
Privacy-Respecting Type Error Telemetry at Scale

Ben Greenmana,b , Alan Jeffreyc , Shriram Krishnamurthia , and Mitesh
Shahc

a Brown University, Providence, RI, USA

b University of Utah, Salt Lake City, UT, USA

c Roblox, San Mateo, CA, USA

Abstract
Context Roblox Studio lets millions of creators build interactive experiences by programming in a variant of
Lua called Luau. The creators form a broad group, ranging from novices writing their first script to professional
developers; thus, Luau must support a wide audience. As part of its efforts to support all kinds of programmers,
Luau includes an optional, gradual type system and goes to great lengths to minimize false positive errors.
Inquiry Since Luau is currently being used by many creators, we want to collect data to improve the language
and, in particular, the type system. The standard way to collect data is to deploy client-side telemetry; however,
we cannot scrape personal data or proprietary information, which means we cannot collect source code
fragments, error messages, or even filepaths. The research questions are thus about how to conduct telemetry
that is not invasive and obtain insights from it about type errors.
Approach We designed and implemented a pseudonymized, randomly-sampling telemetry system for Luau.
Telemetry records include a timestamp, a session id, a reason for sending, and a numeric summary of the
most recent type analyses. This information lets us study type errors over time without revealing private data.
We deployed the system in Roblox Studio during Spring 2023 and collected over 1.5 million telemetry records
from over 340,000 sessions.
Knowledge We present several findings about Luau, all of which suggest that telemetry is an effective way to
study type error pragmatics. One of the less-surprising findings is that opt-in gradual types are unpopular:
there is an 100x gap between the number of untyped Luau sessions and the number of typed ones. One
surprise is that the strict mode for type analysis is overly conservative about interactions with data assets. A
reassuring finding is that type analysis rarely hits its internal limits on problem size.
Grounding Our findings are supported by a dataset of over 1.5 million telemetry records. The data and scripts
for analyzing it are available in an artifact.
Importance Beyond the immediate benefits to Luau, our findings about types and type errors have implications
for adoption and ergonomics in other gradual languages such as TypeScript, Elixir, and Typed Racket. Our
telemetry design is of broad interest, as it reports on type errors without revealing sensitive information.

ACM CCS 2012
General and reference→ Measurement;

Keywords types, gradual typing, telemetry, user study, large-scale study

The Art, Science, and Engineering of Programming

Submitted October 1, 2023

Published February 15, 2024

doi 10.22152/programming-journal.org/2024/8/12
© Ben Greenman, Alan Jeffrey, Shriram Krishnamurthi, and Mitesh Shah
This work is licensed under a “CC BY 4.0” license
In The Art, Science, and Engineering of Programming, vol. 8, no. 3, 2024, article 12; 30 pages.

���������

T
h
e
 A

rt
,
S
ci

en
ce

, a
nd Engineering of Pro

g
ra

m
m

in
g

Artifact Evaluation v2.0

��������
������

T
h
e
 A

rt
,
S
ci

en
ce

, a
nd Engineering of Pro

g
ra

m
m

in
g

Artifact Evaluation v2.0

https://doi.org/
https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0001-6342-0318
https://orcid.org/0000-0001-5184-1975
https://orcid.org/0009-0000-6084-123X
https://doi.org/10.22152/programming-journal.org/2024/8/12
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Privacy-Respecting Type Error Telemetry at Scale

1 Introduction

Roblox is a platform for shared virtual experiences (typically 3D games), with 70 mil-
lion Daily Active Users, and 16 billion hours of engagement in July–September
2023 [57]. There are over 5 million distinct user-created programs available on
the platform thanks to a worldwide community of 3 million creators. Many of the
creators program for fun or learning and may not consider themselves software
developers; others are professional developers who work full time with the Roblox
platform.
Creators program using the Luau programming language [40], an extension of

Lua 5.1 [28]. The main addition in Luau is a static type system that infers types for all
Luau programs on the fly, as creators modify the code. These types are used primarily
in ide tooling such as autocomplete and in API documentation [58], and indeed,
creators may be unaware that a typechecker is analyzing their code. However, creators
can opt in to receiving type error reports and they can write their own types to guide
designs and document their intentions.

Due to the broad community of creators, the goals of the Luau type system are rather
unique [7]. Whereas a traditional type system focuses on compilation and memory
safety, Luau takes a lenient approach by default and lets creators gradually [61,
65] migrate to rigorous checks one module at a time via three analysis modes. The
default nocheck mode reports only syntax errors, the nonstrict mode reports would-be
runtime errors and skips over other issues, and the strict mode reports a variety of
potential errors. In addition, no matter the mode, a background type analysis runs
to guide ide tools (Section 2). Luau’s types aim to support untyped designs, in the
spirit of migratory typing [66], so that creators can switch modes without needing to
restructure their code in major, potentially-breaking, ways.
In this paper, we investigate methods for measuring the effectiveness of the Luau

type system. The goal is to collect feedback at a large scale, with thousands of
participants maintaining real codebases. Consequently, the measurements cannot
reveal any information about source code, as it may contain personal data, proprietary
algorithms, novel game designs, and so on. In comparison to prior work (Section 6),
which with few exceptions is small in scale or collects source code, we performed a
large-scale study using pseudonymized telemetry.
Our starting point is a telemetry framework that is built in to Roblox Studio and

currently measures the effectiveness of creation features. This system randomly de-
termines which sessions should report telemetry, and, for those sessions, reports
telemetry records back with a summary of the session.

In this work, we design telemetry that collects data on type errors without exposing
source code, source locations, or even error message text (which may contain revealing
information). The telemetry counts the number and kind of type errors at various
levels of granularity. Furthermore, it maintains a client-side approximation of the
latest source-code edits and uses that to identify type errors that overlap with this
edit range. Each record contains a pseudonymized session identifier and a timestamp.

With this telemetry data, we investigate research questions about the adoption and
benefits of type analysis:

12:2

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

RQ1. How many sessions use type analysis? How often do projects contain modules
with different analysis modes? How often do sessions turn analysis off?

RQ2. For modules that use type analysis: which errors arise, how do sessions respond,
and which errors tend to persist despite subsequent edits?

RQ3. What impact does type analysis have on the number of background errors? For
example, do background errors pile up in unanalyzed (nocheck) projects?
Beyond their immediate revelance to Luau, answers to these questions have broad

implications for the design of gradually-typed languages. Luau represents a large-scale
combination of ideas from gradual typing [5, 61, 66], success typing [38], and semantic
subtyping [11, 29]. Lessons from this experience can inform future applications.
At a higher level, this paper is the first to use telemetry to study a type checker.

It thus represents a step toward data-driven language design, informed by many
users’ actual practice. Our data captures over 340,000 sessions that occured between
February and April 2023 and covers thousands of type analysis errors and millions
of background errors. By contrast to typical qualitative methods such as surveys and
interviews, it is not restricted to users’ perceptions about their work and it is not limited
to a small number of users performing synthetic tasks.

Contributions
Design of a low-overhead telemetry system that reports on type errors without
revealing potentially private information.

Lessons from many thousands of type errors about adoption, persistent errors, and
creators’ responses.

A dataset of over 1.5 million telemetry records and scripts to analyze them [23].

2 Context: Roblox and Luau

Roblox Studio is a workbench that combines 3D creation tools and an Integrated
Developer Environment (ide), as seen in Figure 1. The ide includes an optional Script
Analysis widget that reports syntax errors, type errors, and problems identified by
lint tools. The main editor widget can also highlight source locations in code where
reported errors occur.

Type Analysis Modes, Background Analysis Creators can opt in to detailed error reports
and highlights by selecting a type analysis mode for each script. There are three modes
that creators may choose from:

nocheck: report only syntax errors (the default),

nonstrict: report syntax errors and a subset of high confidence type errors, and

strict: report syntax errors and all type errors.

Each run of the type analysis can report several errors. There is no guarantee that
creators read every error. In fact, creators who close the Script Analysis widget can
see highlights in their code but no further details about the errors.

12:3

Privacy-Respecting Type Error Telemetry at Scale

Figure 1 Roblox Studio 3D creation tools (left) and ide (right).

As an example of nonstrict mode, the following program reports only one error:

--!nonstrict
local x = { p = 5, q = nil }
if condition then x.q = 7 end
local y = x.p + x.q --> OK
local z = x.r --> UnknownProperty: Key ’r’ not found in table ’x’

In strict mode, it reports two errors:

--!strict
local x = { p = 5, q = nil }
if condition then x.q = 7 end
local y = x.p + x.q --> TypeMismatch: Type ’nil’ could not be converted into ’number’
local z = x.r --> UnknownProperty: Key ’r’ not found in table ’x’

In programs like the above, where it is undecidable whether there will be a run-time
error, strict mode errs on the side of reporting an error and nonstrict mode errs on the
side of suppressing the error.
Both modes report the UnknownProperty error because misspellings of property

names are common enough to report in both strict and nonstrict mode. The nocheck
mode reports no error because the program is syntactically valid. See [7] for a more
detailed discussion of the rationale behind the type systems.

In addition to the main type analysis, Roblox Studio takes a second pass over every
codebase with a background analysis to infer autocomplete suggestions and drive
other ide tools. To infer precise types, the background analysis uses rigorous checks
very similar to those of strict mode (but not identical: see Section 4.8) no matter what
mode the creator declared for the script. When it fails to infer a type, background
analysis defaults to the unknown gradual type [61]. Creators cannot see the errors
reported by background analysis. Internally to Roblox Studio, this analysis is called
forced strict because it ignores the creator’s choice and applies strong checks.
Table 1 lists a few of the type errors that script analysis can report (10 out of 35

total) to give a sense of Luau. A SyntaxError is the only error that can appear in
nocheck code. Several errors including UnknownProperty are about tables, which are
Luau’s (and Lua’s) primary data structure. Tables encode arrays, dictionaries, and
objects; consequently, tables can have methods and can usually be extended. The
error TypesAreUnrelated is a special kind of type mismatch that arises only during cast,

12:4

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

Table 1 Sample type errors.

