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ABSTRACT

This paper primarily focuses on the investigation of the distribution of certain crucial operators
with respect to significant states on the (q, 2)−Fock space, for instance, the vacuum distribution
of the field operator.
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1. Introduction

In this paper, we study mainly probabilistic aspects of a specific interacting Fock space,
namely, the (q, 2)−Fock space, which is a particular (q, m)−Fock space originally introduced in
[11].

The (q, m)−Fock space over a given Hilbert space H servers to concretize the Quan–algebra, a
natural generalization of the traditional q−algebra. Here, the creation and annihilation operators
adhere to an analogue of the usual q−commutation relation with q being an operator, rather
than a scalar. In a previous work [11], we established the foundation of the Quan–algebra and
examined some of its fundamental properties, particular,focusing on Wick’s theorem.

In [12] and [13], we explored combinatorial aspects of the (q, 2)−Fock space. Our primary
objective was to characterize the set of pair partitions essential for determining the vacuum
expectation of any product of the creation-annihilation operators defined on (q, 2)−Fock space.
We revealed as well a strong connection between the cardinality of this set of pair partitions
and the Catalan’s convolution formula introduced in [8] (refer to [16] and its cited references for
various proofs).

Now we shift our focus to the probabilistic aspects of (q, 2)−Fock space. Our central result is
presented in Theorem (3.8), which provides the explicit formulation of the probability measure
Lq,f :=the vacuum distribution of the filed operator Q(f) (i.e., the sum of the creation and
annihilation operators) defined on the (q, 2)−Fock space with a test function f .

The symmetric nature of the distribution Lq,f , as demonstrated in Proposition 2.4 (i.e., the all
odd moments of Lq,f are zero), guarantees that Lq,f is entirely determined by the vacuum distri-
bution of the operator Q2(f). Moreover, due to the boundedness of the creation and annihilation
operators as confirmed in Proposition 2.4, this distribution can be fully characterized by its mo-
ments, or equivalently, by its moment–generating function. Section 2 is primarily dedicated to
the calculation the moment–generating function of Q2(f) with respect to the vacuum.
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After obtaining the moment-generating function, our focus shifts to the investigation of the
corresponding distribution. This investigation is carried out in Section 3.

2. (q, 2)−Fock space and the generating function of field operator with respect to
the vacuum state

2.1. (q, 2)−Fock space. Now we turn out attention to the (q, 2)−Fock space, a specific instance
of the (q, m)−Fock space introduced in [11]. Let H be a Hilbert space equipped with the scalar
product 〈·, ·〉, the dimensional of H is assumed to be greater than or equal to 2 and we’ll maintain
this convention throughout our discussion.

For any n ≥ 2, consider n−fold tensor product of H, denoted as H⊗n. Now let’s define the
operators for any q ∈ [−1, 1]:

• λ1 :=the identity operator on H, represented by 1H;
• for any n ∈ N, λn+2 is a linear operator on H⊗(n+2) and is characterized by the following:

λn+2 := 1⊗n
H ⊗ λ2 and λ2(f ⊗ g) := f ⊗ g + qg ⊗ f , ∀f, g ∈ H

As discussed in [11], it is easy to check the positivity of λn’s and so

Hn := the completion of the
(

H⊗n, 〈·, λn·〉⊗n
)

/Ker〈·, λn·〉⊗n

is a Hilbert space, where 〈·, ·〉⊗n is the usual tensor scalar product. The scalar product of Hn

will be denoted by 〈·, ·〉n, then 〈·, ·〉1 := 〈·, ·〉 and for any n ≥ 2,

〈F, G〉n := 〈F, λnG〉⊗n , ∀F, G ∈ H⊗n

or equivalently for any n ∈ N,

〈F, G ⊗ f ⊗ g〉n :=〈F, G ⊗ f ⊗ g〉⊗n + q〈F, G ⊗ g ⊗ f〉⊗n

∀F ∈ H⊗(n+2), G ∈ H⊗n and f, g ∈ H
Definition 2.1. Let H be a Hilbert space, let, for any n ∈ N

∗, Hn be the Hilbert space defined
earlier and let H0 := C, as usual,

• the Hilbert space Γq,2(H) :=
⊕

n=0 Hn is named as the (q, 2)−Fock space over H;
• Φ := 1 ⊕ 0 ⊕ 0 ⊕ . . . is termed as the vacuum vector of Γq,2(H);
• for any n ∈ N

∗, Hn is called as the n−particle space.

Throughout, we’ll use 〈·, ·〉 and ‖ · ‖ to represent denote the scalar product and the induced
norm, both in Γq,2(H) and in Hn’s if there is no confusion.

It is straightforward to observe the following consistency of 〈·, ·〉n’s: for any 0 6= f ∈ H and
for any n ∈ N

∗,

‖f ⊗ F‖ = 0 whenever F ∈ Hn verifying ‖F‖ = 0

This consistency guarantees that for any f ∈ H, the operator that maps F ∈ Hn to f ⊗F ∈ Hn+1

is a well–defined linear operator from Hn to Hn+1.

Definition 2.2. For any f ∈ H, the (q, 2)−creation operator (with the test function f),
denoted as A+(f), is defined as a linear operator on Γq,2(H) with the following properties:

A+(f)Φ := f , A+(f)F := f ⊗ F, ∀n ∈ N
∗ and F ∈ Hn (2.1)

Throughout this paper, we denote as usual

{−1, 1}m := the set of all {−1, 1}−valued function defined on {1, . . . , m}, ∀m ∈ N
∗

