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Abstract
Context Reactive programming (RP) is a declarative programming paradigm suitable for expressing the han-
dling of events. It enables programmers to create applications that react automatically to changes over time.
Whenever a time-varying signal changes — e.g. in response to values produced by event stream (e.g., sensor
data, user input…) — the program state is updated automatically in tandem with that change. This makes
RP well-suited for building interactive applications and reactive (soft real-time) systems.
Inquiry RP Language implementations are often built on top of an existing (host) language as an Embedded
Domain Specific Language (EDSL). This results in application code in which reactive code and non-reactive
code is inherently entangled. Using a mechanism known as lifting, one usually has access to the full feature
set of the (non-reactive) host language in the RP program. However, lifting is also dangerous. First, host
code expressed in a Turing-complete language may diverge, resulting in unresponsive programs: i.e. reactive
programs that are not actually reactive. Second, the bi-directional integration of reactive and non-reactive
code results in a paradigmatic mismatch that, when unchecked, leads to faulty behaviour in programs.
Approach We propose a new reactive programming language, that has been meticulously designed to be
reactive-only. We start with a simple (first-order) model for reactivity, based on reactors (i.e. uninstantiated
descriptions of signals and their dependencies) and deployments (i.e. instances of reactors) that consist of
signals. The language does not have the notion of functions, and thus unlike other RP languages there is
no lifting either. We extend this simple model incrementally with additional features found in other pro-
gramming languages, RP or otherwise. These features include stateful reactors (that allow for time-based
accumulation), signals with dynamic dependencies by means of conditionals and polymorphic deployments,
recursively-defined reactors, and (anonymous) reactors with lexical scope.
Knowledge In our description of these language features, we not only describe the syntax and semantics, but
also how each features compares to the problems that exist in (EDSL) RP languages. I.e. by starting from a
reactive-only model, we identify which reactive features (that, in other RP languages are typically expressed
in non-reactive code) affect the reactive guarantees that can be enforced by the language.
Grounding We base our arguments by analysing the effect that each feature has on our language: e.g., by
analysing how signals are updated, how they are created and how dependencies between signals can be
affected. When applicable, we draw parallels with other languages: i.e. similarities shared with other RP
languages will be highlighted and thoroughly analysed, and where relevant the same will also be done with
non-reactive languages.
Importance Our language shows how a purely reactive programming is able to express the same kinds of
programs as in other RP languages that require the use of (unchecked) functions. By considering reactive
programs as a collection of pure (reactive-only) reactors, we aim to increase how reactive programming is
comprehended by both language designers and its users.
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1 Introduction

Reactive Programming (RP) languages are languages where developers specify what
time-varying values make up their program, without specifying exactly how they are
changed over time [3]. RP languages provide a convenient way for variables to be au-
tomatically updated if the variables they depend on change (i.e. by re-evaluating the
expressions that define them). Reactive programming languages typically call these
variables time-varying signals, or signals for short [15]. The ideas of RP provide an al-
ternative approach to update the various components that make up a large program.
Using RP yields distinct advantages over classical event handling approaches like call-
backs, which are known to be unsafe to compose [30, 33] as they typically rely on
(global) variables that may be read and written to by different callbacks. Correctly
using callbacks therefore requires programmers to have a rigorous understanding of
the evaluation order of these callbacks, lest they introduce bugs in the event handling
code which is a frequent issue in application development [39]. Furthermore, it has
been shown that RP programs are easier to write and comprehend than programs
with callbacks [45].

In the last decades, many reactive programming languages (and libraries) have
emerged, targeting various application domains such as animation [15], GUIs [8, 12],
game development [37], robotics [23, 46], networking [31, 55], stage lighting [49]
and distributed systems [14, 35, 43, 48]. Many of these languages are built as an
embedded domain-specific language (EDSL), i.e. as languages that extend an existing
general-purpose language. This approach allows existing code to be integrated with
reactive code, and allows programmers to use the ecosystem of the host language
(libraries, compilers, IDEs…) [8, 44]. We will refer to these languages as two-layered
RP languages. The first layer, the base layer, governs the non-reactive semantics. This
layer corresponds to the host language, which is usually a functional or imperative
language. The second layer, the reactive layer, governs the reactive semantics. This
layer provides the reactive abstractions and the mechanisms to keep them updated.
Next to EDSL implementations, there exist also self-contained RP languages [12, 46,

57]. While these languages do not benefit from an existing host language (e.g., its
ecosystem), the language implementation has complete control over the semantics of
the language. Nonetheless, existing self-contained RP languages are very similar to
their EDSL siblings as they are also two-layered: i.e. the reactive language is embed-
ded in a non-reactive subset language. The full language (i.e. the reactive superset
language) then uses this subset language to implement the behaviour of the various
types of signals that make up programs.

1.1 Problem Statement

A central concept in every two-layered language is the notion of lifting [15]. Lifting al-
lows programmers to write (base-layer) functions, and to apply them— in lifted form
— to signals. When the value of one or more signals changes its value, all lifted func-
tions that have been applied to these signals will be re-executed. As a consequence,
EDSL RP languages constantly needs to switch between reacting (i.e. propagating
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signal updates) and computing (i.e. evaluating lifted code to determine a signal’s up-
dated value). This combination of evaluating reactive and non-reactive (lifted) code
can be cumbersome and exhibit undesirable behaviour. Moreover, it makes these lan-
guages more difficult to formalise and reason about, given the bi-directional seman-
tic dependencies between both layers. These issues have been identified in earlier
work [51, 53].
Reactive Thread Hijacking Problem When a two-layered RP language evaluates a lifted

function, the reactive runtime needs to wait until the function call returns. Lifted
code therefore can hijack the evaluation thread of the reactive runtime (e.g., when
the lifted code — implemented in the base layer language — contains unbounded
loops). I.e. lifted code may diverge or exhaust the system’s resources. In the case
of the former, the reactive runtime never regains control over the evaluation of the
program, never to react to new data. In the case of the latter, the program crashes.
In both cases, the program becomes unresponsive, which is an undesirable state
for a reactive system to be in. Furthermore, embedded RP languages often require
a host program to construct the signals that make up the RP program. If this host
program diverges for any reason, the program is never able to start at all, which
would also not make for a responsive system.