Label Interpretation

TypeMismatch Basic type error.
SyntaxError Basic parse error, e.g., for if end.
UnknownProperty Referenced an invalid field or method.
OnlyTablesCanHaveMethods Tried to attach a method to a non-table.
CannotExtendTable Tried to extend a sealed table.
TypesAreUnrelated Failed cast, unify, or subtype.
CountMismatch Arity mismatch for a function.
IncorrectGenericParamCount Arity mismatch for a generic type.
CodeTooComplex Type analysis failed (Section 4.6).
GenericError Generic label for other non-type errors,

e.g., looping over an unordered table.

unification, or subtyping check. A CountMismatch occurs when the arguments to a
function do not match the function’s arity. Similarly, an IncorrectGenericParamCount is
an arity mismatch for a generic type. A CodeTooComplex occurs when the typechecker
hits an internal limit on problem size. Lastly, GenericError is a catch-all label for
miscellaneous errors. When Luau can provide more context regarding a generic error,
it uses a second error label called ExtraInformation to attach a brief description.

On-the-Fly Typechecking Luau modules provide reusable libraries, which may be
imported by other scripts. Imports therefore form a graph in general, though type
analysis removes edges to ensure an acyclic graph. In strict mode, it is an error to
create an import cycle.
Typechecking analyzes the entire module graph, but it also keeps track of which

modules have been edited to avoid repeating work. Any script that the creator mod-
ifies gets marked as dirty, and any script that is dirty or that transitively imports a
dirty module gets analyzed by the typechecker. When typechecking is performed for
autocomplete, the common case is that only the current script gets checked because
it is the only dirty script. (Since the module graph is acyclic, nothing that the current
script requires can transitively require it.) With this strategy, the typechecker can run
after every keystroke without slowing down Roblox Studio.

Data Model The state of the world in a Roblox program is captured by the data model,
which is a tree of instances, such as parts, models, meshes, effects, lighting, audio
assets, and physics constraints such as forces, springs and joints. Each asset lives in a
separate file. There may be thousands of assets.

While a program is under development, it is typical for the data model to be edited.
Since the shape of the data model tree is reflected in the type system, it is possible for
these edits to introduce a huge number of type errors across the project.

12:5

Privacy-Respecting Type Error Telemetry at Scale

3 Telemetry Design

Telemetry allows an application to phone home with data summarizing usage patterns,
such performance data, crash reporting, and feature uptake. A typical use-case is in
deciding whether an API can be deprecated; without telemetry, it may be difficult to
know how popular the API is, but with telemetry it is straightforward. Telemetry for
programming languages can, however, be controversial. See, for example, the lively
discussion around telemetry in the Go toolchain [15].

Roblox Studio has a framework for reporting telemetry. Various features in the ide

use telemetry to measure their effectiveness. The Luau open source toolchain does not
report telemetry, as it is designed to be used in build environments such as Continuous
Integration servers, where hermetic deterministic builds are expected.

We added a subsystem to Roblox Studio’s telemetry in order to study type errors in
Luau code. This section explains the constraints our telemetry had tomeet (Section 3.1)
and the final design (Section 3.2).

3.1 Limitations for Luau Telemetry

Telemetry in Roblox Studio faces three major constraints:

1. It must not reveal private information. This can include Personally Identifying
Information (PII) about creators: their identity, location, etc. It also includes trade
secrets. Even an error message that contains the name of a function can reveal
something the creator does not want to share.

2. On the client side, telemetry computationsmust run quickly enough to avoid slowing
down the editing experience.

3. Telemetry must transmit a small amount of data to avoid overloading the servers.
This constrains both the number of records the system can transmit and the size of
each record.

See Cox [16] for further discussion of the privacy implications and tradeoffs of
telemetry for programming languages.
In addition, due to the architecture of Roblox Studio, there is some information

that is not available to the typechecker:

Lifecycle events including save, run, quit, and publish. (Publish events cannot be
reported at any rate because they are public, and could be used to match a telemetry
session to a creator.)

GUI state: in particular, whether the Script Analysis widget is visible.

Our type error telemetry has to meet all of the above constraints. This means that
it cannot send event-based telemetry on IDE lifecycle events (due to Studio’s archi-
tecture) and it cannot send full results from every type analysis because that would
overwhelm the data-collection server.

12:6

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

id Time Mode Reason Size Info Overall Counts Edit Range Counts
︸ ︷︷ ︸ ︸ ︷︷ ︸

fixed-size variable-size

Figure 2 Structure of a telemetry record. There are 13 overall counts and up to 70 edit
range counts in each record.

3.2 Telemetry Records

The type error telemetry for a Roblox Studio session is gathered as a series of records,
all with the same pseudonymized session identifier. This allows us to correlate teleme-
try across a single session, but not between sessions. In order to avoid swamping the
telemetry servers, the client reports on a subset of telemetry events via two levels of
uniform random sampling:

1% of Roblox Studio sessions generate any type error telemetry, and

0.5% of all type analyses (approximately 1 in 200 keystrokes) in an enrolled session
generate a telemetry record.

In addition to sending telemetry for randomly-selected keystrokes, our system sends
a telemetry record every time the session changes focus from one module to another.
These records provide important context for mode switches: if one record uses strict
mode but the next uses nocheck, then it is critical to know whether the creator
downgraded modes or simply switched to another module.

Figure 2 shows the structure of telemetry records:

1. id: a pseudonymized identifier (15-digit random number) for the current session.

2. Time: one timestamp from the client and one from the server.

3. Mode: type analysis mode of the current file: nocheck, nonstrict, or strict.
4. Reason: a flag that explains whether this record was sent due to a randomly-selected

keystroke or a module switch.

5. Size Info: number of lines in the codebase and number of lines in the edit range.

6. Overall Counts: summary of type errors and background errors during the last two
invocations of type analysis, and the number of times type analysis hit an internal
limit on problem size (see Section 4.6 for details). For each invocation and each
kind of analysis error, there are three summary counts:

total number of errors,

errors in the current module, and

errors in the current edit range.

7. Edit Range Counts: list of specific errors that arose in the last two type analyses and
overlap with the current edit range. Since there are 35 possible errors (Section 2),
there can be up to 70 counts in a telemetry record. Exactly how to interpret this
data depends on which analysis it came from:

Errors in the latest type analysis are currently visible to the creator. These may
have been introduced by the changes in the edit range.

12:7

Privacy-Respecting Type Error Telemetry at Scale

Errors from the previous type analysis were visible before the creator made the
latest edits. These may have motivated some of the changes in the edit range.

To track the edit range, we record a start and end position, which we update
appropriately on every edit. This can result in very large and imprecise edit ranges,
for example, if the user edits at the beginning and end of the file. The upshot of this
strategy is that it reduces the size and complexity of telemetry records because there
is only one interval for errors to overlap with.

This telemetry design is admittedly coarse-grained. For instance, it does not distin-
guish between edits that ignore a type error from edits that remove one error while
introducing another. We acknowledge this and other threats in Section 5. The main
advantages of this telemetry are the small size of each record and the complete lack
of private information. Furthermore, despite the limitations, this telemetry supports a
variety of inferences that we showcase in the next section.

4 The Data

We collected type error telemetry in Roblox Studio between February and April 2023.
Every Studio session had a small random chance of generating telemetry (Section 3.2).
The chosen sessions generated a record whenever the user switched modules and
randomly on each keystroke. In total, we collected over 1.5 million telemetry records.
Roughly two thirds are due to keystrokes.

Figure 3 provides a time-ordered distribution of the data. The x-axis is labeled with
a California time zone; the thin vertical lines mark the start of a new day. For each
of the 24 hours in each day, there is one blue bar indicating the number of records
generated during that hour. Each hour has a few dozen to over 3,000 records, typically
about 1,000. We conjecture the very low bars are due to outage on the logging server
and that the very tall bars are due to user scripts that generated a huge number
of keystrokes. Telemetry ended in early April; however, there are short bars in the
mid-April range from developers who waited a few days to update Roblox Studio.
The regular pattern of the peaks suggests that many creators follow a regular

schedule; these may be professional developers. The tall weekend (shaded) regions
could be because Roblox has a significant school-aged creator community.

4.1 Data Cleaning

A close inspection of the data revealed two anomalies:

1. Some records have identical timestamps and session ids. We keep the first such
record and discard the rest. (A human would have to switch modules twice or enter
several keystrokes within 1ms to generate two such records legitimately.)

2. A few hundred records (1,533) have negative edit ranges. These are likely due to
large deletions. Since the issue affects so few records, we simply ignore their edit
ranges. We do, however, use their overall error counts and other uncorrupted fields.

12:8

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

#
 R

e
c
o

rd
s

#
 R

e
c
o

rd
s

#
 R

e
c
o

rd
s

#
 R

e
c
o

rd
s

#
 R

e
c
o

rd
s

#
 R

e
c
o

rd
s

#
 R

e
c
o

rd
s

#
 R

e
c
o

rd
s

#
 R

e
c
o

rd
s

2023-02-21 |2023-02-21 |2023-02-21 |2023-02-21 |2023-02-21 |2023-02-21 |2023-02-21 |2023-02-21 |2023-02-21 | 2023-04-14 2023-04-14 2023-04-14 2023-04-14 2023-04-14 2023-04-14 2023-04-14 2023-04-14 2023-04-14

000000000

352535253525352535253525352535253525

705070507050705070507050705070507050

Reason for sending: 996,164 due to keystrokes [66.20%]
508,572 due to module switch [33.80%]

Figure 3 Telemetry records per hour. Each tick on the x-axis marks the start of a new day
in California. Shaded ranges correspond to weekends.

