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Abstract. The Attention mechanism is the main component of the
Transformer architecture, and since its introduction, it has led to sig-
nificant advancements in Deep Learning that span many domains and
multiple tasks. The Attention Mechanism was utilized in Computer Vi-
sion as the Vision Transformer ViT, and its usage has expanded into
many tasks in the vision domain, such as classification, segmentation,
object detection, and image generation. While this mechanism is very
expressive and capable, it comes with the drawback of being compu-
tationally expensive and requiring datasets of considerable size for ef-
fective optimization. To address these shortcomings, many designs have
been proposed in the literature to reduce the computational burden and
alleviate the data size requirements. Examples of such attempts in the
vision domain are the MLP-Mixer, the Conv-Mixer, the Perciver-IO, and
many more. This paper introduces a new computational block as an al-
ternative to the standard ViT block that reduces the compute burdens
by replacing the normal Attention layers with a Network in Network
structure that enhances the static approach of the MLP-Mixer with a
dynamic system of learning an element-wise gating function by a to-
ken mixing process.Extensive experimentation shows that the proposed
design provides better performance than the baseline architectures on
multiple datasets applied in the image classification task of the vision
domain.
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1 Introduction

Since the advent of the Transformer architecture [1] and the introduction of the
Attention mechanism as its main computational component within the context
of Natural Language Processing (NLP), large advancements have been achieved
not only in language-related tasks but across all aspects related to the research
and application of Machine Learning (ML). Transformers changed the landscape
of NLP with the adoption of their architecture in designing highly successful and
capable Large Language Models (LLM) [2] such as GPT [3],LLama [4], Falcon [5]
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and Mistral [6]. The Computer Vision (CV) domain also experienced rapid adop-
tion of Transformer architectures. Vision-specific implementations such as ViT
[7], MLP-Mixer [8], Conv-Mixer [9], and Swin Transformer [10] were introduced,
along with many application-oriented designs that utilize such architectures,
such as Detection Transformer (DETR) [11], Perceiver-IO [12], Unified-IO [13],
DINO [14], and Segment Anything Model (SAM) [15].Given such wide adop-
tion on many tasks and modalities, the need for more efficient implementations
of Transformer has increased in importance, and in that direction, significant
research attempts have been introduced, such as Linformer [16], FNets [17],
Local-ViT [18], Max-ViT [19], and Nystromformer [20].The MLP-Mixer imple-
mentation of Transformers is of interest as it introduces a unique design choice
that targets a more efficient architecture with emphasis on the process of ”token
mixing.” This mixing is applied in two stages [8]; the first stage applies the mix-
ing within the input token representations, while the second stage applies the
mixing process between corresponding positions in each token. A drawback of the
MLP-Mixer design is that the mentioned mixing processes are performed with
static weight matrices, which limits the capabilities of the architecture in com-
parison to the traditional Transformers that utilize the dynamic process of the
Softmax Attention mechanism. At the same time, the traditional Transformer
architecture has its own drawback of quadratic complexity in input size [21],
which imposes a considerable cost in both training and inference when selecting
the architecture. It is notable that in the literature there is a lack of a design that
adopts the efficiency measures introduced in the MLP-Mixer model while also
maintaining a dynamic information filtering mechanism, as with the traditional
Transformer design. In this paper, we introduce a newly formulated computa-
tional block that can be used as a core process in constructing Transformer
architectures that blends both efficient elementary operations and dynamic in-
formation filtering. The new proposal utilizes the MLP-Mixer token mixing to
learn a generator of dynamic per input gating function that selectively filters the
input representation tokens that are then passed to the per token MLP stage
as in traditional Transformers, which results in a block that contains two levels
of processing, an inner and an outer, hence the chosen name for the proposal
as a Network in Network Transformer, or (NiNformer). In this work, the newly
proposed architecture was trained and its performance evaluated with respect
to multiple baselines that represent different architectural directions and a vari-
ety of design choices. The comparison was conducted on three datasets, and the
experimentation was performed in an equalized setting with the same computa-
tional resources to ensure a fair evaluation. From the experiments conducted, it
was observed that the NiNformer architecture was the most performing, and the
obtained results verified the validity and capability of the underlying assump-
tions employed in our proposed computational block.
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2 Related Work

