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ARCTIC CURVES OF THE T-SYSTEM WITH SLANTED INITIAL DATA

PHILIPPE DI FRANCESCO AND HIEU TRUNG VU

ABSTRACT. We study the T-system of type A, also known as the octahedron recurrence/equation,
viewed as a 2 + 1-dimensional discrete evolution equation. Generalizing the study of [20], we con-
sider initial data along parallel “slanted" planes perpendicular to an arbitrary admissible direction
(r,s,1) € Zi. The solution of the T-system is interpreted as the partition function of a dimer
model on some suitable “pinecone" graph introduced in [3]]. The T-system formulation and some
exact solutions in uniform or periodic cases allow us to explore the thermodynamic limit of the
corresponding dimer models and to derive exact arctic curves separating the various phases of the

system.
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1. INTRODUCTION

The T-system, also known as the octahedron recurrence, is a system of non-linear equations
describing the time evolution of a quantity 7; ; , indexed by the Z? lattice, where (i, j) are thought
of as discrete space coordinates, and k a discrete time. The T-system originated in the context of
integrable quantum spin chains, as a functional relation between transfer matrices [30], [31]]. The
T'-system was more recently reinterpreted in the framework of cluster algebras as a particu-
lar set of mutations in an infinite rank system. As a consequence, solutions display the Laurent
phenomenon: the solution can be expressed in terms of any admissible initial data as a Laurent
polynomial with non-negative integer coefficients. This system displays rich combinatorial prop-
erties, depending on the choice of initial data/boundary conditions, such as discrete integrability
[16]], and periodicity properties [18, [32, 24, 23] 22]]. In particular, the T-system with periodic
boundary conditions is related to the pentagram map, an integrable dynamical system on poly-
gons of the projective plane [27], and its higher generalizations [21]].
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We also consider the combinatorics of dimer configurations, i.e. perfect matchings of (planar)
graphs. The perfect matching of a graph G is a subgraph of G such that every vertex belongs to
exactly one edge. In the case of the graph on the Z? lattice, perfect matchings can be visualized
dually as domino tilings, i.e. tilings by means of 2x 1 and 1 X 2,rectangles. A method for counting
the number of domino tilings of a finite domain of Z? was devised independently by Kasteleyn
[26] and by Fisher and Temperley [38].

For suitable domain/graph shapes, dimer models display the so-called artic phenomenon: when
the domain/graph is scaled to a very large size, in typical configurations there is a sharp separation
between “frozen" regions of the domain with regular lattice-like dimer configurations and “liquid"
regions where the dimers are disordered, eventually converging to an “arctic curve". The simplest
instance is the artic circle theorem for the uniform domino tiling of large Aztec diamonds [25,
6. A general theory of arctic curves in dimer problems was developed by Kenyon, Okounkov
and Sheffield, building on Kasteleyn’s solution, and establishes a connection to solutions of the
complex Biirgers equation [29, 28]].

The T-system solutions with suitable initial conditions can be interpreted in terms of various
combinatorial objects such as tessellations of the triangular lattice and families of non-intersecting
lattice paths. Significant progress was made by Speyer [37], who worked out the general solution
in terms of a weighted dimer model on a suitable graph (see also [10]). In addition to computing
exact dimer partition functions, this interpretation of 7-system solutions provides a tool to inves-
tigate asymptotic properties of the corresponding dimer models. This was applied to the domino
tilings of the Aztec diamond for various types of (periodic) weights [20], by considering the so-
lutions of the T-system with “flat initial data" assignments providing a weighting of the dimer
model. This work uses the recent progress in the area of Analytic Combinatorics in Several Vari-
able (ACSV) which provides analytic tools to study the asymptotic enumeration of combinatorial
objects with rational multivariate generating functions [35,134, 1} 33]]. Indeed, the crucial ingredi-
ent in [20] is the fact that the average local dimer density p; jxat point (i, j, k), which vanishes in
crystalline phases and is non-trivial in liquid phases, has an explicit rational generating function
in 3 variables, the denominator of which governs the behavior of p; ;, when i, j,k — oo with
(i/k,j/k) — (u,v) finite, eventually yielding via ACSV the arctic curve for the rescaled model
in the (u, v) plane. Similar and further results were also found by the more traditional Kasteleyn
method [2, 4, 15]].
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The aim of the present paper is to study solutions of the T-system with different initial data,
giving rise to different dimer models, that also display an artic phenomenon, which we investigate
by use of ACSV. Our initial data are along collections of (2¢) parallel planes perpendicular to a
fixed direction (r, s,t) € Z? in the (i, j, k) space-time. The corresponding solutions of the T-
system are interpreted as the partition functions of weighted dimer configurations of so-called
pinecones [3], certain families of bipartite planar graphs with square and hexagonal inner faces
only. We find new solutions of the T-system corresponding to different uniform dimer weights
along each initial data slanted plane, for which an arctic phenomenon occurs. We show this by
computing explicit rational generating functions for the corresponding dimer density p, ; , at point
(i, j, k). As before, the singularities of the latter determine the arctic curves for the corresponding
dimer models. We then explore non-uniform but periodic initial data along slanted planes, and in
the exactly solvable cases we obtain higher order linear systems for the local density, leading to
more involved arctic curves in the same spirit as [20].