{−1, 1}2n
+ :=

{

ε ∈ {−1, 1}2n :
2n
∑

h=1

ε(h) = 0,
2n
∑

h=p

ε(h) ≥ 0, ∀p ∈ {1, . . . , 2n}
}

, ∀n ∈ N
∗

NCPP (2n) := the set of all non–crossing pair partitions of {1, . . . , 2n}, ∀n ∈ N
∗
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It is well known (see, e.g., [3]) that for any ε ∈ {−1, 1}2n
+ , there exists unique non–crossing

pair partition {(lεh, rε
h)}n

h=1 ∈ NCPP (2n) such that ε−1({−1}) =
{

lεh : h ∈ {1, . . . , n}
}

(or

equivalently, ε−1({1}) =
{

rε
h : h ∈ {1, . . . , n}

}

). Thus, we can set a bijection τ from {−1, 1}2n
+

to NCPP (2n) defined as τ(ε) := {(lεh, rε
h)}n

h=1. We’ll refer to
• τ(ε) as the counterpart of ε ∈ {−1, 1}+;
• τ−1(θ) as the counterpart of θ := {(lh, rh)}n

h=1 ∈ NCPP (2n).
Moreover, by denoting in further

{−1, 1}2n
+,∗ :=

{

ε ∈ {−1, 1}2n
+ ,

2n
∑

h=p

ε(h) = 0 only for p = 1
}

NCPP∗(2n) :=
{

{(lh, rh)}n
h=1 ∈ NCPP (2n) : r1 = 2n

}

the above τ induces a bijection between {−1, 1}2n
+,∗ and NCPP∗(2n).

Remark 2.3. Let n ∈ N
∗, the following assets are easily checked.

• For any ε ∈ {−1, 1}2n
+,∗, if we define ε′(k) := ε(k + 1) for all k ∈ {1, . . . , 2n − 2}, then

it follows that ε′ ∈ {−1, 1}2(n−1)
+ . Moreover, ε′ runs over {−1, 1}2(n−1)

+ as ε running over

{−1, 1}2n
+,∗.

• For any {(lh, rh)}n
h=1 ∈ NCPP∗(2n), id we defined l′h := lh+1 − 1 and r′

h := rh+1 − 1 for all

h ∈ {1, . . . , n−1}, then it follows that {(l′h, r′
h)}n−1

h=1 ∈ NCPP (2(n−1)). Moreover, {(l′h, r′
h)}n−1

h=1
runs over NCPP (2(n − 1)) as {(lh, rh)}n

h=1 running over NCPP∗(2n).
As a consequence, we obtain:

∣

∣{−1, 1}2n
+,∗
∣

∣ =
∣

∣{−1, 1}2(n−1)
+

∣

∣ =
∣

∣NCPP∗(2n)
∣

∣ =
∣

∣NCPP (2(n − 1))
∣

∣ = Cn−1 (2.2)

The following results, namely Proposition 2.4 and Corollary 2.5, provide elementary–fundamental
properties of the (q, 2)−Fock space and the creation–annihilation on it. The proof will be omitted
and they can be found in [12] (as well as [11]).

Proposition 2.4. Let H be a Hilbert space and let q ∈ [−1, 1]. For any f ∈ H, A+(f) is
bounded:

‖A+(f)‖ = ‖f‖ ·
{√

1 + q, if q ∈ [0, 1];

1, if q ∈ [−1, 0)

Moreover,
1) the (q, 2)−annihilation operator (with the test function f) A(f) :=

(

A+(f)
)∗

is well–
defined and for any n ∈ N

∗, {g1, . . . , gn} ⊂ H, the following properties hold:

A(f)Φ = 0, A(f)(g1 ⊗ . . . ⊗ gn) =















〈f, g1〉Φ, if n = 1;

〈f, g1〉g2 + q〈f, g2〉g1, if n = 2;

〈f, g1〉g2 ⊗ . . . ⊗ gn, if n > 2

(2.3)

2) for any n ∈ N
∗ and f ∈ H,

‖A(f)
∣

∣

H1
‖ = ‖A+(f)

∣

∣

H0
‖ = ‖f‖, ‖A(f)

∣

∣

Hn+1
‖ = ‖A+(f)

∣

∣

Hn
‖

‖A(f)A+(f)
∣

∣

Hn
‖ = ‖A+(f)A(f)

∣

∣

Hn
‖ = ‖A(f)

∣

∣

Hn
‖2

and additionally,

‖A(f)‖ = ‖A+(f)‖ ; ‖A(f)A+(f)‖ = ‖A+(f)A(f)‖ = ‖A(f)‖2

3) by denoting, as usual,

Aǫ(f) :=

{

A+(f), if ǫ = 1

A(f), if ǫ = −1
; ∀ǫ ∈ {−1, 1} and f ∈ H
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the vacuum expectation
〈

Φ, Aε(1)(f1) . . . Aε(m)(fm)Φ
〉

differs from zero only if m = 2n (i.e. m is even) and ε ∈ {−1, 1}2n
+ ;

4) for any n ∈ N
∗ and ε ∈ {−1, 1}2n

+ , for any c ∈ C,

Aε(1)(f1) . . . Aε(2n)(f2n)Φ = cΦ ⇐⇒
〈

Φ, Aε(1)(f1) . . . Aε(2n)(f2n)Φ
〉

= c (2.4)

Corollary 2.5. Let m ∈ N, {fh}m
h=1 ⊂ H and ε ∈ {−1, 1}m.

1) If
∑m

h=p ε(h) ≥ 0 for any p ∈ {1, . . . , n}, then the restriction of the operator Aε(1)(f1) . . .

Aε(m)(fm) to ⊕∞
r=2Hr is equal to bε(1)(f1) . . . bε(m)(fm) (recall that b+ and b are the usual free

creator and annihilator respectively).
2) If

∑m
h=1 ε(h) = 0 (it requires necessarily that m is even), for any r ∈ N, 0 ⊕ Hr ⊕ 0 (in

particular, C ⊕ 0) is invariant under the action of Aε(1)(f1) . . . Aε(m)(fm).
3) In the case of m = 2n

Aε(1)(f1) . . . Aε(2n)(f2n)Φ = 〈Aε(1)(f1) . . . Aε(2n)(f2n)〉Φ

and the restriction of the operator Aε(1)(f1) . . . Aε(2n)(f2n) to the subspace ⊕∞
r=2Hr is

∏n
h=1〈flε

h
, frε

h
〉·

1.

2.2. The vacuum expectation in (2.4). To determine the distribution of the field operator
Q(f) := A(f) + A+(f) with respect to the vacuum state, the boundedness of Q(f) (which also
holds for both A(f) and A+(f)) simplifies the problem to finding its moments.