Table 2 Size of analyzed code: number of lines and lines in edit range

Mean Stddev Median p99 Distribution

Lines 6,497 22k 3,115 50,547

Records# Records# Records# Records# Records# Records# Records# Records# Records

000000000 500500500500500500500500500 100010001000100010001000100010001000

000000000

500500500500500500500500500

100010001000100010001000100010001000

Edit Range 3,680 31k 926 34,725

Records# Records# Records# Records# Records# Records# Records# Records# Records

000000000 500500500500500500500500500 100010001000100010001000100010001000

000000000

500500500500500500500500500

100010001000100010001000100010001000

4.2 Overall Size and Shape

Three important characteristics of the recorded data are the size of the codebases,
the length of the sessions, and the number of type errors. We discuss these in turn.

Codebase Size Table 2 summarizes the size of projects in the dataset. The four
numeric columns report the mean, standard deviation, median, and 99th percentile
for the number of lines and lines in edit range.v The plots on the right show zoomed-in
distributions of the line and edit range sizes. For example, the x-axis of the first plot
counts up to 1,000 lines (not showing a long tail to the right) and the y-axis counts
up to 1,000 telemetry records (not showing a tall spike on the left).
There is a huge amount of variation across sessions. The largest ones have over

50,000 lines of code while the smallest have zero lines of code. Unsurprisingly, these
wide-ranging numbers come with large standard deviations. The median values are
more reasonable, with roughly 3,000 lines of code and 1,000 lines in edit ranges.

1 The data also contains the number of files in each project, but these numbers are difficult
to relate to typechecking because projects may contain hundreds of files that define data
assets. For the record, the median file count is 7,678 and the 99th percentile is 51,761 files.

12:9

Privacy-Respecting Type Error Telemetry at Scale

Table 3 Session size in seconds and in number of records.

Mean Stddev Median p99 Distribution

Time Span (sec) 3,184 16k 845 35,450

Records# Records# Records# Records# Records# Records# Records# Records# Records

000000000 500500500500500500500500500 100010001000100010001000100010001000

000000000

500500500500500500500500500

100010001000100010001000100010001000

Record Count 286 583 138 3,302

Records# Records# Records# Records# Records# Records# Records# Records# Records

111111111 500500500500500500500500500 100010001000100010001000100010001000

000000000

500500500500500500500500500

100010001000100010001000100010001000

Table 4 Current type errors and background errors across all telemetry records.

595,137 type errors
289,698 in module [48.68%]
30,924 in edit range [5.20%]

72,235,735 background errors
37,027,281 in module [51.26%]
1,111,178 in edit range [1.54%]

Session Size Table 3 similarly outlines the size of sessions using two metrics: real
time in seconds between the first and last record, and the total number of records.
The plots focus on the lower-left fragment of the dataset, which again has a very long
tail. The longest sessions last several days and/or contain thousands of records, while
the shortest last a few milliseconds or include just one record. A median session runs
on the order of minutes and consists of a few dozen events.

Number of Type Analysis Errors Table 4 lists the number of type analysis errors and
breaks them down by location in the codebase. In total, there are over 590,000 type
errors. The number of background errors is much larger, at 72 million, because this
analysis uses rigorous checks and runs on every module no matter what type analysis
mode the module declares. Furthermore, background checks run silently, so creators
have no awareness of or incentive to fix these errors. Approximately half the analysis
errors occurred in the current module, and a small fraction of these overlapped with
the current edit range (5% for type errors, 1% for background). The other errors
point to different modules in the codebase.
The fraction of errors in the current module is relatively high because projects

contain many modules, all of which might contain latent type errors. This high
fraction is encouraging for two reasons. First, it suggests that errors appear locally,
as the result of edits to nearby code, rather than as the result of edits to code that
lives in another module. Second, it suggests that creators fix errors before switching
to another module.

The low fraction of errors in the edit range sends a mixed message:

On one hand, it may be that edits successfully remove errors. This is true, however,
only for type errors and not for background errors. There are 11,479 more type
errors from the previous analysis that overlap with the current edit range (27%
difference), but 172,678 fewer overlapping previous background errors (15% differ-
ence). Since creators can see type errors but not background errors before making

12:10

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

1,341,348 nocheck [89.14%]
156,883 nonstrict [10.43%]

6,505 strict [0.43%]

(a) Analysis modes in 1,504,736 records.

313,509 nocheck [90.19%]
32,902 nonstrict [9.47%]

545 strict [0.16%]
642 mixed-mode [0.18%]

(b) Analysis mode(s) in 347,598 sessions.

Among the other sessions: 176 contain a mode upgrade, 233 contain a mode
downgrade, and 512 contain modules with different modes.

Figure 4 Overview of type analysis modes.

edits, we conclude that visibility makes a difference. Section 4.5 explores edits and
type errors in more detail.

On the other hand, the low overlap between errors (whether current or previous)
and edits says that edits rarely target highlighted code. There are several possible
explanations: analysis might report several errors and the edits only target one or
two of them; creators might ignore errors entirely and edit other code; or creators
might choose to edit a non-highlighted location to fix an error. While non-privacy-
protecting analyses have answered such questions in the past [46], our data cannot
narrow down an answer.

4.3 Type Analysis Modes

Creators have three analysis modes to choose from and can switch between modes at
any time. Figure 4 shows, however, that usage is extremely skewed toward the default
nocheck mode. Nearly 90% of all records use nocheck, while 10% use nonstrict and
only a tiny fraction (0.4%) use strict mode. Grouping these records into sessions
shows that 90% of all sessions use nocheck exclusively, 9% use nonstrict exclusively,
and 0.2% use strict exclusively.
These adoption numbers indicate that as long as type checking is opt-in, most

creators stay opted out. In the future, Luau plans to make nonstrict the default mode.
It will be interesting to revisit mode usage at that point.
Most sessions (99.82%) stick to a single analysis mode. They never change the

mode in the current module and never switch focus to a module with a different
analysis mode. Among the other sessions, most of those (80%) switch to a module
with a different mode, about half contain at least one edit that upgrades to a more
strict mode, and about half contain a downgrade to a less-strict mode. There are 263
total upgrades across all sessions and 320 total downgrades.

Are Upgrades Discouraging? A possible explanation for the low adoption of nonstrict
and strict mode is that upgrading to these modes leads to a large number of type
errors. Creators might get discouraged or overwhelmed by a high error count.
The data does not support this explanation. On average, mode-upgrades resulted

in 3 additional type errors (stddev 7, median 0). This data excludes module switch
records and considers only keystroke events. The worst-case increase was quite high,

12:11

Privacy-Respecting Type Error Telemetry at Scale

Type errors Background errors

nocheck
nonstrict

strict

29.62%

60.99%

3.83%

nocheck
nonstrict

strict

88.30%

10.45%

0.16%

Figure 5 Type and background errors grouped by mode.

at 57 type errors, but exceptional. In another exception, upgrading modes removed
three type errors, possibly due to other edits being rolled in with the mode change.
In the other direction, mode downgrades have only a small negative effect on

the number of errors (mean -0.3, stddev 4, median 0, max -48). We would see a
much larger effect here if creators used downgrades as a quick way to silence the
typechecker. But, creators evidently switch modes only when the code is already in a
well-typed state.

4.4 Errors by Mode

Having seen the total number of errors in the dataset and the popularity of the three
analysis modes, a next question is how many errors each mode accounts for. There
should be a few type errors in the typical nocheck record (all of which would be syntax
errors) and many more in the nonstrict and strict records. For background errors,
we would expect very few in strict mode and very many in nocheck mode. Whereas
nocheck mode performs little analysis and therefore gives fews hints as to how to fix
background errors, strict mode checks should closely match background checks.

Figure 5 divides errors across modes. The left plot shows that nonstrict accounts for
two thirds of all type errors. This confirms our expectation. The right plot, by contrast,
does not support our hypothesis that nocheck records have more background errors
than the other modes. Though nocheck does have the most background errors, its
proportion matches the proportion of nocheck records in the dataset (Figure 4a)—if
every record had exactly one background error, the plot would be the same.

Digging further into background errors, the median number of such errors by mode
is 1 in nocheck, 3 in nonstrict, and 1 in strict. Records in nocheck mode evidently do
not have significantly more background errors. Furthermore, type analysis does not
seem to reduce background errors. This is surprising; Section 4.8 explores further.