The literature is rich with attempts to improve on the qualities and capabilities
of the traditional Transformer architecture design [22],[23],[24],[25]. Guo et al.
introduced Star Transformer [26], combining band attention and global atten-
tion. This formulation of the Transformer has a global node on which a band
attention of width 3 is applied. Also, a shared global node connects a pair of
non-adjacent nodes, while adjacent nodes are connected to each other. Beltagy et
al. introduced Longformer[27], which also uses a combination of band attention
and internal global-node attention. Classification tokens are selected as global
nodes. The architecture substitutes the band attention heads in the upper lay-
ers with dilated window attention, thus increasing the receptive field without
increasing computation. Kitaev et al. introduced Reformer [28] as a modified
Transformer that employs locality-sensitive hashing (LSH). The LSH is used to
select the key and value pairs for each query, therefore allowing each token to
attend to tokens that exist in the same hashing bucket. BigBird architecture by
Zaheer et al.[29] utilizes random attention to approximate full attention with a
sparse encoder and sparse decoder, and it was shown by the analysis that this
design can simulate any Turing Machine, explaining the capability of such archi-
tecture. Katharopoulos et al. proposed the Linear Transformer [30] with feature
maps that target an approximation of the full Softmax Dot Product Attention
and showed comparable performance in empirical tests.Wang et al. introduced
Linformer [16], showing an approximation to the Attention mechanism by a
low-rank matrix, thus lowering the computational requirement while maintain-
ing comparable performance.Choromanski et al. proposed Performer [31], which
uses random feature maps as an approximate to the Traditional Attention func-
tion. Wang et al. introduced the Cascade Transformer [32] By using a sliding
window attention, the window size is exponentially increased when increasing
the number of layers, leading to a reduction in complexity. Li et al. introduced
the LogSparse Transformer [33] that facilitates long-term dependency on time se-
ries analysis by using Eponym attention. Qiu et al. introduced BlockBERT [34],
which uses block-wise attention to split the input sequence into non-overlapping
blocks. Tay et al. introduced the sparse Sinkhorn attention [35]. This mechanism
is essentially block-wise attention, but the keys are sorted block-wise, therefore
learning the permutations. Dai et al. proposed the Transformer-XL[36]. This de-
sign uses a recurrence between the windows that is segment-based. by storing
the representations of the previous window and storing them in first-in, first-out
memory (FIFO). After this step, the Transformer-XL applies attention to the
sorted representations that have been stored in memory. Clustered Attention,
proposed by Vyas et al. [37] clusters the quires, then calculates the attention dis-
tributions for cluster centroids.Zhang et al. proposed PoolingFormer [38], which
utilizes a two-level attention, a sliding window attention, and a compressed mem-
ory attention. The compressed memory module is used after first applying the
sliding window attention, then applying a compressed memory module for the
purpose of increasing the receptive field. Liu et al. proposed Memory Compressed
Attention (MCA) [39], which complements local attention with strided convolu-
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tion, thus reducing the number of keys and values. This allows the architecture
to process much longer sequences compared to traditional Transformers.Xiong
et al. used the Nyström method to modify Transformer with the introduction
of Nyströmformer [20]. This design selects landmark nodes by the process of
strided average pooling and then processes these selected queries and keys with
an approximation to attention by the Nyström method. Funnel Transformer [40]
was proposed by Dai et al. by employing a funnel-like encoder that has a gradual
reduction of the hidden sequence length using pooling along the sequence dimen-
sion; the proper length is then restored with an up-sampling process.Max-ViT
[19] was introduced by Tu et al., which repeats the basic building block over
multiple stages. The basic block consists of two aspects: blocked local attention
and dilated global attention. Ho et al. proposed the Axial Transformer [41]. This
architecture computes a sequence of attention functions with each one applied
along a single axis of the input, reducing the computational cost. Swin Trans-
former [10] is an architecture proposed by Liu et al., and this design reduced the
cost by splitting the image input into non-overlapping patches. These patches are
then embedded as tokens for processing by Attention. FNets [17] was introduced
by Lee-Thorp et al., and it proposes an attention-free Transformer architecture
that substitutes the Softmax Dot Product function used in each The Fourier
sublayer applies a 2D DFT to the embedded input in two steps: one 1D DFT
along the sequence dimension and another 1D DFT along the hidden dimension.
gMLP [42] was introduced by Liu et al., and this architecture is comprised of
a series of blocks that are homogeneous in size and width. Each block layout is
highly reminiscent of inverted bottlenecks. Another feature of this architecture
compared to traditional Transformers is that it does not require position embed-
dings. Local-ViT [18] was introduced by Li et al. This architecture incorporates
2D depth-wise convolutions instead of the feed-forward network as in ViT. This
design choice was inspired by the inverted residuals of MobileNets. Synthesizer
[43] was proposed by Tay et al. as an architecture that learns synthetic attention
weights and does not rely on interactions between tokens. The results showed
competitive performance in relation to other linear transformer designs. Trans-
former iN Transformer (TNT) [44] was introduced by Han et al. This design
treats the input images in a similar manner to a paragraph of text and divides
them into several patches as “visual sentences” and then further divides them
into sub-patches as “visual words.” With this hierarchical division, the archi-
tecture is divided into conventional transformer blocks for extracting features
and attentions on the visual sentence level, and then a sub-transformer is intro-
duced in order to extract the features of smaller visual words. De et al. proposed
Hawk and Griffin models [45]; these are hybrid models combining gated linear
recurrences and local attention with good extrapolation capabilities.
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3 Methodology

