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We propose a general framework for proving non-integrability of the quantum systems. For spin-1/2 systems,
we show that the presence or absence of the local conserved quantity can be shown using the graph theoretical
analysis. This approach helps to systematically classify the number of local conserved quantity, as aiding the
proof of non-integrability of the Hamiltonian. Using this approach, we prove for the first time that the PXP
model is nonintegrable. We also show that our method is applicable to the well-known proof of the non-
integrability of other spin-1/2 systems. Our new approach offers a significant simplification of the proof for
non-integrability and provides a deeper understanding of quantum dynamics.

I. INTRODUCTION

Integrability is a fundamental concept in quantum systems.
It refers to the ability to express certain quantities such as con-
served quantities or observables, as integrals of motion. The
integrable systems contain infinitely-many local conserved
quantities to fully determine the dynamics and lack quantum
thermalization. It has many practical implications in various
areas including condensed matter physics, quantum field the-
ory and quantum computation.1–8 From the generalization of
the Bethe ansatz study showing the integrability of antiferro-
magnetic Heisenberg model9, the Yang-Baxter equations10–12

and the quantum inverse scattering method13 were developed,
and these are now the main tools for studying the integrabil-
ity of quantum systems. Several quantum systems including
XY Z model13–15, 1-dimensional Hubbard model16,17, and the
golden chain model with Fibonacci anyons18 are shown to be
integrable using these methods.

However, there are only few studies that deal with the non-
integrability of a particular Hamiltonian, i.e. there is no local
conserved quantity in the system. Therefore, in most cases,
except for those specially known as integrable systems, it is
difficult to determine whether the system is integrable or not.
At present, the investigation of level statistics is the most gen-
eral approach to distinguishing between integrable and non-
integrable models: if it follows the Poisson distribution, we
conclude the system is integrable, whereas if it follows the
Wigner-Dyson distribution, the system is considered to be
non-integrable19. However, this statement is a conjecture that
has not yet been proven, and it also requires a large enough
system size to be able to show the trend of the level statistics,
and therefore is sometimes controversial. There exists another
conjecture20 claiming that the non-existence of the three site
support conserved quantity Q3 implies the nonintegrability of
the system. Although this is easier to check than the level
statistics, it is also unproven, and the argument is based on the
Yang-Baxter equation, which is still unknown as a necessary
condition for integrability.

Recently, Ref.[21] discusses the rigorous proof of the non-
integrability of the XY Z chain in the presence of magnetic
field. This work sheds light on the analytic approach to the
non-integrable systems. Following this method, it has been
shown that another spin model, a mixed-field Ising chain
model, is non-integrable22. The system without any conserved

quantity thermalizes in a long time limit to the Gibbs ensem-
ble, while the integrable systems do not due to its extensively
many conserved quantities. Thus, finding out the conserved
quantities of a given Hamiltonian is a key tool to understand
the dynamics of the Hamiltonian.

In this paper, we propose a new way to prove the non-
integrability of the spin-1/2 quantum systems, adopting the
graph theoretical approach. Although some details should
be checked on each model, the graph theoretical approach
provides the way to systematically classify the conserved
quantities and thus allows us to simplify the analysis to
prove the non-integrability of the systems. We exemplify the
one-dimensional PXP model and prove it’s non-integrability,
showing the absence of any local conserved quantities.

The PXP model is well known to describe the Rydberg
atom systems with the Rydberg blockade. This model has
been studied extensively in many contexts, including the
quantum many-body scar (QMBS). It has been shown both
experimentally23 and theoretically24 that while most of the ini-
tial product thermalizes in a long time limit, a small number
of initial product states shows a short time revival, which is
a strong evidence of QMBS25. Because every initial prod-
uct state thermalizes in non-integrable system while every
initial product state shows a short time revival in integrable
system, QMBS system can be considered as an intermedi-
ate system between non-integrable (with no local conserved
quantities) and integrable (with extensively many local con-
served quantities) system. Due to its exotic behavior, QMBS
systems such as PXP model, its modifications26–29, or other
similar models30–32 have been in the theoretical spotlight re-
cently. However, except the numerical research of the level
statistics24, the presence or absence of the conserved quanti-
ties in QMBS system was unknown. Here, we establish the
rigorous proof such that the PXP model has no local con-
served quantity, indicating that the number of local conserved
quantity is not a good criteria of the QMBS in the PXP model.

To prove the absence of local conserved quantities in the
PXP model, we introduce the graph-theoretical approach.
This approach has various advantages compared to the ap-
proach with linear equations. First, graph theoretical approach
reduces the amount of complicated equations and calcula-
tions. Second, because of the visualization, it is much eas-
ier to follow and understand the proof. And third, it contains
all the essence of our proof, and is therefore easily applicable
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to a variety of spin-1/2 models. As an example, we show that
the non-integrability of the XY Z model with magnetic field21

and mixed-field Ising chain22 can be also proved with our
graph-theoretical approach. Our graph-theoretical approach
opens a novel and general framework which rigorously shows
the non-integrability of different spin systems.

II. ARGUMENT FOR LOCAL CONSERVED QUANTITY
AND PXP MODEL

We first introduce the following notation for the proof,

{A1A2 · · ·Ak}j = A1,jA2,j+1 · · ·Ak,j+k−1. (1)

Here, Ak,i represents an operator Ak at site i where Ak is one
of the standard Pauli matrices X,Y, Z or identity matrix I .

Translational invariant Hamiltonian. — From now, we
consider a translationally invariant Hamiltonian as following,

H =
d∑

l=1

∑

Dl

L∑

j=1

rDl

{
Dl

}
j
, (2)

with coefficients rDl . Here, Dl, a length l Pauli string, rep-
resents the length l sequence of Pauli operators and identity
operators that does not begin or end with identity. For exam-
ple, when l = 3, the symbol Dl runs through 3× 4× 3 = 36
possible operators from XXX to ZIZ, not including IXX
or ZZI . We call the Pauli strings Dl with non-vanishing co-
efficients rDl the Hamiltonian strings of H .

Strategy. — Here we focus on the conserved quantity of
the Hamiltonian that is translationally invariant. Note, how-
ever, that even if the Hamiltonian is translationally invari-
ant, this does not guarantee that the conserved quantity of
the Hamiltonian is translationally invariant. Therefore, in Ap-
pendix A, we show that our argument in the following also
holds for the operators that are not translationally invariant.
For a general case of a translation invariant local operator, one
can write,

C =

k∑

l=1

∑

Al

L∑

j=1

qAl

{
Al

}
j
, (3)

with coefficients qAl , for each Pauli string Al with length l.
Here Al, called a Pauli string with length l, represents the
length l sequence of Pauli operators and identity operators,
which does not start or end with identity.

Now if we calculate the commutator between length k
quantity C and the local Hamiltonian H of length d, we get

[H,C] =

k+d−1∑

l=1

∑

Bl

L∑

j=1

pBl

{
Bl

}
j
. (4)

Note Bl is at most length k+ d− 1 Pauli string, hence [H,C]
is also local. To find the local conserved quantity, we need
to show that [H,C] = 0, i.e. pBl = 0 for all Bl. Since
for a given H with fixed rDl ’s, Eq. 4 gives the linear rela-
tion between qAl and pBl from [H,C] = 0, by taking all

pBl = 0, we get the series of linear equations with param-
eters qAl . Solving these series of linear equations yields the
local conserved quantity C.

However, even when we consider the length k Pauli strings
Ak, then there are already 3 × 4k−2 × 3 possible number of
the Pauli strings, and such many parameters in the linear equa-
tions. Treating these parameters one-by-one is a hard task. In
this work, therefore, we suggest a simple graph theoretical
approach which allows to categorize these Pauli strings and
parameters into small number of groups, and show that only
treating these categorized Pauli strings is enough to find the
local conserved quantities of the Hamiltonian, which makes
the calculation much easier.

The PXP model. — In this section, we introduce the PXP
model and prove it’s non-integrability using the graph theo-
retical approach. The PXP model is a theoretical low-energy
approximation of the Rydberg atom chain model. It requires
infinite energy if the two neighbouring sites occupy the ex-
cited states one after the other.One remarkable feature of the
PXP model is the quantum many-body scar state. For a certain
initial state, e.g. so called the Néel state, the system exhibits
a persistent short-time fidelity revival, and is therefore known
to violate the eigenstate thermalization hypothesis (ETH). The
origin of this exotic phenomenon has been studied with vari-
ous approaches, such as weakly broken Lie algebra26.

The PXP model Hamiltonian is represented as following,

H =
∑

j

PjXj+1Pj+2 =
∑

j

{PXP}j , (5)

where P = (I − Z)/2 is a projection operator on the ground
state. In this Hamiltonian, it is possible to flip the state at a
given site, only if the states of two neighboring sites are both
in the ground state. In other words, it prohibits the transition
between the ground state and the excited state if the state in
either of the neighboring sites is excited. Because this pro-
cess does not generate or annihilate two consecutive excited
states, one can find a nontrivial invariant subspace V of the
full Hilbert space: that is, HV ⊂ V . We define V as the space
where projection operator Π projects onto, where Π defined
as,

Π =
∏

j

(1− {QQ}j), (6)

where Q = (I+Z)/2 is a projection operator into the excited
state.

By expanding Eq.(5),

4Pj−1XjPj+1 = (Ij−1 − Zj−1)Xj(Ij+1 − Zj+1)

= Xj −XjZj+1 − Zj−1Xj + Zj−1XjZj+1, (7)

There are 4 different Hamiltonian strings ZXZ, XZ, ZX ,
and X , with coefficients rZXZ = rX = −rZX = −rXZ =
1. Our aim is to find that every local conserved quantity C
satisfies,

[H,C] = 0, (8)
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and prove the following: Every local conserved quantity C of
the Hamiltonian H is trivial on the reduced Hilbert space V ,
i.e.

CV = 0. (9)

In details, our proof is to show the absence of the local op-
erator in the PXP model, which describes the dynamics in the
restricted Hilbert space. For instance, one may consider the
operator C = {QQ}j as the local operator that commutes
with the Hamiltonian H . However, it satisfies CV = 0. In
this case, although the local operator C commutes with the
PXP model Hamiltonian, it does not describe any dynamics
in the restricted Hilbert space V which we are interested in.

Examples. — Here, we investigate some examples of
the Pauli strings, Al in C in Eq.(3) and show that each co-
efficient vanishes via a single linear equation, i.e. qAl =
0. Suppose that the conserved quantity C is composed of
a length ≤ 4 Pauli strings which contains the Pauli string
{XXXX}j . Then, for example, the commutator between
this operator, {XXXX}j , and one operator from the Hamil-
tonian, {ZXZ}j+3, is represented as,
[
{XXXX}j , {ZXZ}j+3

]
= −2i {XXXYXZ}j . (10)

For visibility, we express this relation as following, where the
same notation is also used in Ref.[21],

X X X X
Z X Z

X X X Y X Z

(11)

Here, we dropped the factor −2i including ± sign since one
can easily read off from every commutator. The notable point
is that the resulting Pauli string, XXXYXZ, is only repre-
sented by a single commutator represented in Eq. 11 but noth-
ing else, because we restricted C as a quantity with length ≤ 4
Pauli strings33. In other words, any combination of other con-
served quantity C and the Hamiltonian string can not make the
Pauli string, XXXYXZ. This gives the following equation.

pXXXYXZ = −2irZXZqXXXX

= −2iqXXXX (12)

Hence, to satisfy [H,C] = 0, the coefficient of the Pauli
string XXXYXZ should be zero, i.e. pXXXYXZ = 0, re-
sulting in qXXXX = 0.

