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Abstract—In this paper, we present a framework based on
differential privacy (DP) for querying electric power measure-
ments to detect system anomalies or bad data. Our DP approach
conceals consumption and system matrix data, while simulta-
neously enabling an untrusted third party to test hypotheses
of anomalies, such as the presence of bad data, by releasing a
randomized sufficient statistic for hypothesis-testing. We consider
a measurement model corrupted by Gaussian noise and a
sparse noise vector representing the attack, and we observe
that the optimal test statistic is a chi-square random variable.
To detect possible attacks, we propose a novel DP chi-square
noise mechanism that ensures the test does not reveal private
information about power injections or the system matrix. The
proposed framework provides a robust solution for detecting bad
data while preserving the privacy of sensitive power system data.

Index Terms—bad data attacks, differential privacy, smart
grids, energy internet, hypothesis testing

I. INTRODUCTION

POWER systems are pivotal in delivering electricity to
various sectors, including residential, commercial, and

industrial. The effective management of these systems is
heavily reliant on the accurate and timely acquisition of
data for operational, control, and monitoring purposes [1]–
[4]. Such data is essential for numerous critical functions like
load forecasting and security assessments. However, as power
systems become increasingly digitized and interconnected,
they are also more vulnerable to cyber threats. These include
the malicious manipulation of measurement data, known as
bad data (see fig. 1 for an illustration), which can lead to
significant disruptions in operations, financial losses, and even
endanger public safety [5]. Consequently, the detection of such
malicious activities emerges as a crucial area of focus, under-
pinning the need for robust cybersecurity measures within the
fragmented smart grid.

A. Motivation: Collective Defense

The management of power grids often suffers from fragmen-
tation among multiple Regional Transmission Organizations
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Fig. 1: Illustration of bad data attacks.

(RTOs) and utilities and a division between distribution and
transmission, despite the interconnected nature of the grid.
Efficient prevention and detection of cyber-physical attacks
necessitate collaboration and information sharing among dif-
ferent utilities. The advent of Distributed Energy Resources
(DERs) has further complicated the cybersecurity landscape
of power systems. The decentralized nature and a mix of
ownership between utilities and private stakeholders of DER-
rich grids necessitates a collective approach to cyber-defense,
emphasizing the importance of collaboration among various
stakeholders. This collective defense strategy is foundational
to ensuring the secure and efficient operation of interconnected
systems and devices. Furthermore, this collaborative approach
can significantly enhance early detection capabilities, improve
understanding of attack methods, develop effective defense
mechanisms, implement cost-effective solutions, and ensure
regulatory compliance, ultimately bolstering the security and
reliability of power systems. Anomalies in local data can serve
as warning signs for issues that may have implications for
neighboring systems [6], yet achieving such a collaborative
cybersecurity framework in the fragmented grid management
infrastructure is fraught with challenges, particularly in the
realms of information sharing, technological solutions, collab-
orative partnerships, and coordinated incident response [7].

Information sharing is crucial for collective defense but is
hindered by several factors, including concerns about data
privacy related to customers, proprietary issues, and secu-
rity [8]. Many grid operators are hesitant to share sensitive
measurement data, such as Advanced Metering Infrastructure
(AMI) and Phasor Measurement Units (PMU), further ex-
acerbated by the fragmented landscape of grid devices and
systems. This landscape now encompasses Home/Building
Energy Management Systems, DER aggregators, and IoT
devices, complicating the construction of a comprehensive and
effective cyber-defense posture. Moreover, even sharing data
with law enforcement agencies and regulators can encounter
obstacles due to privacy considerations. This fragmentation
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and the myriad of concerns lead to critical cybersecurity in-
formation remaining siloed or entirely unshared, significantly
compromising the grid’s overall security and underscoring the
importance of safeguarding against unintended disclosure of
private data within the power system sector.

Without a dedicated platform for real-time information
exchange and automated decision-making, utilities struggle to
identify new threats, learn from incidents in other territories,
and coordinate responses to cyber-attacks. This lack of struc-
tured incident response, coupled with insufficient knowledge
of protecting operational technology systems, leaves the grid
vulnerable to sophisticated cyber-attacks. Recognizing these
challenges, the United States government emphasizes the
importance of technology software equipped with a collective
defense capability that enables rapid sharing of insights and
detections with the Federal government, participants, and other
trusted (by the US government) organizations, thereby en-
hancing grid resilience against sophisticated cyber-attacks [9].
Moreover, the recent initiatives by the White House and
the Department of Energy to fund research into innovative
cyber-physical collective defense methodologies are timely
and crucial. This funding aims to foster the development of
defense strategies that are effective even in scenarios involving
potentially untrustworthy third parties, thereby signaling a
significant step towards bolstering the resilience and integrity
of our energy infrastructure [10], [11].

In this context, differential privacy (DP) [12] mechanisms
emerge as a promising solution to the challenges faced in
implementing a collective defense strategy. By enabling the
secure sharing of data among grid operators and with third-
party entities, DP addresses key concerns around data privacy
and proprietary information. DP mechanisms, by introducing
controlled statistical “noise” to the data, protect sensitive in-
formation while maintaining its utility for analytical purposes,
offering a balance between privacy and accuracy. This method
surpasses traditional anonymization techniques by providing
mathematical guarantees on the amount of information leak-
age, allowing for the optimization of queries relevant to the
energy sector and the design of differentially private databases
for analysis and research. Such practicality in applying DP
to energy datasets fosters increased data sharing, enhancing
stakeholder comfort and safeguarding privacy, trade secrets,
and sensitive information. Before summarizing our contribu-
tions, next, we provide a brief review of the literature on
anomaly detection, DP, and DP anomaly detection for smart
grid applications.

B. Literature Review

1) Anomaly Detection in the Smart Grid: Efforts to combat
bad data attacks on power systems have led to the development
of a diverse array of detection algorithms. Data-driven strate-
gies, such as those employing machine learning techniques
like distributed Support Vector Machines for stability-focused
detection [13], and real-time electricity theft detection [14],
leverage large datasets to identify anomalies indicative of
false data injection (FDI) attacks. Anomaly identification
techniques utilizing Multiclass SVMs have shown efficiency

[15], though their computational demand limits broader ap-
plication. Artificial neural networks and their extensions into
deep learning have gained popularity for their high detection
accuracy in identifying FDI attacks [16]–[21], yet they suffer
from extensive training times. Attempts to mitigate these
computational challenges have led to innovative solutions,
such as the integration of artificial bee colony algorithms
with differential evolution theory [22]. Despite the advantages
of data-driven methods, their effectiveness is curtailed by
the need for extensive, often centralized, datasets, leading
to challenges in time, cost, and privacy. The reliance on
large local datasets or detailed system information introduces
substantial data transmission burdens, while the absence of
effective privacy-preserving measures and the risks associated
with centralized data processing highlight the need for a more
collaborative detection approach.