When f = 0, it is trivial that A(0) = A+(0) = 0 and so the distribution of Q(0) is clearly
the one point distribution centred at the original. Therefore we shall take f 6= 0. As previously
mentioned, our initial step is to compute all moments of Q(f) with respect to the vacuum state.
Furthermore, in light of Proposition 2.4, we can observe that all odd moments of field operator
Q(f) are equal to zero. Consequently, the distribution of Q(f) is fully determined by even
moments:

un :=
〈

Φ, Q(f)2nΦ
〉

=
∑

ε∈{−1,1}2n
+

〈

Φ, Aε(1)(f) . . . Aε(2n)(f)Φ
〉

, n ∈ N (2.5)

Let’s denote furthermore,

v0 := 1, vn :=
∑

ε∈{−1,1}2n
+,∗

〈

Φ, Aε(1)(f) . . . Aε(2n)(f)Φ
〉

, n ∈ N (2.6)

Proposition 2.6. un’s verify the system

un+1 =
n+1
∑

k=1

vkun+1−k =
n
∑

h=0

vh+1un−h, ∀n ∈ N (2.7)

with the initial condition u0 = 1 and u1 = ‖f‖2. While, vn’s can be rewritten to

vn =
∑

ε∈{−1,1}2(n−1)
+

〈

Φ, A(f)Aε(1)(f) . . . Aε(2n−2)(f)A+(f)Φ
〉

, ∀n ∈ N
∗ (2.8)

and in particular, v1 = ‖f‖2.

Proof: The statements u0 = 1 and u1 = v1 = ‖f‖2 directly follow from their respective
definitions given in (2.5) and (2.6).

By defining ε′(j) := ε(j + 1) for all j ∈ {1, . . . , 2n − 2}, we can observe that ε′ runs over

{−1, 1}2(n−1)
+ as ε varying over {−1, 1}2n

+,∗. consequently, (2.8) is obtained.
The second equality in (2.7) is trivial and we’ll now prove the first.
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The non–crossing principle guarantees that for any {(lh, rh)}n
h=1 ∈ NCPP (2n), r1 must be

an even number. Therefore, we can partition the set NCPP (2n) into
n
⋃

k=1
NCPPk(2n), where

for any k ∈ {1, . . . , n}, NCPPk(2n) is a generalization of NCPP∗(2n) defined as:

NCPPk(2n) := {{(lh, rh)}n
h=1 ∈ NCPP (2n) : r1 = 2k}

The first equality in (2.7) is obtained by observing the following easily checked facts:
• the sets NCPPk(2n)’s are pairwise disjoint;
• for any k = 1, . . . , n, as {(lh, rh)}n

h=1 ranges over NCPPk(2n), {(lh, rh)}k
h=1 represents the

set NCPP∗(2k) and {(lh, rh)}n
h=k+1 represents the set of all non–crossing pair partitions of the

set {2k + 1, . . . , 2n}. �

Proposition 2.6 establishes a strong dependence of the moments un’s on the vn’s. The specific
characteristics of the vn’s are a key focus of [13], which presents the following assertion:

Theorem 2.7. For any n ∈ N and f ∈ H,

vn+1 = ‖f‖2(n+1)
n
∑

r=0

(1 + q)r
∑

i1,...,ir≥0
i1+...+ir=n−r

Ci1 . . . Cir

= ‖f‖2(n+1)
n
∑

r=0

(1 + q)r r

2n − r

(

2n − r

n

)

(2.9)

Throughout this text and in the following discussions, Cm is the m−th Catalan number and
∑

i1,...,ir≥0
i1+...+ir=n−r

Ci1 . . . Cir (1 + q)r
∣

∣

∣

r=0
:= δn,0 (2.10)

2.3. The moment–generating function of Q(f)2. Due to the boundedness of the field
operator, for any f ∈ H, there exists a δf > 0, such that the series

∞
∑

n=0

xn〈Φ, Q(f)2nΦ〉

converges when x ∈ (−δf , δf ). The function S : (−δf , δf ) 7−→ R defined by the above series is
usually named as the moment–generating function of the random variable Q(f)2. Moreover, the
boundedness of the field operator ensures that the distribution of the random variable Q(f)2 is
fully determined by its moment–generating function S.

Theorem 2.8. For any f ∈ H, by denoting δ := min
{ 1

4‖f‖2 , δf

}

, we have:

S(x) =
1 − q + (1 + q)

√

1 − 4‖f‖2x

1 − q + (1 + q)
√

1 − 4‖f‖2x − 2‖f‖2x
, ∀x ∈ (−δ, δ) (2.11)

Consequently, the function x 7−→ S(x2) is the moment–generating function of Q(f).

Proof: The second statement is self-evident, so let’s focus on proving the first. First of all,

S(x) =
∞
∑

n=0

xnun = 1 +
∞
∑

n=0

xn+1un+1
(2.7)
= 1 +

∞
∑

n=0

xn+1
n
∑

h=0

vh+1un−h

=1 +
∞
∑

h=0

xh+1vh+1

∞
∑

n=h

xn−hun−h = 1 + S(x)
∞
∑

h=0

xh+1vh+1

(2.9)
= 1 + S(x)

∞
∑

n=0

xn+1 ‖f‖2(n+1)
n
∑

r=0

(1 + q)r
∑

i1,...,ir≥0
i1+...+ir=n−r

Ci1 . . . Cir
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By using the convention (2.10) to the above formula, we find that

S(x) = 1 + x‖f‖2S(x)
(

1 +
∞
∑

n=1

(

x‖f‖2)n
n
∑

r=1

(1 + q)r
∑

i1,...,ir≥0
i1+...+ir=n−r

Ci1 . . . Cir

)

= 1 + x‖f‖2S(x)
(

1+
∞
∑

r=1

(

x‖f‖2(1 + q)
)r

·
∞
∑

n=r

(

x‖f‖2)n−r ∑

i1,...,ir≥0
i1+...+ir=n−r

Ci1 . . . Cir

)