Now we discuss when there are more than one commu-
tator representations of the Pauli string. For example, con-
sider the Pauli string {ZXXX}j . Then, the commutator with
{ZXZ}j+3 gives the Pauli string, {ZXXYXZ}j . However,
this Pauli string can be also obtained from the commutator
between {ZXZ}j and {Y Y XZ}j+2. One can express this
relation as following,

Z X X X

Z X Z

Z X X Y X Z

Y Y X Z

Z X Z

(13)

which is equivalent to the following equation,

pZXXYXZ = 2irZXZ(−qZXXX + qY Y XZ)

= −2i(qZXXX − qY Y XZ). (14)

Therefore, to satisfy pZXXYXZ = 0, we get qZXXX −
qY Y XZ = 0. In this case, one cannot conclude that
qZXXX = 0 directly, but only show the relation between
qZXXX and qY Y XZ . However, one can show that qY Y XZ =
0 from a unique commutator representation of the Pauli string
Y Y XY Z as following.

Y Y X Z

X Z

Y Y X Y Z

(15)

From this commutation relation, we get the following equa-
tion,

pY Y XY Z = 2irXZqY Y XZ

= −2iqY Y XZ . (16)

Thus, taking pY Y XY Z = 0 gives qY Y XZ = 0, and from
qZXXX − qY Y XZ = 0, we get qZXXX = 0. Therefore both
coefficients qZXXX and qY Y XZ are zero.

III. GRAPH THEORETICAL APPROACH

Eqs. 11 to 16 are precise and formal ways of expressing
the coefficient of certain Pauli string vanishes. However, re-
peating this process for every Pauli strings takes a long time
with exponentially large commutator relations as the system
size gets larger. Furthermore, this brute-force method does not
give any intuition for the structure of conserved quantities in
general Hamiltonian. In this section, we introduce a graph the-
oretical approach, which helps categorizing the Pauli strings
and hence reduces the number of Pauli string candidates we
need to check, and also can be used to analyze the conserved
quantities in general Hamiltonian.

Commutator graph. — We define the commutator graph
for the conserved quantity of length k as shown (partially)
in Fig.1. There are two types of vertices, red and blue cir-
cles, representing a Pauli string of length ≤ k and length
≤ k+d−1 = k+2, respectively. More precisely, the red cir-
cles represent the Pauli strings in the length k conserved quan-
tity C, and the blue circles represent the Pauli strings given
by the commutator. Inside each circle, the coefficient of the
Pauli string, qAl or pBl , is written: since we are considering
pBl = 0, the numbers in the blue circles must be all zeros.
If the blue-circle Pauli string is obtained from a commutator
between the red-circle Pauli string and one of the Hamilto-
nian strings (ZXZ,XZ,ZX, and X), then we connect them
with an edge with the weight number on it, where the num-
ber is determined by the sign of the commutator multiplied by
the coefficient of the Hamiltonian string. In PXP model case,
since the coefficient of Hamiltonian is ±1, every arrow have
±1 weight, therefore we can replace the number on the edge
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ZXZ

XXXX

0

XXXYXZ

qXXXX = 0

X X X X

Z X Z

X X X Y X Z

(a)

XZ

ZXZ

ZX
Z

Y Y XZ

0

Y Y XY Z

ZXXX

0

ZXXYXZ

qZXXX − qY Y XZ = 0

Z X X X

Z X Z

Z X X Y X Z

Y Y X Z

Z X Z

(b)

FIG. 1. Graph representations of the commutators in the main text.
There are subgraphs of the commutators for conserved quantities of
length 4. For blue circles, all the neighbors are drawn; for the red
circles, there are some neighbors which are not critical in the ar-
gument and thus are not shown here. (a) Graph representation of
the unique possible commutator representation of the Pauli string
XXXYXZ in Eq. 11. (b) The graph with the solid line is for
the case of the only two possible commutator representations of the
Pauli string ZXXYXZ in Eq. 13. The graph with the dotted line is
for a unique commutator representation of the Pauli string Y Y XY Z
in Eq. 15.

by an arrow: if the number is positive then the arrow points
to a blue circle, and if it is negative the arrow points to a red
circle. The type of Hamiltonian string used for the commuta-
tor is written above or below the arrows, if needed. From the
definition, one can see that the whole structure of the graph,
except the numbers in the circles, is determined purely by the
Hamiltonian H and the length k.

Fig. 1 shows some examples of the commutator graph for
the conserved quantity of length k. In 1a, the commutator re-
lation 11 is represented in a graph. Red circle represents the
Pauli string XXXX , blue circle represents the Pauli string
XXXYXZ, and the label above the arrow represents the
Hamiltonian string ZXZ. Since the factor of the commutator
here is −2i and rZXZ = 1, the arrow points to the red circle.
In 1b, the commutator representations of 13 (solid line) and 15
(dotted line) are shown in a graph, which can be understood in
a very similar way. Notice the direction of the dashed arrow,
which represents the commutator relation 15. Since in the
Hamiltonian we have rXZ = −1 (see Eq.7), we need to con-
sider the commutator relation [{Y Y XZ}j ,−{XZ}j+3] =
−2i{Y Y XY Z}j to determine the weight of the edge, and
thus the factor of commutator here is −2i and the arrow points
to the red circle.

Condition of the commutator graph. — Now we need to
determine the numbers on the red circles, i.e. the coefficients
of Pauli strings in conserved quantities. Recall that the num-
bers in red circles correspond to the coefficient of the Pauli
string of C, qAl . Then [C,H] = 0 if and only if, for each blue
circle, the sum of the numbers in the neighboring red circles
multiplied by the weight of each edge must be the same with

c 0

b 0

a 0

d

0

(a) Promising paths

Y XY XZ

0

Y XY XY Z

ZXXXX

0

ZXXXYXZ

(b) Step 1

Y XY XZ

0

Y XY XY Z

ZXXXX

0

ZXXXYXZ

(c) Step 2-2

Y XY XZ

0

Y XY XY Z

ZXXXX

0

ZXXXYXZ

(d) Step 2-1

FIG. 2. (a) Promising paths. For the path in the left box, although
there are three neighboring red circles in the blue circle at the middle,
one of them, marked as d, inevitably has the number 0 because of the
promising path in the right box, this path also becomes a promising
path. (b) Step 1 of the algorithm finding a promising path in commu-
tator graph for the conserved quantity of length 5. (c) Step 2-2 of the
algorithm. (d) Step 2-1 of the algorithm.

the number in the blue circle, which is zero. Thus if this con-
dition is satisfied, then we conclude that the coefficients on
the commutator graph determines the conserved quantity C.

This graph representation helps us to understand how the
coefficients of the Pauli strings are related with each other
and thus becomes zero, shown in Eqs.11-16. In Fig. 1, it
becomes clear how the graph representation helps for the ar-
gument. Notice that although some circles and arrows which
are not essential in our argument, are omitted, every red cir-
cle neighboring the blue circles in the graphs are all drawn.
In Fig. 1a, since there is only one circle connected to the
blue circle, hence qXXXX = 0. In Fig. 1b, since two cir-
cles, ZXXX and Y Y XZ, are connected to the blue circle
with different weight on the edge(i.e. different arrow direc-
tion on the edge), we get qZXXX − qY Y XZ = 0; and since
the circle Y Y XZ is the only circle connected to the blue cir-
cle Y Y XY Z, qY Y XZ = 0. Thus qZXXX = 0.

Promising path. — In Fig. 1, we used the “path type”
graphs to show the vanishing coefficient of the Pauli strings.
To make the term “path type” more precisely, we define the
concept called promising path34. Suppose that there is a path
starting from a red circle, say A, and ending at a blue circle,
where every blue circle in the path have exactly two neigh-
boring red circles (Note that we do not count a red circle as a
neighbor when the number on it inevitably must be 0), except
the blue circle at the end which have exactly one neighboring
red circle. We call this a promising path starting A, and if
there is a promising path starting from A, then we call A has
a promising path.

Fig. 2a shows examples of promising paths starting from
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the red circles with a and d on them. Notice that, similar
to the graphs in Fig.1, we can show that d = 0, and then
a = 0 by the graph condition a + b = 0, b − c − d = b −
c = 0, and c = 0. In fact, no matter how long the promising
path of a red circle is, the number on the red circle must be
0. To prove it, we use induction. Let A be a red circle with
coefficient qA, and the promising path of A have n red circles.
Take B as a blue circle neighboring A, and C another red
circle neighboring B. Then C has a promising path with n−
1 red circles, and by induction hypothesis, the coefficient of
C, qC , must vanish. Also, since A and C are the only two
neighbors of B, qA ± qC = 0. Hence qA = 0. Since n = 1
case can be easily shown, every red circle with promising path
has vanishing coefficient. Therefore, finding a promising path
directly shows the vanishing coefficient.

Finding the promising path: Algorithm. — Now we may
ask how to find the promising path of a given red circle A. The
answer uses simple inductive steps.

Step 1: scan all the neighboring blue circles, and choose
the blue circles with only two or one neighbors.

Step 2-1: If a blue circle with only one neighbor is found,
then we conclude that the Pauli string corresponding to a red
circle A is not in a conserved quantity.

Step 2-2: If we only have the blue circles with two neigh-
bors, then choose its neighboring red circle which is not A and
mark it B.

Now repeat our process with the red circle B, mark new
red circle which is not already chosen (i.e. neither A nor B)
as C(if exists), and so on. If this process terminates somehow,
i.e. meets a blue circle with only one neighbor(Step 2-1), then
it corresponds to a promising path. For example, Figs.2b to 2d
shows how we can find the promising path of ZXXXX for
k = 5 case. In Fig.2b (Step 1), when we scan all the neighbor-
ing blue circles of ZXXXX , then there are various neighbor-
ing blue circles, but most of them have more than three neigh-
bors (marked with light colors) and only some of neighboring
blue circles of ZXXXX have exactly two neighbors(marked
with dark colors). In Fig.2c (Step 2-2), we choose one among
them representing the Pauli string ZXXXYXZ, and move
onto its another neighboring red circle, Y XY XZ. Now scan
all the neighboring blue circles of Y XY XZ (Step 1). This
gives a blue circle Y XY XY Z with only one neighbor, as in
Fig.2d (Step 2-1), hence we found a promising path.

When the algorithm fails: Exceptions. — It turns out
that in many of the Pauli strings this process terminates, and
thus they have their own promising paths and thus it reduces
the number of possible candidates for the conserved quantity.
However, there are some red circles which do not terminates
this process. We can classify them into two categories.

Exception 1. Fig. 3a shows the case when we cannot
find the neighboring blue circles with only one or two neigh-
bors, since every neighboring blue circles have more than two
neighbors; i.e., violating Step 1. In this case we cannot con-
vince that the number on the red circle must be 0. Exception 1
case occurs frequently when we try to consider the commuta-
tor representation of the Pauli string with length ≤ k, since in
this case there would be various commutator representations
where the Hamiltonian string places on the middle. Since for

00

0

(a) Exception 1

00

0

0

(b) Exception 2

00

0

ZZXZY Z

ZZXIZ

Y XZY Z

ZY ZXZZ

ZIXZZ

ZY ZXY

ZZXZZ

(c) Exception 1: example

ZXY Y Z

0 ZY XY Y Z

ZY XY Z

0 ZY Y XY Z

ZY Y XZ

0 ZY Y XY

ZY XY

0ZY XXXZ

ZXXXZ

0ZXXXY Z

Y XY Z

0Y XY Y Z

0 ZXY Y Y Z

XY Y Z

0 XY Y Y Z

(d) Exception 2: example

FIG. 3. (a) First exception when we cannot find a promising path.
Every blue neighboring circles of the red circle in the center of the
figure has ≥ 3 neighboring red circles, and thus we are not sure the
red circle in the center has a promising path. (b) Second exception
when we cannot find a promising path. Although every blue circles
have ≤ 2 neighboring red circles, we cannot find a blue circle with
1 neighboring red circle, and thus we get an endless loop. (c) An
example of Exception 1 for k = 4. (d) An example of Exception 2
for k = 4.

the Pauli strings with length > k the position of the Hamil-
tonian string in the commutator representation is on the edge
of the Pauli string, focusing on the length > k blue circled
Pauli strings is a good strategy to avoid the Exception 1 cases.
Indeed there are some Hamiltonians, including XY Z + h
model21, which do not contain Exception 1 cases when we
focus on length k + 1 blue circled Pauli strings. However
there are some models, including PXP models, which con-
tains Exception 1 errors even when we focus on length > k
blue circled Pauli strings. For example, Fig. 3c shows that
the Pauli string ZZXZZ belongs to Exception 1 for k = 5 in
PXP model, even if we scan all the length 6 blue circled Pauli
strings such as ZZXZY Z or ZY ZXZZ. However, we show
that in the PXP model these kinds of Exception 1 red circles
actually always have a promising path. More precisely, if we
remove every red circle having a promising path, then we can
see that at least one neighboring blue circle have only one or
two neighbors, hence we can still use Step 1.

