2⃗≫ 1⃗ ⋄ 2⃗ ⋄ 3⃗+ 3⃗+ 1⃗× 4⃗× 5⃗≫ ϵ + ϵ≫ 4⃗ ⋄ 5⃗+ ϵ≫ 6⃗+ 6⃗≫ ϵ

7. Apply (−≫ ϵ) or (ϵ≫−) to the singular edges to put them on the opposite side of
the≫ operator than their counterpart.

2⃗≫ 1⃗ ⋄ 2⃗ ⋄ 3⃗+ 3⃗≫ ϵ + 1⃗× 4⃗× 5⃗≫ ϵ + ϵ≫ 4⃗ ⋄ 5⃗+ ϵ≫ 6⃗+ 6⃗≫ ϵ

8. This brings the algebraic representation to the form of Equation 2 and by con-
struction each edge appears exactly once on either side of an into operator. Hence,
inverting the formulation gives a coherent edge graph representation.

{({2}, {1,2, 3}), ({3},;), ({1, 4,5},;), (;, {4, 5}), (;, {6}), ({6},;)}

These two mappings are well-defined and inverses of each other, so the algebraic
representation quotiented by the axioms is isomorphic to the flow representation.

References

[1] Roland Backhouse and B. A. Carre. “Regular algebra applied to path-finding
problems”. In: IMA Journal of Applied Mathematics 15.2 (Apr. 1975), pages 161–
186. issn: 0272-4960. doi: 10.1093/imamat/15.2.161.

[2] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. “Finally tagless, par-
tially evaluated: Tagless staged interpreters for simpler typed languages”. In:
Journal of functional programming 19.5 (2009), pages 509–543. issn: 0956-7968.
doi: 10.1017/S0956796809007205.

[3] Virgil-Emil Cǎzǎnescu and Gheorghe Ştefǎnescu. “Classes of finite relations as
initial abstract data types – II”. In: Discrete Mathematics 126.1 (Mar. 1, 1994),
pages 47–65. issn: 0012-365X. doi: 10.1016/0012-365X(94)90252-6.

9:26

https://doi.org/10.1093/imamat/15.2.161
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1016/0012-365X(94)90252-6

Jack Liell-Cock and Tom Schrijvers

[4] Martin Erwig. “Inductive graphs and functional graph algorithms”. In: Journal
of Functional Programming 11.5 (Sept. 2001), pages 467–492. issn: 1469-7653,
0956-7968. doi: 10.1017/S0956796801004075.

[5] Jeremy Gibbons. “An initial-algebra approach to directed acyclic graphs”. In:
Mathematics of Program Construction. Lecture Notes in Computer Science. ISSN:
0302-9743. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pages 282–
303. isbn: 978-3-540-60117-3. doi: 10.1007/3-540-60117-1_16.

[6] Jeremy Gibbons and Nicolas Wu. “Folding domain-specific languages: deep
and shallow embeddings (functional Pearl)”. In: Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming. ICFP ’14. Gothen-
burg, Sweden: Association for Computing Machinery, 2014, pages 339–347.
isbn: 978-1-4503-2873-9. doi: 10.1145/2628136.2628138.

[7] David J. King and John Launchbury. “Structuring depth-first search algorithms
in Haskell”. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’95. San Francisco, California,
United States: Association for Computing Machinery, 1995, pages 344–354.
isbn: 978-0-89791-692-9. doi: 10.1145/199448.199530.

[8] Saunders Mac Lane. Categories for the Working Mathematician. New York, NY,
USA: Springer New York, 1998. isbn: 978-1-4757-4721-8.

[9] Mehryar Mohri. “Semiring frameworks and algorithms for shortest-distance
problems”. In: Journal of Automata, Languages and Combinatorics 7.3 (Jan. 1,
2002), pages 321–350. issn: 1430-189X. doi: 10.25596/jalc-2002-321.