Reactive/Imperative Impedance Mismatch Reactive programs do not follow the same
control flow path as traditional sequential programs. The order in which lifted
functions are executed is determined by the implementation of the reactive run-
time. Nonetheless, RP programs often need fine control over various side-effecting
operations. E.g., operations concerning files, network communication…(i.e. IO). If
these are evaluated in an incorrect order, unbeknownst to the reactive runtime,
bugs may arise. Some RP languages tackle this issue by disallowing side effects in
lifted functions, others by simply discouraging their use in documentation. How-
ever, this means that at the fringes of the RP program (where there is an interac-
tion with the outside world), IO code is still needed to perform effects. We argue
that side-effecting operations are essential and that this impedance mismatch be-
tween reactive and imperative code requires dedicated language support.

1.2 Contribution

To tackle the issues that plague two-layered RP languages, we propose a new lan-
guage that is reactive all-the-way-through. The basic abstraction type of the language,
which we call a reactor, serves as the sole construct for expressing (reactive) compu-
tations. Functions are absent, and therefore there is no function lifting either. E.g.,
the language does not have a + function to compute the addition of two numbers once
for every invocation, it only has a + reactor that automatically updates each time one
of its source signals updates. This is the first contribution of this paper. Using this
language, we tackle the problems stated in Section 1.1 as follows:

We will analyse the different groups of features in isolation to each other, with a
focus on how the Reactive Thread Hijacking Problem emerges. This will allow us
to get a clear grasp on how this problem emerges in RP programs, in general. If the
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same would be done for a two-layered RP language, not only would both layers
need to be analysed separately, but also the bi-directional integration between
them. These insights form the second contribution.
By considering a pure (reactive-only) reactive language, we avoid the adverse con-
sequences caused by the Reactive/Imperative Impedance mismatch. Without func-
tions, reactive code and non-reactive code (i.e. imperative code) is never com-
bined (i.e. there is no lifting), and our pure model of RP therefore lacks any form
of impedance mismatch, by design. By considering the semantics of a language
that is just a reactive language, without needing to focus on the integration with
non-reactive code, we move towards a more generalised model for reactivity. I.e.
something akin to the λ-calculus that captures the semantics of functional and
imperative languages [41], but for reactors instead of functions. While a formal
calculus that captures the essence of RP is not part of this paper, we will discuss
the fundamental aspects of what makes a reactive language reactive in terms of our
actual language. These insights into our pure model form the third contribution.

2 First-Order Reactors

We now present Haai, a pure reactive programming language that has been designed
from first principles. Our programming model features reactors as the unit of (reac-
tive) computation. The computational model of our language can be summarised as
follows: reactors will, when instantiated, create the time-varying signals that make
up the reactive program. And at run-time, values will be emitted by these signals
to keep the program up-to-date with respect to the received input values. Functions
are absent in our language model, there are only reactors. This pure model of only
having reactors (i.e. Uniform Reactor Model) is familiar to other approaches in pro-
gramming language design. It can be compared to the Uniform Object Model that
has been popularised by languages like Smalltalk [18] and Self [50]. Like these lan-
guages, uniformity makes the design of the language simple and easy to understand.

2.1 Language Overview

We begin our discourse on Haai by means of a prototypical example: a unit conver-
sion between temperature values [3]. Listing 1 presents a reactor named to-celsius. It
converts incoming temperature readings in Kelvin to degrees Celsius. While the code
in Listing 1 looks similar to Scheme [25] and Lisp [32] due to the use of S-expressions,
it employs reactive semantics. By reactive semantics, we mean that reactors will need
to be instantiated on time-varying signals to produce new time-varying signals. In-
stead of this instantiation producing a single value (e.g,. a number), it produces one
or more signals whose value changes over time. In other words, when the reactor in
Listing 1 is instantiated (e.g., on a signal containing temperature readings from a ther-
mometer), it will keep the temperature in °C up-to-date whenever the thermometer
produces a new value (in Kelvin). We will call instances of reactors deployments. Each
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Listing 1 Basic reactor definition with one source (k) and one sink.
1 (defr (to-celsius k)
2 (- k 273.15))

Listing 2 Reactor definition with two sources (a and b) and two sinks (s and p).
1 (defr (sum-and-product a b)
2 (def s (+ a b))
3 (def p (* a b))
4 (out s p))

SinksInternalSources

k -

273.15

(a) to-celsius (Listing 1)

SinksInternalSources

a

b

+

*

s

p

(b) sum-and-product (Listing 2)

Figure 1 Reactors graphs.

deployment corresponds to the signals that were created during the instantiation of
a reactor. The (- …) expression constitutes a deployment of the - reactor.

Reactors in Haai can have more than one sink signal. An example of a reactor
with two sinks is shown in Listing 2 which, given two time-varying signals (a and b),
produces their sum (s) and product (p) as two separate sink signals. The out form,
which is used here to denote which signals are considered as the reactor’s sinks, is
optional if there is only one sink, as shown earlier in Listing 1.

We visualise reactors using so-called reactor graphs (Figure 1). A reactor graph is
a box-and-arrows diagram that — usually — consists of three regions that partition
the nodes in the graph into source, internal and sink signals. Signals are ordered from
top-to-bottom in the source and sink regions. In a reactor graph signals are drawn as
ellipses or circles, and operations on them as boxes (with the name of the operator
shown in the box). Note that for to-celsius (Figure 1a), the constant 273.15 is also
shown as a signal: in Haai a literal is interpreted as a signal that — on a conceptual
level — produces the literal value. We refer to these signals as constant signals.