4.5 Type Errors vs. Program Edits

The main focus of our telemetry design is to learn how type errors intersect with
edit ranges. Indeed, most of the fields in a telemetry record are dedicated to this
topic (Figure 2), and are directed toward RQ2 on type errors.
Using the results of the previous and current type analysis from each telemetry

record, Table 5 categorizes errors that overlap with the edit range. The three events of
interest are: when edits introduce a type error, when edits preserve a type error, and
when edits remove a type error. Hence, the table has three columns for each analysis

12:12

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

Table 5 Number of telemetry records that increase (↑), preserve (=), or decrease (↓) the
amount of a specific type error from the edit range.

nocheck nonstrict strict
↑ = ↓ ↑ = ↓ ↑ = ↓

CannotCallNonFunction - - - 12 2 13 1 - 1
CannotExtendTable - - - 6 8 1 - - 1
CannotInferBinaryOperation - - - - 1 - 5 6 6
CountMismatch - - - 184 42 157 9 2 9
DuplicateTypeDefinition - - - 1 - - - - -
ExtraInformation - - - 46 6 33 1 - 1
FunctionDoesNotTakeSelf - - - 3 4 1 - - -
FunctionExitsWithoutReturning - - - 6 1 5 7 3 5
GenericError - - - 177 47 149 5 - 8
IllegalRequire - - - 7 1 11 - - -
IncorrectGenericParameterCount - - - - - - 1 - 1
MissingProperties - - - 8 3 6 5 3 3
ModuleHasCyclicDependency - - - 9 5 8 - - -
NotATable - - - 4 1 5 2 - 1
OccursCheckFailed - - - - - - - - 1
OnlyTablesCanHaveMethods - - - - - 2 - - -
OptionalValueAccess - - - 21 45 15 4 2 4
SyntaxError - - 8290 - - 1149 - - 29
TypeMismatch - - - 103 51 80 13 6 18
UnknownPropButFoundLikeProp - - - 20 17 13 - - -
UnknownProperty - - - 256 156 208 16 18 22
UnknownRequire - - - 43 30 37 5 3 3
UnknownSymbol - - - 1992 438 1797 38 18 35

mode. In the nonstrict columns, for example, seventeen records introduce (↑) at least
one CannotCallNonFunction error. Four records keep the number for that error at the
same, nonzero level, and twenty reduce the number of CannotCallNonFunction errors.
This table is based on the 996,164 records generated from keystroke events. It

ignores records based on module switches because those do not have meaningful edit
ranges. One implication of the randomized strategy is that we may not notice when a
creator fixes an error; the fix must be selected by the telemetry system.

Observations
The numbers in the table are low overall. For instance, the highest strict count is
38 records out of the 6,505 total (Figure 4). Section 4.2 discusses the implications
of this low overlap rate for future work.

SyntaxError and the related errors UnknownSymbol and UnknownProperty are the
most common. If the edit range errors are indicative of type errors at large, then

12:13

Privacy-Respecting Type Error Telemetry at Scale

most errors in the data are likely due to typos during edits. These errors also survive
(=) the more than any other.

Curiously, the number of syntax errors never decreases or stays the same. This
may be because the easy fix is to press undo; telemetry does not see undo events.

The number of typos is inflated by our telemetry strategy because it cannot
determine when a creator is mid-edit. For example, a creator who writes a method
call bucket.countFish() letter-by-letter will generate an UnknownSymbol error for
buck and UnknownProperty for bucket.c, both of which may end up getting sampled.
Section 7 suggests ways to avoid reporting typos in the future.

After the syntax errors, CountMismatch, TypeMismatch, and GenericError are the
next most common nonstrict and strict errors. A CountMismatch sends the wrong
number of arguments to a function. It may simply be a common error, but it may
also be a telemetry artifact. The high incidence of TypeMismatch and GenericError
calls for further study in future work to determine precisely which error arose.
Some of the GenericErrors come with context strings in the form of ExtraInformation
errors, but telemetry does not report these strings.

OptionalValueAccess frequently persists through edits (=). Creators may be ignoring
this error because they can deduce that the optional value will be present at runtime.

Ideally, the highest number in each column group should be decreases (↓). A
decrease should happen when the creator sees an error and fixes it. However,
decreases are highest in only 18 of the 39 nonzero groups.

4.6 Type Error Frequency

Table 6 sorts type errors by the frequency with which they appear in nonstrict and
strict mode. The purpose of this table is to discover and rank all errors that appear in
the dataset; thus, it is based on both keystroke and module-switch telemetry records,
even though edit ranges are not well-defined for the latter. The table does not include
nocheck because all its type errors are SyntaxErrors by definition.

Observations
Typo-level errors, in particular UnknownSymbol (for an unbound variable), are
much more common in nonstrict than strict. This may be because nonstrict reports
fewer errors to dilute the proportion of unknown symbols.

Despite being less strict, nonstrict reported four errors that never appeared in strict
records: DuplicateTypeDefinition, FunctionDoesNotTakeSelf, MissingUnionProperty,
and OnlyTablesCanHaveMethods. We attribute this to the much larger number of
nonstrict records in the dataset.

TypeMismatch is far more common in strict mode (20.46%) than nonstrict (2.44%)
because strict has additional type constraints. Several other errors have higher
strict percentages for the same reason, such as CannotInferBinaryOperation, and two
errors appeared only in strict: OccursCheckFailed and IncorrectGenericParamCount.
Several Luau errors never appeared in edit ranges. Four of these deal with internal
typechecker limits, which we discuss below. The others are for dynamic property

12:14

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

Table 6 Type error popularity for nonstrict and strict modes.

nonstrict strict

UnknownSymbol 62.13%
SyntaxError 15.42%
UnknownProperty 8.28%
UnknownRequire 3.13%
TypeMismatch 2.44%
CountMismatch 2.26%
OptionalValueAccess 2.07%
GenericError 2.06%
UnknownPropButGotLikeProp 0.44%
CannotExtendTable 0.42%
GenericExtraInformation 0.32%
ModuleHasCyclicDependency 0.23%
IllegalRequire 0.20%
NotATable 0.15%
CannotCallNonFunction 0.15%
MissingProperties 0.09%
FunctionExitsWithoutReturn 0.07%
FunctionDoesNotTakeSelf 0.07%
MissingUnionProperty 0.02%
CannotInferBinaryOperation 0.02%
OnlyTablesCanHaveMethods 0.01%
DuplicateTypeDefinition <0.01%
TypesAreUnrelated <0.01%

UnknownSymbol 23.97%
TypeMismatch 20.46%
UnknownProperty 18.88%
SyntaxError 9.31%
CannotInferBinaryOperation 6.94%
MissingProperties 4.04%
CountMismatch 2.99%
OptionalValueAccess 2.99%
FunctionExitsWithoutReturn 2.99%
UnknownRequire 2.37%
GenericError 2.28%
NotATable 1.32%
GenericExtraInformation 0.35%
UnknownPropButGotLikeProp 0.26%
IncorrectGenericParamCount 0.18%
CannotCallNonFunction 0.18%
IllegalRequire 0.18%
ModuleHasCyclicDependency 0.09%
CannotExtendTable 0.09%
OccursCheckFailed 0.09%
TypesAreUnrelated 0.09%

lookups, deprecated APIs, swapped generic parameters, functions that require a
self, and type pack mismatches. We would not expect these to appear often.

Internal Limits, Code Too Complex To deal with pathologies such as the worst-case
time for ML-style type inference [33, 45], the Luau typechecker has internal limits
that restrict the problems it will attempt to solve. Hitting a limit triggers one of the
following errors along with a message that the analysis failed to understand the code:
CodeTooComplex, NormalizationTooComplex, or UnificationTooComplex. These errors
can appear in Script Analysis just like any other error, but one design goal of Luau is
that code rarely hits the limits. A typical creator should never see these errors.

Fortunately, the data rarely contains too-complex errors. None of these errors appear
in edit ranges (Table 6). For the specific case of CodeTooComplex, our telemetry tracked
project-wide counts and found only 26 errors, which were spread across eleven records
in three sessions. Note that all three sessions could have been from the same codebase.

12:15

Privacy-Respecting Type Error Telemetry at Scale

nocheck

nonstrict

strict

Figure 6 Changes in type error density (#curr - #old errors
#lines) over time (seconds).

4.7 Density of Type Errors

Since errors and edits may not overlap, either because the highlights are misleading
or because the creator ignores the errors, it is important to see how the total number
errors changes over time. We measure error density rather than error count, however,
to normalize for the wide range of codebase sizes (Table 2). Density is the number of
type errors divided by the number of lines.
Figure 6 plots changes to error density for every session in the dataset. The data

excludes module-switch telemetry records to keep the focus on edits. The x axis
counts time in seconds from the start of the session. Most sessions last a few dozen
seconds (Table 3), so the axis ends at 150 seconds to show a bit of the long tail. The
y axis shows changes to errors over time; a positive number means errors increased
since the last record, and a negative number represents a decrease. While there are
a few errors that go outside the plot bounds (max nocheck: 51, max nonstrict: 3586,
max strict: 87), we focus on ±50 errors because most of the mass is in that region.
The points are color-coded by their session. There are many colors througout the plot,
which shows that the data comes from many different sessions rather than from a
few high-traffic sessions.

Observations
All three plots are roughly balanced, with equal “mass” above and below the x-axis.
The next section explores this point in detail.

12:16

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

↑ = ↓

type error nocheck 0 [n/a] 0 [n/a] 0 [n/a]
(in module) nonstrict 7185[36.61%] 4786[24.30%] 7672[39.09%]

strict 251[35.35%] 204[28.73%] 255[35.92%]

background nocheck 153913[36.96%] 152735[36.68%] 109807[26.37%]
error nonstrict 18573[37.09%] 17604[35.15%] 13905[27.76%]
(in module) strict 272[32.04%] 317[37.34%] 260[30.62%]

Figure 7 How often do edits increase, maintain, or decrease the number of errors?

Only a small fraction of nocheck records have nonzero type error density. This is in
line with Table 5. Module switches in nocheck have nonzero density more often,
but still rarely (3%).

After the 40-second mark, changes to type error density become much smaller.
These long-running sessions are not introducing errors.

nonstrict has a bigger fluctuations in errors than strict. One explanation is that
some nonstrict sessions ignore type analysis (in particular the one with over 3,000
errors!) whereas most strict sessions pay close attention to it.

4.8 Do Edits Tend to Add Type Errors?

The visual symmetry in the density plots (Figure 6) suggests that edits add and remove
errors with rougly equal frequency, regardless of mode. Figure 7 explores this question
of balance in detail. For each of the three modes, it reports the percent of edits that
increase (↑), maintain (=), or decrease (↓) the number of type errors in the module.
It also reports counts for background checks to see whether fixing type errors fixes
background errors as well. The “maintain” rows exclude cases where there are zero
errors before and after.

Observations
None of our nocheck samples captured a change in syntax errors in the current
module. The nonzero changes in density above (1802 total, shown in Figure 6) all
affected other modules.

