
Dr Wenowdis: Specializing dynamic language C
extensions using type information

Maxwell Bernstein
acm@bernsteinbear.com
Northeastern University

Boston, Massachusetts, USA

CF Bolz-Tereick
cfbolz@gmx.de

Heinrich-Heine-Universität
Düsseldorf, Germany

Abstract
C-based interpreters such as CPython make extensive use of
C “extension” code, which is opaque to static analysis tools
and faster runtimes with JIT compilers, such as PyPy. Not
only are the extensions opaque, but the interface between
the dynamic language types and the C types can introduce
impedance.We hypothesise that frequent calls to C extension
code introduce significant overhead that is often unneces-
sary.

We validate this hypothesis by introducing a simple tech-
nique, “typed methods”, which allow selected C extension
functions to have additional metadata attached to them in a
backward-compatible way. This additional metadata makes
it much easier for a JIT compiler (and as we show, even
an interpreter!) to significantly reduce the call and return
overhead.
Although we have prototyped typed methods in PyPy,

we suspect that the same technique is applicable to a wider
variety of language runtimes and that the information can
also be consumed by static analysis tooling.

CCS Concepts: • Software and its engineering → Just-
in-time compilers; Runtime environments.

1 Introduction
One of the reasons for the success of dynamic languages such
as Python and Ruby is the ease with which they can inter-
face to existing C libraries through the use of C-implemented
extension modules. Another common reason for writing C
extensions is to improve the performance when the dynamic
language runtime isn’t fast enough in a hotspot. The down-
side of C extensions is that they cannot easily be analyzed by
static analysis tools together with the Python or Ruby code
that is calling into the library. The same problem plagues
more advanced dynamic language implementations with a
JIT compiler because a call into a C extension represents
an optimization barrier [14]. For example, objects that may
otherwise be unboxed by the JIT [5] now require boxing for
consumption by the C extension, only to often be immedi-
ately unboxed again by the called C code.

As a motivating example, Listing 1 shows a complete min-
imal C extension module definition. The inc function takes
and returns a Python int object. It unboxes its argument,
increments it, and re-boxes the result. This type information

is not available to the Python runtime; it’s implicit in the
C argument processing wrapper code. Calling this function
from an optimizing Python implementation such as PyPy
is thus very costly since it requires a generic call path and
the allocation of C data structures that behave like the C
extension expects them to.

In this paper we propose Dr Wenowdis [28], a very light-
weight mechanism to expose some amount of type and effect
knowledge about the functions a C extension module imple-
ments. We carry out this work specifically in the context of
the CPython C API. We want to make it possible to incremen-
tally add this knowledge to existing libraries without having
to do an invasive rewrite or introduce a new dependency. We
use the exposed information for improving the performance
of Python→C calls using the PyPy JIT compiler [6]. The
same type information can also be used for type checking
(e.g. in MyPy [24]) or static analysis.

For the example, we can add the type information that the
function takes and returns a C long by writing the code in
Listing 2. This annotation is enough to speed up calling the
inc function in PyPy by about 60 times, because it can call the
inc_impl function directly, and optimize away the argument
checking and unboxing. The example will be discussed more
thoroughly in Section 2.2 and Section 3.

We present an early prototype that requires manual anno-
tations with very limited expressiveness but a more complete
version could generate the annotations automatically using
a binding generator such as Cython [4] or PyO3 [17].

2 Background
2.1 CPython
CPython is the reference implementation of Python. Older
versions implement the Python language by compiling it
into a simple stack-based bytecode and running that in a
straightforward interpreter [3, 31]. More recent versions of
CPython (from 3.11 onwards) use bytecode quickening [8–
11] to speed up bytecode execution [19]. The upcoming 3.13
release is probably also going to contain a simple baseline
JIT [12] based on the copy-and-patch approach [35]. CPython
uses reference counting in combination with a cycle-finding
garbage collector to manage its memory. CPython boxes all
of its objects, including integers and floating point numbers.
It does not use pointer tagging or similar techniques.

ar
X

iv
:2

40
3.