2.2 Evaluation Model

Haai is a push-based reactive programming language [8, 12, 44]. A push-based eval-
uation model means that signals propagate their value directly to those that depend
on them and that signals are updated whenever any of their dependencies change. In
other words, expressions like (> x y) will update when either x changes, y changes, or
when both update at the same time. This evaluation model is different to pull-based
languages, where signals effectively pull values from their dependencies [37, 58].
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〈program〉 −→ 〈definition〉*
〈definition〉 −→ 〈rdefinition〉 | 〈sdefinition〉
〈rdefinition〉 −→ (defr (〈identifier〉 〈identifier〉+) 〈body〉)
〈body〉 −→ 〈sdefinition〉*〈sinks〉
〈sinks〉 −→ (out 〈expression〉+) | 〈expression〉
〈sdefinition〉 −→ (def (〈identifier〉+) 〈expression〉) | (def〈identifier〉 〈expression〉)
〈expression〉 −→ 〈identifier〉 | 〈literal〉 | 〈deployment expression〉
〈deployment expression〉 −→ (〈expression〉 〈expression〉*. . .)
Note: The definitions of 〈identifier〉 and 〈literal〉 are considered standard.

Figure 2 Syntax rules of the Haai Language.

Like other push-based RP languages, Haai will update signals in a glitch-free [8]
manner. A signal with multiple dependencies will only be updated if all the depen-
dencies are current. For example, the expression (> (+ x 1) x) produces a signal whose
value should always equal to true. When x changes, the update of >will be postponed
until the update of the + signal has also been propagated. We will refer to each in-
stant of the logical clock that drives the propagation of values in the program as an
update turn, or turn for short. This terminology has been inspired by actor systems,
which often process messages in a turn-based manner [13].

In brief, one can view the evaluation model of a Haai program as a perpetually-
running loop that constantly pushes data (e.g., from external sources) into the sources
of the reactive program. The values pushed to these sources will cause a cascade of
signal updates that eventually reaches the sinks of the program.

2.3 Syntax

The syntax rules of Haai are shown in Figure 2. In brief, a Haai program consists of
reactor definitions (which use the defr keyword) and signal definitions (which use
the def keyword). The latter form supports multiple variable declarations (e.g., as in
Listing 2) to support deployments of multiple-sink reactors.1 Reactor definitions con-
tain (internal) signal definitions, and a definition of sinks. When a reactor has only
one sink signal, the out form can be omitted, the last expression in the body will then
determine the single sink signal. Expressions are either literals (which correspond to
constant signals), variables (which refer to signals or reactors by name) or deploy-
ment expressions (which combine other expressions). Deployment expressions are
similar to application expressions in non-reactive languages: they combine an opera-
tor with operands. Note that no syntax is provided for conditionals, yet. Conditional
signals will be discussed in Section 4.1.

1 The def form in Haai is thus similar to define-values in Racket [17].
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Listing 3 A simple reactive program which checks whether the temperature readings of
a network-connected thermometer are below the freezing point of water.

1 (def temperature (ws-in "localhost:3333"))
2 (def freezing-temperature (negative? (to-celsius temperature)))
3 (def output (ws-out "localhost:4444" freezing-temperature))

2.4 Standard Library of Reactors

In the absence of lifting, the Haai language has a set of built-in primitive reactors that
enable programs to perform basic computations on numbers, strings, and basic data
structures (pairs and vectors), similar to Scheme [25]. To avoid the Reactive/Imper-
ative Impedance Mismatch only primitive procedures that are referentially transpar-
ent have a reactor counterpart. There are no reactors that can perform side effects
(e.g., vector-set!), perform IO (e.g., read), evaluate data (e.g., eval) or are involved
with continuations (e.g., call/cc). The obvious difference between these procedures
in Scheme and their reactor counterparts is that reactors will continuously re-run
their computation whenever a signal changes. Besides these reactors, Haai features
dedicated built-in reactors that are more suitable in a reactive setting, we discuss
these at relevant points in the paper.

2.5 Producer and Consumer Signals

To allow Haai programs to react on values from the outside world, we propose a set
of specialised reactors that produce signals that can act as (external) data producers.
Vice versa, we also propose a set of specialised reactors that processes — external to
the RP program itself — the output values produced by the reactive program. These
two groups of reactors make it possible for Haai programs to perform IO, without
those programs needing to implement IO themselves.

We explain these reactors by means of an example. Listing 3 contains a basic re-
active program that determines whether a thermometer is reading freezing temper-
atures. On Line 1 the ws-in reactor is deployed, which is a Data Producing Reactor.
Its sole argument specifies an address of a WebSocket server in which the reactive
program will be able to connect to such that it receives the data that it broadcasts. We
thus make it the responsibility of the language runtime (i.e. the interpreter) to actu-
ally maintain that WebSocket connection, without requiring a programmer to write
any imperative code in their reactive program. This is similar to primitive methods
in Smalltalk [18] which are internally annotated to be evaluated using native (VM)
code, transparent to the Smalltalk user. On Line 3 the the ws-out (a Data Consuming
Reactor) is used which does the opposite. Its sole argument specifies the address of
another WebSocket server in which the reactive program can send data to. The exact
application protocol used by these primitives is irrelevant to the discussion of this
paper, and is therefore not discussed.
These special reactors provide a clear separation between sensing and actuating

(i.e. with side effects in the real world) and the reactive program (i.e. the program
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with reactors and signals). The main idea here is that future language implementa-
tions can provide domain-specific operators: e.g., a variation of Haai for embedded
devices can provide specialised operators for the various sensors and actuators in a
physical device (similar to from_topic and to_topic in RxROS [27] for ROS [29]). In
the rest of this paper, we will not consider these specialised operators, as they are
not essential to Haai’s semantic model.

2.6 Reactivity Guarantees

In earlier work [53], we defined three different levels of reactivity guarantees that
classify a RP program (or language’s) ability to process all incoming events. These
are related to the Reactive Thread Hijacking Problem from Section 1.1. We briefly sum-
marise these three levels below:
Strongly reactive A strongly reactive programming language enforces a constant up-

per bound on the evaluation time of each turn. In other words, regardless of the
values that flow over the reactive program’s signals: a constant upper-bound can
be determined statically on the evaluation time of each turn. Strong reactivity is
a desirable property for (soft) real-time systems.

Eventual reactive An eventual reactive programming language is one for which a con-
stant upper bound does not exist, but one that can guarantee that every turn will
terminate in finite time. As a consequence, an eventual reactive program might
appear temporarily unresponsive.