Finally, we show that a given T-system solution for a given (r, s, f)—slanted initial data also
provides insights on dimer models arising from in any other (7, 5, 7)—slanted initial data given by
the values taken by the previous solution along the corresponding new set of parallel planes. By
construction, the new dimer model also displays an arctic phenomenon with its own arctic curve,
which we view as a holographic image of the former.

The paper is organized as follows.

In Section 2, we recall known facts on T'-system solutions and their interpretation in terms of
dimer models. We define the (r, s, f)—slanted initial data and show their relation to dimer models
on the pinecone graphs of [3]. Section 3 is devoted to the case of uniform but specific initial
values along each initial data plane, and proceeds as follows: we first present the exact solution
of the T-system, then derive the local dimer density, which we finally analyze via ACSV to get
the arctic curve. We then follow the same procedure for non-uniform but 2x2-periodic initial data
within each plane in Sections 4 and 5. Section 4 is devoted to the exact solution and its periodicity
properties. Section 5 deals with the local dimer density, and the computation of the associated
arctic curves. In particular, like in [20], a new “facet" dimer phase emerges as a consequence of
the staggering of initial data. In Section 6, we describe the holographic principle, which allows
to “view" any (r, s, t)—slanted solution from a different (7, 5, ) point of view. Section 7 is devoted

to a discussion of the detailed structure of the facet phase, a 3D formulation of the holographic
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principle, and a few concluding remarks. Some cumbersome expressions for systems and arctic
curves are presented in Appendices A-D.
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as the NSF-RTG grant DMS-1937241.

2. T-SYSTEM AND DIMERS

2.1. General setting and slanted plane initial data. The T-system or octahedron relation is the
following recursion relation for variables T; ; , > 0, i,j,k € Z

(2.1) Tz i k+1 T', k-1 — Ti+1,',k Ti—l,',k + Tz i+1,k Ti,'—l,k-
J J J J J J

1

It may be interpreted as a discrete time k evolution for the variable T', expressing its value at the
time k + 1 vertex of an octahedron in terms of the values at the 4 vertices at time k and at a single
vertex at time k— 1. Itis also interpreted as a particular mutation in an infinite rank cluster algebra.
As the T-system clearly conserves the parity of i + j + k, we may restrict our study to solutions
subject to the additional condition i + j + k = 0 mod 2. This condition will always be assumed
implicitly unless otherwise specified.

The solution 7; ; , is unique once we fix admissible initial data along any given “stepped surface"
k made of the vertices (i, jo, k; ;). ig. o € Z, where the height function k; ; : 7? — Z obeys
|kiv1; — kijl = ki1 — ki ;| = 1foralli,j € Z. The initial data assignments read

(2.2) T, =t (i, Jo € 2)

io-Jokig jo ig-do
for some fixed initial variables Lo ™ 0, iy, jo € Z.
In this paper, we consider solutions of the A_ T-system subject to initial data along (7, s, 7)-
slanted parallel planes
P,) =G, j,k)|ri+sj+tk=m}
for some fixed integers r, s, > O such that # > max(r, s) and gcd(r, s,t) = 1. Throughout the
paper, without loss of generality we shall also assume r < s, as the converse is easily reached
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upon interchanging i < j. Note that when r, s,  are odd, only even values of m occur, as i+ j + k
is even.

It is easy to see that an admissible initial data set for the T-system consists of specifying the
values of T; ik along 2t consecutive parallel planes (P,), m = 0,1,2,...,2t — 1. These form a
particular stepped surface, by noting that neighboring points (i, j, k) and (i ¥ 1, j, k + 1) belong
respectively to planes (P,), m = ri+sj+tk and (P, _,) while (i, jF1, k+1) belong to (P,,.;_))-
Moreover, using the T-system as a recursion relation in the discrete variable k, we may write

T _ Ti+l,j,k Ti—l,j,k + Ti,j+l,k Ti,j—l,k

ijk+1 T
i,j.k—1

The point (i, j, k + 1) belongs to the plane (P,,) for M = ri + sj + t(k + 1). The above relation
shows that 7 ; , ,, is determined by values of T"on the 5 other planes: (Py,,_,), (Pyr_,_.)s (Ppry_,)s
(Pyy—s—y)> (Pyy_p,). We may therefore use the relation recursively to obtain all values of 7" in (P,,)
from the data on (Py,;_,), (Py;_5)s .-+ » (Ppy_op)-

The stepped surface corresponding to (r, s, f)-slanted planes initial conditions reads

(2.3) K lx{ Mod(ri + sj,2t) —ri—sj ifi+j=0[2]

WOy Mod(ri +sj +1,2t) —ri—sj ifi+j=1[2]
where we have identified the index m = Mod(ri+sj+t Mod(i+j, 2), 2¢t) of the plane P, containing
the point (i, j, k;. j). Equivalently, we have

—0 | ritsi
. 2

24 k"J - | — 2 | ritsit
2t

J if i+ jeven

J otherwise

Remark 2.1. The latter expression allows to characterize alternatively the (r, s, t)-slanted stepped
surface as the lowest stepped surface lying above the plane (Py) : ri+ si +tk =0, (i, j, k) € Z°.
By lowest we mean that any “down" mutation sending some point (i, j, k) — (i, j, k — 2) will end
strictly below the (P,) plane.