02
42

0v
1 

 [
cs

.P
L

] 
 4

 M
ar

 2
02

4

https://orcid.org/0000-0003-3130-7059
https://orcid.org/0000-0003-4562-1356


Maxwell Bernstein and CF Bolz-Tereick

1 #include <Python.h>

2
3 long inc_impl(long arg) { return arg+1; }

4
5 PyObject* inc(PyObject* module , PyObject* obj) {

6 long l = PyLong_AsLong(obj);

7 if (l == -1 && PyErr_Occurred ()) return NULL;

8 return PyLong_FromLong(inc_impl(l));

9 }

10
11 static PyMethodDef signature_methods [] = {

12 {"inc", inc , METH_O , "Add one to a long."},

13 {NULL , NULL , 0, NULL},

14 };

15
16 static struct PyModuleDef def = {

17 PyModuleDef_HEAD_INIT , "signature", "doc", -1,

signature_methods , NULL , NULL , NULL , NULL };

18
19 PyMODINIT_FUNC PyInit_signature(void) {

20 return PyModule_Create (&def);

21 }

Listing 1. A tiny C extension, signature, exposing
one function callable from Python, inc. The function
PyInit_signature is called on first import.

1 SIG(inc , LIST(T_C_LONG), T_C_LONG)

2 static PyMethodDef signature_methods [] = {

3 TYPED_SIG(inc , inc , METH_O , "doc"),

4 {NULL , NULL , 0, NULL},

5 };

Listing 2. Adding typing information to the minimal C
extension in Listing 1.

2.2 The CPython C API
While writing Python code is the normal way of interacting
with the CPython runtime, it is also possible to interact with
it using its C API. The C API is commonly used to create C
extension modules, which expose new functions and data
types to Python code, that are implemented in C.1 The C API
consists of a number of free functions and data types, some
of which are opaque to the API client. It gives the tools to
create Python objects, introspect them, call Python functions,
and more from C.
As an example, a minimal C extension can be found in

Listing 1. In this C extension, PyInit_signature sets up
the module. It calls the C API function PyModule_Create,
which takes a description of the module it wants to create:
the PyModuleDef. In the struct, we only define the minimal
features for this example: a name, documentation, and a
method table.
1The C API also makes it possible to embed CPython into other projects,
but this usecase is much less frequent and we won’t discuss it in this paper.

PyModule_Create walks the method table (the array of
PyMethodDef), creating PyCFunctionObjects from the de-
scriptions. In this example, it creates a C function called
inc that takes one argument (indicated by the flag METH_O).
When called, the C extension wrapper code inside the Python
runtime does argument count checking and then passes the
C function inc the singular argument it needs.
Extension authors are typically required to write their

own argument processing code.2 In this case, we convert
the argument from a Python int object to a C long and
raise an exception if that is not possible (this happens in
PyLong_AsLong). Then we call the underlying C function,
inc_impl, and box up the result for consumption in Python.

2.3 PyPy
PyPy is an alternative implementation of the Python lan-
guage. PyPy is not implemented in C, but in RPython, a
statically typed subset of Python 2 [2]. PyPy uses a mov-
ing generational garbage collector for managing its memory.
PyPy contains a tracing just-in-time compiler to speed up
the execution of Python code [6]. To help the JIT compiler
generate better code, PyPy’s object model is quite different
than that of CPython. In particular, Python instances are
implemented using Self-style [13] maps/hidden classes [7].

2.4 cpyext and its problems
To allow PyPy to use the vast quantity of C extensions that
exist for CPython, PyPy has a compatibility layer for the
CPython C API, called cpyext [15]. It exposes (a subset of)
the functions and structs of the C API.

Implementing this compatibility layer is quite challenging
because CPython and PyPy function quite differently. The
CPython CAPI exposes a number of internal implementation
details of CPython, most noticeably CPython’s choice of ref-
erence counting for memory management. Handling Python
objects from C requires the correct usage of Py_INCREF and
Py_DECREF everywhere in the C code.3 PyPy objects don’t
have a reference count field as the first word in each object,
and the PyPy GC would really like to be able to move objects
as part of its minor collections. Therefore, PyPy creates tiny
CPython-layout compatible structs for those of its objects
that that are passed to C functions.
Maintaining the link and converting between PyPy ob-

jects and CPython-layout compatible PyObjects is expensive.
Every time PyPy calls a C function, we need to convert all of
the function arguments to PyObjects and then convert the
result back to a PyPy object. This is particularly expensive
for boxed primitive types, because the C code will very likely
just unbox them (with API functions such PyLong_AsLong)
2There is a CPython-internal preprocessor called Argument Clinic that
automates some of the work in writing argument processing code, but it is
not meant for external projects. We discuss it in Section 6.2.
3This includes the implicit runtime-ownedwrapper code aroundC extension
function calls.