Exception 2. In Fig 3b, alternating red and blue circles
form a closed loop, thus, the loop never ends, i.e. in Step
2-2 we meet a red circle that has already passed through. In
this case, we cannot determine the number on the red circle
to be 0. For example, Fig. 3d shows that the Pauli string
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ZXY Y Z is in Exception 2 for k = 5. This is a bit tricky
case since, unlike Exception 1, this Exception 2 case occurs
in every system, and for integrable systems this kind of loops
actually correspond to the conserved quantities. We show that
in the PXP model, every conserved quantity with this endless
loop-type graph representations are trivial.

Thus, if the coefficients of the Pauli strings in these two ex-
ceptional “error” cases are shown to be zero, then it is enough
to conclude that there are no nontrivial local conserved quan-
tities in the system. Our natural question is whether a certain
Pauli string has a promising path or belongs to Exception 1 or
2. In the following section, we suggest the way which makes
possible to categorize the Pauli strings, which is a very simple
and systematic and thus can possibly be generalized into any
other Hamiltonians.

Before going further, here we emphasize that this catego-
rization holds for every spin-1/2 system. For example, in [21]
we can see that every Pauli string which are not “doubling-
product operator” have zero coefficients. The Pauli strings
that are not “doubling-product operator” correspond to the
Pauli strings with promising path, and the “doubling-product
operators” correspond to the Exception 2. In this case we
do not have any operators corresponding to Exception 1 as
mentioned before, which makes the proof a bit easier. Other
various spin-1/2 models will be treated in Appendix F.

IV. CATEGORIZING THE PAULI STRINGS: PXP MODEL

Outline. — In this section, we categorize the length k Pauli
strings for the PXP model. As argued above, there are only
three possibilities for a single Pauli string: it has a promising
path, or is belonged to Exception 1 or 2. The Pauli strings
which do not start or end with Z can be simply shown that
they have a promising path: the list of them are given in the
following Theorem 1, 2, and 3(See “Simple cases” in Table
I). So all we need to do is carefully search for the Pauli strings
that begin and end with Z. All the other Pauli strings (except
some cases, which can also simply be shown to have a promis-
ing path, but are treated together with others for brevity: See
“Others” in Table I), are included in Exception 1 or Excep-
tion 2 cases; some in both(i.e. every neighboring blue circle
has more than two neighbors and we always find the endless
loop). We argue that the cases in Exception 1 occurs due
to the “unexpected” commutator representation, which will
be explained later, and we classify them into three categories
according to the position of the Hamiltonian string for these
unexpected commutator represetations: Category 1, 2, and 3.

From the definition, there is neighboring blue circles of the
red circle in Category 1 and 2 only have less than or equal to 4
neighboring red circles, while in Category 3 every neighbor-
ing blue circles have many neighboring red circles, propor-
tional to the system size. Theorem 4 first shows that we can
ignore most of the neighbors of Category 3 except two. This
greatly reduces the possibility of scanning the promising path,
and leads us to Theorem 5, showing that every Pauli strings in
Category 2 have a promising path (See “Exception 1: Cat-
egory 2” in I), and every Pauli strings in Category 3 can be

Pauli String Type Initial and Final Operators
(Length k)

Resolved by
Theorem...

Simple cases

[
X

Y

]
· · ·

[
X

Y

]
1*

Z

YZ
I

 · · ·

[
X

Y

]
2

ZX · · ·

[
X

Y

]
3

Exception 1:
Category 1

Z

[
Z

I

]
· · ·

[
Z

I

]
Z 8

Exception 1:
Category 2

ZY

[
Z

I

]
· · ·

[
X

Y

]
Z 5*

Exception 1,2:
Category 3

ZX

[
X

Y

]
· · ·

[
X

Y

]
Z 4, 5*, 6 and 7

Exception 2 ZY

[
X

Y

]
· · ·

[
X

Y

]
Z 5*, 6 and 7

Others

ZX

[
Z

I

]
· · ·

[
X

Y

]
Z

5*
Z

[
Z

I

]
· · ·

[
X

Y

]
Z

TABLE I. Pauli string types, their initial and final Pauli operator
sequences, and how they resolved(i.e. shown to have a vanishing
coefficient or gives trivial conserved quantity). If a Pauli string is
included in a single Pauli string type, then its reflected one is also in-
cluded in such a single Pauli string type. The Pauli operators written
vertically represents the possible choices in the initial or final Pauli
operator sequence. Theorem number with asterisk * means that the
proof is in the main text; the others have their proofs in appendix.

considered as Exception 2 case: i.e. we always find the end-
less loop. Focusing on Exception 2, we show that every Pauli
strings in Exception 2 are (exclusively) included in one of two
loops. In Theorem 6 and Theorem 7, we show that one of the
Pauli string in each loop, hence every Pauli string in each loop,
has a vanishing coefficient. (See “Exception 1,2: Category
3” and “Exception 2” in Table I). Finally, Theorem 8 shows
that if a conserved quantity C contains one of the Pauli strings
in Category 1, then C is trivial (See “Exception 1: Category
1” in I). This concludes our main result.

Simple cases. — We start with the simple case, which does
not start and end with Z.

Theorem 1. In the commutator graph for the conserved
quantity of length k, each Pauli string with length k that does
not start and end with Z have a promising path.

Proof. Let A1A2 · · ·Ak be a Pauli string where A1, Ak ̸=
Z. Now consider the following commutator relation.

A1 A2 · · · Ak

Z X Z

A1 A2 · · · Ak X Z

(17)

Here, Ak = Y if Ak = X , and Ak = X if Ak = Y . This
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shows the red circled Pauli string A1A2 · · ·Ak is connected
to the blue circled Pauli string A1A2 · · ·AkXZ. If there is
another red circled Pauli string connected to the blue circled
Pauli string, then the only possible form is the following:

A1 A2 A3 · · · Ak X Z

Z X Z

B1 ? ? · · · Ak X Z

(18)

This is because the blue circled Pauli string has length k +
2, and because every connected red circled Pauli string must
be written by the commutator between the blue circled Pauli
string and a Hamiltonian string35. But if we use any other
Hamiltonian string or put ZXZ on any other position, then
the resulting commutator has length ≥ k+1, thus they cannot
be length ≤ k red circled Pauli string. But since A1 ̸= Z,
B1 ̸= I and thus even the commutator in Equation 18 gives
length k + 2 Pauli string. Thus there is no other neighbor to
the blue circled Pauli string, and gives the promising path for
A1A2 · · ·Ak. □

Recall that, for k = 4, Equation 11 is a perfect example for
this Theorem.

The proof of this theorem can be easily extended into the
Pauli strings starting with ZY,ZZ, or ZI and not ending with
Z, or their reflected forms (i.e. Pauli strings ending with
ZY,ZZ, or ZI and not starting with Z).

Theorem 2. In the commutator graph for a conserved
quantity of length k, any Pauli string with length k starting
with ZY,ZZ, or ZI and not ending with Z, or their reflected
forms, have a promising path.

Proof. See Appendix B.
For the Pauli strings starting with ZX and not ending with

Z (and their reflected forms), our proof does not work; a nice
example is Equation 13. The cause of the failure is because
there are possibly two red circled Pauli strings (in the exam-
ple, ZXXX and Y Y XZ) to a given blue circled Pauli string
(in the example, ZXXYXZ). However, we can still easily
find a promising path, using slightly different strategy. Since
the basic idea is very similar with above theorems, we omit the
proof of the following Theorem and describe it in Appendix
B.

Theorem 3. In the commutator graph for a conserved quan-
tity of length k, any Pauli string with length k starting with
ZX and not ending with Z, or their reflected forms, have a
promising path.

Proof. See Appendix B.
Theorem 1, 2, and 3 shows that every Pauli string with

length k which do not start or end with Z has a promising path.
This result not only reduces the number of Pauli string candi-
dates related to a conserved quantity, if any, but also plays an
important role in the proof of the future Theorems. Notice that
the proofs of Theorem 1, 2, and 3 can be simply represented
in the form of graph, as we can see in Fig. 4.

Importance of edge. — Through the proof of Theorem 1,
2, and 3, we can observe the similarity between them. We take
the commutator between red circled Pauli string and Hamilto-
nian string, positioning Hamiltonian string on the “edge”, i.e.
left or right edge of the Pauli string. Because this process al-
ways gives the blue circled Pauli string with length > k, the

[
X

Y

]
· · ·

[
X

Y

]

0

[
X

Y

]
· · ·

[
Y

X

]
XZ

(a) Theorem 1: Proof.

Z



Y

Z

I


 · · ·

[
X

Y

]

0 Z



Y

Z

I


 · · ·

[
Y

X

]
XZ

(b) Theorem 2: Proof.

ZX · · ·AY

0 ZY X · · ·AY

ZX · · ·AX

0ZY X · · ·AX

ZYX · · ·A

0 ZY X · · ·AXZ

(c) Theorem 3: Proof.

FIG. 4. The proofs of (a) Theorem 1, (b) Theorem 2, and (c) Theorem
3. The green boxes represent Promising paths.

only possible choice is again taking the commutator between
blue circled Pauli string and Hamiltonian string, positioning
Hamiltonian string on the edge. Hence the number of can-
didate of the red circled Pauli strings neighboring the blue
circled Pauli string is very small, making us easier to find a
promising path. Indeed, in the proof of Theorem 1, 2, and 3,
this method gives at most two neighboring red circled Pauli
strings, which directly fits in the process of finding a promis-
ing path. Like this, if the two possible commutator represen-
tation of the blue circled Pauli string comes from the commu-
tator positioning Hamiltonian string one on the left and the
other on the right, then we call them “expected” commutator
representations.

For example, suppose that we are finding a promising path
starting from the Pauli string ZZY XZ for k = 5. The sim-
plest approach we can do is to commute XZ operator on the
right edge, giving the Pauli string ZZY XY Z. Since we have
already considered the commutator on the right, another “ex-
pected” commutator representations of this Pauli string should
be on the left side: indeed, we have the following relation.

Z Z Y X Z Baseline
X Z

Z Z Y X Y Z

Y Y X Y Z Expected
Z X representation

(19)

This is the possible candidate of the route of a promising path
of the Pauli string ZZY XZ: indeed, since the Pauli string
Y Y XY Z has a promising path as we have already shown in
Theorem 2, we can show that the Pauli string ZZY XZ also
has a promising path.

Putting and pulling method. — Eq.19 can be considered
as “putting” XZ operator on the right(baseline) and “pulling”
ZX operator from the left of the Pauli string(expected rep-
resentation). Because this is the basic strategy finding the
promising path of given Pauli string, we need to define it
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precisely as following. “Putting” the Hamiltonian string on
the right edge of the Pauli string means taking the commu-
tator between Hamiltonian string and the Pauli string where
the Hamiltonian string positions on the right edge and get-
ting the Pauli string longer than the original one, as we can
see in the “Baseline” commutator relation in Eq.19. “pulling”
the Hamiltonian strong from the left edge of the Pauli string
means writing down the commutator representation between
Hamiltonian string and the Pauli string where the Hamiltonian
string positions on the left edge, as we can see in the “Ex-
pected representation” commutator rperesentation in Eq. 19.
One may expect that this putting and pulling method gives at
most two commutator representations, hence for a given Pauli
string, we can try to find out a promising path of it by putting
and pulling Hamiltonian strings repeatitively.