We may finally also write a single parity-independent formula for k; ; in the form

L ri+sj+ti+j)
2.5) ki’j—l+]—2[ > J
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2.2. Solution as a dimer model partition function. In [20] and [10], it was shown that the
solution T ; , to the T-system subject to initial conditions of the form (2.2) on some stepped
surface k is the partition function of a dimer model on a bipartite graph obtained as follows.
First, from the octahedral mutation interpretation, we note that the solution T; jx may be ex-
pressed in terms of a finite subset of the initial data (2.2), namely that lying in the cone |x — i| +
ly —jl < |z =kl (x,y,z) € Z* with apex (i, j, k). Let D = Dl’;]’c denote the intersection of the

initial data stepped surface with this cone.
k+1 k 1 k—1 k k E+1 E+1 k
k k—1 k k k+1 k—1 k k k+1
FIGURE 1. The six possible face configurations for the k coordinate of any stepped surface
k and the associated black/white square/triangle tessellation.

k k — k-1 k

k+1 k k-1

Further recording the k-coordinates of the points in D, and applying the dictionary of Fig.
allows to construct a tessellation with black/white triangles and squares of the projection of D
onto the (x,y) plane. It turns out that the (r, s, 7)-slanted tessellated stepped surfaces are very

special:

Theorem 2.2. Each vertex of an (r, s, t)-slanted tessellated stepped surface may only have one of

the five possible environments depicted below:

To prove the Theorem, we note that the general stepped surface conditions |k, ; — k
|ki,j+1 - ki,jl
(i,j.k; ;). However, these rules are further restricted by eq. (2.4) as follows.

.
LJ
= 1(i,j € Z) would give rise to 2* = 16 possible environments for the vertex

Lemma 2.3. The (r, s, t)-slanted stepped surfaces obey the further conditions:

(2.6) k;

i-1; — ki1 € 10,24, k —k; ;41 €{0,2}, Kiv1;— ki €10,2}

ij—1
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Proof. We show that the value —2, allowed by the general stepped surface condition, is ruled out
here. Using (2.3), we have first:

Kk __2+2<lrl+SJ+t(l+j)+r+tJ _ [rl+SJ+t(l+J)—r_t|>.

k. =
i+l 2t 2t

i-1,j

The arguments of the integer parts differ by 2r2—+t’ > 1, hence the difference cannot be 0, which

implies that k;_, ; — k;,, ; # —2. The same reasoning leads to k; ;_, — k; ;,; # —2. Finally, using

again (2.3):

ri+sj+tii+j)+s+t ri+sj+ti+j)+r+t
Kivij=kKij =2 ¢ B 2t

The arguments of the integer parts differ by % > 0, which implies k;,, ; — k; ;;; > 0 and rules
out the value —2. O

We are now ready to prove Theorem[2.2] The first two conditions of (2.6) rule out the following

nine possible vertex environments:

4440
Moy AR X

where the horizontal (resp. vertical) pairs of dots indicate the violation of the first (resp. second)

restrictions of (2.6). Finally the third restriction in (2.6) rules out the first face configuration of
Fig. [T} and therefore the following two vertex environments:

W ¥

where we also indicated by a pair of dots the heights violating the third restriction of (2.6). Having
ruled out 11 possible environments, we are left with the 16 — 11 = 5 stated in the Theorem.
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a
d
E '
@A) rs,t)=(01,1,3),k=2 ®B) (r,s,0)=(1,1,3), k=4 © @,s,6)=(1,1,3), k=6
A
i! )
D) (r,s,1)=(1,2,3), k=2 ®) (rs,1)=(1,2,3),k=4 (F) (r,s,t) =(1,2,3), k=6

FIGURE 2. The tessellation domain @lrjs]'c for (r,s,t) = (1,1,3) and (r,s,1) = (1,2,3),
centered at the point (i, j, k; ;) (marked by a ¢), equal to the projection of the point (i, j, k)
onto the initial data stepped surface k.

We represent a few sample tessellated domains D in Fig. [2} in the cases (r, s, ) = (1, 1,3) and
(r,s,t) = (1,2,3), for solutions T, ,, k = 2,4, 6.

From the tessellated domain D, one can construct the bipartite dual graph § = 9:;;,
signing black/white bicolored vertices e/o corresponding to the color of the faces in the original

by as-

triangulation. Faces of G are labeled by coordinates (x, y) of the dual vertex (x,y,k, ) € D. A
dimer configuration on G is an independent set of edges of G such that every vertex of G belongs to
exactly one edge. The edges in this set can be thought as occupied by dimers, usually represented
as thickened edges of G.
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t—11f to1 3.0

too | t10

(A) (B) ©

FIGURE 3. The tessellated domain (A) for T}, 4 with (1, 1, 3)-slanted initial data, the cor-
0,0.4

responding dual graph (B) G ;

and a sample dimer configuration (C).