(2.12)

Thanks to the following well–known facts:
• the generating function of the Catalan’s sequence {Cn}∞

n=0 is

C(x) :=
∞
∑

n=0

Cnxn =
1 −

√
1 − 4x

2x
=

2

1 +
√

1 − 4x
, ∀x ∈

(

− 1

4
,

1

4

)

(2.13)

• for any m ∈ N and {αk}∞
k=0 ⊂ C,

(

∞
∑

k=0

αkxk
)m

=
∞
∑

k=0

xk
∑

i1,...,im≥0
i1+...+im=k

αi1 . . . αim (2.14)

we know that for any x ∈
(

− 1
4‖f‖2 , 1

4‖f‖2

)

,

∞
∑

n=r

(

x‖f‖2)n−r ∑

i1,...,ir≥0
i1+...+ir=n−r

Ci1 . . . Cir

k:=n−r
=

∞
∑

k=0

(

x‖f‖2)k
∑

i1,...,ir≥0
i1+...+ir=k

Ci1 . . . Cir

(2.14)
=
(

∞
∑

k=0

(

x‖f‖2)kCk

)r (2.13)
=

(

1 −
√

1 − 4‖f‖2x
)r

(

2x‖f‖2
)r

Thank to this equality, (2.12) simplifies to the following: for any x ∈ (−δ, δ) with δ :=
min

{

1
4‖f‖2 , δf

}

,

S(x) =1 + x‖f‖2S(x)
(

1 +
∞
∑

r=1

(

x‖f‖2(1 + q)
)r

(

1 −
√

1 − 4‖f‖2x
)r

(

2x‖f‖2
)r

)

=1 +
2x‖f‖2S(x)

2 − (1 + q)
(

1 −
√

1 − 4‖f‖2x
)

Therefore, (2.11) is obtained by resolving this equation. �

3. Distribution of field operator

Now we are ready to find the distribution of field operator. We begin by presenting the
following result, which provides the distribution of the field operator for q ∈ {−1, 0}.

Proposition 3.1. For any 0 6= f ∈ H, the vacuum distribution of Q(f) is
1) 1

2

(

δ−‖f‖ + δ‖f‖
) if q = −1; here and throughout, for any c ∈ R, δc is the Dirac measure

centred at c;
2) the Wigner distribution over the interval (−2‖f‖, 2‖f‖) if q = 0.
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Proof: The moment–generating function of Q(f)2 equals, thanks to Theorem 2.8, to

x 7−→ 1

1 − ‖f‖2x

when q = −1 and

x 7−→ 1 +
√

1 − 4‖f‖2x

1 +
√

1 − 4‖f‖2x − 2‖f‖2x
(3.1)

when q = 0. So
• when q = −1, the vacuum distribution of Q(f)2 is the one–point distribution centered at

‖f‖2. So, the vacuum distribution of Q(f) is the two points distribution on {−‖f‖, ‖f‖} with
the equi–probability 1

2 .
• when q = 0, It can be readily verified that the function in (3.1) is equivalent to:

x 7−→ 1 −
√

1 − 4‖f‖2x

2‖f‖2x

As a result, the vacuum distribution of the field operator Q(f) follows the Wigner law on the
interval (−2‖f‖, 2‖f‖). �

Moving forward, we’ll focus on determining the distribution of Q(f) for q ∈ (−1, 1] \ {0}. For
technical reason, we prefer to introduce a new parameter, denoted as a := 1 + q. With this new
parameter a, the moment–generating function of Q(f)2 takes the following form:

x 7−→ 2 − a + a
√

1 − 4‖f‖2x

2 − a + a
√

1 − 4‖f‖2x − 2‖f‖2x

Specifically, for f ∈ H such that ‖f‖ = 1
2 , the above moment–generating function is

Sa(x) :=
2 − a + a

√

1 − 4‖f‖2x

2 − a + a
√

1 − 4‖f‖2x − 2‖f‖2x

∣

∣

∣

∣

∣

‖f‖= 1
2

=
16(a − 1) − 2(2a2 + a − 2)x + 2ax

√
1 − x

16(a − 1) − 4(a − 1)(a + 2)x − x2
(3.2)

This function will be the starting point of our investigation of the distribution of field operator.
Additionally, an important measurable function for computing the vacuum distribution of

Q(f)2 is given by:

ga(x) :=

√
1 − x√

x(x2 − a+2
4 x − 1

16(a−1) )
χ(0,1)(x), ∀x ∈ R (3.3)

where, a ∈ (0, 1) ∪ (1, 2].

Lemma 3.2. Let, for any a ∈ (0, 1) ∪ (1, 2],

ha(x) := x2 − a + 2

4
x − 1

16(a − 1)
, ∀x ∈ R

then
i) ha > 0 (so ga ≥ 0 and ga

∣

∣

(0,1)
> 0) if a ∈ (0, 1);

ii) if a ∈ (1, 2], we have ha < 0 on the interval (0, 1) (so ga ≤ 0 and ga

∣

∣

(0,1)
< 0).

Proof: It is trivial to have

h′
a(x) = 2x − a + 2

4
∈
{

(0, +∞), if x > a+2
8

(−∞, 0), if x < a+2
8

; h′
a(x)

∣

∣

∣

x= a+2
8

= 0
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so ha is decreasing on the interval
(

− ∞, a+2
8

)

and increasing on the interval
(

a+2
8 , +∞

)

. Con-

sequently, ha reaches its (global) minimum at a+2
8 :

ha(x) ≥ ha(x)
∣

∣

∣

x= a+2
8

=
(a + 2)2

64
− (a + 2)2

32
− 1

16(a − 1)
=

a3 + 3a2

64(1 − a)
, ∀x ∈ R (3.4)

Moreover, since 0 < a ≤ 2, the global minimum point of ha (i.e. a+2
8 ) falls within the interval

(0, 1). Therefore,

ha(x) < min{ha(0), ha(1)}, ∀x ∈ (0, 1) (3.5)