Dr Wenowdis

to work with the primitive values. However, because all the
argument parsing and unboxing is done in C code and is
therefore a black box, PyPy has no way to circumvent it. This
is the central problem that we want to address in this paper
and is visualized in Figure 1.

The problem becomes evenmore pronouncedwhen PyPy’s
JIT is involved. The JIT will often compile the Python code
that calls a C-implemented function in a C extension module.
The JIT infers the types of variables that are used in Python
code at run-time. In the case of integers the JIT will unbox
them and store their integer values in machine registers [5].
In order to now pass such an unboxed integer as an argument
to a C function, the JIT first has to recreate (i.e. allocate) a
PyPy object, which is then converted to a PyObject in order
to pass it to the C code. The C code will then unbox the value
to work with the integer value itself. This kind of ping-pong
between various representations is incredibly costly.

JIT CPyExt C Wrapper C Implementation

Python code

box integer

Allocate PyObject*

Unwrap PyObject*

Do work

Allocate PyObject*

Unwrap PyObject*

unbox integer

Python code

optimization barrier

Figure 1. Example call to from Python code optimized by
the JIT to a C function, passing one integer argument. The
diagram shows all the needed conversions in the process.

3 Adding type information to C extensions
We want to pass known type information from the C exten-
sion functions back to Python. Doing this in a backwards
compatible manner is non-trivial. We describe some of the
problems of doing so in this section.

3.1 Exposing Type Information
Our broad goal is to allow the runtime—the caller—to make
decisions about argument type checking and unboxing in-
stead of the C extension—the callee. To do that, the runtime
needs to know some type information and other metadata
about each C function.

In order to make this work, adding our type information
must be backwards-compatible both with PyPy and CPython.
By this we mean that any version of CPython or PyPy that
does not understand the annotations should not be tripped
up by them: the C extensions should compile, load, and run
just fine. This is tricky because the Python C API is not very
extensible and also because of some guarantees that Python
makes about its C API.

3.2 The stable ABI
The C API exposed by CPython is consumed not only be
extension authors, but also by CPython developers. Over
the years, API clients have come to rely on details that have
been exposed by the CPython C API, such as struct sizes
and structs fields that were originally intended for internal
use only. Some source code has been completely lost to time,
and all people have are shared objects that call into C API
code. To support this CPython has defined a stable binary
interface (ABI).

Under the stable ABI contract, functions are not removed,
functions do not add or remove parameters, and data types do
not change size. There are a few additional minor restrictions.

If we’re going to try and make existing C API interactions
faster under PyPy with minimal effort, we need to find a way
to add lightweight annotations to methods. We can’t change
types, we can’t change functions, and we can’t make people
work too hard.

Because both the size of PyMethodDef4 and the sizes and
types of its fields cannot change, we must smuggle in a
pointer to more information stored elsewhere.

3.3 Sneaking in pointers
We can at least signal that there is additional information for
a PyMethodDef by taking another bit in the ml_flags bitset.
We propose the METH_TYPED bit. When this bit is set, the
PyPy extension module loader knows to look for the extra
type information.

1 struct PyMethodDef {

2 const char *ml_name;

3 void *ml_meth;

4 int ml_flags;

5 const char *ml_doc;

6 };

7 typedef struct PyMethodDef PyMethodDef;

Instead of the usual C string literal assigned to ml_name,
we store the string in the PyPyTypedMethodMetadata struct
and point ml_name to that buffer. The name size we chose is
arbitrary. We then calculate an offset from that field to the
beginning of the struct to use the added fields.

1 struct PyPyTypedMethodMetadata {

2 int* arg_types; // sentinel value of -1

3 int ret_type; // negative => can raise

4https://docs.python.org/3/c-api/structures.html#c.PyMethodDef

https://docs.python.org/3/c-api/structures.html#c.PyMethodDef


Maxwell Bernstein and CF Bolz-Tereick

4 void* underlying_func;

5 const char ml_name [100];

6 };

7 typedef struct PyPyTypedMethodMetadata

PyPyTypedMethodMetadata;

A sample typed method looks like:
1 int inc_arg_types [] = {T_C_LONG , -1};

2 struct PyPyTypedMethodMetadata inc_sig = {

3 inc_arg_types , T_C_LONG , inc_impl , "inc",

4 };

5 static PyMethodDef signature_methods [] = {

6 {inc_sig.ml_name , inc , METH_O | METH_TYPED , "doc"

},

7 {NULL , NULL , 0, NULL},

8 };