Theorem 2.4. [10] The solution of the T -system with slanted initial data is expressed as:

T (t,,)0= />N (x, y) interior faces
ijk = 2
dimer configs. D faces (x,y) (tx y)l—Nx,y(D) (x, y) bOI/mdaryfaces
on§ of G >

where the sum extends over all dimer configurations D on the dual graph G, while v, , is the
valency of the face (x,y) and N, (D) € {0, 1,...,v, ,} denotes the number of dimers occupying
the edges at the boundary of the face (x, y). The initial data t, ,’s serve as local Boltzmann weights
for the dimer model.

Proof. The proof of the theorem proceeds similarly to the case of 4 — 6 — 8-graph in Theorem
3.10 of [[10], with the extra restrictions of Lemma[2.3] O

In this paper, we apply Theorem to the particular case of (r, s, ) slanted initial data. The
corresponding bipartite graphs G actually already appeared in the literature [3]] under the name of
“pinecones"”. The precise connection is given in the next section.

Example 2.5. We consider the solution T, of the (1,1, 3)-slanted T-system. The tessellated

domain ®(1):(1):§ is represented in Fig. (A). The dual graph 9?:?:‘3‘ together with its face weights

1,5 is represented in Fig. |3| (B). Finally, we show a sample dimer configuration in Fig. E| (C),
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\' Z=kx,y
WH w — —l. —
- H - -
i S Iysplialsiaaalisl
— 21 — — O

Iy - H —10 | - |-
- H — - He -

Iy - H - - et
i s s | L ° gu g
— 11 — 1@ 1
- H - |— - =

= mB i
- - —OH
a s e n |

-_5 el el
- H L1 ol - =
- H 1 | — e

ol O e ° u u

(a) (b) ()

FIGURE 4. (a) The fundamental domain of a vertical slice of the bicolored graph dual to the
tessellated (2, 4, 9)-slanted stepped surface. (b) A x =const. section of the stepped surface
k (shown as a minimal path above the line sy + 1z = —rx). We label each vertex by S/H
for square/hexagon for the type of each corresponding dual face. (c)The infinite bicolored
graph dual to the tessellated (2,4, 9)-slanted infinite stepped surface: dots indicate the
periodicity lattice for the graph.

. LT algalool 2ot . .
corresponding to the contribution to the partition function T, , 4, expressed

T_ato—1t1-1T1102
as a Laurent polynomial of the initial data t , .

2.3. Slanted plane initial data and dimers on pinecones.

2.3.1. (r,s,t)-dual graph structure. Let us first describe the structure of the dual graphs G to the
(r, s, t)-slanted initial data tessellations of previous section, which we shall call (r, s, t)-slanted
graphs for short. As is clear from the discussion of Section [2.2] each such graph is a finite subset
of the infinite (doubly periodic) graph dual to the tessellation of the infinite stepped surface Kk,

namely that corresponding to only retaining faces (x, y) within the cone |x —i|+ |y—j| < |z—k]|,
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with z = k, . Let us first describe this infinite graph. The restriction Theorem 2.2)implies dually
that the faces of any (r, s, )-slanted graph may only be hexagons or squares of the following types:

B

where the hexagon corresponds to the first three vertex environments of Theorem [2.2] and the two
squares to the two remaining environments. These faces are naturally arranged into columns of
faces (i, j), j € Z (strips of width 1), each column a succession of hexagonal/square faces (see
Fig. {] (a) for the (r,s,t) = (2,4,9) example). Bi-colorability imposes that squares always go
by pairs, and we may alternatively view any vertical strip as made of only hexagons with some
horizontal edges added in the middle.

By the minimality property of the stepped surface k (see Remark 2.1)), we deduce that each ver-
tical plane section (of the form x =constant) of the tessellation of k reduces to an infinite minimal
path in the integer (y, z) plane (with fixed parity of y + z = x mod 2) and with up/down steps
(1, £1). The path is described by its vertex coordinates (y,z = k, ), and minimality means
it 1s the lowest path above the line sy + 1z = —rx. In turn, each vertex of this path corre-
sponds to a square or an hexagonal face of the corresponding vertical strip in the dual. More
pecisely, each “double descent” of the form (k,_; ,, k, .k, ;) = (4, u — 1,4 —2) givesrise to a
Ky
ety Kxys ki1 ) = (, p+ 1, ) give rise to squares at (x, y). The H/S sequence is moreover

ky,—2s.
We have represented the correspondence between the (minimal) path (y, k, ) and the vertical
slice structure in Fig. E] (b) and (a) for the case (r, s,t) = (2,4,9). In Fig. 4| (b), vertices in the

middle of a double descent are marked H (for hexagonal face in the dual) while those in the middle

hexagon at (x, y), while each “down-up" (k
(k
2t-periodic, due to the relation k

x=1,y> kiy1y) = (up—1, ) and each “up-down"