In the case of a ∈ (0, 1), (3.4) implies:

ha(x) ≥ a3 + 3a2

64(1 − a)
> 0, ∀x ∈ R

For a ∈ (1, 2], it is clear that a − 1 > 0 and so ha(0) = − 1
16(a−1) < 0. Combining this fact

with (3.5), the thesis will be proved if we can show that ha(1) ≤ 0.
This is indeed the case since

ha(1) = 1 − a + 2

4
− 1

16(a − 1)
≤ 0 ⇐⇒ 1

16(a − 1)
≥ 2 − a

4
⇐⇒ 4a2 − 12a + 9 ≥ 0

and since function f(a) := 4a2 − 12a + 9 has the global minimum f(3
2) = 0. �

3.1. The distribution of Q(f)2 for a ∈ (1, 2] (i.e., q ∈ (0, 1]) and ‖f‖ = 1
2 . For any a > 1,

we introduce

a1 :=

√

(a + 2)2 + 4
a−1 + a + 2

8
; a2 :=

√

(a + 2)2 + 4
a−1 − a − 2

8
(3.6)

A1 := 16(a − 1) − 2a

a1 + a2

(

√

a2 + 1

a2
−
√

a1 − 1

a1

)

(3.7)

and

A2 :=
2a

a1 + a2

(

a2

√

a1 − 1

a1
+ a1

√

a2 + 1

a2

)

− 2(2a2 + a − 2) (3.8)

Lemma 3.3. For any a > 1,
i) 0 < a2 < a1;
ii) a1 ≥ 1 and the equality hold if and only if a = 3

2 ;
iii) the following equalities hold

a1a2 =
1

16(a − 1)
; a1 − a2 =

a + 2

4
; a1 + a2 =

a
√

a + 3

4
√

a − 1
(3.9)

(a1a2 + a1)(a1a2 − a2) =

(

a − 3
2

)2

64(a − 1)2
; a2

1 + a2
2 =

a2(a + 3) − 2

16(a − 1)
(3.10)

√

a2 + 1

a2
−
√

a1 − 1

a1
=

2a
√

(a − 1)(a + 3)
√

a2 + a − 3
2 + |a − 3

2 |
(3.11)
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and
(

a2

√

a1 − 1

a1
+ a1

√

a2 + 1

a2

)2

=
1

4(a − 1)











a2(a − 1)
(

a + 5
2

)2
− 2a + 3, if a ∈

(

1, 3
2

]

a2(a − 1)
(

a + 5
2

)2
, if a ∈

(3
2 , 2
]

(3.12)

iv) one has

0 ≤ A1 =







0, if a ∈
(

1, 3
2

]

16(a − 1)
(

1 − a√
a2+2a−3

)

if a ∈
(

3
2 , 2
] (3.13)

and

A2 = a2A1 (3.14)

Proof: The affirmation i) is evident due to the positivity of a + 2 (in fact, a + 2 > 3 in case

a > 1) and the fact that
√

(a + 2)2 + 4
a−1 > a + 2 holds whenever a > 1.

It is straightforward to observe, using the definition of a1 and noticing the fact a+2 > a−1 > 0,
that:

a1 ≥ 1 ⇐⇒
√

(a + 2)2 +
4

a − 1
> 8 − (a + 2) ⇐⇒ 1

a − 1
≥ 8 − 4a

⇐⇒ −4a2 + 12a − 8 ≤ 1 ⇐⇒
(

a − 3

2

)2

≥ 0

Moreover one inequality becomes an equality if and only if the other does, if and only if a = 3
2 .

Thus the affirmation ii) is proved. Now we turn to prove affirmation iii).
The three equalities in (3.9) are obtained directly from the definitions of a1 and a2. Therefore,

we have the two equalities in (3.10) as follows:

(a1a2 + a1)(a1a2 − a2) = a1a2

(

a1a2 + a1 − a2 − 1
) (3.9)

=

(

a − 3
2

)2

64(a − 1)2

a2
1 + a2

2 = (a1 − a2)2 + 2a1a2
(3.9)
=

(a + 2

4

)2
+

2

16(a − 1)
=

a2(a + 3) − 2

16(a − 1)

The equality (3.11) is obtained through the following calculation (notice that a1+a2√
a1a2

(3.9)
=

a
√

a + 3):
√

a2 + 1

a2
−
√

a1 − 1

a1
=

√

a1(a2 + 1) −
√

a2(a1 − 1)√
a1a2

=
a1 + a2√

a1a2
(√

a1a2 + a1 +
√

a1a2 − a2
) =

a
√

a + 3
√

(√
a1a2 + a1 +

√
a1a2 − a2

)2
(3.15)

(3.9) and (3.10) ensure that
(√

a1a2 + a1 +
√

a1a2 − a2
)2

=a1a2 + a1 + a1a2 − a2 + 2
√

(

a1a2 + a1
)(

a1a2 − a2
)

=
1

8(a − 1)
+

a + 2

4
+

|a − 3
2 |

4(a − 1)
=

1

4(a − 1)

(

a2 + a − 3

2
+ |a − 3

2
|
)

Applying this formula to (3.15), we obtain (3.11).
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To prove (3.12), we can observe, since the first equality in (3.10), that:

√

a1a2(a1 − 1)(a2 + 1) =
√

(a1a2 + a1)(a1a2 − a2) =

∣

∣

∣a − 3
2

∣

∣

∣

8(a − 1)
(3.16)

Additionally, the expression on the left hand side of (3.12) is equal to:

a2
1 + a2

2 +
a2

1

a2
− a2

2

a1
+ 2

√

a1a2(a1 − 1)(a2 + 1)

where,
• (3.16) and the second equality in (3.10) guarantee that:

a2
1 + a2

2 + 2
√

a1a2(a1 − 1)(a2 + 1) =
a2(a + 3) − 2 + 4

∣

∣a − 3
2

∣

∣

16(a − 1)

• by rewriting a3
1 − a3

2 as (a1 − a2)(a2
1 + a1a2 + a2

2), the first two equality in (3.9) and the
second equality in (3.10) ensure that:

a3
1 − a3

2

a1a2
=

(a1 − a2)(a2
1 + a1a2 + a2

2)

a1a2
=

(a + 2)(a2(a + 3) − 1)