Weakly reactive A weakly reactive programming language is one which cannot pro-
vide any guarantees at all on the evaluation time of each turn. A turn in a weakly
reactive language might diverge and never terminate. I.e., the reactive evaluation
thread might get hijacked, resulting in a program that can forever be unresponsive.
A reactive programming language is a language that is used to make reactive ap-

plications. I.e. applications that respond in a timely manner to any event that triggers
a re-computation by letting each turn run to completion. Therefore, we claim that a
reactive programming language should be carefully designed such that it can guar-
antee the right level of reactivity needed for the targeted application. The basis of
Haai is — as we will discuss in Section 2.7 — strongly reactive. In later sections of
this paper, we will present various extensions, and we will analyse for each (group
of) feature(s) the impact on this classification. An overview of features with their
classification is shown near the end of this paper (Table 1).

2.7 Reactivity Guarantees of First-Order Haai

We now discuss first-order Haai’s reactivity classification. We start by considering
what a Haai program looks like, and how it behaves at run-time. A first-order Haai
program consists of a finite set of signal and reactor definitions. Each signal definition
deploys the reactor(s) that it contains, which result in a (cascade of) deployments
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of the constituent reactors. Without recursive reactor definitions,2 the hierarchy of
deployed reactors follows the syntactical structure in the source code. I.e., while re-
actors can be composed of other reactors, each reactor has access to a smaller number
of possible constituent reactors. Given this structure of reactor deployments, a first-
order Haai program will, once deployed, always consist of the same (number of)
deployments. And as each deployment has a fixed set of signals, the total number of
signals also remains constant. Therefore, propagating values in each turn will — in
a worst-case scenario where all signals are affected by a change — take a constant
amount of time, which is a requirement for a strongly reactive language.
Unfortunately, some built-in reactors have a computational complexity that is not

constant (i.e. not in O (1)). For example, reactors that like their Scheme counterparts
operate on data structures of arbitrary sizes or contain (as part of their implementa-
tion) a form of iteration. If these reactors are considered as being part of the standard
library, we consider first-order Haai to be an eventually reactive language, instead of
strongly reactive one. We have therefore limited the standard library in Haai to re-
actors that can be implemented to have a O (1) time complexity, and claim that this
makes the language strongly reactive. This restriction does limit expresiveness, a de-
sign decision that will be further discussed in Section 8.

3 Stateful Reactors

State is a fundamental aspect of an RP language. Not only do RP languages typically
retain the most recent value produced by a signal to incrementally evaluate turns, RP
languages often provide a mechanism to delay a signal: i.e. to get access to the past
value(s) in later turns. For example, an application that processes real-time sensor
values may have to apply damping to reduce jitter, or a program may only need to
produce an alert if a certain condition has been sustained for a certain duration. In
these applications, the behaviour of the program can no longer be expressed from
just the current values.

3.1 Trampoline Variables

Typically, an RP language provides stateful operators that hide a stateful variable
in their implementation. Examples include integral [9, 15], pre [58], latch [54], and
foldp [8, 12, 34]. We propose a different approach that makes mutable state an explicit
part of the language model. In Haai, deployments are able to accumulate state by
means of so-called trampoline variables — or trampolines for short. They provide
programmers with a general notion of state in the RP model. In essence, a trampoline
is a variable, local to each deployment, that is updated after each turn.

2 Recursive reactors will be discussed in Section 5.
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Listing 4 Reactor that retains the minimum and maximum value of a signal using tram-
polines.

1 (defr (min-max s | (i s) (a s))
2 (def mi (smallest s i))
3 (def ma (largest s a))
4 (out mi ma | mi ma))

…
〈rdefinition〉 −→ (defr (〈identifier〉 〈identifier〉+ [ | (〈identifier〉 〈expression〉)+ ] ) 〈body〉)
〈sinks〉 −→ (out 〈expression〉+ [ | 〈expression〉+ ]) | 〈expression〉

Figure 3 Changes made to the syntax rules from Figure 2 to support stateful reactors.

The semantics of trampoline variables is best understoodwith an example. Listing 4
shows a reactor min-max that keeps track of the minimum and maximum values ob-
served of a numerical signal. The state maintained by this reactor is the minimum
and maximum values observed so far: i.e. its trampoline variables. They are defined
next to the source signals, a vertical bar (|) separates the formal parameters from the
trampoline variables. Each trampoline variable has a name and an expression that
determines its initial value. For min-max, both trampoline variables are defined by
taking the current, at-deployment time, value of the source signal. From the value
stored in the trampoline variable and the current value of the source signal, the new
minimum and maximum can be computed: i.e. the signals mi and ma. These two
signals are used both as sink signal of the min-max reactor, and as the signals that
update the trampolines at the end of the turn. Another vertical bar separates the or-
dinary sinks (i.e. those that will be made available to the deployment-site) from the
expressions that denote the new value of the trampoline variables (they denote an
internal assignment managed by the language).

Figure 3 shows the modified syntax rules for defining reactors with trampolines,
as used in Listing 4. Square parenthesis denote optional parts here.

Trampoline variables are always updated at the end of the turn, hence providing
access to an old value of a signal in a later turn. This update does not cause an
immediate reaction (i.e. a new turn). It is only when a reactor deployment is updated
in reaction to a change to a source signal that the value of the trampoline variable is
propagated.

Figure 4 visualises min-max. Trampolines are contained in a new region and have
two incoming arrows. The left arrow identifies the signal that initialises the trampo-
line. The bottom arrow identifies the signal that updates the trampoline. Note that
trampolines may introduce cycles in the reactor graph. These cycles should disappear
when the the (delayed) update arrow is omitted.

Trampolines can be used to implement trampoline reactors that have similar be-
haviour to the stateful operators of other RP languages. Listing 5 implements pre, an
operator that delays the value of a signal by one turn. Each time a source signal s
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Sinks

ma

mi

Internal

Trampolines

Sources

i

s

i

ia

min

max

Figure 4 Reactor graph of min-max (from Listing 4).

Listing 5 Trampoline reactor that delays a signal by one turn.
1 (defr (pre s init | (acc init))
2 (out acc | s))

produces a value, (pre s init) produces the previously-produced value of s (except the
very first time when the value of the init signal is produced). Other stateful operators,
mentioned earlier in this section, can be implemented similarly.