x,y+2t =

of an “up-down" or “down-up" are marked S (for square). Upon changing to coordinates (u, v)
(by a rotation of 45°, see Fig. ] (b)), the minimal path has steps (1,0) and (0, —1), and connects
the origin to the point (f — s, —(¢ + 5)), while staying above the line y = —gx that joins them.
To make the contact with the pinecone graphs of [3]], it is best to describe the above successions
of squares and hexagons as a sequence of hexagons, with odd horizontal edges (connecting a
white vertex on the left to a black vertex on the right) added in the middle of certain hexagons so

as to form pairs of consecutive squares. In [3]], the positions of these added edges are recorded
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through functions L, U. In our infinite (r, s,7) slanted bipartite graph, the positions (i.e. vertical
coordinates) of the occupied odd horizontal edges in the vertical slice (depicted in blue in Fig. [
(a)) are given by w = 1 — 2v, for v the coordinates of the vertices of the path closest to the line as

in Fig. {] (b), namely
I+s

t—s

w=1+2{ uJ W€ 2).

g w=1+2 [15—34 = 1,5,11,15,21 for u € [0,7 — s) in Fig. 4 (a)). We conclude that the
succession of square and hexagonal faces is uniquely determined by (s, 7).

However the relative positions of successive vertical slices depends additionally on the value
of r as well. Indeed, the picture described so far remains identical in any other slice, except for
the fact that the origin is a function of the position of the vertical plane x. Using the value (2.5])
for k, , = z, and performing the change to rotated coordinates u, v with:

u:z+x+y U:z—x—y
2 27
the line rx + sy + 1tz = 0 becomes

__(s+t)u+(r—s)x

b

t—s
and therefore the positions of the horizontal edges in the slice x read again 1 — 2v for v is the
coordinates of the vertices of the path closest to the line, leading to:

1+2[(s+t)u+(r—s)xJ.

t—s

2.7

Note finally that the v coordinate here is shifted by —x/2, hence the absolute positions of hori-
zontal edges in the (r, s, f)-slanted bipartite graph are given by

(s+Hu+r—s)x
t—s

(2.8) w=w(x)=1—x+2[ J(u,xEZ).

This is illustrated in Fig. ] (c), where we indicate the periodicity of the graph with a dot (which
tracks the position of the w = 1 edge of the x = 0 slice in the other slices, modulo the 2(¢ + s)
periodicity along the vertical direction). Note that the formula for w in is for the case when
the domain is centered at (0, j, k) for some values of j, k € Z. The general case where i # 0 will

requires some translation in x and v (see next section).
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2.3.2. Dimer graph. Recall that the initial data domain of interest for the solution of 7} ; , must
lie in the pyramidal cone € : |z — k| > |x —i| + |y — j| for (x,y,z) € Z? withx +y+z =0
mod 2. The dimer graph boundaries are therefore delimited by the intersection of the initial data
stepped surface k and the cone boundary dC. The border of the largest domain is obtained by

intersecting dC with the P, plane rx + sy +tz = 0. In the plane x = i, dC reduces to the two lines

k—j—i
2

. The first line corresponds to an upper bound on the maximum value of

k—i—j
2

Recall from the previous section that the maximum value of v reached in (2.7) is O from Fig. {{(b).

k—i—j

Thus, it is requires a translation by v, ,, = ————. Once re-translated into the set of positions

z—k=y—jand z— k = —(y — j). In the (4, v) coordinate frame, the former reads v =

and the latter u = <2+

v reached (i.e. v, =

- . k+i+j
), and the second on the maximum value of u (i.e. Up, = =)

of horizontal edges in the dimer graph of previous section, this gives the positions:
(2.9)

wix,u) = 1+(k—i—j)—(x—i)+2 [(f + S)u+ (r — s)x

t—s

| = k—jt+1—x42 V + S)L;J_rir - S)x| .

More generally, in the parallel planes x =const. we get bounds on the values taken by u. Writing
k—z=e(x—1i)+n(y—j) withe,n € {1,—1}, and eliminating x via rx = —sy — tz gives:

(nj + k)t + (r — te)x + ite (nj + k)s + (qr — es)x + esi
(2.10) y= , z=
nt—s s —1In
. . . . XxX+y+z Z—X—=Yy
Applying the change of variables of the previous section u = — v = — the
quantity w = k — j + 1 — 20 — x reads
(2.11)
i i+ k t 1 — t
w=kejtloy—z = k—jplp EFUFOEHDFXCA W e gy

nt—s
This gives the four lines w = w;—:in(x) and w = wr  (x) in the (x, w) plane, delimiting the

dimer graph, and eventually the four line segments

w_. (x) = 1 —(x—1i) ri+sj+tk
2.12 min o . —<x-i<0
( ) { w;lax(x) = 1 + 2(r1+s1+tk)-ti-_(§r+t+s)(x—l) F4t — —
wt (x) = 14+ (x—1) _ri+sj+tk
(2.13) {WEZ ®) = 1+ 2(ri+sj+tk)-li-_(2r—t—s)(X—i) O<x-ix< T _r
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w

s

N1+ 2(7‘iq;ij.'s+tk)

e=—-1,n=1

SIRN

el

e=1n=-1

e=n=-—1

A 4

_ ritsjtik 0 rit+sj+tk
r+t t—r

FIGURE 5. The domain (2.14) in the x, w coordinates.