“Unexpected” commutator representations. — How-
ever, when we investigate the Pauli strings starting and ending
with Z operators, we sometimes get “unexpected” commuta-
tor representations on the edge, which is not expected on the
putting and pulling method and hence gives more than two
neighboring red circled Pauli string to the blue circled Pauli
strings, classified as the Exception 1 cases. Since this “un-
expected” commutator representation occurs on the various
positions of the Pauli string, and because, depending on the
position of the “unexpected” commutator, the way to resolve
those exceptional cases differs, it is convenient to classify the
Exception 1 cases into a smaller category. We can divide
them into three categories, distinguished by the position of
the Hamiltonian string for the “unexpected” commutator rep-
resentations: right, left, or middle. Notice that this classifi-
cation is general, and can be applied to general cases of the
spin-1/2 Hamiltonian.

Category 1. Consider the red circled Pauli string starting
with ZY Y and ending with ZZ. Take the commutator with
Hamiltonian string XZ on the right edge, and get the blue
circled Pauli string with length k + 1. In this case, except
the “expected” commutator representation on the left edge,
there is another commutator representation on the right edge.
Indeed, we can see that

Z Y Y A4 · · · Ak−2 Z Z Baseline
X Z

Z Y Y A4 · · · Ak−2 Z Y Z

Z Y Y A4 · · · Ak−2 I Z Cat 1
Z X Z

Z Y A4 · · · Ak−2 Z Y Z Expected
Z X representation

(20)
which gives three neighboring red circled Pauli strings. Here,
a red-colored second commutator representation is an unex-
pected commutator representation with Hamiltonian string on
the right. See Fig.5a for the diagrammatic explanation. In the
graph description, we can see that while we are following the
expected promising path by putting Hamiltonian string on the
right of the Pauli string and pulling Hamiltonian string from
the left of the Pauli string, the promising path “bounce back”
by unexpected commutator representation on the right edge.

ZY A4 · · ·Ak−2ZY Z

0 ZY Y A4 · · ·Ak−2ZY Z

ZY Y A4 · · ·Ak−2ZZZY Y A4 · · ·Ak−2IZ

Category 1

Direction of expected promising path

(a) Exception 1: Category 1.

ZY A4 · · ·Ak−2ZY Z

0 ZY Y A4 · · ·Ak−2ZY Z

ZY Y A4 · · ·Ak−2ZZZY Y A4 · · ·Ak−2IZ

Category 1

Direction of expected promising path

0 ZY Y Y A4 · · ·Ak−2ZZ

ZY Y Y A4 · · ·Ak−2YZY Y Y A4 · · ·Ak−2Y

Category 2

Direction of another expected promising path

(b) Avoiding Category 1.

Y A3 · · ·Ak−2ZY Z

0 ZZA3 · · ·Ak−2ZY Z

ZZA3 · · ·Ak−2ZZ

ZZA3 · · ·Ak−2IZ

Y I · · ·Ak−2ZY Z

Category 1

Category 2

Direction of expected promising path

0

ZIA3 · · ·Ak−2ZZ

ZY ZA3 · · · IYZY ZA3 · · ·Ak−2Y

ZY ZA3 · · ·Ak−2ZZ

Category 2

Category 1

Direction of another expected promising path

(c) Impossible to avoid Category 1.

FIG. 5. (a) The diagrammatic representation of Category 1. (b) The
case when we can avoid Category 1 case. (c) The case when we
cannot avoid Category 1 case. Green boxes represent the expected
Pauli strings, and green arrows represent their directions.

Similar thing happens to the Pauli string ending with IZ.
If the Pauli string does not start with ZZ or ZI but start

with ZX or ZY , then we can avoid Category 1 case, by taking
the different direction of expected promising path: i.e. putting
Hamiltonian string ZX on the left edge and pulling Hamilto-
nian string from the right of the Pauli string. See Fig.5b for
details. In this case, although there is a different type of un-
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ZZA4 · · ·Ak−2Y Y Z

0 ZY ZA4 · · ·Ak−2Y Y Z

ZY ZA4 · · ·Ak−2Y Z

ZIA4 · · ·Ak−2ZY Z

Category 2

Direction of expected promising path

FIG. 6. The diagrammatic representation of Category 2.

expected representation (which is called Category 2 case and
will be treated later), but we do not need to consider the Cat-
egory 1 case now. On the other hand, if the Pauli string ends
with ZZ or IZ and starts with ZZ or ZI , it is impossible to
neglect the Category 1 but one should consider it. In Fig.5c,
we can see that in both direction of expected promising path,
the Category 1 case appear. Indeed, the Pauli strings in this
category are strongly related to the trivial operators defined in
Theorem 1. We will come back to analyze these Pauli strings,
starting with ZZ or ZI and ending with ZZ or IZ and now
we focus on other cases, i.e., the Pauli strings which start or
end with XZ or Y Z. In this case it is enough to treat the Pauli
strings which do not end with ZZ or IZ: For the Pauli strings
which end with ZZ or IZ and start with ZX or ZY , the log-
ics are same with the Pauli strings which start with ZZ or ZI
and end with XZ or Y Z, due to the mirror symmetry of the
Hamiltonian.

Category 2. Consider the red circled Pauli string starting
with ZY Z and ending with Z. Take the commutator with
Hamiltonian string XZ on the right edge, and get the blue
circled Pauli string with length k + 1. In this case, except the
“expected” commutator representation on the left edge, there
is another commutator representation on the left edge. Indeed,
we can see that

Z Y Z A4 · · · Ak−2 Y Z Baseline
X Z

Z Y Z A4 · · · Ak−2 Y Y Z

Z Z A4 · · · Ak−2 Y Y Z Expected
Z X representation

Z I A4 · · · Ak−2 Y Y Z Cat 2
Z X Z

(21)
which gives three neighboring red circled Pauli strings. Here,
a red-colored third commutator representation is an unex-
pected commutator representation with Hamiltonian string on
the left. See Fig.6 for the diagrammatic explanation. In the
graph description, we can see that while we are following the
expected promising path by putting Hamiltonian string on the
right of the Pauli string and pulling Hamiltonian string from
the left of the Pauli string, the promising path is “branched” by
unexpected commutator representation on the left edge. Simi-
lar thing happens to the Pauli string starting with ZY I, ZZZ,

l = k − 1

l = k

l = k − 1

l = k + 1

l = k

Y · · ·Ak−1Y Y Z

0 XA4 · · ·Ak−1Y Y Z

XA4 · · ·Ak−1Y Z

0 ZXY A4 · · ·Ak−1Y Z

ZXY A4 · · ·Ak−1Z

XX · · ·Ak−1Y Y Zl = k

XY · · ·Ak−1Y Y Zl = k

Category 3

Direction of expected promising path

FIG. 7. The diagrammatic representation of Category 3.

or ZZI (or their reflected forms).
Category 3. Consider the Pauli string starting with ZXY

and ending with Z. Take the commutator with Hamiltonian
string XZ on the right edge, and get the blue circled Pauli
string with length k+1. This Pauli string have another neigh-
boring red circled Pauli string, which has length k − 1, as we
can see below.

Z X Y A4 · · · Ak−1 Z l = k

X Z

Z X Y A4 · · · Ak−1 Y Z l = k + 1

X A4 · · · Ak−1 Y Z l = k − 1

Z X Z

(22)

In this case there are only two commutator representation, and
we have no unexpected commutator representation. The prob-
lem occurs when we try to do the same job on the length k−1
Pauli string. In this case, there are possibly a lot of neighbor-
ing red circled Pauli strings. For example,

X Y A3 A4 · · · Ak−2 Y Z l = k − 1

X Z Baseline
X Y A3 A4 · · · Ak−2 Y Y Z l = k

X ? ? · · · Ak−2 Y Y Z l = k − 1

X Z Exp. rep.
X Y ? ? · · · Ak−2 Y Y Z l = k

Z X Cat 3
X X ? ? · · · Ak−2 Y Y Z l = k

Z X Z Cat 3
...

(23)
Here, a red-colored third and fourth commutator representa-
tions (and many other possible representations that are not
shown here) are unexpected commutator representations with
Hamiltonian string in the middle. This happens because the
length of blue circled Pauli string is k, hence for the commu-
tator, the position of Hamiltonian string is not needed to be
on the edge. See Figure 7 for the diagrammatic explanation.
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In the graph description, we can see that while we are follow-
ing the expected promising path by putting Hamiltonian string
on the right of the Pauli string and pulling Hamiltonian string
from the left of the Pauli string, the promising path is “dissi-
pated” by various edges connected to the blue circle. Similar
thing happens to the Pauli string starting with ZXX .

Summary in Exception 1. — In summary, when we
take the commutator with Hamiltonian string XZ on the
right edge, Type 1 Exception occurs when the unexpected
other commutator representations are present with Hamilto-
nian strings on the (i) right edge of a Pauli string for Category
1, (ii) left edge for Category 2, and (iii) middle for Category 3.
Of course we may put the Hamiltonian string ZX on the left
edge, but categorizing this case can be simply done by mirror
reflecting Category 1, 2, and 3 above. As a result, we fully
categorized the Pauli strings which generates Type 1 excep-
tion.

Treating Category 3. — Now we show that the exceptions
in Category 3 can be well treated. Because there are too many
neighboring red circles in Category 3, treating them first make
our problem more simple. Indeed, we can show that all the
Category 3 cases can be reduced into Category 2 cases. The
proof is based on Theorem 1 to 3, which removed a number
of Pauli strings with vanishing coefficient, which is a core in
the proof of the following Theorem.

Theorem 4. In the commutator graph of the PXP model
with the conserved quantity of length k, consider a red circled
Pauli string with length k − 1 ending with Z and not starting
with Z, or their reflected forms. Then we can always find its
neighboring blue circled Pauli string, by putting the Hamilto-
nian string on the right side of the Pauli string, where all the
numbers in its neighboring red circles are 0 except at most
three red circles: the two expected representations, and the
Category 2 type unexpected representation.

Proof. See Appendix B.
We can summarize the proof of Theorem 4 as following:

It is unnecessary to consider the commutator representation
with the Hamiltonian string in the middle of the Pauli string.
We only need to consider when the Hamiltonian string is
placed on the edges. Furthermore, if we ignore the operators
ZZ · · ·ZZ, ZI · · ·ZZ, ZZ · · · IZ, or ZI · · · IZ then we can
always avoid the Category 1 cases by the argument described
in Fig.5b, and only need to treat Category 2 cases.

Treating Category 2. — Now we analyze the Category
2 case. In Fig.6, In the direction of the expected promising
path, it has “branches”. On each branch, we can still put XZ
operator on the right and pull the Hamiltonian operator from
the left. This is possible since (i) we have already figured out
that every Category 3 case can be removed and it is considered
as Category 2 cases, and (ii) putting XZ operator on the right
never creates the Category 1 case, since the right edge will
always become · · ·Y Z. Therefore the only case we need to
worry is the Exception 2 case: the loop case.

Now we return to Equation 21 with the graph representa-
tion Fig.6 . Here, we can see that the red circled Pauli string
starting with ZY Z and ending with Z is neighboring to the
blue circled Pauli string, whose other red circled neighbors
are the Pauli string starting with ZZ or ZI , and ending with

Z. As we have argued before, because they always end with
Y Z, they never fall into the Category 1. Choose one Pauli
string, say, the one starting with ZZ. By putting Hamiltonian
string XZ on the right edge, get the blue circled Pauli string
with length k + 1, and searching its red circled neighbors, we
get the following.