3.1 Baselines

For an extensive comparative analysis of capability, our proposed architecture
is contrasted to multiple baseline architectures that represent a variety of func-
tional principles. The ViT follows the principles of a traditional NLP Trans-
former, which represented the first iteration of designs that adopted such ar-
chitecture. At its core, it relies on the Softmax Dot Product Attention, and as
with NLP-oriented Transformers, the Vit also introduced the homogeneous layer
structure. The following are the main equations for the ViT block:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (1)

Y(X) = Attention(LayerNorm(X)) + X (2)

Z(Y) = MLP(LayerNorm(Y)) + Y (3)

Below is the pseudocode for the ViT block:

Algorithm 1 ViT

1: Input: Image I, number of classes C, patch size ps, embedding dimension dmodel,
number of Transformer blocks B, hidden dimension of MLP dmlp, learning rate η

2: Output: Predicted class probabilities
3: Steps:

1. Divide I into patches of size ps× ps.
2. Flatten each patch and embed it into a dmodel-dimensional vector using

patch embedding layer.
3. Concatenate the embedded patches into a sequence X.
4. for i = 1 to B do:
* divide X into residual and nonresidual paths.
* normalize the nonresidual path and Apply Attention.
* Add the residual path.
* divide Attention result into residual and nonresidual paths.
* normalize the nonresidual path and Apply MLP block.
* Add the residual path.
5. Apply global average pooling to the output of the last Transformer block.
6. Use a fully connected layer with C output units and softmax activation to

obtain class probabilities.
7. Train the model by minimizing the loss between predicted and true labels

using gradient descent with learning rate η.

The MLP-Mixer adopts the homogeneous layer structure as with the ViT but
introduces efficiency-oriented computational operations of mixing (interacting)
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the token representation with the application of MLP that are applied in two
successive stages: first, an MLP mixing of per token representation, and second,
a per position (channel) MLP mixing of representations in between the tokens.

The following is the main equation for the MLP-Mixer block:

Y(X) = Transpose(MLP(Transpose(LayerNorm(X)))) + X (4)

Z(Y) = MLP(LayerNorm(Y)) + Y (5)

Below is the pseudocode for the MLP-Mixer block:

Algorithm 2 MLP-Mixer

1: Input: Image I, number of classes C, patch size ps, embedding dimension dmodel,
number of Transformer blocks B, hidden dimension of MLP dmlp, learning rate η

2: Output: Predicted class probabilities
3: Steps:

1. Divide I into patches of size ps× ps.
2. Flatten each patch and embed it into a dmodel-dimensional vector using

patch embedding layer.
3. Concatenate the embedded patches into a sequence X.
4. for i = 1 to B do:
* divide X into residual and nonresidual paths.
* normalize the nonresidual path and Transpose.
* Apply MLP block.
* Transpose.
* Add the residual path.
* divide result into residual and nonresidual paths.
* normalize the nonresidual path and Apply MLP block.
* Add the residual path.
5. Apply global average pooling to the output of the last Transformer block.
6. Use a fully connected layer with C output units and softmax activation to

obtain class probabilities.
7. Train the model by minimizing the loss between predicted and true labels

using gradient descent with learning rate η.

The Local-ViT adopts a conservative design choice to introduce a more
lightweight variant of the original ViT by replacing the per-token MLP layer
in the ViT block with convolutions.