Tomake this less irritating towrite, we also providemacros
to reach the form that we already saw in Listing 2. The
macros also provide another feature: backwards compati-
bility. Instead of doing #ifdef yourself for type signature
feature detection, the macros do it for you. On runtimes that
support the METH_TYPED flag, they emit signatures. On run-
times that do not, they emit only standard C API method
metadata.
Once we know that the type information exists, we can

use a trick from the Linux kernel [22] and read backwards
from the ml_name:

1 PyPyTypedMethodMetadata*

2 GetTypedSignature(PyMethodDef* def)

3 {

4 return (PyPyTypedMethodMetadata *)(def ->ml_name -

offsetof(PyPyTypedMethodMetadata , ml_name));

5 }

4 Using type information in PyPy
Once the argument and return type information is in place
for a C extension, this information can be used in cpyext.
When we load a C extension module into PyPy, we load the
module’smethods.We check if eachmethod has a METH_TYPED
flag set. If it does, we find the metadata, build the signature,
and store it on the internal method object.
When the function is called from PyPy, we first check

whether the called function has type information attached. If
that is the case, cpyext can use a fast path for implementing
the call. The arguments that are declared to be primitive
types can be type-checked on the PyPy side, without re-
boxing and subsequent conversion to PyObject*. The call
can then use the underlying_func function pointer and
therefore skip the overhead of whatever Python calling con-
vention the function uses.

Being able to do the type checks for primitive arguments
on the PyPy side (as opposed to doing it in C) also meshes
with PyPy’s JIT type annotation, whichmeans the type check
may not be required at all.

Last, instead of doing the slow and generic exception
check, PyPy knows if the functionmay never raise an exception—
so it need not check—or what special sentinel value to look
for if it does raise. Functions can return NULL, or -1, or
something else depending on the return type to signal an
error. This fast value check removes the need for the full
PyErr_Occurred() call in the case where the function did
not signal that it raised. It is similar to CPython’s existing
strategy for exception checking.

5 Evaluation
To evaluate our changes, we compare our modified PyPy
against mainline PyPy, CPython5 6, and GraalPy. We also
measure our modified PyPy with the JIT disabled against
mainline PyPy with the JIT disabled.

At this early stage of our research we are only using some
micro-benchmarks. Every micro-benchmark is calling a C
function many times in a hot loop. The different benchmarks
exercise different kinds of calls from Python into native code.
All the C function are themselves doing very little actual
work. This means that the performance is dominated by
the overheads of the C API and converting between the
different representations. The results therefore represent the
performance ceiling: the best possible improvements our
approach can can make. They are not meant to represent
real-world code. The four microbenchmarks are:

• ffibench, calling a METH_O function with C types
long→long

• objbench, calling a METH_FASTCALL function with C
types PyObject* → long → long

• idbench, calling a METH_O identity function with C
types PyObject* → PyObject*.

• idbench_exc, also calling a METH_O identity function
with C types PyObject* → PyObject*, but this vari-
ant is annotated with the information that it can raise
an exception.

We run each benchmark 3 times for 1 billion iterations.7
We then make a box and whisker plot of time taken for
the three runs. There is not much variance per runtime per
benchmark. The results can be seen in Figure 2.
The best case benchmark for optimization is ffibench.

While the wrapper function deals in heap allocated Python
ints, the underlying C function takes and returns a long.
The type information lets PyPy’s JIT skip the overhead of

5We also tested the alpha release of the upcoming CPython 3.13 and it gave
similar, if slightly slower results than CPython 3.12.
6We would have also liked to benchmark against the Cinder JIT, but the
open-source build for the JIT was broken at the time of writing.
7We specifically picked such high iteration counts to to give the Graal JIT
enough time to warm up and have Sulong (Section 6.1) kick in for GraalPy
22. We omit GraalPy 23 because it took much longer than the other runtimes
to finish and we killed the process. We hypothesize this is due to the removal
of Sulong between versions 22 and 23. This makes GraalPy 23+ another
good candidate for using type information from C extensions.



Dr Wenowdis

creating PyObject* for the argument and the return value
completely. Our changes bring PyPy from slowest (about 164
seconds) to fastest (about 2.7 seconds).