3.2 Impact on Reactivity Guarantees

Trampoline variables do not impact the reactivity guarantees. While a program may
consist of many trampolines, the total number of trampolines is fixed (similar to
how the total number of signals is fixed). Therefore, at the end of each turn, the
same amount of work needs to be performed to keep these trampolines updated (i.e.
taking the value of the indicated update signals and storing it for the next turn). This
makes stateful reactors in Haai a strongly reactive feature.

Compared to two-layered RP languages Often, RP languages contain one or more op-
erators that requires a function to update a stateful signal: e.g., Elm’s [12] foldp. The
function supplied to foldp is applied (using base-layer semantics) each time the in-
coming signal is updated. If these functions are unchecked, as is the case in Elm, the
RP language becomes weakly reactive as the function supplied to foldpmay (acciden-
tally) diverge.

4 Higher-Order Reactors

The introduction of higher-order reactors means that some deployments become poly-
morphic. As such the dependencies of signals may change at run-time. Before we
discuss these polymorphic deployments, we first discuss conditional signals as they
provide a gentle introduction to signals with dynamic dependencies.
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…
〈expression〉 → . . . | 〈conditional expression〉
〈conditional expression〉 → (if 〈expression〉 〈expression〉 〈expression〉).

Figure 5 Changes made to the syntax rules from Figure 2 to support conditional signals.

Listing 6 A Haai program that computes the next number in a Collatz sequence.
1 (defr (collatz-step n)
2 (if (even? n)
3 (/ n 2)
4 (+ (* n 3) 1)))

SinksInternalSources

n

even?

if/2

*3 +
1

Figure 6 Reactor graph of collatz-step (from Listing 6).

4.1 Conditional Signals

In Haai, conditional signals are signals whose value is determined in relation to a
specified condition. Depending on the value of the (time-varying) condition either
the value of one signal or another signal will be produced. At run-time, conditional
signals will toggle their active dependencies between two possible states, depending
on the value produced by the conditional signal. Conditional signals are created using
the if form whose syntax is standard, but shown nonetheless in Figure 5.

Listing 6 shows a reactor that uses the if form to reactively compute the next num-
ber in a Collatz sequence [26]. Depending on the parity of n, (collatz-step n) produces
either the values of (/ n 2) or (+ (* n 3) 1). The reactor graph of collatz-step is shown
in Figure 6. The signal nodes that correspond with the consequent and alternate ex-
pressions of the if are grouped together by a grey box, to highlight that all signals
contained therein either react together, or not at all.
An important aspect of if is that either the signals in the consequent or alternative

expression are instantiated during the deployment of a reactor that uses if. It is only
when the truth value of the conditional signal changes, in a later turn, that the other
signal(s) will be instantiated. This makes the semantics of if equivalent to a more
general approach to programs with dynamic signal dependencies, which we now
discuss in more detail.
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Listing 7 A Haai program that uses higher-order deployment expressions.
1 (defr (temp-locale time temp)
2 (def r (if (even? time)
3 to-celsius
4 to-fahrenheit))
5 (r temp))

SinksInternalSources

time

even?

ifto-celsius

to-fahrenheittemp
(_ )

Figure 7 Reactor graph of temp-locale (from Listing 7).

4.2 Dynamic Deployments

We now make reactors in Haai first-class values: i.e. they can now be emitted by
signals. We will call signals that only emit reactors reactor signals. The semantics of
deployment expressions changes in a remarkable manner, if a reactor signal is used
in operator position: deployment expressions become polymorphic. This gives rise to
a phenomenon called dynamic deployments: deployments created while the program
is running. An example of a reactor (temp-locale) in which a dynamic deployment oc-
curs is shown in Listing 7. On Line 2, a reactor signal r is defined whose value is either
equal to the to-celsius reactor or the to-fahrenheit reactor. This signal is then used in
operator position on Line 5 which causes the program to toggle between deployments
of these two reactors. As a consequence, the signal that the temp-locale reactor cre-
ated, continuously toggles between the sink signal of these two deployments. Note
here that signals are not first-class values.
A reactor graph of temp-locale is shown in Figure 7. Note here that a consequent

or alternate expression consisting of single named signal or reactor is not contained
in a grey-coloured box. These signals (reactors) already exist and are updated inde-
pendent of the conditional signal.
Semantically, a reactor deployment is only active when needed by a dynamic de-

ployment. I.e. during the very first turn either the to-celsius or to-fahrenheit reactor
will be deployed, depending on the parity of seconds. One second later, when the
parity of seconds changes, the other reactor will be deployed and the other deploy-
ment will be deactivated. Another second later, the previously-allocated deployment
will be re-activated and the other one will be deactivated. This type of switching is
not a new idea [11], but differs from most other RP languages. E.g., Yampa [37] and
FrTime [8] will disconnect signals if they are replaced by other signals. In these lan-
guages, signals disconnected by switching are removed from memory by relying on
a garbage collector (as provided by their respective host languages).
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4.3 Impact on Reactivity Guarantees

Conditional signals and dynamic deployments result in a language that is still strongly
reactive. Both features allow for the creation of reactive programs where the amount
of signals may change depending on the number of deployments that have been
activated. These deployments may be created dynamically and thus the amount of
work a single turn may take is not constant, as it depends on actual deployments
that are active of the dynamic deployments. Nonetheless, an upper-bound can still
be calculated for each possible path by analysing which reactor values flow over the
reactor signals (e.g., by means of a flow analysis).

Compared to two-layered RP languages In general, we have identified two categories
of RP languages that support signals with dynamic dependencies. Some languages
(e.g., Elm [12]) do not allow for the run-time creation of new signals: a conditional
signal can then only toggle between two existing signals. We would consider condi-
tional signals in those languages also as strongly reactive. Other RP languages allow
for new signals to be created while the program is running: either by allowing a
signal graph to be created (e.g., Yampa [37] and Dunai [40]) and be swapped with
some operator, or by allowing (lifted) code to create new signals incrementally (e.g.,
REScala [44]). We consider these languages weakly reactive as this creation is driven
by unchecked (base-layer) host code.