Z Z A4 · · · Ak−1 Y Z

X Z

Z Z A4 · · · Ak−1 Y Y Z

Y A4 · · · Ak−1 Y Y Z

Z X

Y A4 · · · Ak−1 Y Y Z

Z X Z

(24)

Here A4 = I, Z if A4 = Z, I respectively; otherwise the
last commutator representation vanishes. This shows that, for
the red circled Pauli string starting with ZZ and ending with
Z, we can find a neighboring blue circled Pauli string, whose
other red circled neighbors start with Y and end with Z and
with length k: again Category 2 case. But we have already
shown in Theorem 2 and 3 that the numbers in these red cir-
cles must be zero. Hence the only possibly nonzero red circled
neighbor of the blue circle is ZZA4 · · ·Ak−1Y Z itself, guar-
anteeing a promising path. Similarly, we can show that the red
circled Pauli string starting with ZI and ending with Z has a
neighboring blue circled Pauli string, whose other red circled
neighbors start with X and end with Z and with length k:
Category 2 case. Again the numbers in these red circles must
be zero, hence we get the promising path to the Pauli string
starting with ZI and ending with Z. These facts then, again,
directly show that the Pauli string starting with ZY Z and end-
ing with Z has a promising path.

Y · · ·Y Z Y · · ·Y Z X · · ·Y Z X · · ·Y Z

ZZA4 · · ·Ak−1Y Z ZIA4 · · ·Ak−1Y Z

ZY ZA4 · · ·Ak−1Z

0 0

0

= 0 (By Theorem 2, 3)

= 0 (By promising path)

= 0 (By promising path)

(a)

X− Y−

ZZ− ZI−

ZY Z−

(b)

FIG. 8. (a) Graph representation showing the coefficient of
ZY ZA4 · · ·Ak−1Z vanishes. The thick arrow shows the logical
direction we follow. (b) Flowchart of the left edge Pauli substring.
Each box represents the set of Pauli strings whose left edge substring
is the Pauli string inside the box. Following the arrow, we can see
that how the left edge Pauli substring changes as we keep put XZ
operator on the right and pull Hamiltonian string from the left.

Figure 8(a) shows how we showed that the Pauli string start-
ing with ZY Z and ending with Z has a promising path. No-
tice that, because we are only considering Category 2 case,
for each step the details in the middle and right edge of the
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Pauli string are not very important, and only the left edge Pauli
substrings are important. Figure 8(b) is a simplified figure,
only with the information of the left edge Pauli substring. We
start with the length k ZY Z− Pauli string, then goes into the
length k ZZ− and ZI− Pauli strings, then length k X− and
Y− Pauli strings, and we stop here, concluding all their coef-
ficients are zero based on Theorem 2 and 3. We can do this
job for every other possible left edge substring of the Pauli
strings.

As we have done above, one can determine if the Pauli
string has a promising path or not, only by tracking the left
edge. We can formalize this statement into Theorem 5, which
finally characterizes every Pauli strings with or without a
promising path.

Theorem 5. For the Pauli string not starting with ZZ or
ZI and not ending with IZ or ZZ, the followings hold:

1. If the Pauli string starts and ends with Z, and between
these Z’s there are only X or Y operators, then it is in
Type 2 Exception. More precisely, every such operator
with even number of X operators constructs a loop, and
every such operators with odd number of X operators
constructs another loop.

2. If not, then the Pauli string has a promising path.

XY− XX− Y X− Y Y−Y Z− Y I−
XZ− XI−

ZXY− ZXX− ZY X− ZY Y−

ZZ− ZI− ZY Z− ZY I−
ZXZ− ZXI−

Length −1

Length 0

Length +1

Pauli strings whose length can be k

Pauli strings whose length cannot be k
(Because of Theorem 1, 2, and 3)

FIG. 9. Flowchart of the leftmost sequences of the Pauli string. See
the Proof of Theorem 5 for details.

Proof. As we have done before, we can draw the flowchart
for every possible left edge Pauli substring of the Pauli strings,
see Figure 9. We read the figure as following. Consider a red
circled Pauli string P . Find the box including the left edge
Pauli substring of P in the Figure, then track the arrow, and
collect all the leftmost sequences in the boxes at the end of
the arrow. If the color of the arrow is red (blue) then the
length of the red colored Pauli string increases (decreases)
by 1 compared to P . Here are some examples. (i) If P is
a length k Pauli string starting with ZXZ−, then we can find
its neighboring blue circle whose other neighbors are repre-
sented by length k Pauli strings starting with ZZ− or ZI−
(ii) If P is a length k−1 Pauli string starting with Y X−, then
we can find its neighboring blue circle whose other neigh-
bors are represented by length k Pauli strings starting with
ZXY−, ZXX−, ZY X−, or ZY Y−, and so on. Notice that
the number of neighbors are not restricted; there can be no
such neighbors, or there can be more than one such neighbors.

From the definition of the flowchart, we can see the fol-
lowing: If we start from a particular box and follow the ar-
rows, and always reach the boxes including the left edge Pauli
substrings starting with X− or Y−(the dashed boxes) with
length k, then since those Pauli strings have promising paths
and hence have vanishing coefficients, each Pauli string whose
left edge Pauli substring is included in the initial box has a
promising path, by similar logic in Fig.8.

Now we scan each possibilities.
Suppose that we have a length k Pauli string starting with

ZZ− or ZI−. Following the arrows, we get length k Pauli
strings starting with X−, Y−. Hence each Pauli string start-
ing with ZZ− and ZI− has a promising path.

Suppose that we have a length k Pauli string starting with
ZXZ−, ZXI−, ZY Z−, or ZY I−. Following the arrow,
we get length k Pauli strings starting with ZZ−, ZI−. Then,
again following the arrows, we get length k Pauli strings start-
ing with X−, Y−. Hence each Pauli string starting with
ZXZ−, ZXI−, ZY Z−, or ZY I− also has a promising
path.

Now we consider a length k Pauli string starting with
ZY X− or ZY Y−. Suppose that (possibly after some self-
loop) we follow the arrow toward the box containing ZXZ−
and others. In this case, by the same logic above, we can con-
clude that the Pauli string have a promising path. This always
happens when there is Z or I operator between two Z left and
right edge operators.

Similarly, consider a length k Pauli string starting with
ZXY− or ZXX−. Suppose that we follow the arrow toward
the box containing XZ− and others, with length k−1. In this
case, by following arrow again we get length k Pauli strings
starting with ZZ−, ZI−, then by the same logic above, we
can conclude that the Pauli string have a promising path. This
always happens when there is Z or I operator between two
Z left and right edge operators. Suppose, now, that we fol-
low the arrow toward the box containing XY− and XX−,
then (possibly after some self-loop) toward the box containing
XZ− and so on. Again, by the same logic, one can conclude
that the Pauli string have a promising path, and this happens
when there is no Z or I character between two Z leftmost and
rightmost operators.

In summary, If we leave the area drawn by the green box,
then our process always terminates and gives a promising
path; it does not happens if there are only X or Y operators
between two Z operators of the length k Pauli string, showing
the statement 2. For the detailed study of the cases in the green
box, we draw another flowchart, which describes the flows in
the green box with more details.

In Figure 10, we draw the flowchart for every possible ini-
tial sequences in the green box in Figure 9. Here, we ignored
the arrows toward or from the outside of the green box, since
we already know that such flow always terminate. The charac-
ters on the arrow represents the operator which is placed just
right to the left edge substring. For example, if we want to
track the change of the left edge substring of the Pauli string
starting with ZXXY · · · , when we choose a red arrow start-
ing from ZXX− with symbol −Y− on it. Because taking the
commutator with XZ operator on the right side of the Pauli
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XY− XX− Y X− Y Y−

ZXY− ZXX− ZY X− ZY Y−

−Y− −X− −Y− −X− −Y− −Y−−X−

−X− −X−

−X−−X−

−Y−

−Y−

−Y−

−Y−

Length −1

Length 0

Length +1

AB− −C− Flow of Pauli string starting with ABC · · ·

FIG. 10. Detailed flowchart inside the green box of Figure 9. The
symbols on the arrows represents the Pauli matrices right next to the
Pauli substrings on the tail of the arrow. See the Proof of Theorem 5
for more details.

string ending with Z always produces the Pauli string ending
with Y Z, e.g.

Z A2 · · · Ak−1 Z

X Z

Z A2 · · · Ak−1 Y Z

(25)

we can conclude that every Pauli string with length k which
can endlessly follow the flow of Figure 10 starts and ends with
Z, and between these Z’s there are only X and Y operators.
Furthermore, because each step in Figure 10 do not decrease
the number of Y operators, the flow always terminates on the
endless loop of either ZY Y · · ·Y Y Z︸ ︷︷ ︸

k

or XY · · ·Y Y Z︸ ︷︷ ︸
k−1

, which

gives a Type 2 Exception. Finally, beacuse each step in Figure
10 also does not change the number of X operators modu-
lar 2, every Pauli strings in statement 1 are included in either
the loop of ZY Y · · ·Y Y Z︸ ︷︷ ︸

k

or XY · · ·Y Y Z︸ ︷︷ ︸
k−1

, which shows the

statement 1. □
By Theorem 1 − 5, we show that all the Pauli string with

length k has a vanishing coefficient, except:

1. Pauli string ZY Y · · ·Y Y Z︸ ︷︷ ︸
k

, or the other Pauli strings

with length k starts and ends with Z, and between these
Z’s there are only X or Y operators, where the number
of X operators is even;

2. The Pauli string XY · · ·Y Y Z︸ ︷︷ ︸
k−1

, or the other Pauli strings

with length k starts and ends with Z, and between these
Z’s there are only X or Y operators, where the number
of X operators is odd;

3. The Pauli strings starting with ZZ or ZI and ending
with IZ or ZZ.

Now we need to approach them case-by-case. For
ZY Y · · ·Y Y Z︸ ︷︷ ︸

k

, it is easy to show that it’s coefficient must

vanish for the translational invariant conserved quantity.

However, it get complicated when we consider the transla-
tional non-invariant conserved quantity. This can be treated
under careful calculation.

Theorem 6. The coefficient of ZY Y · · ·Y Y Z︸ ︷︷ ︸
k

vanishes.

Proof. See Appendix C.
For the Pauli strings in the loop of Pauli string

XY · · ·Y Y Z︸ ︷︷ ︸
k−1

, it is easy to show that the coefficient of

it must vanish for the translational non-invariant conserved
quantity, but not so easy for the translational invariant
conserved quantity. This can also be treated under careful
calculation.

Theorem 7. The coefficient of XY · · ·Y Y Z︸ ︷︷ ︸
k−1

vanishes.

Proof. See Appendix D.
Finally, for the Pauli strings starting with ZZ or ZI and not

ending with IZ or ZZ, it is actually impossible to show that
the coefficients of these Pauli strings are vanishing. However,
we still can show that every conserved quantity containing
these Pauli strings must be trivial.

Theorem 8. Let C be a length k conserved quantity of the
PXP model, and C contains the Pauli string with length k,
starting with ZZ or ZI and ending with IZ or ZZ. Then C
is trivial.

Proof. See Appendix E.
From Theorem 1− 8, we fully scanned all the Pauli strings,

showing that every Pauli string have vanishing coefficient, or
become a trivial conserved quantity. Hence we proved that
there are no nontrivial conserved quantities of the PXP model.

V. DISCUSSION

In this work, we proved that there are no nontrivial local
conserved quantities of the PXP Hamiltonian, the theoretical
limit of Rydberg atom chain model showing quantum many-
body scar behavior. So far, it has been considered that the
PXP model might be non-integrable based on numerical en-
ergy level statistics, but the possibility of the existence of the
conserved quantity of PXP model which controls the dynam-
ics of the system has not been removed in a rigorous manner.
Our work explicitly proves such a conjecture and shows that
the PXP model is indeed a non-integrable system without hav-
ing any local conserved quantities.