In objbench one of the C-functions arguments is unboxed
and the other one requires allocating a PyObject for each
call. We do this to approximate a more realistic call. Not all
calls to C extensions are going to be able to avoid all boxing.
In this benchmark, even though PyPy is still allocating a
PyObject, removing the overhead from building an array
of PyObject for the METH_FASTCALL convention and from
boxing the result makes a big difference. Our changes bring
PyPy 3.10 from second slowest to fastest.
The third benchmark, idbench, benchmarks the identity

function. It is a METH_O function (one parameter) but this
time it cannot type-specialize its parameters or return value.
This means that the runtime must box up the argument into
a PyObject and unbox the return value the same way. Unlike
with METH_FASTCALL, we are not eliminating any overhead
for allocating an argument tuple/array. Despite this, we cut
PyPy’s execution time in half and are a close second place for
time. GraalPy 22 is fastest, we suspect due to Sulong being
able to optimize the call to the identity function.
The last benchmark, idbench_exc, is similar to idbench

except that it can raise an exception. This means that the
runtime must check first for an agreed-upon sentinel value
(in this case, NULL) and second check for an exception. Even
though we are checking exceptions, we cut PyPy’s execution
time in half and are a close second place for time.
Last, we ran all four benchmarks in PyPy with the JIT

turned off (Figure 3). Our changes still improve PyPy perfor-
mance because the runtime need not allocate the arguments
array of PyObjects for each call to a METH_FASTCALL func-
tion; it knows how many arguments to pass and can pass
them in registers when calling the underlying function. Addi-
tionally, the runtime can skip slow thread-local storage (TLS)
lookups in exception checking for C extension functions that
cannot raise Python exceptions.

6 Prior work
Monat et al. [30] built a multi-language static analysis plat-
form called Mopsa. They analyze several open-source li-
braries and their unit tests and find that multiple Python↔C
calls happen per unit test (ranging from 2.7 to 51.7). Their
analysis could potentially be repurposed to generate type
information for C extensions (they note that they would
like to infer standard library type information using their
techniques). They note that the analysis is limited by use of
hard-to-analyze Python libraries and imprecision in the C
analysis. This work is expanded in Monat [29].
Similarly, Hu et al. [21] describe PyCType, which auto-

matically infers the argument types for functions exposed by
Python C extension in order to find bugs. This information
should be usable for runtime performance improvements.

Tsai et al. [33] use the LLVM JIT to speed up the perfor-
mance of JNA callbacks in the Java Hotspot Server VM [33].
Their approach yields 8-16% performance improvements and
does not apply to calling C functions from Java (only the
other way around).

Li and Tan [25, 26] find bugs in Java Native Interface (JNI)
modules related to exception-checking. Their tools, JET and
TurboJet, implement a static analysis to find missing decla-
rations for checked exceptions. Automatically finding and
annotating C extensions that do not raise exceptions could
help improve run-time performance with less manual work.

TheHPy project [1] is a complete re-design of the CPython
C API from the ground up. One of its main goals is to move
away from reference counting being visible in the API. How-
ever, it still does nothing to solve the problems discussed in
this paper.

6.1 Sulong
Sulong [32] is an self-optimizing interpreter based on the
Truffle framework [34] for LLVM [23] bitcode. It can be
used to speed up calling from Python into C extensions by
JIT-compiling both the Python and the C code in the same
compilation unit using the Graal JIT compiler. This gets rid
of most of the conversion overhead, but has the downside
that called C function is also running on top of Sulong, which
is slower than using a well-tuned static C compiler for the
core algorithms of extensions.

6.2 Argument Clinic
The CPython runtime has an internal tool called the Argu-
ment Clinic [20] that takes as input descriptions of C func-
tions and generates argument processing code and documen-
tation strings for them. The clinic is used only to generate
standard library code in CPython.

6.3 Static Python
The Cinder project8 is perhaps most widely known for its
JIT compiler, but it also includes a compiler and runtime for
a statically-typed dialect of Python known as Static Python
(SP) [27]. The SP compiler contains primitives for declaring,
resolving, and calling C functions directly from Static Python
code. The SP compiler produces typed bytecode, which al-
lows the JIT to compile specialized, zero-overhead calls to
these C functions. See Listing 3 for an example.

1 from __static__ import native , int32 , box

2
3 @native("libc.so.6")

4 def abs(i: int32) -> int32:

5 pass

6
7 def abs_wrapper(i: int) -> int:

8 j: int32 = int32(i)

8https://github.com/facebookincubator/cinder/

https://github.com/facebookincubator/cinder/


Maxwell Bernstein and CF Bolz-Tereick

Figure 2. Benchmark results Figure 3. Benchmark for PyPy with JIT turned off

9 return box(abs(j))

Listing 3. Taken from the Cinder test suite. In this example,
the abs function is declared as a stub to be loaded from
libc.so. It takes an unboxed (C) int32 and returns the same.
The test function takes a boxed (Python) int, unboxes, calls
abs, and re-boxes.