The type error increases and decreases are evenly balanced in nonstrict and strict
modes (±3 %). Since this data is from keystrokes rather than module switches, it
appears that sessions tend to fix errors highlighted by type analysis.

strict mode has a higher percent of “maintain” (=) records. Errors may be more
likely to persist in this mode.

In background mode, the percent of “maintain” records is higher across the board
and roughly equal to the percents of increases and decreases (about one-third each).
No matter the mode, reducing type errors is not guaranteed to reduce background
errors as well. This is surprising for strictmode, and likely relates to the data model;
see below for details.

12:17

Privacy-Respecting Type Error Telemetry at Scale

Data Model Types: Strict vs. Background Analysis Based on the description of back-
ground analysis from Section 2, it should raise at least as many errors as strict mode
because it uses strict checks for all dependencies. For example, if a strict module
imports from a nocheck one, then strict analysis does not analyze the import but
background analysis does.
In Figure 7, however, nearly 3% of strict-mode records increase the number of

strict errors without increasing background errors. Further inspection reveals that the
situation is a bit worse, as some records increase strict errors without changing the
background errors: 16% of all strict records increase (↑) the number of type errors
but maintain (=) the number of background errors.

The reason for the discrepancy is that strict mode and background analysis assign
different types to the data model: strict assigns a top type and requires downcasts at
use sites, whereas background analysis uses the dynamic gradual type. Dealing with
these data model errors may be a source of frustration for creators using strict mode.

5 Answers to Research Questions

With the data in hand, we can answer the research questions from Section 1:

RQ1.
- How many sessions use type analysis? A mere 10% of sessions (and of telemetry

records overall) opt-in to type checking (Figure 4). Most of these use nonstrict
mode, and fewer than 1% use strict mode.

Luau has an efficient type checker that can analyze thousands of lines of
code (Table 2) quickly enough to be used on-the-fly in an IDE. But, few sessions
use type analysis directly. We conjecture that Luau needs further tailoring to
match common idioms in untyped code. Discovering these idioms is a question
for future work (Section 7).

- How often do projects contain modules with di�erent modes? Sessions rarely com-
bine analysis modes. Only 512 of 340k sessions (< 0.15 %) switched to modules
with different analysis modes. This number may be an underapproximation
because we have data only on modules that the creator chose to open, but the
widespread use of nocheck mode suggests that it is not off by much. If 90 % of
all modules indeed use nocheck, then multi-mode projects must be rare.

- How often do sessions turn analysis o�? Sessions rarely disable type analysis after
opting in. Only 233 of the 340k sessions (< 0.07 %) switch to a weaker mode.
One-fourth of the downgrades switch from strict to nonstrict, and therefore keep
some type analysis. The remainder switch from strict to nocheck (50%) or from
nonstrict to nocheck (25%). Then again, sessions rarely turn analysis on as well:
only 176 (< 0.05 %) switch to a stronger mode.

RQ2. For modules that use type analysis (strict and nonstrict):
- Which errors arise? Syntax errors are extremely common (over 50%, Table 6),

followed by type mismatches (20% in strict), arity errors (2%), and failure to
unpack on optional value (2%). There are several uncommon errors, such as

12:18

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

misusing a table operation, and a few that never arise: internal and too-complex
errors, duplicating or swapping a generic parameter, use of a deprecated API,
and unsafe dynamic property lookup on a class.

- How do sessions respond? Which errors persist through edits? Sessions appear to
fix analysis errors. With few exceptions, increases and decreases in the number
of errors balance out (Figure 7 and Table 5). Even in nocheck, most edits that
overlap with syntax errors remove at least one error (67%) rather than increase
or maintain the total. The errors that survive edits most often are due to inference
at a binary operation, sending self to a function that does not expect it, and
failure to unpack an optional value. But, the first two seldom arise and the third
is something creators might reasonably ignore while prototyping.

RQ3. What impact does type analysis have on background errors? Opting in to analysis
has little impact on the number of background errors. The percent of background
errors in nocheck code matches the percent of sessions using nocheck mode (Fig-
ure 5); whereas, if type analysis helped reduce background errors, nocheck would
own a higher percentage of the errors. Furthermore, there is no apparent rela-
tion between background errors and edits, regardless of analysis mode (Figure 7).
A randomly-chosen edit has a roughly 1/3 chance of increasing, decreasing, or
maintaining the number of background errors.

Threats to Validity While this study has high ecological validity due to its focus on
working creators, there are several threats to keep in mind. Some threats stem from
our method of collecting data; others come from the limited scope of the data.
First of all, sampling is necessarily incomplete. Though the data includes many

thousands of sessions, it may have missed a few critical sessions where a creator
adopted strict mode, encountered CodeTooComplex errors, and gave up. Furthermore,
our method of sampling by keystroke and by module switch skews the data toward
creators who, for whatever reason, do more of these actions. We have no access to
other events, e.g., local runs (Section 3.1); future studies may wish to avoid this
limitation by actively recruiting participants.
Second, the edit ranges are a coarse approximation of actual edits. They begin

at the lowest edited line of code and end at the highest edited line, even if nothing
between those lines changed. On a related note, the computation that determines
whether an old type error overlaps with the current edit range has many edge cases,
especially to handle deletions, and may mis-count. This could explain why Table 5
reports zero syntax errors that overlap with the current edit range; if the fix is to
delete code, then the edit range is empty.

Third, session-based data has limitations. A creator who closes and reopens Roblox
Studio every day has a much higher chance of generating telemetry than one who
leaves Studio open all week. We have no way to reliably check whether multiple
sessions are reporting on the same codebase. Sessions may end abruptly, e.g., because
of machine reboot, instead of ending when the creator was done editing code.

Fourth, the total counts of type errors include a large number of syntax errors, which
have little to do with the Luau type system and are presumably easy for creators to
fix. Our comparison between background errors in nocheck vs. strict mode (Figure 7)

12:19

Privacy-Respecting Type Error Telemetry at Scale

Table 7 Comparison of telemetry designs. Two orthogonal concerns are when to collect
data and whether to add noise to enhance privacy.

Event Counts Timestamps Error Msgs. Source Code

Roblox Studio

Transparent

Classic

might tell a different story without the noise that syntax errors introduce, but we
cannot easily filter them because we have only the total number (not the kind) for
errors outside the edit range.

Fifth, type analysis reports several errors at once and we have no idea which errors,
if any, creators intended to fix with their edits. Thus, fixes may be a side effect of
other plans, as seen in prior work [46]. Edits that fix one error but introduce another
are also indistinguishable from edits that maintain the number of errors.

Lastly, regarding external validity, we know nothing about the creators in our study
except that they were selected at random from a large and diverse group. A dataset
based on a targeted subset of users might show entirely different characteristics.

Ultimately, we view our work as primarily formative. It gives us a first look at usage,
and generates several questions that can lead to hypotheses. Answering those would
require much more intrusive techniques, or controlled studies, or other means.

6 Related Work

Our telemetry has two distinguishing characteristics: it includes no private information
(both PII and source code details), and it sends data on randomly-selected runs of
the type checker rather than specific events of interest. To the best of our knowledge,
this design occupies a unique position relative to prior work, the two main strands of
which we describe below and summarize in Table 7.

In a classic telemetry system, such as the ones in VSCode [52], IntelliJ [30], .NET [48]
and Eclipse [18], telemetry may include all sorts of data: error reports, source code
fragments, timestamps, and filepaths. Users may be able to opt out of some telemetry,
but the details depend on the license agreement. Furthermore, at least in VSCode,
ide extensions can report their own telemetry. While this data can be invaluable for
discovering bugs in production, it must be handled with extreme care.

At the opposite end of the privacy spectrum, Go’s design for transparent telemetry
reports only counter values [16]. Unlike Roblox Studio, transparent telemetry includes
no timestamps and no session ids. While useful for learning about the frequency and
distribution of specific events, the lack of timestamps and ids means it cannot track
edits over time (which we use in Figure 6).

Telemetry Enhancements: What and How to Sample One way to futher strengthen the
privacy of any telemetry design, including transparent telemetry, is to systematically
add noise to the data using techniques from differential privacy [20, 68, 72]. Recent

12:20

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

work shows how to add noise to traces [72], how to account for known relationships
between events [73], and how to choose the noise on the client side [25]. Roblox
Studio could benefit from these techniques. Applying differential privacy is subtle,
however. While we could fuzz the total number of type errors, if we were to fuzz the
number of CodeTooComplex errors, it might drastically affect our inferences.

Prio and Poplar demonstrate a telemetry method to compute public aggregates over
private data using a middle layer of servers [6, 14]. Clients can depend on privacy
guarantees even if other clients and some servers (but not all) are malicious. The
design has been deployed in Mozilla Firefox to monitor blocklist usage [19]. Luau
telemetry might benefit from a redesign to use middle-layer servers, though it is
unclear what private data from type analysis would support meaningful aggregates.
Cooperative bug isolation is a method for designing telemetry systems [37]. The

goal is to collect a small amount of data from each user and perform statistically-
sound analyses; privacy is not a main concern. Each feature of interest within a user’s
codebase has a uniform-random probability of contributing telemetry. A system-builder
can analyze this telemetry with predicates to identify notable events and use logistic
regression to narrow down nondeterministic bugs. There is a high burden on designers
to decide what to capture, but a careful design can minimize the data from each
individual user.
Two further refinements, which reduce the burden on experts to select points of

interest, are adaptive bug isolation [1] and blame-proportional logging [41]. Adaptive
bug isolation starts with a set of predicates, studies which are most correlated with
failures, and experiments with adding telemetry to nearby predicates; this technique
can reduce the overhead of telemetry by two orders of magnitude relative to naive
binary instrumentation. Blame-proportional logging starts with lightweight telemetry
to recognize defects, assigns ranks to methods estimating their likelihood as root
causes, and uses the ranks and future observations to narrow down the cause. Deep
transfer learning is another promising way to hone in on events of interest [74].