The following are the main equations for the Local-ViT block:

Y(X) = Attention(LayerNorm(X)) + X (6)

Z(Y ) = CONV(LayerNorm(Y)) + Y (7)

Below is the pseudocode for the Local-ViT block:
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Algorithm 3 Local-ViT

1: Input: Image I, number of classes C, patch size ps, embedding dimension dmodel,
number of Transformer blocks B, hidden dimension of MLP dmlp, learning rate η

2: Output: Predicted class probabilities
3: Steps:

1. Divide I into patches of size ps× ps.
2. Flatten each patch and embed it into a dmodel-dimensional vector using

patch embedding layer.
3. Concatenate the embedded patches into a sequence X.
4. for i = 1 to B do:
* divide X into residual and nonresidual paths.
* normalize the nonresidual path and Apply Attention.
* Add the residual path.
* divide Attention result into residual and nonresidual paths.
* normalize the nonresidual path and Apply CONV block.
* Add the residual path.
5. Apply global average pooling to the output of the last Transformer block.
6. Use a fully connected layer with C output units and softmax activation to

obtain class probabilities.
7. Train the model by minimizing the loss between predicted and true labels

using gradient descent with learning rate η.

3.2 Proposed Architecture

The proposed computational block of this paper is comprised of two levels: an
outer network that resembles a Transformer block by including a token-wise
MLP, which provides the design with an optimization-driven token mapping
capability. The token-wise MLP of the outer network is preceded in the proposed
block by a substitute for the Attention mechanism, which has a gating function
process on the outer network level that extends the concept of Gated Linear
Unit (GLU) [46] by employing a network in network structure. In the proposed
Gating-Unit, the gating signal is generated by a sub-unit in the inner network,
where the inner sub-unit uses a token-mixing architecture of the MLP-Mixer.
The proposed design significantly differs from TNT architecture [44] in that the
two levels in our proposal are different in form and function, and both inner
and outer levels apply their transformations to the input context as a whole,
while the TNT architecture has two levels of the same traditional Attention
mechanism that are applied on two separate scales, the visual word scale and
the visual sentence scale within the input context. Such distinction of scales
omits processing of the global correlations that may exist between parts of the
context in the case of TNT, and our design utilizes the full context on both of its
two levels to capture the global correlations of the input.In addition, the newly
introduced gating mechanism has the advantage of using the non-dynamic, fixed-
weight MLP-Mixer as an inner sub-unit to learn the interdependencies from
the input representation, which is then used by the outer level as a dynamic
gating signal that functions on an input by input basis to scale the values of its
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linearly projected representation, thus facilitating further information processing
by the outer level MLPs without the use of the Softmax Dot Product Attention
employed in generic Transformer architectures.

The following equations describe the operation of the proposed block:

Gating(I) = (MLPMixer(I)) ∗ Linear(I) (8)

Y(X) = Gating(LayerNorm(X)) + X (9)

Z(Y) = MLP(LayerNorm(Y)) + Y (10)

The following is the pseudocode of the proposed design:

Algorithm 4 NiNformer

1: Input: Image I, number of classes C, patch size ps, embedding dimension dmodel,
number of Transformer blocks B, hidden dimension of MLP dmlp, learning rate η

2: Output: Predicted class probabilities
3: Steps:

1. Divide I into patches of size ps× ps.
2. Flatten each patch and embed it into a dmodel-dimensional vector using

patch embedding layer.
3. Concatenate the embedded patches into a sequence X.
4. for i = 1 to B do:
* divide X into residual and nonresidual paths.
* normalize the nonresidual path
* generate the gating signal by the application of the MLP-Mixer sub-unit on

the nonresidual path.
* Apply the Gating by multiplying the liearly projected nonresidual path with

the MLP-Mixer sub-unit output.
* Add the residual path.
* divide Gating result into residual and nonresidual paths.
* normalize the nonresidual path and Apply MLP block.
* Add the residual path.
5. Apply global average pooling to the output of the last Transformer block.
6. Use a fully connected layer with C output units and softmax activation to

obtain class probabilities.
7. Train the model by minimizing the loss between predicted and true labels

using gradient descent with learning rate η.