2) DP for Smart Grids: The landscape of cybersecurity
within power systems has seen various strategies aimed at
preserving data privacy and enhancing system resilience. Tra-
ditional approaches such as access control and anonymization
have been instrumental in initial efforts to protect sensi-
tive data. Access control methods, as discussed in [23]–
[25], attempt to regulate data access, often resulting in bi-
nary outcomes of either complete access or total restriction.
Meanwhile, anonymization techniques, highlighted in [26],
seek to obscure personal identifiers within datasets. Despite
their intentions, these techniques have been criticized for
their susceptibility to reidentification attacks, a vulnerability
exposed by [27]. Regulatory attempts to navigate the privacy
challenges inherent in electric grid data management, such as
the “15/15 Rule” [28], aim to balance consumer privacy with
the public’s right to access data. However, the effectiveness
of these policies has been questioned, with critiques pointing
out a lack of scientific underpinning and insufficient privacy
safeguards, as elaborated in [29].

In response to these challenges, DP has emerged as a
robust alternative, particularly in the context of smart grids.
DP’s capacity to protect individual privacy while enabling
aggregated data analysis offers a solution to the limitations
of previous approaches. The survey by Ul Hassan et al. [30]
provides a thorough overview of DP applications across cyber-
physical systems, with a notable emphasis on smart grids.
Research in DP for smart grids has primarily focused on three
areas: grid demand response, smart building operations, and
grid data collection with fog computing. In demand response,
DP methods like data masking using Laplacian noise have
been explored to protect consumer data without compromising
utility operations [31]. For smart buildings, which are integral
to urban development, DP is used to secure sensor data
streams and Internet traffic, ensuring the privacy of inhabitants
against potential intrusions [32]–[37]. DP Smart meter load
monitoring has been studied in [38]. Integrating DP with
fog computing has shown the potential to enhance privacy
and operational efficiency in smart grids. This approach safe-
guards data during transmission and storage in fog nodes,
protecting against privacy breaches without significant impacts
on system performance [39], [40]. The employment of DP
in demand-data reporting has been shown to preserve the
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confidentiality of individual consumption patterns while still
providing aggregated data useful for grid optimization [41].
Further applications of DP in clustering load profiles have
enabled the grouping of similar consumption patterns without
infringing on the privacy of individual users [29]. This same
study illustrates how DP techniques can facilitate the sharing
of load profiles for research purposes, effectively balancing
the need for data utility with privacy considerations.

Despite progress, securing grid users’ data remains a com-
plex issue, with DP providing a promising path forward across
various scenarios. However, areas like fault information trans-
mission, load profiling, and billing information privacy still
demand attention to achieve comprehensive privacy protection
in smart grid applications.

3) DP Bad Data Detection in Smart Grids: A handful of
studies have explored the application of DP for bad data and
FDI attack detection within smart grids, addressing the critical
balance between privacy protection, system security, and data
utility. Hossain et al. [42] delve into the dual role of DP
in smart grids, noting its capacity to safeguard user privacy
while potentially enabling integrity attacks through privacy-
preserving noise. They propose a tailored DP design strategy
focused on mitigating the effects of FDI attacks. Their work
extends to assessing the viability of DP in smart grid environ-
ments, especially under adversarial conditions, and evaluates
the implications on the quality of service. Specifically, they
analyze the sum query on a database of measurements from a
µPMU dataset with the addition of simple Laplacian noise,
from which they derive optimal strategies for both attack
and defense scenarios. Gaboardi et al. [43] introduce a novel
approach to conducting chi-squared tests for goodness of
fit and independence that adhere to DP constraints. Their
method is innovative in that it modifies classical statistical
tests to incorporate DP mechanisms, thus ensuring the privacy
of sensitive data. The study presents both Monte Carlo-
based and asymptotically aligned tests that adjust for DP-
induced noise, highlighting a methodological advancement
in integrating privacy preservation within statistical analysis.
Lin, et. al. [44] present a federated learning-based algorithm
for distributed and privacy-preserving FDI attack detection
that allows state owners to collaboratively generate a global
detection model without extensive data transmission, thus
protecting data privacy by integrating artificial Gaussian noise
into the local model estimations.

C. Contributions

Building on recent advancements and addressing enduring
challenges in cyber-defense, our work specifically focuses on
enabling bad data detection by entities that may not be fully
trusted, all while preserving the privacy of critical system data.
This focus marks a distinct departure from existing approaches
that primarily enhance the detection mechanisms of FDI
attacks or apply DP in a general context. Our contributions,
tailored to this unique challenge within the realm of power
systems’ security and privacy, include:
• A novel chi-squared noise DP mechanism that enhances

privacy in querying grid measurements for detecting bad

data and anomalies. Applied to the norm of the residual
error of the power systems’ state estimate [5], [45], [46], this
mechanism is versatile enough to be used for any quadratic
queries following a chi-square distribution. This approach
enables bad data detection by third parties without compro-
mising the confidentiality of system states or matrices.

• An approximation of the chi-squared mechanism to a Gaus-
sian mechanism for stochastic queries in large systems,
optimizing the balance between privacy preservation and
analytical utility.

In contrast to existing approaches detailed in Section I-B3,
our methodology eschews the direct application of DP noise
to measurements in favor of targeting the residual, as for-
malized in Section II-B. This strategy not only simplifies
analytical processes but also demands lower privacy budgets
to effectively protect system data. Furthermore, while prior
studies consider deterministic and static measurement models,
our framework innovatively accounts for the stochastic nature
of measurements. By focusing on ensemble-based privacy
rather than individual measurement instantiations, we offer a
unique contribution to the DP landscape. This methodological
innovation permits the precise tailoring of a chi-square DP
mechanism for quadratic queries, marking a notable advance-
ment in privacy-preserving techniques for power systems. Our
approach underscores the utility of privacy-preserving tech-
niques in supporting collective defense strategies, filling gaps
in information sharing and technology, and promoting a more
resilient grid against cyber threats in DER-rich environments.
An illustration of our proposed mechanism is shown in fig. 2.
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Fig. 2: Illustration of our proposed DP mechanism for FDA
detection.

The remainder of the paper is organized as follows. Sec-
tion II defines the measurement model, performs preliminary
analysis on the least squares residual of the state estimation
problem, and introduces the threat model. In Section III, we
first introduce the definitions related to DP before presenting
our novel DP mechanism and its Gaussian approximation for
sharing the residuals with third parties. Section IV showcases
the numerical results, and finally, Section V concludes the
paper.