The JIT uses dlsym and the typed SP bytecode to build
a NativeTarget: a function pointer, return type, and argu-
ment types.

Annotating declaration of existing C functions is a manual
process. Also, the SP compiler does not allow passing ints
into the unboxed abs function; callers must explicitly unbox.

7 Conclusion
We have shown that adding type information to C extensions
can make them faster under the PyPy JIT. We have also
shown that the techniques improve performance on PyPy
even with the JIT compiler turned off.
Type information specialization is effective even in an

interpreted context and potentially even without unboxed
objects. We believe that this technique is not limited to PyPy
and can be adopted by other dynamic language runtimes.
For example, in runtimes such as Skybison and MicroPy-
thon with efficient representations for small objects (such as
tagged integers in pointers), the runtime need not allocate
a PyObject for each argument and return value; it can use
the efficient representation directly [16, 18].

8 Future work
Given how promising our early results are, we would like
to build out support for more complex signatures, such as
support for C strings and primitive types wider than 64 bits.
We would also like to support a more expressive declaration
language, such as the one used in the Argument Clinic.

In the future, we would like to see these type annotations
automatically emitted by binding generators. Projects such

as Cython and PyO3 already have machinery for generating
wrapper code for C functions, and therefore have sufficient
knowledge about the C function types.
Such binding generators also have more insight into the

effects that happen inside a native function. For example,
Cython may be able to statically guarantee that a function
does not raise an exception, need to acquire the GIL, or
something else. Reducing the set of effects from “all effects
possible” could aid the PyPy optimizer.

Acknowledgments
To Sarah, for proposing the title. To Kate McKinnon, for
ongoing comedic genius.

References
[1] [n. d.]. HPy - A better C API for Python. https://hpyproject.org/
[2] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D.

Matsakis. 2007. RPython: a step towards reconciling dynamically
and statically typed OO languages. In DLS. ACM, Montreal, Quebec,
Canada. https://doi.org/10.1145/1297081.1297091

[3] Gergö Barany. 2014. Python interpreter performance deconstructed.
In Proceedings of theWorkshop on Dynamic Languages and Applications.
1–9. https://dl.acm.org/doi/10.1145/2617548.2617552

[4] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,
Dag Sverre Seljebotn, and Kurt Smith. 2010. Cython: The best of
both worlds. Computing in Science & Engineering 13, 2 (2010), 31–39.

[5] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael
Leuschel, Samuele Pedroni, and Armin Rigo. 2011. Allocation re-
moval by partial evaluation in a tracing JIT. In PEPM. Austin, Texas,
USA.

[6] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, and Armin
Rigo. 2009. Tracing the meta-level: PyPy’s tracing JIT compiler.
In ICOOOLPS. ACM, Genova, Italy, 18–25. https://doi.org/10.1145/
1565824.1565827

[7] Carl Friedrich Bolz and Laurence Tratt. 2015. The impact of meta-
tracing on VM design and implementation. Science of Computer Pro-
gramming 98 (Feb. 2015), 408–421. https://doi.org/10.1016/j.scico.
2013.02.001

[8] Stefan Brunthaler. 2010. Efficient inline caching without dynamic
translation. In Proceedings of the 2010 ACM Symposium on Applied

https://github.com/facebookincubator/cinder/blob/2d2c1d68e47a553aae6dd5786cc3493723046136/cinderx/RuntimeTests/hir_tests/hir_builder_native_calls_test.txt
https://hpyproject.org/
https://doi.org/10.1145/1297081.1297091
https://dl.acm.org/doi/10.1145/2617548.2617552
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1016/j.scico.2013.02.001
https://doi.org/10.1016/j.scico.2013.02.001


Dr Wenowdis

Computing (SAC), Sierre, Switzerland, March 22-26, 2010, Sung Y. Shin,
Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-
Cheng Hung (Eds.). ACM, 2155–2156. https://doi.org/10.1145/1774088.
1774542

[9] Stefan Brunthaler. 2010. Efficient interpretation using quickening. In
Proceedings of the 6th Symposium on Dynamic Languages, DLS 2010,
October 18, 2010, Reno, Nevada, USA, William D. Clinger (Ed.). ACM,
1–14. https://doi.org/10.1145/1869631.1869633