Finally, the dimer graph G is determined by the function w(x) (2.8)) together with the conditions

min max r+t - t—r

kt+js+i [+ 5j + tk
Q1) W (x) < wnu) < wt(x), C_iﬁil< _ritsj+ )

The corresponding domain is depicted in Fig. [5]

2.4. Comparison with Pinecones. The Pinecones defined in [3] were constructed to provide
combinatorial solutions of the three-term Gale-Robinson sequence:

(2.15) a(i)a(ii — m) = a(ii — Da(fi — J) + a(fi — k)a(i — )



16 PHILIPPE DI FRANCESCO AND HIEU TRUNG VU

with the initial condition a(i) = 1 for i = 0,1,...,/m — 1 with 7, j, k, [ given integers satisfying
i+j=k+1=rm,and j = min{i, ], k,1}. The parameters 7, j, k, m, I, i are borrowed from the
notations in [3]] and are different from our i, j, k, m (we have used the tilde notation to distinguish
them). For each set of parameters {7, j, k, [}, the authors construct a sequence of pinecone graphs
(P)uso = (P T, J, k, 1));50, entirely determined by the functions:
n~1C+l~cR-I—f—ﬁ—1J :—1—R—2VC+(7€_DIS+'h_ﬁ_IJ
J J
MmC +IR+i—ii—1

J
The graphs are drawn on a substrate of “brick wall" lattice in Z> made of horizontal hexagons (i.e.

U(ﬁ,R,C)=2C+R—3—2l

L(ﬁ,R,C)=2C+R—3—2l J=U(ﬁ,—R,C+R).

with all horizontal edges (x, y)—(x+1,y), x, y € Z, and every other vertical one (x, y)—(x, y+1),
x,y € Z,x+y=0mod 2), to which some central vertical edges (x, y) — (x,y + 1) are added at
positions determined by U (7, R, C) (in the upper part of the pinecone in the row R =0, 1,2, ...)
and L(#, R, C) (in the lower part of the pinecone in the rows —R = 0,-1,2,...), with C > 0
limited by the conditions that U(7i, R,C) > R and L(i1, R,C) > R. These give the respective
following bounds for the positions U (71, R, C) and L(#, R, C):

(2.16) U: 0<C< {M|
J

2.17) L: 0<C< LMJ
J

Lemma 2.6.

(2.18)

J J

forj>0€eZ

Proof. 1t is sufficient to show —|x| = |—-x — ;J + 1 for x = f,] > l,a€ Z. Letn = |x],ie.
J

suchthatn§x<n+l,neZ,then—n—1—%<—x—%s—n—%<—n,hence:

-n—2< L—x—lfj <-n-1
J
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Assuming —n—2 = |—-x— %J, then we would have —x—% < —n—1,hencen+1 —% < f <n+1,
which contradicts a € Z, as the width of the interval is strictly less that % Therefore we must

have —-n— 1= |—x — 5] , and the Lemma follows. O

Comparing Egs. (2.16}2.17) to (2.14), we find the following correspondence:

Theorem 2.7. The graphs G are identified with pinecones via the following correspondence be-

tween our parameters (r, s, t) and the parameters i, , k, I, i of [3)):

(2.19)
i=t+s j=t—s k=t+r I=t—r m=2t fi=ri+sj+tk+2t if r,s,notall odd
=2 j== k=% == m=t i = RSk g otherwise
2 2 2 2 2
Proof. From Lemma 2.6}
—IC+(j— k)R +ii — 7
Ui R,C) = 1—R+2ll U=BR+7 mJ
J
_’7‘ _~ ~ —TC ’:"_INR ~
LGi,R,C) = 1+R+2[ iC-IR+7 mJ:l—R+2{l G =DR+7A mJ
J J

For r, s, t not all odd, the first identification of parameters in the theorem (with i=t+s,] —I =r—s,
m = 2t, j = t—s) allows to identify for x > i where i is the index for the solution of the T-system
T ik

1

kit i
w(x,u):L<ri+sj+tk+21,x_i,%_u>’

k+it i
corresponding to a mapping of variables R = x —i, C = % —uand i =kt + js+ri+2t.