Notation: Boldfaced lowercase (uppercase, respectively)
letters denote vectors (matrices, respectively), and xi (Xij ,
respectively) denotes the ith element of vector x (the ijth entry
of matrix X , respectively). Calligraphic letters denote sets, and
|·| represents the cardinality of a set. Furthermore, [N ] denotes
the set of integers 0, 1, . . . , N − 1.
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II. PRELIMINARIES, THREAT MODEL AND PROBLEM
STATEMENT

In power systems operations, state estimation algorithms
are used to fit the observed measurements collected from
the system and make informed decisions. State estimation
algorithms need to be robust to a variety of errors arising
from measurement errors, modeling errors, uncertainty in the
model parameters, and bad (maliciously placed or otherwise)
data. In this paper, we are motivated by the problem of bad
data injection attacks on the observed measurements, although
the method applies to detecting other anomalies. Traditionally,
the analysis of residuals in state estimation has been utilized
to detect the presence of bad data: data is considered “bad”
if the error with respect to the model is higher than what is
statistically consistent with the measurement noise. Incorrect
estimation of system states can compromise operations and
control decisions. In this section, we briefly introduce the
measurement model and the residual-based bad data detection
(BDD) algorithm.

A. Measurement Model and False Data Attack

The measurement model relates the observed measurements
z to the system states x and the noise; for additive noise such
models can be expressed as:

z = h(xo) + η + a. (1)

Here, z ∈ Rm represents a vector of observed grid measure-
ments, which can include various quantities such as bus injec-
tions, bus voltages, and also possibly the so-called pseudo-
measurements. The ground-truth system states, denoted by
xo ∈ Rn, correspond to the voltages at different buses in
the power system. The function h reflects the physical model
that ties the state to the quantity measured in the noiseless
case and depends on the power system parameters, including
the properties of the lines and transformers. The measurement
noise is captured by the random vector η ∈ Rm, which
is assumed to follow a Gaussian distribution with mean 0
and covariance σ2I1. Additionally, the vector a represents
the deterministic sparse vector of bad data injections. The
sparsity of a implies that only a subset of the measurements
is targeted by the adversary. If a particular meter is affected
by an adversary, the corresponding entry ai in a is non-zero.

It is important to note that any other errors arising from
modeling and uncertainty in model parameters are combined
with the measurement errors η and assumed to be independent
of the system parameters. By considering this measurement
model, we investigate the effects of bad data injections on the
observed measurements and describe one of the widely used
methods to detect such attacks.

Remark 1. The measurement model in eq. (1) is exactly linear
for Phasor Measurement Units (PMUs) whose model is:

z =

[
v
i

]
=

[
I
Y

]
v + η, (2)

1This is without loss of generality since it is always possible to pre-whiten
the noise.

where v is the vector of voltages at the grid buses, i is the
vector of corresponding currents, and Y is the admittance
matrix. In this linear model, the voltages vector is also the
state xo and the function h can be expressed as h(x) = Hx,
where H is the matrix shown in eq. (2). Any linearized power
flow model, such as those proposed in [47], [48], including
the DC power flow models, are also special cases.

For the non-linear AC power flow model, the analysis relies
on a first-order approximation of the measurement model,
substituting the Jacobian matrix (refer to Appendix A) with
the system matrix H , as we will discuss in the next section.

B. BDD via Weighted Least Squares

In this section, we will review classical bad data outlier
detection methods to define test statistics that can be shared
to determine if the system is experiencing an anomaly, without
directly sharing the measurements z, which could potentially
reveal system and state information.

The Weighted Least Squares (WLS) method is commonly
used to estimate the system state by minimizing the weighted
sum of squared residuals (WSSR), where the weights are
determined by the inverse of the covariance matrix. In the
case where the observations are pre-whitened, as assumed in
eq. (1), we can consider the equivalent Least Squares (LS)
problem without loss of generality:

x⋆ = argmin
x

σ−2∥z − h(x)∥2, (3)

where x⋆ is the state estimate given measurements z that
follow the measurement model in eq. (1), and x is the
optimization variable.

Next, for convenience’s sake, we analyze the linear mea-
surement model but show in Appendix A that the non-linear
model can be linearized by utilizing the Jacobian matrices
computed at the current state. For the linear case, the WSSR
can be written as:

q(z) = σ−2∥z −Hx⋆∥2 := σ−2∥P (η + a)∥2, (4)

where we use that x⋆ =
(
HTH

)−1
HTz and set P :=

I−H
(
HTH

)−1
HT = P 2 as the orthogonal projection (or

hat) matrix. It is used to project the observed measurements
onto the space spanned by the columns of the Jacobian matrix.
In the context of detecting bad data, the matrix P is utilized to
compute the weighted sum of squared residuals (WSSR) and
plays a crucial role in determining the statistical properties of
the residual test statistic.

We formulate the detection of bad data as a hypothesis-
testing problem with two hypotheses. The null hypothesis
H(a)

0 represents the absence of an attack, where a = 0. The
alternative hypothesis H(a)

1 corresponds to the presence of an
attack, indicating that a ̸= 0. We write this formally as:

H(a)
0 : a = 0 (no attack) (5a)

H(a)
1 : a ̸= 0 (attack) (5b)

The query to perform the hypothesis test is the residual test
statistic q(z) in eq. (4), which allows the analyst to compare
the WSSR to a threshold τ . If the WSSR is below τ , we
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accept the null hypothesis H(a)
0 , indicating that there is no

attack. Otherwise, if the WSSR exceeds τ , we reject H(a)
0 and

accept the alternative hypothesis H(a)
1 , suggesting the presence

of an attack, i.e.:

q(z)
H(a)

1

≷
H(a)

0

τ. (6)

By sharing the WSSR, we allow the analyst to freely choose
the threshold τ and determine the optimal trade-off between
the probability of false alarm (accepting H(a)

1 when H(a)
0

is true) and the probability of detection (correctly accepting
H(a)

1 when H(a)
1 is true). Both probabilities are influenced by

the specific values of the bad data vector a and the chosen
threshold τ .

Under the assumption of Gaussian additive noise η for
hypothesis H(a)

1 , the WSSR follows a non-central chi-square
distribution with r degrees of freedom, where r is the rank
of the matrix P . The WSSR is centered at θ2 = σ−2∥Pa∥2,
which represents the squared norm of the projection of the
bad data vector onto the subspace orthogonal to the columns
of H , i.e.:

q(z) ∼ χ2
r

(
σ−2∥Pa∥2

)
, (7)

where r = rank(P ) = m − n. For the null hypothesis, the
WSSR follows a central chi-square distribution with r degrees
of freedom.

Remark 2. The stochastic nature of q(z) will play a fun-
damental role in the development of our privacy mechanism,
which diverges from conventional differential privacy methods
designed for deterministic queries. The details of our mecha-
nism and its privacy considerations will be discussed in the
following sections.