4

Therefore,

(

a2

√

a1 − 1

a1
+ a1

√

a2 + 1

a2

)2

=
a2(a − 1)

(

a + 5
2

)2
− a + 3

2 +
∣

∣

∣a − 3
2

∣

∣

∣

4(a − 1)

which is nothing else than the expression on the right hand side of (3.12).
Finally we consider the statement iv) which will be proven in three steps.
Step 1: to show the formula (3.13) Once we establish the equality in (3.13), the subsequent

fact implies the inequality in (3.13), i.e. A1 ≥ 0:

√

a2 + 2a − 3 ≥ a, ∀a ∈
(3

2
, 2
]

So we only need to show the equality in (3.13). Just by the definition of A1, along with the
formulae (3.9) and (3.11), we can derive:

A1
(3.7)
= 16(a − 1) − 2a

a1 + a2

(
√

a2 + 1

a2
−
√

a1 − 1

a1

)

= 16(a − 1) − 16a(a − 1)
√

a2 + a − 3
2 +

∣

∣

∣a − 3
2

∣

∣

∣

So, the equality in (3.13) is proven by observing that

√

a2 + a − 3

2
+
∣

∣a − 3

2

∣

∣ =







a, if a ∈
(

1, 3
2

]

√
a2 + 2a − 3, if a ∈

(

3
2 , 2
]

Step 2: to prove the formula (3.14) for a ∈
(

1, 3
2

]

Thanks to (3.8) and (3.13), it can be ob-

served that for a ∈
(

1, 3
2

]

, the following equivalences hold:

(3.14) holds ⇐⇒ A2 = 0 ⇐⇒ a

(

a2

√

a1 − 1

a1
+ a1

√

a2 + 1

a2

)

= (2a2 + a − 2)(a1 + a2)
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i.e., thanks to (3.9), A2 = 0 if and only if
(

a2

√

a1 − 1

a1
+ a1

√

a2 + 1

a2

)2

=
(2a2 + a − 2)2(a + 3)

16(a − 1)
(3.17)

Noticing that in case of a ∈
(

1, 3
2

]

, (3.12) says that the left hand side of (3.17) is equal to

4a2(a − 1)
(

a + 5
2

)2
− 8a + 12

16(a − 1)

and which is nothing else than the right hand side of (3.17).

Step 3: to prove the formula (3.14) for a ∈
(

3
2 , 2
]

In the case of a ∈
(

3
2 , 2
]

, (3.12) gives that:

(

a2

√

a1 − 1

a1
+ a1

√

a2 + 1

a2

)2

=
a2
(

a + 5
2

)2

4
=

a2(2a + 5)2

16

i.e., thanks to the positivity of the above terms,

a2

√

a1 − 1

a1
+ a1

√

a2 + 1

a2
=

a(2a + 5)

4

Therefore,

A2 =
2a(2a + 5)

√
a − 1√

a + 3
− 2(2a2 + a − 2) (3.18)

On the other hand, (3.6) and (3.13) yield

a2A1 =

√

(a + 2)2 + 4
a−1 − (a + 2)

8
· 16(a − 1) ·

(

1 − a√
a2 + 2a − 3

)

=
2√

a + 3
·
(

a(2a + 5)
√

a − 1 −
√

a + 3(2a2 + a − 2)
)

and which is exactly equal to A2 as shown in (3.18). �

Remark 3.4. As an easy corollary of the first two equalities in (3.9), we can deduce, using the
function ha introduced in Lemma 3.2, the following results:

1

a1 + a2

(

1

a1 − x
+

1

a2 + x

)

√

1 − x

x
χ(0,1)(x)

=
1

(a1 − x)(a2 + x)

√

1 − x

x
χ(0,1)(x) =

1

a1a2 + (a1 − a2)x − x2

√

1 − x

x
χ(0,1)(x)

(3.9)
=

1
1

16(a−1) + a+2
4 x − x2

√

1 − x

x
χ(0,1)(x) = − 1

ha(x)

√

1 − x

x
χ(0,1)(x) = −ga(x) (3.19)

here, ga is introduced in (3.3). Thanks to the affirmation ii) of Lemma 3.2 and the first two
affirmations of Lemma 3.3 (which essentially state that 0 < a2 < a1 ≥ 1), we can be certain of
the positivity of the function −ga.

Now, let us introduce

µa(B) :=
a

8π(a − 1)

∫

B
(−ga)(x)dx +

A1

16(a − 1)
δa1(B), ∀B ∈ B (3.20)

here and throughout, B is the Borel σ−algebra on R. Then the positivity of the function −ga,
the scalars A1 and a − 1 (remembering that now we are considering the case of a > 1) ensure
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that µa is a measure. Moreover, it’s worth noting that µa is absolutely continuous if and
only if A1 = 0.

In the following discussion, the sphere in H consisting of elements with the norm 1
2 will play

a significant role and we shall denote it as H1/2.

Theorem 3.5. For any a ∈ (1, 2] and f ∈ H1/2,

∫

µa(dx)

1 − tx
= Sa(t), ∀ t ∈ (−1, 1) (3.21)

i.e. µa is the vacuum distribution of Q(f)2 with f ∈ H1/2.