User Studies, Errors, and Type Errors Our approach to data analysis is inspired by
Marceau et al. [46, 47] and Macedo et al. [43, 44] for Racket and Alloy4Fun, respec-
tively. Other more recent work has also studied edit sequences to infer intent [39,
55, 71]. A major difference is that we have only samples, not full sequences, which
significantly impacts our study methods and inferences.

There is a rich body of work that uses IDE instrumentation to study programmers
(e.g., [2, 17, 26, 31, 35, 49, 51, 53, 56, 69, 70]). The Blackbox project has accumulated
terabytes of Java code over a ten-year span, and has thereby enabled dozens of
contributions to CS education [8, 9]. The GRUMPS telemetry system collected over
four million keystroke-level actions to study student programmers [62, 63]. WatchDog
records the time that programmers spend reading, writing, and testing code [3].
TDD-Guide collects similar data to teach testing methods [50]. None of the above
are sufficiently private to work for Roblox Studio. The BitFit project counts notable
events (compile program, ask for hint, etc.) for Java [21, 32]. While it does operate in
a transparent [16] manner, it provides only coarse-grained information that would be
insufficient in our study.

12:21

Privacy-Respecting Type Error Telemetry at Scale

Much work [27, 42] on the benefits of static types focuses on small case studies [24,
64, 67], interviews [12, 13, 22], or static corpuses [4, 54]. Controlled experiments
are rare; Kleinschmager et al. [34] is a notable exception. Lerner et al. [36] apply a
type error repair tool on over two thousand programs. Seidel et al. [59, 60] use five
thousand programs to train data-driven methods for localizing errors. These are all
on a vastly smaller scale than our study and also study different issues.

7 Lessons Learned and Reflections

This paper presents the first large-scale analysis of developers’ interactions with an
industrial strength typechecker in a privacy-respecting way. Despite the intentionally-
restricted data, the analysis offers several lessons for Luau in particular and for other
gradual languages (e.g. [5, 10, 66]) in general:

Nearly all sessions (90%) use the default “no check” typechecking mode (Figure 4).
Since the next typing mode (nonstrict) requires no annotations and is very conser-
vative about the errors it reports, we conjecture that developers would have no
objections to using it and are simply unaware that other modes exist. Luau, and per-
haps other languages, must take care to advertise gradual types and demonstrate
how to use them effectively to increase adoption.

Sessions appear to fix errors immediately rather than dealing with them in a batch
or ignoring the errors altogether (Figures 6 and 7). This observation should give
Roblox confidence to make nonstrict the default in the future. Other languages
should consider adding a nonstrict mode that minimizes false positives as a bridge
toward strict type checking.

All Luau scripts interact with data assets, but no typechecking mode has a precise
view of the data. Improving precision is an important direction for future work.
Until then, strict mode clearly needs to relax its data model analysis because it
raises even more errors than background checking (Section 4.8). Other languages
should avoid making the same mistake.

On the meta level, the main takeaway is that the lightweight, counter-based teleme-
try in Roblox Studio supports a variety of useful analyses:

Counting specific type errors helps to identify trends and to confirm that undesirable
events rarely happen (e.g., UnificationTooComplex).
Testing the relationship between two counts can yield insights. The gap between
strict and background errors in Section 4.8 revealed an issue with strict checking.
Reporting the overlap between type errors and the current (approximate) edit
range lets us assess the outcome of edits without revealing source code. It was
especially useful to have overlaps for two sets of type errors: old and current.

Timestamps give useful, low-level insights about the frequency of keystrokes, the
length of sessions, and actions over time. The event ordering that timestamps
provide was invaluable; e.g., for learning that error deltas bounce up and down
rather than rising sharply, then falling (Figure 6).

12:22

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

One aspect of the telemetry that we would change for next time is to provide
more metadata. For example, Luau recently adopted semantic subtyping to reduce
false-positive type errors [11, 29], but the current telemetry has no way to tell if this
internal extension is enabled or not.

Three other aspects are also worth rethinking:

1. It would be useful to track the identity of errors (to know exactly which ones get
fixed), to have fine-grained counts for background analysis errors, and to record
the specific reason behind errors such as TypeMismatch. But, this additional data
could easily double the size of telemetry records.

2. Although tracking edit ranges was useful, it made the telemetry system much more
difficult to build and maintain. Tracking old and current errors at the module level
would be far easier, though there is a risk that it is too coarse.

3. The massive number of syntax errors begs the question of how to skip them. Shifting
focus from arbitrary keystrokes to selected ones, such as closing parentheses or
whitespaces, might increase the likelihood of well-formed code without losing the
“middle of things” nature of the data. Another option is to ignore records that have
a syntax error in the edit range.

It would also be interesting to build statistical models of the “average” programmer
using each typing mode and compare their error rates. While one could start modeling
with the nocheck and nonstrict data, there are too few strict records at the moment
due to our uniform sampling rate. The errors that we do see in strict mode call for an
in-depth analysis via talk-aloud interviews to discover why type mismatches occur
and how Luau can better accommodate untyped idioms.

Data Availability Statement The artifact for this paper contains the full telemetry
dataset and scripts for reproducing the analysis in Section 4.

Acknowledgements Thanks to Benjamin Chung for several helpful discussions about
data analysis and effective plotting. We gratefully acknowledge support from NSF
grant SHF-2227863 and NSF grant 2030859 to the CRA for the CIFellows project.

12:23

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2227863&HistoricalAwards=false
https://nsf.gov/awardsearch/showAward?AWD_ID=2030859&HistoricalAwards=false
https://cifellows2020.org

Privacy-Respecting Type Error Telemetry at Scale

References

[1] Piramanayagam Arumuga Nainar and Ben Liblit. “Adaptive Bug Isolation”. In:
ICSE. ACM, 2010, pages 255–264. doi: 10.1145/1806799.1806839.

[2] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. “Effective Compiler Error Message Enhancement
for Novice Programming Students”. In: Computer Science Education 26.2-3
(2016), pages 148–175. doi: 10.1080/08993408.2016.1225464.

[3] Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, and Andy
Zaidman. “How to Catch ’Em All: WatchDog, a Family of IDE Plug-Ins to Assess
Testing”. In: ICSE. ACM, 2016, pages 53–56. doi: 10.1145/2897022.2897027.

[4] Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek.
“On the Impact of Programming Languages on Code Quality: A Reproduction
Study”. In: Transactions on Programming Languages and Systems 41.4 (2019),
21:1–21:24. doi: 10.1145/3340571.

[5] Gavin Bierman, Martin Abadi, and Mads Torgersen. “Understanding Type-
Script”. In: ECOOP. 2014, pages 257–281. doi: 10.1007/978-3-662-44202-9_11.

[6] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
“Lightweight Techniques for Private Heavy Hitters”. In: SP. IEEE, 2021, pages 762–
776. doi: 10.1109/SP40001.2021.00048.

[7] Lily Brown, Andy Friesen, and Alan Jeffrey. “Goals of the Luau Type System”. In:
HATRA. https://arxiv.org/abs/2109.11397. 2021. doi: 10.48550/arXiv.2109.11397.

[8] Neil C. C. Brown, Amjad AlTadmri, Sue Sentance, and Michael Kölling. “Black-
box, Five Years On: An Evaluation of a Large-scale Programming Data Collection
Project”. In: ICER. ACM, 2018, pages 196–204. doi: 10.1145/3230977.3230991.

[9] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. “Blackbox:
A Large Scale Repository of Novice Programmers’ Activity”. In: SIGCSE. ACM,
2014, pages 223–228. doi: 10.1145/2538862.2538924.

[10] Giuseppe Castagna, Guillaume Duboc, and José Valim. “The Design Principles
of the Elixir Type System”. In: Programming 8.2 (2024), 4:1–4:39. doi: 10.
22152/programming-journal.org/2024/8/4.

[11] Giuseppe Castagna and Alain Frisch. “A Gentle Introduction to Semantic Sub-
typing”. In: PPDP. 2005, pages 198–208. doi: 10.1145/1069774.1069793.

[12] Michael Coblenz, Ariel Davis, Megan Hofmann, Vivian Huang, Siyue Jin, Max
Krieger, Kyle Liang, Brian Wei, Mengchen Sam Yong, and Jonathan Aldrich.
“User-Centered Programming Language Design: A Course-Based Case Study”.
In: HATRA. 2020, pages 1–7. doi: 10.48550/arXiv.2011.07565.

[13] Michael J. Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine.
“Can Advanced Type Systems be Usable? An Empirical Study of Ownership,
Assets, and Typestate in Obsidian”. In: PACMPL 4.OOPSLA (2020), 132:1–
132:28. doi: 10.1145/3428200.

12:24

https://doi.org/10.1145/1806799.1806839
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/2897022.2897027
https://doi.org/10.1145/3340571
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1109/SP40001.2021.00048
https://arxiv.org/abs/2109.11397
https://doi.org/10.48550/arXiv.2109.11397
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.48550/arXiv.2011.07565
https://doi.org/10.1145/3428200

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

[14] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics”. In: NSDI. USENIX, 2017, pages 259–282.
doi: 10.48550/arXiv.1703.06255. url: https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/corrigan-gibbs.

[15] Russ Cox. GitHub Discussion: Telemetry in the Go Toolchain. 2023. url: https:
//github.com/golang/go/discussions/58409 (visited on 2023-09-12).

[16] Russ Cox. Transparent Telemetry, Part 1. 2023. url: https://research.swtch.com/
telemetry-intro (visited on 2023-04-01).