C. Special Case of the Measurement Model

When m < n, the null space is empty, and therefore there
are no residuals to share. We propose two approaches. First, we
suggest estimating the system state by employing a regularized
weighted least squares (RWLS) objective, given by:

x⋆ = argmin
x

(
σ−2∥z − h(x)∥2 + λ∥x∥2

)
, (8)

where λ is the regularization parameter that for h(x) = Hx
is solved by:

x⋆ =
(
HTH + λσ2I

)−1
HTz, (9)

and the WSSR is given by:

q(z) =
zP T

λ Pλz

σ2
∼ χ2

r(θ
2
λ), (10)

where r is the rank of Pλ and

Pλ :=
[
I −H

(
HTH + λσ2I

)−1
HT

]
, (11)

θ2λ := (Hx+ a)TP 2
λ (Hx+ a)/σ2. (12)

Note that eq. (9) reduces to the ordinary least squares solution
of x⋆ =

(
HTH

)−1
HTz when the measurement model

contains redundant measurements, i.e., when m > n, and by
setting λ = 0.

The second option is an alternative form of regularization
based on Graph Signal Processing (GSP) [49]. In the context
of a given system, the phasors vector v can be regarded as
low-pass graph signal [49]. This implies that their empirical
covariance matrix has dominant components in the space
spanned by the κ < n least significant eigenvectors of the
system matrix Y . In other words, we can approximate v as
v ≈ Uκṽκ, where Uκ is an n × κ matrix. We can update
the linear model as z = H ′x′

o + η + a, where H ′ = HUκ

and x′
o = ṽκ. The LS solution can still be applied as long

as κ < m. Even when m > n, this method is useful
because it can handle stealth attacks (see Remark 4 in the next
subsection). However, it should be noted that the residual in
this case may reveal system information, as clarified next.

D. Threat Model

Depending on m, n, and r, if the WSSR is published to
an analyst, issues relating to the disclosure of the state (only
when m < n) and the system matrix may arise. This can be
observed in eq. (7) and eq. (10) where the WSSR depends on
the system matrix in the former and both the system matrix
and the system state in the latter. The privacy leakage is
summarized in Table I:

System Matrix Size System Matrix System State

m > n Disclosed Secure

m < n Disclosed Disclosed

TABLE I: Privacy protection of the system state and matrix.

The publication of system matrices or system states to
third parties is a threat to the security and resilience of the
electric grid system as they provide valuable information about
the system’s vulnerabilities. Publishing information about the
system’s topology, load distribution, or power flow patterns
can help attackers identify critical infrastructure components.
This reconnaissance information can then be used to plan
targeted attacks (such as power outages, equipment damage,
or even physical attacks on infrastructure components) that
result in severe consequences, including service disruptions
and financial losses. Attackers can also use the system’s state
information to identify vulnerabilities in the system’s control
systems, such as SCADA systems or energy management
systems, and exploit them for cyberattacks.

The publication of system matrices or system states can
also pose a privacy risk to energy consumers. The grid system
collects and analyzes vast amounts of data on energy consump-
tion patterns, which can be used to infer a consumer’s daily
routines, lifestyle, and even location. Such information can
be exploited for social engineering attacks, such as phishing
or spear-phishing, or other forms of cybercrime. Moreover,
the privacy of energy consumers is a fundamental right,
and any compromise to this right can erode public trust in
the operators. For all the aforementioned reasons the system
matrix or system states must remain confidential.

As discussed in the prior sections, traditional rules of thumb
adopted by specific industries have flawed or no quantification
of privacy guarantees, and anonymization often fails in the
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presence of substantial side information. In this paper, we
address the threat posed by a third-party analyst who may
be able to deduce the system state x or the system matrix H
by analyzing the residual query [44].

Remark 3 (Internal and External Threats). We do not con-
sider insiders (of the organization that stores the data) with
legitimately acquired access to the data as threats. Instead, we
are concerned with the inference of a data point’s involvement
after a particular aggregate query has been published to an
external, untrustworthy third party.

Remark 4 (Stealth Attacks). An additional area of concern
is stealth attacks where the attacker injects a sparse vector.
Here, non-zero entries of the attack vector that correspond to
the sensors being attacked are modeled such that residual in
eq. (49) is unaffected even with the perturbed state:

Pa = 0 (13)

Here, the attacker can alter the algorithm’s output without
any change in the loss function of the state estimation prob-
lem eq. (3). These types of attacks are only possible when
a malicious agent possesses complete knowledge about the
system and a non-trivial null space of P exists. Detecting
and mitigating such attacks is challenging, particularly in
the absence of a specially imposed structure on the actual
measurement vectors. The literature proposes various method-
ologies to detect stealth attacks. As mentioned in the previous
section, we recommend using the GSP-based method presented
in [49]. This approach aligns well with our measurement
model description and is highly effective in detecting stealth
attacks.

In the next section, after formally defining the concept of
DP, we introduce our proposed DP mechanism for sharing the
test statistic. This mechanism aims to safeguard the differential
privacy of both the system matrix and the state.

III. DIFFERENTIALLY PRIVATE BAD DATA DETECTION

Motivated by overcoming the disclosure issues of BDD
algorithms, in this section, we describe a novel methodology
for the publication of a differentially privatized test statistic
q(z) and show how to adjust the performance guarantees of
the hypothesis test to account for the loss in accuracy due to
the DP mechanism. Before describing our novel methodology,
we first provide a brief description of differential privacy.

A. Preliminaries

In the context of a dataset z and a query q, we use the
notation q̃(z) to represent the differential private answer to the
query q. The random outcome of the query, post the applica-
tion of the DP mechanism, is denoted as q̃, which belongs to
the set Q and follows a distribution f(q̃|z). This distribution is
a probability density function for continuous random queries
or a probability mass function for discrete random variables.
The common definition of differential privacy from [12], [50]
is:

Definition 1 ((ϵ, δ)-Differential privacy). A randomized mech-
anism q̃ is (ϵ, δ)-differentially private if for all neighboring
datasets z and z′ that differ in one point, for any arbitrary
event pertaining to the outcome of the query, the randomized
mechanism satisfies the following inequality

∀S, P r(q̃(z) ∈ S) ≤ exp(ϵ)Pr(q̃(z′) ∈ S) + δ, (14)

where Pr(A) denotes the probability of the event A, for some
privacy budget ϵ ≥ 0 and δ ∈ [0, 1].