Proof: By utilizing the definitions of A1 and A2, and referring to the following well–known
formulae (as found in, for example, Section 17.3.12 of [1]):

∫ 1

0

√
1 − x2

1 − αx2
dx =

π

2
· 1 −

√
1 − α

α
, ∀α ∈ (−1, 1]

∫ 1

0

√
1 − x2

α + x2
dx =

π

2
·
(

√

1 + α

α
− 1

)

, ∀α > 0 (3.22)

We can derive, for sufficiently small |t|, the following result:

∫ 1

0

1

1 − tx

√

1 − x

x
dx

=2

∫ 1

0

1

1 − ty2

√

1 − y2dy
(3.22)

=
π

t

(

1 −
√

1 − t
)

=
π

1 +
√

1 − t
(3.23)

Moreover,
• by noticing that 0 < 1

a1
≤ 1, we have:

∫ 1

0

1

a1 − x

√

1 − x

x
dx

y:=
√

x
=

2

a1

∫ 1

0

1

1 − y2

a1

√

1 − y2dy
(3.22)

= π
(

1 −
√

1 − 1

a1

)

(3.24)

and consequently,

∫ 1

0

1

1 − tx

1

a1 − x

√

1 − x

x
dx =

1

1 − a1t

∫ 1

0

( 1

a1 − x
− t

1 − tx

)

√

1 − x

x
dx

(3.23),(3.24)
=

π

1 − a1t

(√
1 − t −

√

1 − 1

a1

)

• by noticing that a2 > 0, we obtain:

∫ 1

0

1

a2 + x

√

1 − x

x
dx

y:=
√

x
= 2

∫ 1

0

1

a2 + y2

√

1 − y2dy
(3.22)

= π
(

√

1 +
1

a2
− 1

)

and consequently,

∫ 1

0

1

1 − tx

1

a2 + x

√

1 − x

x
dx =

1

1 + a2t

∫ 1

0

( 1

a2 + x
+

t

1 − tx

)

√

1 − x

x
dx

(3.23),(3.24)
=

π

1 + a2t

(

√

1 +
1

a2
−

√
1 − t

)



13

Summing up, we find that:
∫

R

−ga(x)

1 − tx
dx =

∫ 1

0

1

a1 + a2

(

1

a1 − x
+

1

a2 + x

)

1

1 − tx

√

1 − x

x
dx

=
π

(1 + a2t)(1 − a1t)(a1 + a2)
·

·
(

(1 − a1t)
(

√

1 + a−1
2 −

√
1 − t

)

+ (1 + a2t)
(√

1 − t −
√

1 − a−1
1

))

(3.25)

In the expression

1

a1 + a2

(

(1 − a1t)
(

√

1 + a−1
2 −

√
1 − t

)

+ (1 + a2t)
(√

1 − t −
√

1 − a−1
1

))

• the coefficient of t
√

1 − t is obviously 1;
• the coefficient of

√
1 − t is trivially zero;

• the coefficient of t is −1
a1+a2

(

a1

√

1 + a−1
2 + a2

√

1 − a−1
1

)

, which equals, thanks to (3.8) (i.e.,

the definition of A2), to −1
2a

(

A2 + 2
(

2a2 + a − 2
) )

;

• the constant term is 1
a1+a2

(

√

1 + a−1
2 −

√

1 − a−1
1

)

, which equals, thanks to (3.7) (i.e., the

definition of A1), to 1
2a

(

16(a − 1) − A1
)

.
By applying these facts to (3.25), we conclude that:

∫

R

−ga(x)

1 − tx
dx

=
π

2a
· 16(a − 1) − 2(2a2 + a − 2)t + 2at

√
1 − t

(1 + a2t)(1 − a1t)
− π

2a
· A1 + A2t

(1 + a2t)(1 − a1t)

(3.14)
=

π

2a
· 16(a − 1) − 2(2a2 + a − 2)t + 2at

√
1 − t

(1 + a2t)(1 − a1t)
− π

2a
· A1

(1 − a1t)
(3.26)

Moreover, since

(1 + a2t)(1 − a1t) = 1 − (a1 − a2)t − a1a2t2

(3.9)
= 1 − a + 2

4
t − 1

16(a − 1)
t2 =

1

16(a − 1)

(

16(a − 1) − 4(a − 1)(a + 2)t − t2
)

we know that the first term in the right hand side of (3.26) is equal to, thanks to (3.2),

8π(a − 1)

a
· Sa(t)

And so (3.26) simplifies to
∫

R

−ga(x)

1 − tx
dx =

8π(a − 1)

a
· Sa(t) − π

2a
· A1

1 − a1t

=
8π(a − 1)

a
· Sa(t) − πA1

2a

∫

R

dδa1

1 − tx

i.e.,
∫

R

1

1 − tx
µa(dx) = Sa(t) =

∫

R

(

− ga(x)
a

8π(a − 1)
dx +

A1

16(a − 1)
dδa1

)

This clearly proves the thesis. �

Now let’s examine two specific cases: a = 2 and a = 3
2 (which corresponds to q = 1 and q = 1

2 ,
respectively).
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In the case of a = 2, according to (3.6) and (3.13), we have the following results:

a1 =

√
5 + 1

2
, a2 =

√
5 − 1

2
, A1 =

16(
√

5 − 2)√
5

Hence,

−g2(x)
(3.19)

=

√
1 − x

√
x
(√

5+1
2 − x

)(√
5−1
2 + x

)χ(0,1)(x)

Theorem 3.5 tells us that the distribution of Q(f)2 for any f ∈ H1/2 is given by the probability
measure µ2, defined as follows:

µ2(B) :=

∫

B

−g2(x)

4π
dx +

√
5 − 2√

5
δ√

5+1
2

(B) , ∀B ∈ B

In the case of a = 3
2 , we find that

a1 = 1, a2 =
1

8
; A1 = 0

This means that the distribution of Q(f)2 for any f ∈ H1/2 is absolutely continuous with the

probability density function − 3
8π g 3

2
, where −g 3

2
is defined as:

−g 3
2
(x) =

√
1 − x

√
x(1 − x)

(

x + 1
8

)χ(0,1)(x)

3.2. The distribution of Q(f)2 with q ∈ (−1, 0) and ‖f‖ = 1
2 . Now, let’s turn to treat the

case of 0 < a < 1 (or equivalently q ∈ (−1, 0)). In this case, our main result is given as follows:

Theorem 3.6. For any a ∈ (0, 1) and f ∈ H1/2, the distribution of Q(f)2 is absolutely contin-
uous, with the probability density function being the previously introduced ga in (3.3).