5 Recursive Reactors

Existing RP languages often have support for two different kinds of recursion. The
first kind, which we call lifted recursion, occurs when a recursive function is lifted. A
lifted recursive function can be applied on a signal and the reactive runtime uses the
semantics of the base layer to evaluate the lifted function. The second kind, which
we call graph recursion, occurs when the recursive (or looping) abilities of the host
language are used to recursively generate signals.3

5.1 Graph Recursion in Haai

In the absence of functions, the only supported form of recursion in Haai is graph re-
cursion. Surprisingly, (graph) recursion in Haai is simple to understand as it behaves
the same as regular recursion in other programming languages: i.e. by using self-
reference. Instead of functions that can apply themselves at reaction-time, reactors
in Haai can deploy themselves, providing a base case to stop recursive deployments
(e.g., using if). An example of a recursive reactor is shown in Listing 8. It defines a

3 Some languages also consider stateful operators as a kind of recursion [37, 58]. However,
unlike lifted and graph recursion, this form of recursion does not affect the evaluation of
a single turn. We therefore do not consider it as a form of recursion in this section.
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Listing 8 Reactor that constructs a recursively-defined chain of signals, depending on a
given number.

1 (defr (collatz-length num count)
2 (if (= num 1)
3 count
4 (collatz-length (collatz-step num) (+ count 1))))

SinksInternalSources

num
=

if

1

count

collatz-length

collatz-step

1 +

count

Figure 8 Reactor graph of collatz-length (from Listing 8).

recursive reactor named collatz-length to reactively compute the length of a Collatz
sequence. Figure 8 shows the reactor graph of collatz-length. The recursive deploy-
ment of collatz-length is included in the second grey-coloured rectangle. It is only
active, and thus deployed, in a turn when num is not equal to 1.

We admit that the use of graph recursion is quite atypical for this example. In a
two-layered reactive programming language, the same program would usually be
implemented by lifting a (recursive) function. A more practical example of graph
recursion is constructing reactive sorting networks [38].

5.2 Impact on Reactivity Guarantees

Recursion is — as in any programming language — not without any risks: deploy-
ments of recursive reactors may also diverge. This makes recursion a weakly reactive
language feature.
There are some subtleties regarding reactive recursion, specific to RP. We discuss

these now. First, note that a program like (defr (loop t) (loop (+ t 1))) will never be able
to be fully deployed. Deploying (loop time) causes the creation of an infinite chain
of signals that all transitively depend on time (each signal incrementing the value of
the previous signal in the chain by one). The same cannot be said of (defr (loop2 t) (if
(= t 100) 0 (loop (+ t 1)))). If (loop2 time) is deployed, it will — like before — construct
chain of deployments, except that this time the size of the chain will be limited in the
presence of a recursive base case. However, if the time signal’s value itself becomes
bigger than 100 in a later turn, the program will create an infinite deployment loop
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…
〈expression〉 → . . . | 〈rho expression〉
〈rho expression〉 → (rho (〈identifier〉+. . .) 〈body〉).

Figure 9 Changes made to the syntax rules from Figure 2 to support anonymous reactors.

as the base case will then never be reached. In other words, depending on the val-
ues produced by the time-varying signals that populate an RP program, a recursive
deployment may diverge. This may happen in any turn, not just the first.

Restricting Recursion To avoid programs to become weakly reactive, the use of re-
cursion needs to be restricted (at the cost of expressiveness). One approach could be
to apply techniques from termination detection systems [6, 28] such as primitive and
structural recursion [56], or size change termination [6, 36]. Note that termination
in this context does not mean termination of the RP program in its entirety — which
would be undesirable — but the termination of the deployment loops that recursive
reactors may manifest. This should guarantee a system that is at least eventually re-
active. An overview of the integration of termination checkers, to ensure eventual
reactivity in Haai-with-recursion, is outside the scope of this paper.

Compared to two-layered RP languages We have already — at many points in this
paper — discussed how two-layered languages can make an RP program weakly
reactive, and will not do so again. We do, however, note the following: while at first
sight only supporting graph recursion in Haai looks like a fundamental limitation,
programs that would in other RP languages make use of lifted recursion can still be
expressed (which will be discussed in more detail in Section 8.3). One fundamental
difference to note here though — with respect to two-layered RP languages — is
that it is pure reactive code in our model that is responsible for the recursive creation
of signals. In two-layered RP languages, this is often the responsibility of (lifted)
base-layer code [8, 44].

6 Anonymous Reactors

Similar to functional languages, Haai has a construct tomake anonymous abstractions
for computations.

6.1 Reactors with Scope

Unlike functional languages, which usually use the λ symbol or lambda keyword, we
denote anonymous reactors using ρ or rho, to emphasise that they create reactors,
not functions. Figure 9 presents the modified syntax rules.

11:16



Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

Listing 9 A reactor definition with an anonymous reactor definition embedded within.
1 (defr (make-temp-locale in-celsius)
2 (rho (temp)
3 (if in-celsius
4 (to-celsius temp)
5 (to-fahrenheit temp))))

SinksInternalSources

...in-celsiusin-celsius

Figure 10 Simplified reactor graph of make-temp-locale (from Listing 9): the internal
structure of the capture has been omitted.

Anonymous reactors in Haai are lexically scoped. As a consequence, deployments
of anonymous reactors have two types of sources: explicit sources (i.e. sources that
are passed at deployment-time) and implicit sources (i.e. sources captured when the
encompassing reactor was being deployed). The use of anonymous reactors is exem-
plified by Listing 9. The implementation of make-temp-locale shows how a reactor
creates an anonymous reactor. The in-celsius source signal determines whether to
convert temperatures to either °C or °F. The make-temp-locale reactor itself emits (on
a constant signal) a representation of this anonymous reactor (a capture, c.f. a clo-
sure) that has this signal in scope. Deployments of that capture will react accordingly
whenever in-celsius changes (even if it is not part of the reactor’s explicit sources).

The reactor graph of make-temp-locale is shown in Figure 10. The grey-coloured
box represents the rho expression. We used this visual notation earlier in Figures 6
and 8 for if. Like if, rho delays the deployment of certain signals. Unlike if, however,
is that the signals contained therein are not necessarily deployed by the same deploy-
ment.
Remember that signals are not first-class. To pass around signals, an expression

like (rho () x) canmake a (first-class) run-time representation of an x signal. To use this
signal elsewhere, this capture needs to be deployed. In other words, captures make it
possible to store signals in data structures, not just the values that they produce. This
approach results in a general model of higher-order reactive programming, without
any specialised higher-order operators.