Note that, since δ is a bound that may not be tight, smaller
values of δ are possible. Hence, (ϵ, δ) guarantees are sufficient
but not necessary conditions. A second definition in terms of
the privacy leakage function is:

Definition 2 ((ϵ, δ)-Probabilistic Differential privacy). The so-
called privacy leakage function Lzz’ is the log-likelihood ratio
between the two hypotheses that the query outcome q̃ is the
answer generated by the data z or the data z′ that differ by
one element. Mathematically:

Lzz’(q̃) := log
f(q̃|z)
f(q̃|z′)

, (15)

A randomized mechanism q̃(z) is (ϵ, δ) differentially private
for z if and only if:

sup
zz’

Pr (|Lzz’(q̃)| ≤ ϵ) ≥ 1− δ. (16)

It can be shown that (ϵ, δ)-PDP is a strictly stronger
condition than (ϵ, δ)-DP [51].

B. DP for Stochastic Queries

Earlier in this section, we provided an overview of two
definitions of DP. However, we highlight an important caveat
regarding these definitions – they primarily focus on protecting
the DP of individual elements, denoted as z, within a database
z. They aim to conceal the presence or absence of each
element in z. Traditionally, mechanisms derived based on
these definitions assume that the database is deterministic,
lacking any stochastic aspects in its entries. For instance,
consider an averaging query on a database consisting of
the income of a group of people or biographical details of
individuals surveyed for a census [52].

However, in this paper, we address measurement vectors
z that arise from a stochastic measurement model based on
the physics of the electric grid, as discussed in Section II-B
and Remark 2. In this scenario, our primary focus is on
safeguarding the DP of the system configuration that generates
the measurement model, rather than focusing on an individual
instantiation of its measurements. This approach was moti-
vated by the reasons detailed in Section II-D. It is worth
noting that the data owner possesses knowledge of the system
configuration only in scenarios where the electric utility itself
is the data owner. In all other cases, neither the data owner nor
the external analyst has access to the system configuration.

For instance, suppose we aim to protect the DP of the
elements in the matrix H . In this case, each system con-
figuration gives rise to an ensemble of query instantiations.
By considering the stochastic nature of the measurements
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and focusing on the DP of the system rather than individual
measurements, our paper introduces a novel perspective in the
realm of differential privacy mechanisms.

The traditional definitions of DP include a neighboring
database at distance one (or, in other words, differing in one
element). Similarly, we define a distance one neighbor to the
system matrix as follows:

Definition 3 (Distance one neighborhood). Consider a system
matrix H ∈ Rm×n. The distance one neighborhood of H is
defined as the set of all matrices that differ from H in exactly
one row. More formally,{

H ′ ∈ Rm×n | H ′ = H + e∆T
h

}
, (17)

where H and H ′ differ in the mth row (without loss of
generality), e ∈ Rm is a coordinate vector with its mth

entry set to 1 and all other entries set to 0. Additionally,
∆h := (h′ − h), where h and h′ represent the mth rows
of H and H ′, respectively.

Consequently, when considering a matrix H ′ from the
distance one neighborhood of H , the corresponding vector
of measurements z′ differs from z in exactly one element:

z′i =

{
zi, i < m,

h′Tx+ a+ η, i = m
⇒ z′ = H ′x+a+η. (18)

In turn, the distance one neighborhood WSSR is given by:

q(z′) = σ−2(a+ η)TP ′(a+ η), (19)

where P ′ = I−H ′H ′†. This implies that the residual follows
the non-central chi-square distribution with r := m−n degrees
of freedom and non-centrality parameter θ′2 := σ−2∥P ′a∥2:

q(z′) ∼ χ2
r(θ

′2). (20)

Remark 5. In our framework, it is important to note that the
term differential in differential privacy arises from the need to
conceal whether a measurement is a result of the system con-
figuration of H or one of its neighboring configurations H ′.
This not only hides the origin of the measurement as part of
an ensemble but also enables a more traditional interpretation
in terms of the differential of the actual measurement vector,
as illustrated in eq. (18).

Finally, to derive a differentially private mechanism for
answering the residual query, we will rely on Definition 2,
which provides a direct statistical interpretation. As (ϵ, δ)
values approach zero, the log-likelihood ratio, which serves as
a sufficient statistic for determining whether the randomized
answer is generated from neighboring datasets z or z′, pro-
duces mostly incorrect or unreliable outcomes. In other words,
there is a non-zero probability of the test yielding incorrect
results. This trade-off in terms of answer accuracy needs to
be carefully considered.

C. Differentially Private Chi-Squared Noise Mechanism

As seen in eqs. (7) and (10), the WSSR query is a non-
central chi-square random variable. In this section, we propose
a novel additive noise DP mechanism where the WSSR is

treated with a random noise drawn from the chi-squared
distribution as follows:

q̃(z) = q(z) + ν where ν ∼ χ2
r′(0), (21)

which implies that q̃(z) is also a non-central chi-square
random variable with r̃ := r + r′ DoF and centered at θ2,
i.e.:

q̃(z) ∼ χ2
r̃(θ

2). (22)

With this in mind, we state the following theorem guaranteeing
the (ϵ, δ)-DP of the chi-square noise mechanism with its proof
in appendix B.

Theorem 1 (Chi-square mechanism is (ϵ, δ)-DP). The mech-
anism in eq. (21) is (ϵ, δ)-DP for all pairs of neighboring
measurement sets z and z′ differing in exactly one measure-
ment, where the guarantee δ is given by:

δ=max
θ,θ′

[
Q r̃

2

(
θ,

ϵ

θ′−θ−
θ′+θ

2

)
+Q r̃

2

(
θ,

ϵ

θ′−θ+
θ′+θ

2

)]
, (23)

where Qs(a, b) is the Marcum Q-function of order s > 0 with
a > 0 and b ≥ 0.

The sensitivity analysis is undertaken in appendix C and
provides explicit expressions for the δ under assumptions
about the system Jacobian.

While this mechanism can be analyzed for smaller m, the
analytical calculation to derive δ for larger values of m is
not numerically viable, as the Marcum Q-function becomes
degenerate in this regime. Thus, in the following section, we
provide a Gaussian approximation for the noisy query q̃(z)
that may be used with the Gaussian mechanism for stochastic
queries developed in [53] to release the residual query.

D. Gaussian Approximation

The residual query, WSSR, follows a non-central chi-square
distribution as discussed in Section II-B. We derive a Gaussian
approximation of the WSSR using the following theorem, first
proved by [54, Theorem 1]. This provides us with a method
for dealing with systems with large m values.

Theorem 2 (Gaussian Approximation of q(z)). Given a
measurement vector z and the linear measurement model
z = Hx+a+η with η ∼ N (0, σ2I), and the singular value
decomposition of H = UΣV T , then the following statements
hold:
(a) The WSSR, q(z), is a chi-squared-type mixture:

q(z) =

m∑
i=1

diz
2
U,i, with z2U,i

ind∼ χ2
1(θ

2
i ), ∀i ∈ [m],

where

zU := UTz, θ := ΣV Tx+UTa, (24)

D :=
(
I −Σ

(
λσ2I +ΣTΣ

)−1
ΣT
)2

, and (25)

d := diag(D). (26)

(b) The cumulants of q(z) for ℓ = 1, 2, . . . are given by:

Kℓ(q(z)) = 2ℓ−1(ℓ− 1)!

m∑
i=1

dℓi(1 + ℓ · θ2i ). (27)
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Let ζ :=
8K3

2(q(z))

K2
3(q(z))

and ρ := max1≤i≤m
2d2

i (1+2θ2
i )

K2(q(z))
.