Our graph theoretical approach to the proof can be widely
applied to many other spin-1/2 models to show their non-
integrability and to sort out what kind of local conserved
quantities, if any, exist. One can apply our approach to the
Majumdar-Ghosh model or to the extended Heisenberg model
with further neighbor interactions, which we leave as interest-
ing future work.

Our work classifies the Exception 1 cases perfectly, which
suggests a systematic way to find the promising path of the
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given Pauli string, showing that the coefficient vanishes. How-
ever, the investigation of the Exception 2 case, the loop-type
graph, is still a bit case-by-case. In Appendix F, we suggest
there is a universal approach to the loop-type graph, which
mimics the promising path method we suggested. We con-
firmed that this approach can be applied to various noninte-
grable models, and hence expect that this universal treatment
of the loop-type graph can be generalized. We also expect that
there is another general approach using the cohomology the-
ory, which counts the number of nontrivial loop structure in
the graph36. By well defining the coboundary map and apply-
ing the cohomology theory, we expect that we can remove the
promising paths efficiently and classify the loops which have
nonvanishing or vanishing coefficients.

The approach to the spin-1/2 systems in our document
can also be used to prove the non-integrability of the higher
spin models: e.g. the AKLT model, the spin-1 version of
the Majumdar-Ghosh model.37 We also point out that the ap-
proach to the spin-1 models has an importance in the aspects
of QMBS. Although we have shown the lack of conserved
quantity in the PXP model, this does not confirm that every
QMBS model has no conserved quantities. Furthermore, since
the PXP model does not show a perfect revival24, showing the
amount of conserved quantity in QMBS model with perfect
revival is crucial. In this regard, since the spin-1 XY -model
is an example of QMBS model with a perfect revival30, ex-
ploring conserved quantities of the spin-1 XY -model could
give us another point of view for the QMBS systems.
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Appendix A: For the translationally non-invariant conserved
quantity

In the main text, we just excluded the possibility of exis-
tence of translational non-invariant local conserved quantity.
In this section, we show that we can also remove this possibil-
ity rigorously. This argument follows the21.

First, notice that when we show Theorem 1, 2, 3, 4, 5-2, and
8, we do not need the translational invariance. In these argu-
ments, if we ignore the translational invariance and mark the
position of each Pauli string exactly, then we get exactly same
result. We can say this holds because the proof of Theorem
1, 2, 3, 4, 5-2 relies on finding the promising path, while the
proof of Theorem 8 just relates the Pauli strings positioning
on the same site. Only the proof of Theorem 5-1, 6, 7 needs
to be cared, since it creates a loop which makes the argument
strongly dependent on the position of the Pauli strings.

Notice that the argument above is quite general, not hold-
ing just for the PXP model. Hence, we may freely ignore the

translational invariance when we try to find out the promis-
ing path. The only time we need to take care of the transla-
tional non-invariant conserved quantity is when we treat the
Pauli strings which create a loop, i.e. Exception 2 type Pauli
strings.

Even for the Theorem 5-1, 6, 7 cases, with a delicate touch,
it is possible to treat the translational non-invariant conserved
quantity. Suppose that there is a translational non-invariant
local quantity C, which is a length k quantity with k > 3.
Denote T (j) as the translational shifting operator by distance
j. Then we may define

C0 :=

L∑

j=1

T (−j)CT (j). (A1)

We can see directly that C0 is a translational invariant local
quantity. However, we cannot exclude the possibility that C0

becomes a trivial conserved quantity, such as H, I, 0, or satis-
fying C0V = 0. For these cases, we need some care.

First, because we can freely use Theorem 1, 2, 3, 4, 5-2 and
8, the only possible length k Pauli strings in C is the Pauli
strings starting and ending with Z, and between them there
are only X or Y operators. Now suppose that C0 is a length
k operator, then since [C0, H] = 0, the sum of length k Pauli
strings in C0 must be written in the form of QQ · · ·QQ. How-
ever, since C does not have a Pauli string of type ZZ · · ·ZZ,
this is impossible. Hence we may assume that C0 is a length
less-than-k − 1 operator. In this case, define the following
quantities:

Ca =

m∑

j=1

e2πiaj/mT (−j)CT (j) (A2)

where a = 1, 2, · · · ,m − 1, and m is a smallest positive in-
teger satisfying T−mCTm = C. Because C is a length k

operator, and mC = C0 +
∑m−1

a=1 Ca, one of Ca operator
must be a length k operator. We call it C. Thus, if we scan
a = 0, · · · ,m− 1, then at least one of them is a length k op-
erator, and we investigate the coefficients of it. The details for
PXP model is in C and D.

Appendix B: Proof of the Theorem 2, 3, and 4

In the main text, we skipped the Proof of Theorem 2, 3, and
4. Here we prove them rigorously.

Theorem 2. In the commutator graph for the conserved
quantity of length k, each Pauli strings with length k starting
with ZY,ZZ, or ZI and not ending with Z, or their reflected
forms, have a promising path.

Proof. The proof is very similar with Theorem 2. Let
ZA2 · · ·Ak be a Pauli string where A2 ̸= X and Ak ̸= Z.
Now consider the following commutator relation.

Z A2 · · · Ak

Z X Z

Z A2 · · · Ak X Z

(B1)



14

Here, Ak = Y if Ak = X , and Ak = X if Ak = Y . This
shows the red circled Pauli string ZA2 · · ·Ak is connected
to the blue circled Pauli string ZA2 · · ·AkXZ. If there is
another red circled Pauli string connected to the blue circled
Pauli string, then the only possible form is the following:

Z A2 A3 · · · Ak X Z

Z X Z

B2 ? · · · Ak X Z

(B2)

But because A2 ̸= X , B2 ̸= I and thus even the commutator
in Equation B2 gives length k + 1 Pauli string. Thus there is
no other neighbor to the blue circled Pauli string, and gives
the promising path for ZA2 · · ·Ak. □

Theorem 3. In the commutator graph for the conserved
quantity of length k, each Pauli strings with length k starting
with ZX and not ending with Z, or their reflected forms, have
a promising path.

Proof. Consider a Pauli string ZXA3 · · ·Ak with Ak ̸= Z,
and take the following commutator relation.

Z X A3 · · · Ak

Z X

Z Y X A3 · · · Ak

(B3)

Thus the red circled Pauli string ZXA3 · · ·Ak and the blue
circled Pauli string ZY XA3 · · ·Ak are connected. Becuase
the blue circled Pauli string has length k + 1, if there is an-
other red circled Pauli string connected to the blue circled
Pauli string, the only possible form is the following38:

Z Y X A3 · · · Ak−2 Ak−1 Ak

Z X

Z Y X A3 · · · Ak−2 Bk Bk+1

(B4)

If Ak = Y , then Bk+1 = Z ̸= I and thus the commutator
in Equation B4 gives length k + 1 Pauli string. Thus there is
no other neighbor to the blue circled Pauli string, and gives
the promising path for ZXA3 · · ·Ak−1Y .

If Ak = X , then Bk+1 = I and thus the commutator in
Equation B4 gives length k Pauli string if Ak−1 = X or Y 39.
In this case, Bk = X or Y , and there are two red neighbors,
ZXA3 · · ·Ak and ZY XA3 · · ·Ak−2Bk, to the blue circled
Pauli string ZY XA3 · · ·Ak−1Ak. This is Step 2-2 in the pro-
cess of finding a promising path. Now we repeat the process
and consider the following commutator relation.

Z Y X A3 · · · Ak−2 Bk

Z X Z

Z Y X A3 · · · Ak−2 Ak−1 X Z

(B5)

Equation B5 gives the blue circled Pauli string with length
k+2, which has only one neighboring red circled Pauli string
since the following commutator

Z Y X A3 · · · Ak−2 Ak−1 X Z

Z X Z (B6)

vanishes. This is the Step 2-1 in the process of find-
ing a promising path, which terminates and gives us a
promising path. Hence we found the promising path of
ZXA3 · · ·Ak−1X . □

Theorem 4. In the commutator graph for the conserved
quantity of length k, consider a red circled Pauli string with
length k − 1 ending with Z and not starting with Z, or their
reflected form. Then we can always find its neighboring blue
circled Pauli string, by putting the Hamiltonian string on the
right side of Pauli string, where all the numbers in its neigh-
boring red circles are 0 except at most three red circles: the
baseline, the expected representation, and the Category 2 type
unexpected representation.

Proof. First consider the Pauli string XA2 · · ·Ak−2Z, and
take the following commutator relation.

X A2 · · · Ak−2 Z l = k − 1

X Z

X A2 · · · Ak−2 Y Z l = k

(B7)

Now suppose that there is a commutator representation of
XA3 · · ·Ak−2Y Z, where the position of Hamiltonian string
is in the middle of the Pauli string. In that case, the leftmost
character X will not be changed, and thus we will get, for
example, the following commutator relation.

X A2 · · · ? ? ? · · · Ak−2 Y Z l = k

Z X Z

X A2 · · · ? ? ? · · · Ak−2 Y Z l = k

(B8)

But Theorem 2 says that the coefficient of XA2 · · ·Ak−2Y Z
is zero. Since this is true unless the Hamiltonian string
changes the leftmost character X to Z or I , the only possi-
ble commutator relation is the following.

X A2 · · · Ak−2 Y Z l = k

X Z

A2 · · · Ak−2 Y Z l = k − 1

(B9)

This shows that for the blue circled length k Pauli string
XA2 · · ·Ak−2Y Z, there are at most two neighboring red cir-
cles: these are the expected commutator representations.

For the Pauli string Y A2 · · ·Ak−2Z, the basic logic is sim-
ilar, but there are possibly two more commutator relations
which give the same blue circled Pauli string:

Y A2 · · · Ak−2 Z l = k − 1

X Z

Y A2 · · · Ak−2 Y Z l = k

Z A2 · · · Ak−2 Y Z l = k

X Z

Z A2 · · · Ak−2 Y Z l = k

X

(B10)

This shows that for the blue circled length k Pauli string
Y A2 · · ·Ak−2Y Z, there are at most three neighboring red cir-
cles: the last one is the unexpected commutator representa-
tion. This shows our statement. □
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Appendix C: Proof of Theorem 6

Theorem 6. The coefficient of ZY Y · · ·Y Y Z︸ ︷︷ ︸
k

vanishes.

Proof. Let C = Ca be a length k operator, including
ZY Y · · ·Y Y Z. Because

[{ZY Y · · ·Y Y Z}1,{XZ}k]
= [{ZY Y · · ·Y Y Z}2, {ZX}1] (C1)

and these are the only possible commutator represen-
tations, we have q{ZY Y ···Y Y Z}1

+ q{ZY Y ···Y Y Z}2
=

q{ZY Y ···Y Y Z}1
+ e2πia/mq{ZY Y ···Y Y Z}1

= 0, and thus we
can conclude qZY Y ···Y Y Z = 0 when a/m ̸= 1/2. This means
that we need to treat the case specially when the operator C
has an eigenvalue −1 on translation operator, i.e. “transla-
tional non-invariant case”, and contains ZY Y · · ·Y Y Z oper-
ator. Because k = 7 case contains all the essences, we here
treat k = 7 case only.