6.2 Impact on Reactivity Guarantees

Deployed captures are like ordinary reactors, except that they have additional signals
in scope (i.e. captured signals). As such, they should not directly affect the language’s
reactivity tier. We could therefore prematurely claim that anonymous reactors are
a strongly reactive language feature, but unfortunately that is not the case. Similar
to non-reactive languages, a recursive fixpoint combinator can be implemented. List-
ing 10 provides a possible definition of a recursive fixpoint reactor. It closely resembles
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Listing 10 fix: a recursive fixpoint reactor.
1 (defr (fix f)
2 ((rho (x) (f (rho (y) ((x x) y))))
3 (rho (x) (f (rho (y) ((x x) y))))))

the call-by-value Y-combinator [42]: the only difference being the use of rho instead of
lambda. This reactive fix is similar to a fix in a call-by-value language: the expansion
occurs for every new recursive deployment, allowing for self-deployment (cf. self-
application), which has similar consequences as ordinary recursion, by self-reference
as discussed in Section 5.2. This makes anonymous reactors a weakly reactive lan-
guage feature, quite a degradation with respect to our earlier assumption. When the
creation of Y-combinators is restricted (e.g., by forgoing the capture semantics, or by
an occurs check to find recursive type definitions on reactors, i.e. the simply typed
lambda calculus) anonymous reactors should not affect the reactivity classification.
Under these conditions, we can classify rho as a strongly reactive feature.

Compared to two-layered RP languages Anonymous abstractions in RP are not a com-
pletely new idea. Signal functions, as introduced by Yampa [37], are closely related
to (anonymous) reactors. However, unlike anonymous reactors, Yampa’s signal func-
tions cannot capture signals. Furthermore, signal functions in Yampa can be created
by the evaluation of non-reactive (base-layer) code.

7 Implementation

The Haai language has a prototypical implementation developed in Racket [16]. An
interactive interpreter loads and runs code provided by a programmer, akin to a
Read-Eval-Print Loop. Reactor definitions are loaded as entries in a so-called reac-
tor table. Signal definitions are immediately deployed (i.e. global deployments) and
automatically react to changes. The implementation employs an asynchronous —
thread-based — evaluation model. One thread is responsible to sense the environ-
ment for new data of any real-world sources, another thread is responsible to read
expressions entered by the programmer and a third thread is responsible for perform-
ing update turns (i.e. to propagate changes received by the other two threads: i.e. to
either instantiate new signals or propagate values through signals created earlier).
The prototypical implementation has support for various kinds of Data Producing

and Consuming Reactors (Section 2.5). Besides WebSockets and other network-based
communication protocols the language provides simple primitives to build GUI wid-
gets, inspired by [12, 24]. In the future, we aim to extend our prototypical interpreter
to support more kinds of application environments.
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Table 1 Overview of the features of Haai, and which effect they have on the classification
of the language according to its reactivity guarantees.

Type of Reactors Reactivity Level
First-Order Reactors (Section 2) Eventual or Strong∗
Stateful Reactors (Section 3) Strong
Higher-Order Reactors (Section 4) Strong
Recursive Reactors (Section 5) Weak
Anonymous Reactors (Section 6) Weak or Strong†
∗ Strong if the primitive reactors are restricted to those that can update their sink(s) in O (1) time.
† Strong if programs with recursive fixpoint combinators are statically rejected. The act of capturing a
signal and depending on it elsewhere — the main intent — is not a weak feature.

8 Evaluation

In this section, we discuss how Haai tackled the issues identified in two-layered RP
languages, and compare its level of expressivity to those languages.

8.1 Reactive Thread Hijacking Problem

An overview of every language feature and their corresponding reactivity level clas-
sification is shown in Table 1. It shows that most of Haai’s features are — assuming
a first-order base language where all primitive reactors update sinks in O (1) time
complexity — strongly reactive. In other words, programs written using (only) these
features result in a program that is guaranteed to be responsive: each turn has a
fixed (constant) upper-bound on the number of operations needed to update all sig-
nals, regardless of the actual values propagated by these signals. The cost of an RP
language being strongly reactive is that some programs might no longer be express-
ible. Nonetheless, we have identified various other strongly reactive languages (even
ones that are not strictly speaking RP languages) which shows that — at least for
some problem domains — strong reactivity surmounts expressivity. We discuss such
languages in Section 9.

8.2 Reactive/Imperative Impedance Mismatch

The specialised Data Producing and Data Consuming Reactors — as the only means
to perform effects in a pure language — mitigate the adverse consequences that
may emerge from the Impedance Mismatch. These operators drive the interaction
between the world of pure reactors and the real world of sensors (which can serve
as sources of the RP program) and actuators (which take the values produced by
the sinks of the RP program). These operators are — in practice — only used in the
top-level, resulting in a clean separation between the reactive world and the outside
world.
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Figure 11 Signal graphs that compute the average of two signals. Both a signals are seman-
tically equivalent. Constants have been inlined in these figures for simplicity.

8.3 Expressivity of a Pure Reactive Language

The Haai Language does not feature functions, only reactors. This raises the question
whether or not this limits expressivity. If we ignore RP programs with embedded im-
perative side effects, we claim that there is no fundamental restriction with regards
to expressivity. We base this claim on an observation found in two-layered reactive
programming languages. In these languages, there is no observable difference be-
tween a signal created by a lifting a composed function, and a signal that depends
on intermediate signals that correspond with the internal structure of the original
function. The designers of FrTime discussed this too in the context of deep lifting [7],
which is an optimisation technique that “eliminate[s] the large dataflow graphs that
lifting would otherwise create”. Figure 11 visualises the ideas behind deep lifting. Fig-
ure 11a shows a signal that directly computes the average of two other signals and
Figure 11b uses an intermediary signal that first computes their sum. Both resulting
signals are semantically equivalent.
In the case of Haai, only programs with intermediary signals (as in Figure 11b)

can be implemented. To show that expressiveness is not limited, we have to show
that programs that use composed functions can also be expressed with intermediary
signals. For simple programs involving only lifted functions, the composed function
can be decomposed into it constituents. However, functions may be used in different
ways besides plain lifting. Consider FrTime’s collect-e operator [8]. collect-e takes a
procedure as an argument that is then applied to the values produced by a signal and
the current value of an accumulator. Operators like collect-e apply said procedures
not on the signals themselves, but on the values produced by signals. In most cases,
there is no difference between a function being applied to the values of a signal, or to
the signal’s value being passed to the procedure. Only primitive functions require the
actual value of a signal [7]. Such operators are absent from Haai, but are, effectively,
a trick needed to sample a signal’s value for a stateful accumulation (which are the
semantics of trampoline variables). As such, we conclude that expressivity in Haai is
comparable to two-layered RP languages.