Then, for the normalized q(z) given by q̄(z) =
q(z)−K1(q(z))√

K1(q(z))
, the following inequality is satisfied:

sup
q

|fq̄(z)(q)− ϕ(q)| < 0.1323

(
4 +

0.2503

(1− 8ρ)2

)
ζ−

1
2

(28)
when ρ < 1/8, where ϕ(q) is the density function of a
standard normal random variable.

(c) If either (i) ρ → 0 or (ii) max1≤i≤m

(
1 + 2θ2i

)
< ∞ and

ζ → ∞, is satisfied, then q̄(z) → N (0, 1).

Using theorem 2, we can show that:

q(z) ∼ N (θz, σ
2
z), where (29)

θz = Tr(D) + θTDθ, and (30)

σ2
z = 2Tr(D2) + 4θTD2θ. (31)

The Gaussian DP mechanism that is used in literature is (ϵ, δ)-
DP for a deterministic query. However, in our case, the query is
stochastic and, moreover, the variances of the query under two
neighboring measurement sets are not the same, i.e., σ2

z ̸= σ2
X′ .

Thus, in the following subsection, we derive the DP guarantees
for a stochastic query.

IV. PERFORMANCE METRICS AND RESULTS

In Section III-A, we presented our chi-square noise mecha-
nism and its Gaussian approximation for publishing residuals
of a BDD algorithm. Adding DP noise inevitably corrupts
the residual, which will affect the utility of the residual in
bad data detection and lead to degraded performance of the
hypothesis test in eq. (6). In this section, the performance of
the hypothesis test with the DP noisy residual is quantified
through the Receiver Operating Characteristic (ROC) analysis.

The ROC curve is a graphical representation of the trade-off
between the probability of detection (denoted by Pd – it is the
probability that a true anomaly is correctly identified as such)
and the probability of false alarm (denoted by Pfa – it is the
probability that a normal data point is incorrectly identified as
an anomaly) of a hypothesis test.

A perfect hypothesis test would have a Pd of 1 and a Pfa of
0, which would mean that all true anomalies are identified as
anomalies and all normal data points are identified as normal
data. However, in practice, no hypothesis test is perfect, so
there is always a trade-off between the two.

The area under the ROC curve (AUROC) indicates how
well the hypothesis test can distinguish between anomalies
and normal data. A higher AUROC indicates that the test is
better at distinguishing between anomalies and normal data.

A. Performance of the chi-square noise mechanism
In this section, we first derive the probabilities of detection

and false alarm for the hypothesis test without any DP noise,
that is, with the use of the true residual q(z). We then do the
same for the residual with the DP noise, q̃(z).

Suppose the operator sets a probability of false alarm of α,
then from the definition of the hypothesis test in eq. (6), we
get:

α =: Pfa = Pr {q(z) > τ | H0} , (32)

and since q(z) is a central chi-square random variable with r
degrees of freedom under H0, we have:

α = 1− P
(r
2
,
τ

2

)
:= Q

(r
2
,
τ

2

)
, (33)

where P(·, ·) is the regularized gamma function and Q(·, ·) is
its complementary. Using this relation, we may calculate the
threshold to be set as:

τ = 2Q−1 (α, r/2) . (34)

Similarly, under H1, q(z) is a non-central central chi-
square random variable with a non-centrality parameter of
θ2 = σ−2∥Pa∥2 and r degrees of freedom. Then, the
probability of detection is given by:

Pd = Pr {q(z) > τ | H1} = Qr/2

(
σ−1∥Pa∥,√τ

)
,

= Qr/2

(
σ−1∥Pa∥,

√
2Q−1 (α, r/2)

)
, (35)

where Q{·}(·, ·) is the Marcum Q-function.
In a similar vein, we may compute these probabilities with

the DP residual. First, recall that:

H0 : q̃(z) ∼ χ2
r̃(0) (no attack) (36a)

H1 : q̃(z) ∼ χ2
r̃(θ

2) (attack) (36b)

Suppose r̃ = r+1, then, for a threshold of τ = 2Q−1 (α, r/2),
the probabilities are thus calculated as:

P̃fa :=Pr {q̃(z)>τ |H0}=Q
(
r̃

2
,Q−1 (α, r/2)

)
, (37a)

P̃d :=Pr {q̃(z)>τ |H1}=Q r̃
2

(
θ,
√
2Q−1(α, r/2)

)
= Q r̃

2

(
σ−1∥Pa∥,

√
2Q−1 (α, r/2)

)
. (37b)

As shown in eqs. (33) to (35) and eq. (37), the additional
degree of freedom required by the DP noise is the main reason
for the change in performance. This is because the DP noise
increases the variance of the residual, which makes it more
difficult to distinguish between normal data and anomalies.

B. Performance of the Gaussian approximation

A line of analysis is similar to the one undertaken in
section IV-A leads to the following false alarm and de-
tection probabilities for the hypothesis test. Recall that
q(z) ∼ N (θz, σ

2
z). The moments of the query vary

depending on the hypothesis H0 or H1. Then let θz,h and
σ2
z,h denote the mean and variance under hypothesis Hh, for

h = 0, 1. They are given by:

θz,h = Tr(D) + θT
hDθh, (38)

σz,h = 2Tr(D2) + 4θT
hD

2θh, (39)

where:

θh = ΣV Tx+ h ·UTa for h = 0, 1. (40)

The false alarm probability is given by:

α =: Pfa = Q
(
τ − θz,0
σz,0

)
, (41)
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where Q(·) is the Gaussian Q function. The threshold can be
calculated as:

τ = θz,0 + σz,0Q−1 (α) . (42)

Similarly, the probability of detection is given by:

Pd = Q
(
σz,0Q−1 (α)−∆

(a)
θz

σz,1

)
, (43)

where ∆
(a)
θz

= θz,1 − θz,0. Similarly, for the DP residual, we
have the following false alarm and detection probabilities:

P̃fa = Q
(
τ − θ̃z,0
σ̃z,0

)
= Q

τ − (θz,0 + θν|z)√
σ2
z,0 + σ2

ν|z

 , (44)

P̃d = Q

σz,0Q−1 (α)− (∆
(a)
θz

+ θν|z)√
σ2
z,1 + σ2

ν|z

 . (45)

C. Numerical Results

In this section, we provide a comprehensive analysis of the
performance of our detection algorithm in the presence of
DP noise and compare it with an approach involving input
perturbation. We have previously discussed the limitations
associated with directly perturbing the measurement vector
using input perturbation to protect the system and its state.
To further explore this, we consider an input perturbation
scenario with σ and σw denoting the standard deviation of
the measurement error and DP noise, which is added using the
Gaussian mechanism. Recall that in this scenario, the observed
measurement vector z is given by Hx+ a+ η +w.
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Fig. 3: Sensitivity of the test’s performance to attack strength.