[10] AndreyMokhov. “Algebraic graphs with class (functional pearl)”. In: Proceedings
of the 10th ACM SIGPLAN International Symposium on Haskell. Haskell 2017.
New York, NY, USA: Association for Computing Machinery, Sept. 7, 2017,
pages 2–13. isbn: 978-1-4503-5182-9. doi: 10.1145/3122955.3122956.

[11] Andrey Mokhov. “United Monoids: Finding Simplicial Sets and Labelled Alge-
braic Graphs in Trees”. In: The Art, Science, and Engineering of Programming
6.3 (Feb. 15, 2022), page 12. issn: 2473-7321. doi: 10.22152/programming-
journal.org/2022/6/12. arXiv: 2202.09230 [cs.PL].

[12] Bruno C. d. S. Oliveira and William R. Cook. “Functional programming with
structured graphs”. In: ACM SIGPLAN Notices 47.9 (2012), pages 77–88. issn:
0362-1340. doi: 10.1145/2398856.2364541.

[13] Zhixuan Yang and Nicolas Wu. “Fantastic Morphisms and Where to Find Them”.
In: Mathematics of Program Construction. Edited by Ekaterina Komendantskaya.
Lecture Notes in Computer Science. Cham: Springer International Publishing,
2022, pages 222–267. isbn: 978-3-031-16912-0. doi: 10.1007/978-3-031-16912-
0_9.

9:27

https://doi.org/10.1017/S0956796801004075
https://doi.org/10.1007/3-540-60117-1_16
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/199448.199530
https://doi.org/10.25596/jalc-2002-321
https://doi.org/10.1145/3122955.3122956
https://doi.org/10.22152/programming-journal.org/2022/6/12
https://doi.org/10.22152/programming-journal.org/2022/6/12
https://arxiv.org/abs/2202.09230
https://doi.org/10.1145/2398856.2364541
https://doi.org/10.1007/978-3-031-16912-0_9
https://doi.org/10.1007/978-3-031-16912-0_9

Let a Thousand Flowers Bloom

About the authors

Jack Liell-Cock is a computer science PhD student at the Univer-
sity of Oxford. His interests are in algebraic representations of
computer systems. In particular, algebraic effects and concurrency.
email jack.liell-cock@cs.ox.ac.uk
www https://www.cs.ox.ac.uk/people/jack.liell-cock/

https://orcid.org/0009-0005-7121-8095

Tom Schrijvers is a professor of computer science at KU Leuven.
His interests are in functional programming and programming
language theory.
email tom.schrijvers@kuleuven.be
www http://people.cs.kuleuven.be/~tom.schrijvers

https://orcid.org/0000-0001-8771-5559

9:28

mailto:jack.liell-cock@cs.ox.ac.uk
https://www.cs.ox.ac.uk/people/jack.liell-cock/
https://orcid.org/0009-0005-7121-8095
mailto:tom.schrijvers@kuleuven.be
http://people.cs.kuleuven.be/~tom.schrijvers
https://orcid.org/0000-0001-8771-5559

	1 Introduction
	2 Literature Review
	2.1 Directed Acyclic Multigraph Algebra
	2.2 Node Graph Algebra
	2.3 Node and Semiring Edge Graph Algebra
	2.4 United Monoids

	3 Representations of Edge Graphs
	3.1 Typical Graph Representations
	3.2 Flow Representation
	3.3 Nodal Flow Representation
	3.4 Coherence of the Flow Representations

	4 The Algebra
	4.1 Constructors
	4.2 The Axioms
	4.2.1 The Transitive Axioms
	4.2.2 The Reflexive Axioms
	4.2.3 All Together Now

	4.3 Partial Order
	4.4 Subtraction

	5 Instantiations
	5.1 Abstract Interface
	5.2 Deep Embedding
	5.3 Flow Implementation

	6 Catamorphisms
	7 Conclusion
	A Proof of Graph Representation Isomorphisms
	B Further Edge Graph Algebra Laws
	B.1 Extended Transitive Law
	B.2 Self-Loop Law
	B.3 Containment Laws

	C Proof of Soundness and Completeness
	References
	About the authors