Moreover, the bounds R < L(7, R, C) < L(#i, R, 0) turn into
2(ri+sj+tk)+ Qr—t—s)(x—1i)
t—s
which is equivalent to (2.1312.14). Similarly, when x < i, using U(7i, R, C) = L(#i, =R, R + C),
we find that

x—i<wxu <1+

i
w(x,u)=U<ri+sj+tk+2t,—(x—i),%—u+x—i>,
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PVVVVVVVAAMMAADMABAAL
AAAﬁj

LL&LLLELLL dddd
AAhhhhh LLLEE";;VVV

FIGURE 6. Tessellated domain for the (1, 1, 3)-slanted stepped surface for Tj) 4, extended
by the four sides of the pyramid with apex at (i, j, k). The red line marks the boundary
between the domain and its continuation via the four infinite planes forming the pyramid.

while the bounds R < U (i, R,C) < U(#, R,0) and (2.12)) are identical. When r, s, t are all odd,
we may rewrite

t+s +
wix,wy=k—j+1-x+2 {—‘
B3
and the above identifications correspond now to the second line of (2.19). O

We conclude that the dimer graphs for r, s, #-slanted initial data T-system solutions are nothing
but the pinecones of [3], with the correspondence of Theorem [2.7] above. For convenience, in
the remainder of this paper, we will work in the original (x, y, z) coordinates, and no longer refer
to the (x, u, v) frame. Any of our results on limit shapes can be straightforwardly translated into

. . . z+y+x Z—X—
pinecone language via the change of variables u = Y , U= y’ and x unchanged

(note that the pinecones must also be flipped to match our dual slanted graphs).
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Let us briefly recall the core phenomenon of [3]], which is best explained by embedding the
pinecone configurations into a minimal Aztec diamond shaped domain, obtained by adding brick-
wall configurations (with only hexagons and no extra vertical edges), with fixed boundary dimer
configurations, which propagate throughout the added hexagons to provide frozen configurations
at/within the boundaries of the pinecone. The dimer configurations involve a “core" of active
edges that may or may not be occupied by dimers. From the dual (stepped-surface) point of
view, such brick-wall additions correspond to a continuation of the stepped surface beyond the
intersection with the pyramid of apex (i, j, k), by the four plane faces of the pyramid itself (see
Fig. [f for an illustration). Indeed, the latter planes decompose into alternating Black and White
triangles, with only 6-valent vertices, thus giving rise to the hexagons of the added brick-wall in
the dual graph.

We give below examples of pinecones and the corresponding function w(x, u), and of the core

phenomenon.

Example 2.8. Let (r,s,t) = (2,4,9),andi=1,j =2,k =3, withri+sj +tk+2t =55 =nand

%:3, Wehavew(x,u):2—x+2l13”5_2x =1-R+2 WJ,(R:x—l,Cz?)—u),

leading to the successive positions for x — 1 € [=3,5] in ) These coincide with the values

R
3 ‘ w(—2,u) 4 w(-2,u)
2 ‘ ‘w(—l,u) 3 9 w(-1,u)
| | | |w(0, ) 2 6 12 w(,u)
0] | | | w(l,u) 59 15 w(,u)
1 ‘ ‘ ‘ w(2, u) 8 14 w(2,u)
9 ‘ ‘ w(3.u) 7 11 w3, u)
3 ‘ ‘ ‘ (4 u)’ 4 10 w4, u)
i ‘ (5. ’ 7  w(,u)
5 ‘ (6, u)’ 6 w6,u)

FIGURE 8. Value of
w(x,u) indicating
the positions of
extra vertical edges
(in red)

FIGURE 7. Dimer graph for the partition func-
tion T),; with rows indexed by R for the
(2,4, 9)-slanted stepped surface

UBS5,R,C), (R = 3,2,1) followed by L(55,R,C), (R = 0,1,2,3,4,5), which determine the
pinecone on the left (Fig. [7).
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R

1 lw(—1, u) 2 6 w(-1,u)

0 w(0, u) I 59 w,u)

1 4 8 w,u
w(l,u) 3 7 w,u

-2 w(2,u) 6 w3,u)

-3 w(3,u)

FIGURE 10. Value of

FIGURE 9. Dimer graph for the w(x, u)
partition function T, with
rows indexed by R for the
(1, 1, 3)-slanted stepped surface

Example 2.9. Let (r,s,t) = (1,1,3), and i = 0, j = 0, k = 4, with +TJ+”‘ +t=09, and ’”Tﬂ =2
as in example (2.5). We have w(x,u) =5 — x + 4u, (R = x,C = 2 — u) which is represented in
Fig[9

These coincide with the values U(9, R,C), (R = 1) followed by L(9,R,C), (R = 0,1,2,3),
which determine the pinecone on the left (Fig. [10).

Example 2.10. We now illustrate the core phenomenon in the case of the solution T, _, 5 of the

(1, 1, 3)-slanted T -system. The solution reads:

To2lon  Toiolo—2lio  Ioi—ifi2lio  Toi—ifag
+ + + :

70,0 To.-10,0 To-111-1 -1
We have represented the corresponding four dimer configurations of the full dimer domain in
Figure[I1} here the core is extended by brick wall hexagonal faces to an Aztec diamond shape
(but could go on and cover the entire plane as well, as suggested by the dual graph of that of
Fig.[6). The brick wall addition is similar to Figure 5 in [3], and the blue faces don’t contribute
to the partition function by theorem