[17] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. “Enhancing Syntax
Error Messages Appears Ineffectual”. In: ITiCSE. ACM, 2014, pages 273–278.
doi: 10.1145/2591708.2591748.

[18] Eclipse. UDC/What Gets Captured. 2010. url: https://wiki.eclipse.org/UDC/
What_Gets_Captured (visited on 2023-12-07).

[19] Steven Englehardt. Next steps in privacy-preserving Telemetry with Prio. 2019.
url: https://blog.mozilla.org/security/2019/06/06/next-steps- in-privacy-
preserving-telemetry-with-prio/ (visited on 2023-10-12).

[20] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. “RAPPOR: Random-
ized Aggregatable Privacy-Preserving Ordinal Response”. In: CCS. ACM, 2014,
pages 1054–1067. doi: 10.1145/2660267.2660348.

[21] Anthony Estey, Anna Russo Kennedy, and Yvonne Coady. “BitFit: If You Build It,
They Will Come!” In:WCCCE. ACM, 2016, 3:1–3:6. doi: 10.1145/2910925.2910944.

[22] Catarina Gamboa, Paulo Alexandre Santos, Christopher Steven Timperley, and
Alcides Fonseca. “User-driven Design and Evaluation of Liquid Types in Java”.
In: HATRA. 2021, pages 1–9. doi: 10.48550/arXiv.2110.05444.

[23] Ben Greenman, Alan Jeffrey, Shriram Krishnamurthi, andMitesh Shah. Accepted
Artifact for Privacy-Respecting Type Error Telemetry at Scale. Version 0.3. Dec.
2023. doi: 10.5281/zenodo.10275213.

[24] Christian Haack and Joe B. Wells. “Type Error Slicing in Implicitly Typed
Higher-Order Languages”. In: Science of Computer Programming 50.1-3 (2004),
pages 189–224. doi: 10.1016/j.scico.2004.01.004.

[25] Yu Hao, Sufian Latif, Hailong Zhang, Raef Bassily, and Atanas Rountev. “Differ-
ential Privacy for Coverage Analysis of Software Traces”. In: ECOOP. Volume 194.
Schloss Dagstuhl, 2021, 8:1–8:25. doi: 10.4230/LIPIcs.ECOOP.2021.8.

[26] Lile Hattori and Michele Lanza. “Syde: A Tool for Collaborative Software
Development”. In: ICSE. ACM, 2010, pages 235–238. doi: 10.1145/1810295.
1810339.

[27] Bastiaan Heeren. “Top Quality Type Error Messages”. PhD thesis. Utrecht
University, 2005. HDL: 1874/7297. (Visited on 2024-02-09).

[28] Roberto Ierusalimschy. Programming in Lua. 2nd. https://www.lua.org/pil/.
Lua.org, 2016. isbn: 978-85-903798-2-9.

12:25

https://doi.org/10.48550/arXiv.1703.06255
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://github.com/golang/go/discussions/58409
https://github.com/golang/go/discussions/58409
https://research.swtch.com/telemetry-intro
https://research.swtch.com/telemetry-intro
https://doi.org/10.1145/2591708.2591748
https://wiki.eclipse.org/UDC/What_Gets_Captured
https://wiki.eclipse.org/UDC/What_Gets_Captured
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2910925.2910944
https://doi.org/10.48550/arXiv.2110.05444
https://doi.org/10.5281/zenodo.10275213
https://doi.org/10.1016/j.scico.2004.01.004
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://doi.org/10.1145/1810295.1810339
https://doi.org/10.1145/1810295.1810339
http://hdl.handle.net/1874/7297
https://www.lua.org/pil/

Privacy-Respecting Type Error Telemetry at Scale

[29] Alan Jeffrey. Semantic Subtyping in Luau. url: https://blog.roblox.com/2022/
11/semantic-subtyping-luau/ (visited on 2023-09-12).

[30] JetBrains. IntelliJ IDEA Data Sharing. 2023. url: https://www.jetbrains.com/
help/idea/settings-usage-statistics.html (visited on 2023-09-12).

[31] Philip M. Johnson. “Searching under the Streetlight for Useful Software Ana-
lytics”. In: IEEE Software 30.4 (2013), pages 57–63. doi: 10.1109/MS.2013.69.

[32] Anna Russo Kennedy. “Towards a Data-Driven Analysis of Programming Tutori-
als’ Telemetry to Improve the Educational Experience in Introductory Program-
ming Courses”. Master’s thesis. University of Victoria, 2006. HDL: 1828/6500.
(Visited on 2024-02-09).

[33] A. J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. “ML Typability is DEXTIME-
Complete”. In: CAAP. Volume 431. Springer, 1990, pages 206–220. doi: 10.
1007/3-540-52590-4_50.

[34] Sebastian Kleinschmager, Stefan Hanenberg, Romain Robbes, Éric Tanter,
and Andreas Stefik. “Do Static Type Systems Improve the Maintainability of
Software Systems? An Empirical Study”. In: ICPC. IEEE, 2012, pages 153–162.
doi: 10.1109/ICPC.2012.6240483.

[35] Hongbing Kou, Philip M. Johnson, and Hakan Erdogmus. “Operational Defi-
nition and automated inference of test-driven development with Zorro”. In:
Automated Software Engineering 17.1 (2010), pages 57–85. doi: 10.1007/S10515-
009-0058-8.

[36] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers.
“Searching for Type-Error Messages”. In: PLDI. ACM, 2007, pages 425–434. doi:
10.1145/1250734.1250783.

[37] Benjamin Robert Liblit. “Cooperative Bug Isolation”. PhD thesis. Stanford
University, 2004. url: https://pages.cs.wisc.edu/~liblit/dissertation/ (visited
on 2024-02-09).

[38] Tobias Lindahl and Konstantinos Sagonas. “Practical Type Inference Based on
Success Typings”. In: PPDP. 2006, pages 167–178. doi: 10.1145/1140335.1140356.

[39] Kuang-Chen Lu, Ben Greenman, and Shriram Krishnamurthi. “Types for Tables:
A Language Design Benchmark”. In: Programming 6.2 (2022), 8:1–8:30. doi:
10.22152/programming-journal.org/2022/6/8.

[40] Team Luau. The Luau Programming Language. 2023. url: https://luau-lang.org/
(visited on 2024-02-09).

[41] Liang Luo, Suman Nath, Lenin Ravindranath Sivalingam, Madan Musuvathi,
and Luis Ceze. “Troubleshooting Transiently-Recurring Errors in Production
Systems with Blame-Proportional Logging”. In: USENIX ATC. USENIX, 2018,
pages 321–334. url: https://www.usenix.org/conference/atc18/presentation/
luo (visited on 2023-05-24).

[42] Dan Luu. Literature Review on the Benefits of Static Types. 2023. url: http:
//danluu.com/empirical-pl/ (visited on 2023-09-23).

12:26

https://blog.roblox.com/2022/11/semantic-subtyping-luau/
https://blog.roblox.com/2022/11/semantic-subtyping-luau/
https://www.jetbrains.com/help/idea/settings-usage-statistics.html
https://www.jetbrains.com/help/idea/settings-usage-statistics.html
https://doi.org/10.1109/MS.2013.69
http://hdl.handle.net/1828/6500
https://doi.org/10.1007/3-540-52590-4_50
https://doi.org/10.1007/3-540-52590-4_50
https://doi.org/10.1109/ICPC.2012.6240483
https://doi.org/10.1007/S10515-009-0058-8
https://doi.org/10.1007/S10515-009-0058-8
https://doi.org/10.1145/1250734.1250783
https://pages.cs.wisc.edu/~liblit/dissertation/
https://doi.org/10.1145/1140335.1140356
https://doi.org/10.22152/programming-journal.org/2022/6/8
https://luau-lang.org/
https://www.usenix.org/conference/atc18/presentation/luo
https://www.usenix.org/conference/atc18/presentation/luo
http://danluu.com/empirical-pl/
http://danluu.com/empirical-pl/

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

[43] Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo Silva, Ana
C. R. Paiva, Miguel Sozinho Ramalho, and Daniel Castro Silva. “Experiences
on Teaching Alloy with an Automated Assessment Platform”. In: ABZ. Springer,
2020, pages 61–77. doi: 10.1007/978-3-030-48077-6_5.

[44] Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo Silva, Ana
C. R. Paiva, Miguel Sozinho Ramalho, and Daniel Castro Silva. “Experiences
on Teaching Alloy with an Automated Assessment Platform”. In: Science of

Computer Programming 211.102690 (2021), pages 1–21. doi: 10.1016/j.scico.
2021.102690.

[45] Harry G. Mairson. “Deciding ML Typability is Complete for Deterministic
Exponential Time”. In: POPL. ACM, 1990, pages 382–401. doi: 10.1145/96709.
96748.

[46] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. “Measuring the
Effectiveness of Error Messages Designed for Novice Programmers”. In: SIGCSE.
ACM, 2011, pages 499–504. doi: 10.1145/1953163.1953308.

[47] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. “Mind Your
Language: On Novices’ Interactions with Error Messages”. In: Onward! ACM,
2011, pages 3–18. doi: 10.1145/2048237.2048241.

[48] Microsoft. .NET SDK and .NET CLI telemetry. 2023. url: https://learn.microsoft.
com/en-us/dotnet/core/tools/telemetry (visited on 2023-04-01).

[49] Roberto Minelli, Andrea Mocci, Michele Lanza, and Lorenzo Baracchi. “Vi-
sualizing Developer Interactions”. In: IEEE Working Conference on Software

Visualization. IEEE, 2014, pages 147–156. doi: 10.1109/VISSOFT.2014.31.

[50] Oren Mishali, Yael Dubinsky, and Shmuel Katz. “The TDD-Guide Training and
Guidance Tool for Test-Driven Development”. In: XP. Springer, 2008, pages 63–
72. doi: 10.1007/978-3-540-68255-4_7.