[10] Stefan Brunthaler. 2010. Inline Caching Meets Quickening. In ECOOP
2010 - Object-Oriented Programming, 24th European Conference, Mari-
bor, Slovenia, June 21-25, 2010. Proceedings (Lecture Notes in Com-
puter Science, Vol. 6183), Theo D’Hondt (Ed.). Springer, 429–451.
https://doi.org/10.1007/978-3-642-14107-2_21

[11] Stefan Brunthaler. 2021. Multi-Level Quickening: Ten Years Later.
CoRR abs/2109.02958 (2021). arXiv:2109.02958 https://arxiv.org/abs/
2109.02958

[12] Brandt Bucher. 2023. https://github.com/python/cpython/pull/113465.
[13] C. Chambers, D. Ungar, and E. Lee. 1989. An efficient implementa-

tion of SELF a dynamically-typed object-oriented language based on
prototypes. In OOPSLA, Vol. 24. https://doi.org/10.1145/74878.74884

[14] Maxime Chevalier-Boisvert, Takashi Kokubun, Noah Gibbs,
Si Xing (Alan) Wu, Aaron Patterson, and Jemma Issroff. 2023.
Evaluating YJIT’s Performance in a Production Context: A Pragmatic
Approach. In Proceedings of the 20th ACM SIGPLAN International Con-
ference on Managed Programming Languages and Runtimes (Cascais,
Portugal) (MPLR 2023). Association for Computing Machinery, New
York, NY, USA, 20–33. https://doi.org/10.1145/3617651.3622982

[15] Antonio Cuni. 2018. Inside cpyext: Why emulating CPython C API is
so Hard. https://www.pypy.org/posts/2018/09/inside-cpyext-why-
emulating-cpython-c-8083064623681286567.html

[16] MicroPython Developers. 2024. smallint.h. https://github.com/
micropython/micropython/blob/master/py/smallint.h.

[17] PyO3 Developers. 2024. The PyO3 user guide. https://pyo3.rs/v0.20.2/.
[18] Skybison Developers. 2024. objects.h. https://github.com/tekknolagi/

skybison/blob/trunk/runtime/objects.h.
[19] Jake Edge. 2021. Making CPython faster. https://lwn.net/Articles/

857754/
[20] Larry Hastings. 2024. Argument Clinic How-To. https://docs.python.

org/3.10/howto/clinic.html.
[21] Mingzhe Hu, Yu Zhang, Wenchao Huang, and Yan Xiong. 2021. Static

Type Inference for Foreign Functions of Python. In 32nd International
Symposium on Software Reliability Engineering (ISSRE 2021). IEEE,
423–433.

[22] Greg Kroah-Hartman. 2005. container_of(). http://www.kroah.com/
log/linux/container_of.html

[23] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the 2004 International Symposium on Code Generation and Optimiza-
tion (CGO’04). Palo Alto, California.

[24] Jukka Lehtosalo. [n. d.]. mypy - About. https://mypy-lang.org/about.
html.

[25] Siliang Li and Gang Tan. 2011. JET: exception checking in the Java na-
tive interface. In Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications
(Portland, Oregon, USA) (OOPSLA ’11). Association for Computing
Machinery, New York, NY, USA, 345–358. https://doi.org/10.1145/
2048066.2048095

[26] Siliang Li and Gang Tan. 2014. Exception analysis in the Java Native
Interface. Science of Computer Programming 89 (2014), 273–297. https:
//doi.org/10.1016/j.scico.2014.01.018

[27] Kuang-Chen Lu, Ben Greenman, Carl Meyer, Dino Viehland, Aniket
Panse, and Shriram Krishnamurthi. 2022. Gradual Soundness: Lessons
from Static Python. The Art, Science, and Engineering of Programming
7, 1 (June 2022), 2:1–2:40. https://doi.org/10.22152/programming-

journal.org/2023/7/2
[28] Kate McKinnon and Colin Jost. [n. d.]. Weekend Update: Dr. Wenowdis

on Trump’s Televised Health Exam - SNL. Saturday Night Live. https:
//www.youtube.com/watch?v=2kQxVwYwrME

[29] Raphaël Monat. 2021. Static type and value analysis by abstract interpre-
tation of Python programs with native C libraries. PhD thesis. Sorbonne
Université. https://theses.hal.science/tel-03533030/document