Figure 1 shows the NiNformer overall architecture in comparison to the Vit
and Local-ViT architectures, while Figure 2 compares the proposed NiNformer
block with that of ViT.
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(a) NiNformer Architecture (b) ViT Architecture

(c) Local-ViT Architecture

Fig. 1: Comparing NiNformer Architecture With ViT and Local-ViT
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(a) NiNformer Gating-Unit and Mixer Sub-Unit

(b) Multi-Head Self Attention

Fig. 2: Comparing NiNformer Block with Attention Block
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4 Experiments and Results

For the purposes of this work, three data sets have been selected: The CIFAR-10
[47] dataset consists of 60000 color images in 32 by 32 resolution provided for 10
classes, with 6000 images per class. There are 50000 training images and 10000
test images. The CIFAR-100 [47]dataset consists of 60000 color images in 32
by 32 resolution; the number of classes is 100, resulting in 600 images per class.
Similar to CIFAR-10, there are 50000 training images and 10000 test images. The
MNIST [48] dataset consists of 70,000 grayscale images in 28 by 28 resolution.
The number of classes is 10, as it is a dataset of handwritten numerical digits.
There are 60000 training images and 10000 test images. The utilized software
platform is Pytorch, version 1.13, supported by the CUDA toolkit, version 11.6.2.
The version used for the Python programming language is 3.9. The available
hardware system is a desktop personal computer with an Intel i9-9900k CPU,
32 Gigabytes of system RAM, an Nvidia RTX 2080ti GPU with 12 Gigabytes of
RAM, and running an UBUNTU 20 LTS operating system. The implementation
details of the selected Transformer architectures in this work are as follows: For
the ViT architecture, the chosen patch size was 4 with a token dimension of
256, and the number of layers chosen was 4 with 4 Attention heads and an MLP
dimension of 512. For the MLP-Mixer architecture, the chosen patch size was 4
with a token dimension of 256, and the number of layers chosen was 4 with a
token-wise MLP dimension of 512 and a channel-wise MLP dimension of 512.
For Local-ViT, the chosen patch size was 4 with a token dimension of 256, the
number of layers chosen was 4, 4 Attention heads were selected, and the chosen
channel dimension of the feedforward part was 512. For NiNformer, the chosen
patch size was 4, the number of layers chosen was 4, the token dimension selected
was 256, and the MLP dimension was 512 in the outer network. The inner sub-
unit was designed with a token-wise MLP dimension of 512 and a channel-wise
MLP dimension of 512. All models were fitted with a training loop comprised of
100 epochs with a batch size of 128. All experiments adopted the recommended
learning rate for the Adam optimizer of 0.001 [49].

After performing the experimentation on the selected data sets applied to
the baseline architectures and NiNformer architecture, the following results have
been obtained:

Table 1: Experimentally obtained test accuracy metric on the utilized datasets
Dataset Test accuracy

(ViT) (%)
Test accu-
racy (MLP-
Mixer)(%)

Test accuracy
(LocalViT)(%)

Test accuracy
(Ninformer)
(%) (Ours)

MNIST 97.12 97.73 97.79 98.61

CIFAR-10 65.74 70.12 77.71 81.59

CIFAR-100 34.87 39.16 41.61 53.78
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Figures 3 and 4 show respectively, the accuracy and loss curves obtained on
NiNformer for the CIFAR-10, CIFAR-100, and MNIST datasets.

(a) CIFAR-10 accuracy curve (b) CIFAR-100 accuracy curve

(c) MNIST accuracy curve

Fig. 3: Accuracy Curves for NiNformer Architecture
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(a) CIFAR-10 Loss curve (b) CIFAR-100 Loss curve

(c) MNIST Loss curve

Fig. 4: Loss Curves for NiNformer Architecture
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5 Conclusion

In this work, a newly designed Network in Network block was introduced that
substitutes the Attention block used traditionally by Transformer architectures.
By extending the token mixing approach presented in the MLP-Mixer to func-
tion as a gating signal generator and taking advantage of the gating mechanism
to introduce dynamic behavior in the newly proposed block, thus enhancing the
static weight approach of the MLP-Mixer by utilizing its layers as a sub-unit
network within the outer network formulation, The experimental results show
that in comparison to baseline architectures that were chosen from different fam-
ilies of Transformer formulations, our proposed block significantly outperforms,
showing noticeable improvements on those baselines, specifically showing a great
enhancement of accuracy compared to the standalone MLP-Mixer architecture
that acts as a sub-unit, which validates that our proposal, with its dynamic
gating of the upstream representation, properly enhances and circumvents the
shortcoming of the static weight approach of the standalone MLP-Mixer while
still providing more simplicity of operations in contrast to the vanilla ViT Trans-
former architecture. Future directions of this work are to investigate a multitude
of sub-unit network selections, aiming for further enhancements and capabilities.
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