[51] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E Johnson, and Danny Dig.
“A Comparative Study of Manual and Automated Refactorings”. In: ECOOP.
Springer, 2013, pages 552–576. doi: 10.1007/978-3-642-39038-8_23.

[52] Rob O’Leary. VS Code — What’s the deal with the telemetry? 2022. url: https:
//www.roboleary.net/tools/2022/04/20/vscode-telemetry.html (visited on
2023-04-01).

[53] Siddhartha Prasad, Ben Greenman, Tim Nelson, John Wrenn, and Shriram
Krishnamurthi. “Making Hay from Wheats: A Classsourcing Method to Identify
Misconceptions”. In: Koli Calling. 2022, 2:1–2:7. doi: 10.1145/3564721.3564726.

[54] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar T. Devanbu. “A
Large Lcale Study of Programming Languages and Code Quality in GitHub”.
In: FSE. ACM, 2014, pages 155–165. doi: 10.1145/2635868.2635922.

[55] Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. “REPLica:
REPL instrumentation for Coq analysis”. In: CPP. ACM, 2020, pages 99–113.
doi: 10.1145/3372885.3373823.

12:27

https://doi.org/10.1007/978-3-030-48077-6_5
https://doi.org/10.1016/j.scico.2021.102690
https://doi.org/10.1016/j.scico.2021.102690
https://doi.org/10.1145/96709.96748
https://doi.org/10.1145/96709.96748
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/2048237.2048241
https://learn.microsoft.com/en-us/dotnet/core/tools/telemetry
https://learn.microsoft.com/en-us/dotnet/core/tools/telemetry
https://doi.org/10.1109/VISSOFT.2014.31
https://doi.org/10.1007/978-3-540-68255-4_7
https://doi.org/10.1007/978-3-642-39038-8_23
https://www.roboleary.net/tools/2022/04/20/vscode-telemetry.html
https://www.roboleary.net/tools/2022/04/20/vscode-telemetry.html
https://doi.org/10.1145/3564721.3564726
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/3372885.3373823

Privacy-Respecting Type Error Telemetry at Scale

[56] Romain Robbes and Michele Lanza. “SpyWare: a change-aware development
toolset”. In: ICSE. ACM, 2008, pages 847–850. doi: 10.1145/1368088.1368219.

[57] Roblox. Reimagining the way people come together. 2023. url: https://corp.
roblox.com/ (visited on 2023-09-11).

[58] Roblox. Script Editor: Luau-Powered Autocomplete & Language Features Beta.
2021. url: https ://devforum.roblox . com/t/script - editor - luau- powered-
autocomplete-language-features-beta/1406701 (visited on 2024-02-09).

[59] Eric L. Seidel, Ranjit Jhala, and Westley Weimer. “Dynamic Witnesses for
Static Type Errors (or, Ill-Typed Programs Usually Go Wrong)”. In: Journal of
Functional Programming 28 (2018), e13. doi: 10.1017/S0956796818000126.

[60] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit
Jhala. “Learning to Blame: Localizing Novice Type Errors with Data-Driven
Diagnosis”. In: PACMPL 1.OOPSLA (2017), 60:1–60:27. doi: 10.1145/3138818.

[61] Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional Languages”.
In: SFP. University of Chicago, TR-2006-06. 2006, pages 81–92. url: http :
//scheme2006.cs.uchicago.edu/scheme2006.pdf (visited on 2024-02-09).

[62] Richard Thomas, Gregor Kennedy, Steve Draper, Rebecca Mancy, Murray
Crease, Huw Evans, and Phil Gray. “Generic Usage Monitoring of Programming
Students”. In: ASCILITE. 2003, pages 715–719. url: https://www.psy.gla.ac.uk/
~steve/grumps/ascilite03.pdf (visited on 2024-02-09).

[63] Richard C. Thomas and Rebecca Mancy. “Use of Large Databases for Group
Projects at the Nexus of Teaching and Research”. In: ITiCSE. ACM, 2004, pages 161–
165. doi: 10.1145/1007996.1008039.

[64] Frank Tip and T. B. Dinesh. “A Slicing-Based Approach for Locating Type Errors”.
In: Transactions on Software Engineering Methodology 10.1 (2001), pages 5–55.
doi: 10.1145/366378.366379.

[65] Sam Tobin-Hochstadt and Matthias Felleisen. “The Design and Implementation
of Typed Scheme”. In: POPL. 2008, pages 395–406. doi: 10.1145/1328438.1328486.

[66] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
Ben Greenman, Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland,
and Asumu Takikawa. “Migratory Typing: Ten Years Later”. In: SNAPL. 2017,
17:1–17:17. doi: 10.4230/LIPICS.SNAPL.2017.17.

[67] Mitchell Wand. “Finding the Source of Type Errors”. In: POPL. ACM, 1986,
pages 38–43. doi: 10.1145/512644.512648.

[68] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. “Locally Dif-
ferentially Private Protocols for Frequency Estimation”. In: USENIX Security.
USENIX, 2017, pages 729–745. url: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/wang- tianhao (visited on
2023-09-22).

[69] Yihong Wang and Hakan Erdogmus. “The Role of Process Measurement in Test-
Driven Development”. In: XP. Springer, 2004, pages 32–42. doi: 10.1007/978-3-
540-27777-4_4.

12:28

https://doi.org/10.1145/1368088.1368219
https://corp.roblox.com/
https://corp.roblox.com/
https://devforum.roblox.com/t/script-editor-luau-powered-autocomplete-language-features-beta/1406701
https://devforum.roblox.com/t/script-editor-luau-powered-autocomplete-language-features-beta/1406701
https://doi.org/10.1017/S0956796818000126
https://doi.org/10.1145/3138818
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://www.psy.gla.ac.uk/~steve/grumps/ascilite03.pdf
https://www.psy.gla.ac.uk/~steve/grumps/ascilite03.pdf
https://doi.org/10.1145/1007996.1008039
https://doi.org/10.1145/366378.366379
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.4230/LIPICS.SNAPL.2017.17
https://doi.org/10.1145/512644.512648
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao
https://doi.org/10.1007/978-3-540-27777-4_4
https://doi.org/10.1007/978-3-540-27777-4_4

Ben Greenman, Alan Je�rey, Shriram Krishnamurthi, and Mitesh Shah

[70] John Wrenn and Shriram Krishnamurthi. “Executable Examples for Program-
ming Problem Comprehension”. In: ICER. ACM, 2019, pages 131–139. doi:
10.1145/3291279.3339416.

[71] John Wrenn and Shriram Krishnamurthi. “Will Students Write Tests Early
Without Coercion?” In: Koli Calling. ACM, 2020, 27:1–27:5. doi: 10 . 1145/
3428029.3428060.

[72] Hailong Zhang, Yu Hao, Sufian Latif, Raef Bassily, and Atanas Rountev. “A
Study of Event Frequency Profiling with Differential Privacy”. In: CC. ACM,
2020, pages 51–62. doi: 10.1145/3377555.3377887.

[73] Hailong Zhang, YuHao, Sufian Latif, Raef Bassily, and Atanas Rountev. “Differen-
tially-Private Software Frequency Profiling Under Linear Constraints”. In: PACMPL

4.OOPSLA (2020), 203:1–203:24. doi: 10.1145/3428271.

[74] Ze Zhang, Michael Farnsworth, Boyang Song, Divya Tiwari, and Ashutosh
Tiwari. “Deep Transfer Learning With Self-Attention for Industry Sensor Fusion
Tasks”. In: IEEE Sensors Journal 22.15 (2022), pages 15235–15247. doi: 10.
1109/JSEN.2022.3186505.

12:29

https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3428029.3428060
https://doi.org/10.1145/3428029.3428060
https://doi.org/10.1145/3377555.3377887
https://doi.org/10.1145/3428271
https://doi.org/10.1109/JSEN.2022.3186505
https://doi.org/10.1109/JSEN.2022.3186505

Privacy-Respecting Type Error Telemetry at Scale

About the authors

Ben Greenman (benjamin.l.greenman@gmail.com) was a CIFel-
lows 2020 postdoc at Brown University and is now an assistant
professor in the Kahlert School of Computing at the University of
Utah.
https://orcid.org/0000-0001-7078-9287

Alan Jeffrey (aje�rey@roblox.com) is a Principal Software Engi-
neer at Roblox.
https://orcid.org/0000-0001-6342-0318

Shriram Krishnamurthi (shriram@brown.edu) is the Vice Presi-
dent of Programming Languages (no, not really) at Brown Univer-
sity.
https://orcid.org/0000-0001-5184-1975

Mitesh Shah (mshah@roblox.com) is Senior Engineering Director,
Programmability, at Roblox.
https://orcid.org/0009-0000-6084-123X

12:30

mailto:benjamin.l.greenman@gmail.com
https://orcid.org/0000-0001-7078-9287
mailto:ajeffrey@roblox.com
https://orcid.org/0000-0001-6342-0318
mailto:shriram@brown.edu
https://orcid.org/0000-0001-5184-1975
mailto:mshah@roblox.com
https://orcid.org/0009-0000-6084-123X

	1 Introduction
	2 Context: Roblox and Luau
	3 Telemetry Design
	3.1 Limitations for Luau Telemetry
	3.2 Telemetry Records

	4 The Data
	4.1 Data Cleaning
	4.2 Overall Size and Shape
	4.3 Type Analysis Modes
	4.4 Errors by Mode
	4.5 Type Errors vs. Program Edits
	4.6 Type Error Frequency
	4.7 Density of Type Errors
	4.8 Do Edits Tend to Add Type Errors?

	5 Answers to Research Questions
	6 Related Work
	7 Lessons Learned and Reflections
	References
	About the authors