Before going further, we first notice that because we are fo-
cusing on the operator C with translation eigenvalue −1, if
{ZY Y Z}1 is in C with coefficient q, then {ZY Y Z}2 has co-
efficient −q. To distinguish these two coefficients, we write
the subscript 1/2 to the right of the Pauli string, each means
the rightmost Pauli matrix acts on the odd/even site of the
chain. Now first, consider the commutator representation of
ZY ZY Y Y Z1. Except considering the Pauli strings which
are shown to be have the nonzero coefficient, we get the fol-
lowing relation:

qZXYXY Y Z1 + qZIY Y Y Z1

− qZZY Y Y Z1 − qZY ZY Y Z2 − qZY Y Y Y Y Z1 = 0. (C2)

Similarly, we can consider the commutator representation of
ZY Y ZY Y Z1 and ZY Y Y ZY Z1, and get the following rela-
tions:

qZYXYXY Z1

− qZY ZY Y Z1
− qZY Y ZY Z2

− qZY Y Y Y Y Z1
= 0 (C3)

qZY Y Y IZ2
+ qZY Y XYXZ1

− qZY Y ZY Z1 − qZY Y Y ZZ2 − qZY Y Y Y Y Z1 = 0 (C4)

Also, we consider the commutator representation of
ZY IY Y Y Z1, ZY Y IY Y Z1, and ZY Y Y IY Z1, giving

qZZY Y Y Z1
+ qZXXY Y Y Z1

− qZIY Y Y Z1
− qZY IY Y Z2

+ qZYXXY Y Z1
= 0 (C5)

qZYXXY Y Z1

− qZY IY Y Z1 − qZY Y IY Z2 + qZY Y XXY Z1 = 0 (C6)

qZY Y Y ZZ2
+ qZY Y XXY Z1

− qZY Y IY Z1
− qZY Y Y IZ2

+ qZY Y Y XXZ1
= 0 (C7)

However, from the relation qZXXY Y Y Z1 = qZYXXY Y Z2 =
qZY Y XXY Z1 = qZY Y Y XXZ2 by repetitively taking a com-
mutator with ZX operator on left and removing XZ operator
from right, Eq. C5, C6 and C7 gives

qZZY Y Y Z1 − qZIY Y Y Z1 − qZY IY Y Z2 = 0 (C8)

−qZY IY Y Z1 − qZY Y IY Z2 = 0 (C9)

qZY Y Y ZZ2 − qZY Y IY Z1 − qZY Y Y IZ2 = 0 (C10)

Adding Eq. C8, C9 and C10 gives

qZZY Y Y Z1

− qZIY Y Y Z1 − qZY Y Y IZ2 + qZY Y Y ZZ2 = 0. (C11)

Now, adding Eq. C2, C3, C4, and C11 gives

qZXYXY Y Z1 + qZYXYXY Z1 + qZY Y XYXZ1

− 3qZY Y Y Y Y Z1
= 0 (C12)

In this case, notice that qZXYXY Y Z1
= qZYXYXY Z2

=
qZY Y XYXZ1

= q by repetitively taking a commutator with
ZX operator on left and removing XZ operator from right.
Then we get

q − 3qZY Y Y Y Y Z1 = 0 (C13)

Now for the relation between q and qZY Y Y Y Y Z1 , by find-
ing the path, we can show that q = qZXYXY Y Z1 =
−qXXY Y Y Z2 = −qY Y Y Y Y Z1 = −qZY Y Y Y Y Z2 =
qZY Y Y Y Y Z1 . Hence Eq. C13 gives

2qZY Y Y Y Y Z1 = 0 (C14)

and thus qZY Y Y Y Y Z1 = 0, as desired. □

Appendix D: Proof of Theorem 7

Theorem 7. The coefficient of XY · · ·Y Y Z︸ ︷︷ ︸
k−1

vanishes.

Proof. It is enough to show that qZXY ···Y Y Z = 0. Let
C = Ca be a length k operator, including ZXY · · ·Y Y Z.
Because

[{ZXY · · ·Y Y Z}1, {XZ}k]
= −[{XY · · ·Y Y Z}3, {ZXZ}1]

[{XY · · ·Y Y Z}3, {XZ}k+1]

= −[{XY · · ·Y Y Z}4, {XZ}3]
[{ZXY · · ·Y Y Z}2, {XZ}k+1]

= −[{XY · · ·Y Y Z}4, {ZXZ}2]

and these are the only possible commutator represen-
tations, we have q{ZXY ···Y Y Z}1

− q{ZXY ···Y Y Z}2
=
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q{ZXY ···Y Y Z}1
− e2πia/mq{ZXY ···Y Y Z}1

= 0, we can con-
clude qZY Y ···Y Y Z = 0 when a/m ̸= 0. This means that we
need to treat the case specially when the operator C has an
eigenvalue 1 on translation operator, i.e. “translational invari-
ant case”, and contains ZXY · · ·Y Y Z operator.

For k = 4 case, we have the following.

Z X Y Z

X

Z X Z Z

Z X Y

X Z

Z X Y

Z X

Z Y X Y

Z Y X Z

X

Z Y X Z

X Z

Z Y X Y Z

Z X Y Z

Z X
(D1)

Eq. D1 shows the possible commutator representations of
the Pauli strings ZXZZ, ZY XY , and ZY XY Z. Here we
ignored the commutator representations including the Pauli
string with vanishing coefficients. Each relations show

qZXY Z − qZXY = 0, (D2)
qZXY − qZYXZ = 0, (D3)

qZYXZ + qZXY Z = 0. (D4)

Adding Eq. D2, Eq. D3, and Eq. D4 gives qZXY Z = 0,
which is our desired result.

Now let k > 4. We first write down the following Lemmata.
Lemma D1. For every Pauli strings in Exception 2, the

relation between their coefficients are determined as the fol-
lowing: if we add all of the Pauli strings, it is proportional
to the real part of ZXQXPXQ · · ·XPXQZ if k is odd, and
the imaginary part of ZXQXPXQ · · ·XPZ if k is even. For
example, for k = 5, because the real part of ZXQXPXQZ
is ZXY Y Z − ZY XY Z + ZY Y XZ + ZXXXZ, we get
qZXY Y Z = −qZYXY Z = qZY Y XZ = qZXXXZ . This can
be shown by following the flowchart in 10 and tracking the
sign of the coefficient.

Lemma D2. Suppose that a Pauli string with length k − 1
can be achieved by removing single Z operator from a Pauli
string in the loop of XY · · ·Y Z. Then the summation be-
tween the coefficients of these two Pauli strings vanish. For
example, for k = 5, qZXY Y + qZXY Y Z = 0. This also can
be shown by following the flowchart in 10.

Lemma D3. Every length k − 1 Pauli strings starting with
X , ending with Z, and containing I or Z in the middle has
vanishing coefficient. For example, for k = 5, qXIY Z =
0. This can be directly shown by following the flowchart in
Fig.9.

Lemma D4. The coefficients of the length k Pauli strings
ZZ · · ·ZZ and ZZ · · · IZ, where · · · represents arbitrary
same Pauli string on each, are equal. For example, for k = 5,
qZZXZZ = qZZXIZ . The proof of this statement is also
shown in Appendix E.

Now we can show our desired result. Let qZXY · · ·Y Z︸ ︷︷ ︸
k

=

q. First, consider the commutator representation of the opera-
tor ZY XY · · ·Y ZZ︸ ︷︷ ︸

k

, where · · · represents repeating Y oper-

ators. This gives

qZXY · · ·Y ZZ︸ ︷︷ ︸
k−1

− qZY XY · · ·Y Y︸ ︷︷ ︸
k−1

+ qZY XY · · ·Y Y Z︸ ︷︷ ︸
k

− qZZXY · · ·Y ZZ︸ ︷︷ ︸
k

= 0.

By Lemma D1 and Lemma D2, we can write this as

qZXY · · ·Y ZZ︸ ︷︷ ︸
k−1

− qZZXY · · ·Y ZZ︸ ︷︷ ︸
k

= 2q. (D5)

Again, by the commutator representation of the operator
ZY XY · · ·Y IZ︸ ︷︷ ︸

k

, we get

qZY XY · · ·Y XX︸ ︷︷ ︸
k−1

− qZY XY · · ·Y XXZ︸ ︷︷ ︸
k

+ qZXY · · ·Y IZ︸ ︷︷ ︸
k−1

− qZZXY · · ·Y IZ︸ ︷︷ ︸
k

= 0

and by Lemma D1 and Lemma D2, we can write this as

qZXY · · ·Y IZ︸ ︷︷ ︸
k−1

− qZZXY · · ·Y IZ︸ ︷︷ ︸
k

= −2q. (D6)

Considering Eq. D5 minus Eq. D6, and using Lemma D4,
we get

qZXY · · ·Y ZZ︸ ︷︷ ︸
k−1

− qZXY · · ·Y IZ︸ ︷︷ ︸
k−1

= 4q. (D7)

Now consider the commutator representation of
ZXY · · ·Y ZY Z︸ ︷︷ ︸

k

, then we get

qZXY · · ·Y ZZ︸ ︷︷ ︸
k−1

− qZXY · · ·Y IZ︸ ︷︷ ︸
k−1

− qZXY · · ·Y XY XZ︸ ︷︷ ︸
k

+ qZXY · · ·Y Z︸ ︷︷ ︸
k

+ qXY · · ·Y ZY Z︸ ︷︷ ︸
k−2

= 0.

Using Eq. D7 and Lemma D1, we get

qXY · · ·Y ZY Z︸ ︷︷ ︸
k−2

= −6q. (D8)

Now consider the commutator representation of
X Y · · ·Y︸ ︷︷ ︸

a

Z Y · · ·Y︸ ︷︷ ︸
b

Z, where a + b + 3 = k − 1. Us-

ing Lemma D3, we get

qXY · · ·Y Z︸ ︷︷ ︸
k−1

− qX Y · · ·Y︸ ︷︷ ︸
a−1

XYX Y · · ·Y︸ ︷︷ ︸
b−1

Z

− qX Y · · ·Y︸ ︷︷ ︸
a−1

Z Y · · ·Y︸ ︷︷ ︸
b

Z + qX Y · · ·Y︸ ︷︷ ︸
a

Z Y · · ·Y︸ ︷︷ ︸
b−1

Z = 0
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and using Lemma D1, we get

qX Y · · ·Y︸ ︷︷ ︸
a−1

Z Y · · ·Y︸ ︷︷ ︸
b

Z = qX Y · · ·Y︸ ︷︷ ︸
a

Z Y · · ·Y︸ ︷︷ ︸
b−1

Z−2q. (D9)

Hence, repetitively using D9 to D8, we get

qXZY · · ·Y Z︸ ︷︷ ︸
k−2

= (6− 2k)q. (D10)

Finally, using the commutator representation of XZY · · ·Y Z︸ ︷︷ ︸
k−1

with Lemma D3, we get

qY Y XY · · ·Y Z︸ ︷︷ ︸
k−1

+ qXY · · ·Y Z︸ ︷︷ ︸
k−1

+ qXZY · · ·Y Z︸ ︷︷ ︸
k−2

= 0,

(D11)
or, using Lemma D1 and D10,

(4− 2k)q = 0. (D12)

Since k > 3, q = 0. □

Appendix E: Proof of Theorem 8

Theorem 6. Let C be a length k conserved quantity of the
PXP model, and Q contains the Pauli string with length k,
starting with ZZ or ZI and ending with IZ or ZZ. Then Q
is trivial.