Throughout this section, we present a detailed analysis of
our detection algorithm’s performance under different condi-
tions. In fig. 3, we examine the ROC for binary hypotheses
H(a)

· for various values of ∆θz
(a). To establish this, we set the

means and variances as follows: θz,0 = 10, θz,1 = θz,0+∆
(a)
θz

,
σz,0 = 1, σz,1 = 2. This analysis reveals that the ROC curve
deteriorates as the difference ∆

(a)
θz

between the means of the
two hypotheses decreases. This is an expected outcome, as
the hypothesis test is more likely to accept the null hypothesis
when the difference between the means is small, even under
the alternate hypothesis.

In fig. 4, we focus on the scenario where input perturbation
of the measurement vector z is performed before conducting
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Fig. 4: AUROC vs. DP Normalized privacy budget and noise
variance scaling (k-factor) for input-perturbed measurements
z̃ = z +w.

the hypothesis test. We employ the standard Gaussian mech-
anism with δ = 0.1 and a sensitivity set to 1. This analysis
is conducted for different values of ∆

(a)
θz

to understand how
varying levels of DP noise impact the algorithm’s performance
when using input perturbation. We plot the AUROC against the
DP privacy parameter ϵ and the corresponding k-factor, where
the DP noise variance is denoted as σ2

w = kσ2. Notably, we
present this information in terms of the normalized (or the
per-element) privacy budget, ϵo := ϵ/m, as we are adding
noise to each of the m elements in the z vector. As expected,
we observe that the AUROC increases with an increase in the
per-element privacy budget. This implies that when a smaller
standard deviation is used for input perturbation noise, a higher
level of performance can be achieved. In practical terms, this
figure helps analysts understand the trade-off between the
desired level of performance (as defined by the AUROC), the
∆

(a)
θz

, and the allocated privacy budget (ϵ). It provides valuable
insights into the resources required to ensure a specific level
of performance while safeguarding sensitive information.
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Fig. 5: The AUROC of the hypothesis test for different values
of σν|z when using our mechanism.

In fig. 5, we illustrate the AUROC of our detection mecha-
nism, incorporating our novel approximate Gaussian DP noise
mechanism, across a range of values for ∆

(a)
θz

. Specifically,
we set the means and variances as follows: θz,0 = 10, θz,1 =
1.3θz,0, σz,0 = 1, and σz,1 = 4. It is worth emphasizing
that our approach demonstrates superior performance in terms
of the privacy budget when compared to input perturbation.
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This improved efficiency results from our targeted privacy-
preserving strategy, which focuses on perturbing the residual
query rather than applying noise to the entire measurement
vector. As a consequence, we achieve the desired level of
performance while minimizing the expenditure of the privacy
budget. It’s important to note that in this figure, the AUROC
curve is plotted directly against the privacy budget, rather
than the normalized privacy budget, further underscoring the
efficiency of our mechanism.
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Fig. 6: The probabilities of detection and false alarm of the
hypothesis test for different values of σν|z when a Pfa of 0.05
is required.

In fig. 6, we investigate the performance of the hypothesis
test across various values of σν|z while maintaining a required
Pfa of 0.05. As with fig. 5, the means and variances are
set as follows: θz,0 = 10, θz,1 = 1.3θz,0, σz,0 = 1,
and σz,1 = 4. This analysis provides insights into how our
algorithm behaves under the constraints of a controlled false
alarm rate while introducing varying levels of noise (expressed
by different σν|z values) to the system. As expected, we
observe that the probability of false alarm (Pfa) increases, and
the detection probability (Pd) decreases as we introduce noise
with increasing variances. This figure serves to highlight the
trade-off between algorithm performance, as defined by Pfa

and Pd, and the noise variance, and by extension, the privacy
budget allocation.

V. CONCLUSION

This paper presents a novel DP chi-squared noise mecha-
nism tailored for power systems, emphasizing residual analysis
over direct measurement perturbation. This approach simpli-
fies analytics, requires lower privacy budgets, and introduces a
mechanism that considers the stochastic nature of power sys-
tem measurements—a distinct contribution to DP applications.
Our methodology enables precise chi-square DP mechanism
application to quadratic queries, enhancing privacy-preserving
capabilities within power systems and beyond. By focusing
on ensemble-based privacy, this work supports the detection
of attacks by third parties without exposing system states
or matrices, thus bridging significant gaps in cyber defense.
Additionally, our approximation of the chi-squared mechanism
to a Gaussian mechanism for stochastic queries illustrates the
method’s adaptability. We advocate for a collective defense
strategy, leveraging a distributed detection framework that
reduces data transmission and boosts privacy, addressing the

need for cooperative cybersecurity solutions in the increasingly
interconnected power grid landscape.
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APPENDIX A
LINEARIZATION OF THE NON-LINEAR MEASUREMENT

MODEL

This is the case in which z contains power flow measure-
ments and, thus h(xo) are the AC power flow equations. Here,
the WSSR may be written as:

q(z) := σ−2∥z − h(x⋆)∥2 = σ−2∥h(xo)+ η+ a− h(x⋆)∥2
≃ σ−2∥H (xo − x⋆) + η + a∥2, (46)

where the approximation relies on the assumption that ∥xo −
x⋆∥ is small and the Taylor expansion of h around x⋆:

h(xo) ≃ h(x⋆) +H (xo − x⋆) , (47)
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where H = dh
dx is the system Jacobian matrix2. Also, at the

minimizer, x⋆, the gradient of the objective in eq. (3) is zero:

0 = σ−2HT (z−h(x⋆)) = σ−2HT [h(xo)+η+a−h(x⋆)] ,

⇒ HT [h(xo)− h(x⋆)] = −HT (η + a) ,

⇒ (xo − x⋆) ≃ −
(
HTH

)−1
HT (η + a) (48)

where the last equation follows from eq. (47). Finally, from
eq. (46) and eq. (48), we have:

q(z) ≃ σ−2∥P (a+ η)∥2, (49)

where P := I −H
(
HTH

)−1
HT = P 2 is the orthogonal

projection (or hat) matrix. Note that this takes the same form
as the residual in the linear case, albeit with the system matrix
replaced by the Jacobian.