9 Related Work

In this section, we present an overview of languages (RP or otherwise) that tackle
similar problems.
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9.1 Reactive Thread Hijacking Problem

We now discuss languages that we would classify as being either eventually reactive
or strongly reactive. For brevity, weakly reactive languages are not discussed.

Reactive Programming RT-FRP [58] is a functional reactive programming (FRP) lan-
guage that we consider to be strongly reactive. The language has support for lifting
and multi-modal signals (i.e. switching). To ensure strong reactivity, the language
only allows functions from the simply-typed lambda calculus (i.e., without recursion,
nor self-application [41]) to be lifted. The semantics of E-FRP [57] are expressed in
terms of RT-FRP. We therefore also consider E-FRP to be strongly reactive.
EmFRP [46] is a reactive programming language that targets embedded devices.

We also consider it to be strongly reactive. The language has no support for recursion
(neither lifted recursion nor graph recursion). A reactive program consists of a static
set of signal definitions and supports no switching.
The Stella language [51, 53] has a reactive language embedded within an actor-

based one. At run-time, the Stella implementation checks that these lifted functions
terminate (by performing dynamic size change termination [36]). The reactive lan-
guage of Stella does not support switching: the internal dependencies between sig-
nals can be derived statically. However, there is support for replication: parts of a
program can be replicated, where each copy is connected to a different element in
a (time-varying) set. As these sets are constrained to finite sets, this replication is
bounded [52]. We therefore consider Stella to be an eventually reactive language.
ActiveSheets [22, 54] is an RP language contained within a spreadsheet program.

ActiveSheets supports cells connected to time-varying data streams, and changes to
these cells are propagated automatically. Most primitive operations in ActiveSheets
have a worst-case time complexity of O (1). However, some spreadsheet operations
(e.g., those that search like VLOOKUP) are not. Nonetheless, these operations are guar-
anteed to terminate, making ActiveSheets eventually reactive.
There exist also various formal systems that aim to prove liveness (i.e. eventual

reactivity) for reactive programs and streams [2, 47]. The main difference is that
these models assume a streamingmodel, where programmers are explicitly in control
over how a stream evolves over time (by means of a functional program), similar to
streams in [1]. This model is different from RP presented in this paper, where signals
compute their value in terms of the values of their dependencies.

Synchronous Programming The ideas of (strong) reactivity can also be found in other
paradigms: e.g., Synchronous Programming (SP) [19]. We discuss two SP languages
that closely resemble Haai: Lustre [20] and Lucid Synchrone [5]. Similar to our lan-
guage, programs expressed in these languages consist of dataflow graphs that ex-
press how each time-varying value is computed. Signals in both Lustre and Lucid
Synchrone have statically encoded timing information (“a clock”) which is used to
determine which signals can be composed together (i.e. applying a simple function
like + on two signals that do not share the same clock is disallowed). This is the main
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difference between SP and RP. In RP, signals are always updated with the current
values of their dependencies.

9.2 Reactive/Imperative Impedance Mismatch

To solve the issues of the Reactive/Imperative Impedance mismatch, reactive code
must clearly be separated from imperative code. As Haai is — to the best of our
knowledge — the first pure reactive language, we list languages here where this
separation has been made explicit by other means.

In Yampa [37], signal functions are created by the application of pure functions that
are unable to perform side effects. To run a Yampa program, a signal function needs
to be combined with IO actions that provide inputs (sense) and perform actions with
the outputs (actuate), using a function named the reactimate [10]. I.e. reactimate
returns an IO action that is the actual RP program. Therefore, a working Yampa ap-
plication contains both reactive and imperative (IO) code. FRP anguages inspired by
Yampa, such as SFRP [4] and Dunai [40], share this style of combining reactive and
IO code. Besides these languages, we also note two languages that target embedded
applications that, like Yampa, have an explicit separation between RP and IO code.
EmFRP [46] compiles reactive programs into C/C++ code which needs to be supple-
mented with the actual driver (IO) application before the application (as a whole)
can be subsequently compiled. Juniper [21] allows C/C++ code to be inlined in the
Juniper program itself, such that it can be compiled into a full program.

Finally, the aforementioned Stella language [53] proposes a clear separation be-
tween reactive and imperative code by only allowing actors to perform side effects,
and reactors to be pure. A working Stella program also requires both imperative and
reactive code, which means that Stella is not a pure language either.

10 Conclusion

This paper presented Haai, a reactive programming language designed from first
principles. Inspired by Self and Smalltalk’s Uniform Object Model, Haai employs a
Uniform Reactor Model where programs are composed of reactors and every run-
time value is passed over signals spawned by deploying these reactors. We presented
Haai in a layered approach. Section 2 presented Haai’s first-order language model.
Reactors are the computational abstraction of Haai to denote dependencies between
signals. Sections 3 to 6 then presented various extensions. For each extension we
discussed the effects they had on so-called reactivity guarantees, i.e. how strict the
language is to enforce a certain degree of responsiveness of programs written in the
language with the discussed features. Certain powerful features were identified in
RP languages that hamper a language’s ability to enforce the right degree of respon-
siveness. While these issues are also present in our language, our pure model allowed
us to abstract over the integration of the reactive code in a non-reactive model, and
consider each feature in isolation. This allowed us to increase our understanding of
the RP paradigm in general.
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