Proof: Recall from (3.3) that

ga(x) =

√
1 − x

√
x
(

x2 − a+2
4 x − 1

16(a−1)

)χ(0,1)(x), ∀x ∈ R

With the assistance of formula (3.22), an elementary calculation shows that for any a ∈ (0, 1),
∫ 1

0

√

x(1 − x)

x2 − a+2
4 x − 1

16(a−1)

dx = 2π

(

1

a
− 1

)

and
∫ 1

0

√
1 − x

√
x
(

x2 − a+2
4 x − 1

16(a−1)

)dx = 8π

(

1

a
− 1

)

By utilizing these equalities and (3.22), we can deduce that, for any a ∈ (0, 1) and any t ∈ (−1, 1),
∫ 1

0

ga(x)

1 − tx
dx =

8π(1 − a)

a
· Sa(t)

�

Corollary 3.7. For any a ∈ (0, 2], we define

pa(x) :=
2a

π
·

√
1 − x√

x (1 + 4(a − 1)(a + 2)x − 16(a − 1)x2)
χ(0,1)(x), ∀x ∈ R (3.27)

Then pa is positive and measurable. Moreover,
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1) for a ∈
(

0, 3
2

]

, pa is the probability density function of the vacuum distribution of Q(f)2

with f ∈ H 1
2
;

2) for any a ∈
(

3
2 , 2
]

, pa is not a probability density function and the vacuum distribution of

Q(f)2 with f ∈ H 1
2

is:

B 7−→
∫

B
pa(x)dx +

A1

16(a − 1)
δa1(B), ∀B ∈ B

Proof: Since p1(x) = 2
π ·

√
1−x√

x
is nothing else than the probability density function of ξ2 with

ξ having the Wigner distribution on the interval (−1, 1), Proposition 3.1 confirms our result for
a = 1. Now, let’s consider the case of 1 6= a ∈ (0, 2]. In this case, we have, for any x ∈ R, that

pa(x) =
a

8π(1 − a)

√
1 − x

√
x
(

x2 − a+2
4 x − 1

16(a−1)

)χ(0,1)(x) =
a

8π(1 − a)
ga(x) (3.28)

and moreover, Lemma 3.2 guarantees the positivity of the function pa for any a ∈ (0, 1) ∪
(1, 2]. Finally, by utilizing (3.28), Theorem 3.5 and Theorem 3.6, we can derive the results in
affirmations 1) and 2) �

3.3. The distribution of Q(f). Now we are ready to provide the distribution of the field
operator Q(f) with a general test function 0 6= f ∈ H. Our main result in this section is as
follows:

Theorem 3.8. For any q ∈ (−1, 1] (equivalently, a := 1 + q ∈ (0, 2]), and for any 0 6= f ∈ H,
we denote

• Lq,f as the vacuum distribution of the field operator Q(f);
• function lq,f as

lq,f (x) :=
(1 + q)‖f‖2

2π
·

√

4‖f‖2 − x2

(‖f‖4 + q(q + 3)‖f‖2x2 − qx4)
χ(−2‖f‖,2‖f‖)(x), ∀x ∈ R (3.29)

Then the following statements are true:

1) for any q ∈
(

−1, 1
2

]

, Lq,f is absolutely continuous, and lq,f is its probability density func-

tion;

2) for any q ∈
(

1
2 , 1
]

, lq,f is not probability density function, and in this case,

Lq,f(B) =

∫

B
lq,f (x)dx +

1

2

(

1 − 1 + q
√

q(q + 4)

)(

δ−
√

a1
2‖f‖2

+ δ √
a1

2‖f‖2

)

(B)

for all Borel sets B ∈ B, where a1 is defined as in (3.6).

Remark 3.9. It is evident that
• 1+q√

q(q+4)
= q√

a2+2a−3
because a = 1 + q;

• for any q ∈
(

1
2 , 1
]

, we have q(q + 4) > q2 + 2q + 1, which implies 0 < 1+q√
q(q+4)

< 1.

Proof: [Proof of Theorem 3.8] (3.29) reveals that when f ∈ H1/2, lq,f is given by the function:

x 7−→ 2a

π
·

√
1 − x2

1 + 4(a − 1)(a + 2)x2 − 16(a − 1)x4
χ(−1,1)(x)

This is nothing else than the function x 7−→ |x|pa(x2), where pa is introduced in (3.27). There-
fore, for f ∈ H1/2, the two conclusions of Theorem 3.8 are guaranteed by Theorem 3.5, Theorem
3.6 and the following well–known facts:
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If ξ is a 1–dimensional random variable defined on a probability space (Ω, F , P) and it is
symmetric (meaning that ξ and −ξ have the same distributed), then its distribution can be
determined by the distribution of ξ2. In particular, if the distribution of ξ2 can be expressed as
a sum νc + νd, where

• νc is absolutely continuous with a (sub–probability) density function f ,
• νd is a discrete measure of the form νd =

∑

k pkδbk
with {pk, bk} ⊂ (0, +∞) for all k,

then, the distribution of ξ can be expressed as ν ′
c + ν ′

d, where
• ν ′

c is absolutely continuous with the (sub–probability) density function x 7−→ |x|f(x2)χ(−√
c,

√
c)(x);

• ν ′
d is a discrete measure of the form ν ′

d =
∑

k
pk

2

(

δ−
√

bk
+ δ√

bk

)

.

In general, for any f ∈ H \ {0} and a ∈ (0, 2], we can express Q(f) as 2‖f‖Q
(

f
2‖f‖

)

. Thus,

our main result is obtained, as f
2‖f‖ belongs to H 1

2
and in consideration of the following well

known fact:
Let η be a 1–dimensional random variable defined on a probability space (Ω, F , P), and let

c > 0. If the distribution of η has the form νc + νd, where
• νc is absolutely continuous with a (sub–probability) density function denoted as f ,
• νd is a discrete measure of the form νd =

∑

k pkδbk
with {pk, bk} ⊂ (0, +∞) for all k,

then the distribution of cη follows the form of ν ′
c + ν ′

d and where
• ν ′

c is absolutely continuous and characterized by the (sub–probability) density function x 7−→
1
c f(x

c );
• ν ′

d is a discrete measure of the form ν ′
d =

∑

k pkδcbk
. �
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