Proof. Consider Equation 20. Here, we can see that the
Pauli strings in last two commutator, Y A3 · · ·Ak−2ZY Z and
Y ? · · ·Ak−2ZY Z, has vanishing coefficient, due to Theorem
2. Therefore we get

qZZA3···Ak−2ZZ − qZZA3···Ak−2IZ = 0. (E1)

Similarly we can show that

qZIA3···Ak−2ZZ − qZIA3···Ak−2IZ = 0, (E2)
qZZA3···Ak−2ZZ − qZIA3···Ak−2ZZ = 0, (E3)
qZZA3···Ak−2IZ − qZIA3···Ak−2IZ = 0. (E4)

(E5)

Thus, if we set q = qZZA3···Ak−2ZZ , then we get

qZZA3···Ak−2ZZZZA3 · · ·Ak−2ZZ

+ qZIA3···Ak−2ZZZIA3 · · ·Ak−2ZZ

+ qZZA3···Ak−2IZZZA3 · · ·Ak−2IZ

+ qZIA3···Ak−2IZZZA3 · · ·Ak−2IZ

=q(ZZA3 · · ·Ak−2ZZ + ZIA3 · · ·Ak−2ZZ

+ ZZA3 · · ·Ak−2IZ + ZIA3 · · ·Ak−2IZ)

=qZQA3 · · ·Ak−2QZ. (E6)

Now since Z = 2Q− I , we have

ZQ · · ·QZ = 4QQ · · ·QQ− 2QQ · · ·QI

− 2IQ · · ·QQ+ IQ · · ·QI. (E7)

But in this case, the first three terms are trivial terms.
Now we use the induction. We can easily show that every

k-conserved quantity for k ≤ 3 is trivial, by checking all the
possible Pauli strings. Let k ≥ 4 and let C be the nontriv-
ial length k conserved quantity of the PXP Hamiltonian. By
Theorem 1 to 5, the only possible Pauli strings with length k
which can be included in Q is the Pauli strings ZZ · · ·ZZ,
ZI · · ·ZZ, ZZ · · · IZ, and ZI · · · IZ. As argued above, we
can say that all of them have the same coefficient q. Then
define

C ′ = C − 4qQQ · · ·QQ. (E8)

Then we can see that C ′ is a length k − 1 conserved quan-
tity, and since it is the difference between nontrivial and triv-
ial operators, it is a nontrivial operator. However due to the
induction hypothesis, C ′ is a trivial conserved quantity, con-
tradiction. Hence C is a trivial quantity.

Appendix F: Showing non-integrability in other spin-1/2 models

In main text, we show that the PXP model have no nontriv-
ial conserved quantity, using the graph theoretical approach.
This approach is simple and strong so that it can be used in
various spin-1/2 models. In this appendix, we show that the
graph theoretical approach can be used to show the noninte-
grability of XY Z model with magnetic field and mixed-field
Ising chain model, which are shown before by direct calcula-
tion.

XY ZZX

0

XY ZZZY ZZZZY

0

ZZZZXZ

JY JX JZ

0

0

JY

−JX

JY−JX

Y ZZZX Y ZZZZY

XZZZZX XZZZY

FIG. 11. The graph visualisation showing the length k = 5 Pauli
string which is not a doubling-product operator has vanishing coeffi-
cient, while the doubling-product operator is included in ”Exception
2” case in the main text.

For the XY Z model with magnetic field21, the proof has
been separated into two parts. First, it claims that every length
k Pauli strings which are not doubling-product operators have
vanishing coefficient. Second, it claims that every doubling-
product operators, which have linearly related coefficients,
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also have vanishing coefficient. Figure 11 shows that this
fact can be visualized by using the subgraph of commutator
graph. The graph above shows the promising path of the Pauli
string XY ZZX , which is not a doubling-product operator.
The small coefficients JX , JY , and JZ above the edge is the
coefficient of connected red circle. The graph below shows
the loop containing the Pauli strings Y ZZZX = Y XY X
and XZZZY = XYXY , which are both doubling-product
operators.

Before going further, we introduce some modifications we
can do on the commutator graph, which generates a new graph
with completely same series of linear equations. This basi-
cally follows from the basic algebraic calculations on linear
equations, as we can see below.

Figure 12 shows the modifications. First diagram corre-
sponds to the situation changing the equation ax+ by + cz −
dw = 0 to −2ax− 2by− 2cz+2dw = 0 by multiplying 2 on
both side; second diagram corresponds to the situation chang-
ing the parameter A into 2A. In the third diagram, the blue
circle in the green box must have only two neighboring red
circles, and then it corresponds to the situation when we have
equation −bx+ by = 0 then x = y so we can identify two red
circles. Fourth diagram corresponds to the situation with two
equations ax−by+cz+mt = 0 and by+dw+nt = 0, which
reduces into the single equation ax+cz+dw+(m+n)t = 0.
The fifth diagram deletes the vanishing coefficient, which is
equivalent to the ”promising path” argument in the main text.
All these modifications are simple and complete to solve the
serial linear equations, hence we may say that the modifica-
tions in Figure 12 is a complete method finding out the con-
served quantity.

Using this method, we can argue the linear relations be-
tween coefficients of doubling-product operators. Figure 13
shows the result. First, by scaling the doubling-product op-
erators by appropriate coefficients, change the edge coeffi-
cients so that every two edges on a blue circle have same ab-
solute values but different signs. More precisely, scale the
doubling-product operators as following: if X,Y, and Z ap-
pears nX , nY , and nZ times in doubling-product form respec-
tively, then scale it by dividing with JnX

X JnY

Y JnZ

Z , and if there
are odd number of XZ, ZY , or Y X pairs in the doubling-
product form, multiply −1. This modification of graph makes
every blue circles in Figure 13 can be removed by the third
diagram in Figure 12, which gives a single red circle.

Now we have decided the coefficients every length k Pauli
strings, which however does not confirm the vanishing coef-
ficient. To do this, we need to tackle the length k − 1 Pauli
strings. Notice that the commutator between length k−1 Pauli
string and Hamiltonian might become length k Pauli string,
which can be also represented by the commutator between
length k Pauli string and Hamiltonian, hence this procedure
must include the length k Pauli strings also. Now we define
the concept of quasi-promising path: if we erase a single ver-
tex, then it becomes a promising path. Although the existence
of a quasi-promising path do not implies the vanishing co-
efficient, the existence of two quasi-promising paths implies
the vanishing coefficient: we say it a quasi-double-promising
path(QDP path). The figure above in Figure 14 shows an ex-

0
b−d

a

c

Homogeneous

0
kb−kd

ka

kc

A 00

0

0

b−d

a

c

Scaling of variable

k 6= 0
kA 00

0

0

b/k−d/k

a/k

c/k

0 0

0

0

b−b Reducing # of variables

EXACTLY 2 neighbors
0

0

0

0 0

0

0

b−b

m n

Reducing # of equations

0

m + n

0

0

0

0

0

Deleting vanishing coefficient

”Promising path”

0

0

FIG. 12. The graph modifications we can do on the commutator
graph. First and second diagrams change the coefficients of the equa-
tions; third, fourth, and fifth diagrams reduces the number of param-
eters or equations.

ample of QDP path in XY Z + h model, where the ignoring
red circle is a circle representing doubling-product operators.
In this case, if we repetitively use the fourth figure in Figure
12(and the first figure in Figure 12 if needed, but not in this
case), we get a simple subgraph with a blue circle which has
only one neighboring red circle: a doubling-product operator.
If the edge coefficient hJ (k−2)/2

X J
(k−4)/2
Y J2

Z(JX−JY )(k+2)
is nonzero(which is true in the setup), then we found the
promising path, and showed every coefficients vanish.

From above argument, one can directly show that if we
have a QDP path, then either the simplified graph have van-
ishing edge coefficient(in this case, the linear combination of
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0

0 0 0 0 0

−JX

JY

JY−JX −JZ JY JX −JX JY JY JZ JX

Y XY X YXYXY

XYXYX XYXY

ZXYXY XZXYX YXZXY ZY XZX

ZXYX XZXY Y XZX ZYXZ

Scaling of variables

0

0 0 0 0 0
/J2

XJ
2
Y

/(−J2
XJ

2
Y ) /(−J2

XJY JZ) /(−J2
XJY JZ) /J2

XJY JZ /(−JXJY J
2
Z)J3

XJ
2
Y

J2
XJ

3
Y

−J2
XJ

3
Y−J3

XJ
2
Y J2

XJ
2
Y JZ −J2

XJ
2
Y JZ −J3

XJY JZ J3
XJY JZ −J2

XJ
2
Y JZ J2

XJ
2
Y JZ J2

XJY J
2
Z −J2

XJY J
2
Z

Y XY X YXYXY

XYXYX XYXY

ZXYXY XZXYX YXZXY ZY XZX

ZXYX XZXY Y XZX ZYXZ

Reducing # of variables

qY XY X

J2
XJ

2
Y

=
qXYXY

−J2
XJ

2
Y

=
qZXYX

−J2
XJY JZ

=
qXZXY

−J2
XJY JZ

=
qY XZX

J2
XJY JZ

=
qZY XZ

−JXJY J2
Z

FIG. 13. Showing every doubling-product operators have same coef-
ficient, with appropriate scaling. At the first step, the modification in
the second figure of 12 is used. At the second step, the modification
in the third figure of 12 is used.

0 0 0 0

Z

|Y ZXY · · ·Y XZX

= X
Z

|ZXY · · ·Y XZX

Z

|XY ZXY · · ·Y XZ

= Y X
Z

|ZXY · · ·Y XZ

ZXY · · ·Y XZ
Z

|Y X

= ZXY · · ·Y XZXY
Z

|

Y ZXY · · ·Y XZ
Z

|Y

= Y ZXY · · ·Y XZX
Z

|

Y ZXY · · ·Y XZXY

(−1)(k−4)/2J (k−2)/2
X J

(k−2)/2
Y J2

Z

=
XZXY · · ·Y XZXY

(−1)(k−2)/2Jk/2
X J

(k−4)/2
Y J2

Z

= · · ·

Reducing # of variables

Y ZXY · · ·Y XZXY

(−1)(k−4)/2J (k−2)/2
X J

(k−2)/2
Y J2

Z

=
XZXY · · ·Y XZXY

(−1)(k−2)/2Jk/2
X J

(k−4)/2
Y J2

Z

= · · ·

0

hJ
(k−2)/2
X J

(k−4)/2
Y J2

Z(JX − JY )(k + 2)

FIG. 14. First figure shows the “quasi-double-promising path” of
k−1 Pauli strings: two boxes represents two “quasi-promising paths”
constructing a quasi-double-promising path. Using the fourth figure
in Figure 12, we get the subgraph with blue circle having only one
neighboring red circle, with non-zero edge coefficient(when h ̸= 0
and JX ̸= JY with k ≥ 6). This shows the coefficients of every
doubling-product operators vanish.

every length k Pauli strings might be included in a conserved
quantity, which is the case with h = 0: see15), or the system
have no conserved quantity. Notice that this “quasi-double-
promising path” concept is applicable various models. In-
deed, this concept is directly used when we show the zero
coefficients in Appendix C and D, and is applicable when we
visualize the proof of the nonintegrability of mixed-field Ising
chain model which has been shown before22. This concept
is also quite natural and the simplest way, because in the case
when we scanned every length k operators, it is natural to scan
every length k − 1 operators.

Although the existence of QDP path is critical to show
the nonintegrability, and can be used in various other mod-
els including mixed-field Ising chain22, not every commutator

0

XY Y ZY Y Z

0

ZXY Y Y ZY Z

0 0

XY ZY Y Y Z

0

XZY Y Y Y Z

0

0

a + 2q

a + 2q

a

a + 4q

6q

XY Y ZY Z

4q

XY ZY Y Z

2q

XZY Y Y Z

q

FIG. 15. Graph representation of the proof of Theorem 7 in D.
The left box represents “quasi-loop” which reduces into a “quasi-
promising path”, and the right box represents another “quasi-
promising path”. Notice that the two red circles marked with q are
the same circle, but for simplicity we drew them separately.

graph have QDP path. For example, in the PXP Hamiltonian,
the proof of Theorem 7 does not use the QDP path directly: we
first need to reduce “quasi-loop” on the left side into a quasi-
promising path. See Fig.15 for details. However, since in this
case the “quasi-loop” can be reduced into the quasi-promising
path via the graph modifications in Fig.12, the usefulness of
QDP path still holds here. We hence suggest that for general
model, every Exception 2 case can be resolved by using the
QDP path method.
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