APPENDIX B
CHI-SQUARE MECHANISM DP PROOF

Letting s := r + r′, we have that:

q̃(z) ∼ χ2
s(θ

2) and q̃(z′) ∼ χ2
s(θ

2 +∆θ2) (50)

The log-likelihood ratio of q̃(z) and q̃(z′) is given by:

L = log
fq̃(z)(q̃)

fq̃(z′)(q̃)
=log

1
2e

−(q̃+θ2)/2
(

q̃
θ2

) s
4−

1
2

I s
2−1(

√
θ2q̃)

1
2e

−(q̃+θ′2)/2
(

q̃
θ′2

) s
4−

1
2

I s
2−1(

√
θ′2q̃)

=
θ′

2−θ2

2
+

(
s

4
− 1

2

)
log

θ′
2

θ2
+ log

I s
2−1(

√
θ2q̃)

I s
2−1(

√
θ′2q̃)

, (51)

where Ia(b) is the modified Bessel function of the first kind.
At this stage, it is important to mention the following

theorem on the ratio of modified Bessel functions of the first
kind that was independently proved by authors of [55], [56]:

Theorem 3. For all a > 0 and 0 < x < y, the following
inequalities hold:

ex−y

(
x

y

)a

<
Ia(x)

Ia(y)
< ey−x

(
x

y

)a

. (52)

Next, consider the event |L| < ϵ. Its probability may be
written as follows:

P (|L| ≤ ϵ) = P (L ≤ ϵ)− P (L ≤ −ϵ). (53)

In order to find a lower bound for the probability of occurrence
of this event, we shall find a lower bound for the first term

2We abuse the notation to denote both the Jacobian of h and the linear
measurement model’s system matrix by the symbol H .

and an upper bound for the second term in eq. (53). We have
for θ′2 > θ2 > 0:

P (L ≤ ϵ) = P



θ′

2 − θ2

2
+

(
s

4
− 1

2

)
log

θ′
2

θ2

+ log
I s

2−1(
√
θ2q̃)

I s
2−1(

√
θ′2q̃)

 ≤ ϵ



≥ P



θ′

2 − θ2

2
+

(
s

4
− 1

2

)
log

θ′
2

θ2

+ log

e√θ′2q̃−
√

θ2q̃

(√
θ2q̃√
θ′2q̃

) s
2−1

 ≤ ϵ


= P

(
q̃ ≤ (ϵ/(θ′ − θ)− (θ′ + θ)/2)

2
)
. (54)

Similarly, an upper bound for the second term in eq. (53) is
given by:

P (L ≤ −ϵ) ≤ P
(
q̃ ≥ (ϵ/(θ′ − θ) + (θ′ + θ)/2)

2
)
. (55)

Thus,

P (|L| ≤ ϵ) ≥ P
(
q̃ ≤ (ϵ/(θ′ − θ)− (θ′ + θ)/2)

2
)

− P
(
q̃ ≥ (ϵ/(θ′ − θ) + (θ′ + θ)/2)

2
)

=: 1− δ, (56)

APPENDIX C
SENSITIVITY ANALYSIS

We are interested in the deviation in P when an element in
z is changed. In order to find this deviation, we need to first
write P ′ as a function of P . Since HTe = h (the mth row
of H), we can write the following:

H ′TH ′ =
(
HT +∆he

T
) (

H + e∆T
h

)
= C0 +HTe∆T

h +∆he
TH +∆he

Te∆T
h

= C0 + h∆T
h +∆hh

T +∆h∆
T
h = C0 − hhT + h′h′T

= (I +C1)C0 (I +C1)
T
= C2C

−1
0 CT

2 , (57)

where C0 := HTH , C1 := ∆hh
TC−1

0 and C2 :=(
C0 +∆hh

T
)
. Using the Sherman-Morrison formula, the

inverse of C2 may be written as follows:

C−1
2 =

(
C0 +∆hh

T
)−1

= C−1
0

(
I − C1

c0

)
, (58)

where c0 := 1 + hTC−1
0 ∆h. Consequently, the inverse of

H ′TH ′ is:(
H ′TH ′)−1

= C−T
2 C0C

−1
2 = C−1

0 +C3, (59)

where

C3 := −C−1
0 C1

c0
− CT

1 C
−1
0

c0
+

CT
1 C

−1
0 C1

c20
(60)

Finally, we can write P ′ in terms of P :

P ′ = I −H ′H ′† = I −H ′ (H ′TH ′)−1
H ′T

= I −
(
H + e∆T

h

) (
C−1

0 +C3

) (
HT +∆he

T
)

= I −HC−1
0 HT +C4 = P +C4, (61)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

where

C4 := −HC−1
0 ∆he

T

−
[
HC3 + e∆T

h

(
C−1

0 +C3

)] (
HT +∆he

T
)

(62)

is the correction in P if H is rank two corrected.

APPENDIX D
NORMAL APPROXIMATION PROOF

Let H = UΣV T be the SVD of H , where U =
[u1, . . . ,um] ∈ Rm×m,V = [v1, . . . ,vn] ∈ Rn×n. Then, the
RWLS model’s state estimate in eq. (9) can be rewritten as:

x⋆ = V
(
λσ2I +ΣTΣ

)−1
ΣTUTz (63)

and Pλ can be rewritten as:

Pλ = U
(
I −Σ

(
ΣTΣ+ λσ2I

)−1
ΣT
)
UT . (64)

Thus, the WSSR is given by:

q(z) =
zTUDUTz

σ2
= zT

UDzU =

m∑
i=1

Diiz
2
U,i, (65)

where D :=
(
I −Σ

(
λσ2I +ΣTΣ

)−1
ΣT
)2

, zU :=

UT z
σ ∼ N (θ, I), and θ := ΣV Tx + UTa. This implies

that:
z2U,i

ind∼ χ2
1(θ

2
i ), ∀i ∈ [m]. (66)

Thus, the WSSR is a random variable of chi-squared-type
mixtures. The theorem then follows from [54, Theorem 1].


	Introduction
	Motivation: Collective Defense
	Literature Review
	Anomaly Detection in the Smart Grid
	DP for Smart Grids
	DP Bad Data Detection in Smart Grids

	Contributions

	Preliminaries, Threat Model and Problem Statement
	Measurement Model and False Data Attack
	BDDFDA detection via Weighted Least Squares
	Special Case of the Measurement Model
	Threat Model

	Differentially Private Bad Data Detection
	 Preliminaries
	DP for Stochastic Queries
	Differentially Private Chi-Squared Noise Mechanism
	Gaussian Approximation

	Performance Metrics and Results
	Performance of the chi-square noise mechanism
	Performance of the Gaussian approximation
	Numerical Results

	Conclusion
	References
	Appendix A: Linearization of the Non-linear Measurement Model
	Appendix B: Chi-square mechanism DP proof
	Appendix C: Sensitivity Analysis
	Appendix D: Normal Approximation Proof