[30] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2021. A
Multilanguage Static Analysis of Python Programs with Native C
Extensions. In Static Analysis: 28th International Symposium, SAS 2021,
Chicago, IL, USA, October 17–19, 2021, Proceedings (Chicago, IL, USA).
Springer-Verlag, Berlin, Heidelberg, 323–345. https://doi.org/10.1007/
978-3-030-88806-0_16

[31] Russell Power and Alex Rubinsteyn. 2013. How fast can we make
interpreted Python? CoRR abs/1306.6047 (2013). arXiv:1306.6047
http://arxiv.org/abs/1306.6047

[32] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas
Würthinger, and Hanspeter Mössenböck. 2016. Bringing low-level
languages to the JVM: efficient execution of LLVM IR on Truffle. In
Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages (VMIL 2016). Association for Computing Ma-
chinery, New York, NY, USA, 6–15. https://doi.org/10.1145/2998415.
2998416

[33] Yu-Hsin Tsai, I-Wei Wu, I-Chun Liu, and Jean Jyh-Jiun Shann. 2013.
Improving performance of JNA by using LLVM JIT compiler. In 2013
IEEE/ACIS 12th International Conference on Computer and Information
Science (ICIS). 483–488. https://doi.org/10.1109/ICIS.2013.6607886

[34] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to rule them all. In Proceedings of the
2013 ACM international symposium on New ideas, new paradigms, and
reflections on programming & software (Onward! 2013). Association
for Computing Machinery, New York, NY, USA, 187–204. https:
//doi.org/10.1145/2509578.2509581

[35] Haoran Xu and Fredrik Kjolstad. 2021. Copy-and-patch compilation:
a fast compilation algorithm for high-level languages and bytecode.
Proceedings of the ACM on Programming Languages 5, OOPSLA (Oct.
2021), 1–30. https://doi.org/10.1145/3485513

https://doi.org/10.1145/1774088.1774542
https://doi.org/10.1145/1774088.1774542
https://doi.org/10.1145/1869631.1869633
https://doi.org/10.1007/978-3-642-14107-2_21
https://arxiv.org/abs/2109.02958
https://arxiv.org/abs/2109.02958
https://arxiv.org/abs/2109.02958
https://github.com/python/cpython/pull/113465
https://doi.org/10.1145/74878.74884
https://doi.org/10.1145/3617651.3622982
https://www.pypy.org/posts/2018/09/inside-cpyext-why-emulating-cpython-c-8083064623681286567.html
https://www.pypy.org/posts/2018/09/inside-cpyext-why-emulating-cpython-c-8083064623681286567.html
https://github.com/micropython/micropython/blob/master/py/smallint.h
https://github.com/micropython/micropython/blob/master/py/smallint.h
https://pyo3.rs/v0.20.2/
https://github.com/tekknolagi/skybison/blob/trunk/runtime/objects.h
https://github.com/tekknolagi/skybison/blob/trunk/runtime/objects.h
https://lwn.net/Articles/857754/
https://lwn.net/Articles/857754/
https://docs.python.org/3.10/howto/clinic.html
https://docs.python.org/3.10/howto/clinic.html
http://www.kroah.com/log/linux/container_of.html
http://www.kroah.com/log/linux/container_of.html
https://mypy-lang.org/about.html
https://mypy-lang.org/about.html
https://doi.org/10.1145/2048066.2048095
https://doi.org/10.1145/2048066.2048095
https://doi.org/10.1016/j.scico.2014.01.018
https://doi.org/10.1016/j.scico.2014.01.018
https://doi.org/10.22152/programming-journal.org/2023/7/2
https://doi.org/10.22152/programming-journal.org/2023/7/2
https://www.youtube.com/watch?v=2kQxVwYwrME
https://www.youtube.com/watch?v=2kQxVwYwrME
https://theses.hal.science/tel-03533030/document
https://doi.org/10.1007/978-3-030-88806-0_16
https://doi.org/10.1007/978-3-030-88806-0_16
https://arxiv.org/abs/1306.6047
http://arxiv.org/abs/1306.6047
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1109/ICIS.2013.6607886
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/3485513

	Abstract
	1 Introduction
	2 Background
	2.1 CPython
	2.2 The CPython C API
	2.3 PyPy
	2.4 cpyext and its problems

	3 Adding type information to C extensions
	3.1 Exposing Type Information
	3.2 The stable ABI
	3.3 Sneaking in pointers

	4 Using type information in PyPy
	5 Evaluation
	6 Prior work
	6.1 Sulong
	6.2 Argument Clinic
	6.3 Static Python

	7 Conclusion
	8 Future work
	Acknowledgments
	References