3. THE CASE OF UNIFORM SLANTED INITIAL DATA

3.1. Uniform T-system solution. For fixed values of (r,s,t) the simplest solution of the T-
system (2.1]) corresponds to choosing uniform initial data in each initial data plane (P,), £ =
0,1, ...,2t—1. More precisely, choosing the initial values of T to be T} jk=as forall (i, j, k) € (P,)
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| | | |
i
i i

toa to1
tog |10 to.o | 10
t1o t_1,0 :
2.0 t, _ff2.-1 Lo, th_ft2.—1
0,1 70— 11—
t_21ft-1- ta,—2 toonfi-f t2,—2
I 1,2
“1aflo,—2 to1offo 2
Fo,—3 fo.—3
— L p— — [ P
W P —  —
S —
to,—2%0,1 t—1,0t0,—2t1,0
10,0 t0,—1%0,0
to1 to.1
too | fLo too | t10
to10 10—
2.0 f 21 t 20 1 _q[t2—1
0,1 0,1
t oo 1f-1-] t2,—2 t_oft 11 t2, o
11,2 11 2
t-1,—2fto,—2 “1-2fto,—2
fo.—3 fo,-3
T | — — I J—
T P— W —
t1 101, ot e
—10,— t1,-1

FIGURE 11. Dimer configurations corresponding to the 4 terms of the T}, _; 5 solution of
the (1, 1, 3)-slanted initial data T-system.

for some positive real numbers a,, a,, ..., a,,_;, we deduce that for all m > 21:

7—;',_]'7]( = am (l,_],k) G (Pm)

21
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where a,,, m > 2t are subject to the “Gale-Robinson" recursion relation

A A2t = Qpir—t Cp—r—t + Aprs—t Cm—s—t

Among these solutions a particularly simple one consists in taking a, = a’“~1/2 for £ =
0,1,...,2t — 1, leading to

(3.1 a, = a"" V2, (m € 2),
provided «a satisfies
(3.2) o =a +a.

It is easy to see that this equation always admits a unique positive solution such that @ > 1, which
we pick from now on. As an example, taking r = s = 0 and # = 1 leads to the "flat" initial data
along two parallel planes k = 0 and k = 1, leading to the Aztec diamond domino tiling solution
T, ., = 2¢k=D/2 with @ = 2. By a slight abuse of language we shall call the solution (3.1) the

i.J,
uniform solution of the T-system with (r, s, 7)-slanted plane initial data.

3.2. Density.

3.2.1. Expectation values. In Sect. @, we have interpreted the solution T, ;, of the T-system
as the partition function of some suitable (r, s, f)-dimer model with local Boltzmann weights ex-
pressed in terms of the initial data. To gain access to statistical properties of the dimer model,
such as the average number of dimers occupying the edges adjacent to a given face, we may use
the dependence of T' on the initial data as follows. Pick a point (iy, jo, kg = k; ;) belonging to

one of the initial data planes (P, ) with 0 < riy + sj, + tk, < 2t). Assume it corresponds

ig+sjot+tky
in the dimer graph to the center of a 2v-valent face. As the local contribution for this face to the

.. . . —1=N. . (D .
partition function is (¢, jo)” inio™ we may write

(igsJosko) o __ 1
(3.3) Pii = _T, » Lioo -

(T;,j,k) =(v—1- Nio,j0(®)>i,j,k

where (f), ; , stands for the statistical average of the function f over the dimer configurations D

for the (i, j, k) dimer model, and where k, = k; , indicates the time variable along the initial data

10:Jo
surface. We refer to the function p as the (local) density of dimers at position (i, jj,, k) in the

(i, j, k) dimer model.
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FIGURE 12. Density profile for p

(igsjo)
0,0,4

0.42
0.30
0.18
0.06
-0.05
-0.17
-0.29
-0.41

where iy, jo = =3, -

,5

23

Example 3.1. We compute explicitly all values of p , at various sources (iy, j,) with uniform

initial data (3.2).

(=3.5) (=2.5) (5.5)
Poos  Pooa Po.0.4

et (3.4 (5.4)

(3.4) 004 0,04 004
(=3-3)  (-2-3) (5.-3)

Poos  Pooa Po0.4

S O O O O o o O©o

o

oS O O O

O O riI—bIm

)

PIwR |- © O

— | —

— |
S Owi=

- O O

00 | =00 | W

0 | —
—

O I

0 0
0 0
0 0
10
8

31

8 41
0 -3
3L
8 16
0 0
0 0

S O OoOFlFo © ©o o ©

S O O O o o o Oo

)

where the 0’s at the boundary extend to infinity as these initial data points do not contribute to

the density py 4. The density profile is shown in Figure @

An interesting property of this density is that it is an order parameter for the crystalline/liquid

(ig-Jo-ko)

phases of the model, namely Piik

vanishes identically in the crystal phase, while it fluctuates

and becomes non-zero in the liquid regions. Indeed, as we shall see below, the crystalline phase

is characterized by the presence of exactly v — 1 dimers around each 2v-valent face (1 for squares,

2 for hexagons), leading to a vanishing local density by (3.3).
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Another property is translation invariance, namely that

(igsJo-ko)+(x.3,2) _ (igsdo-ko) _
3.5 sk = Piik I x,,2€Z, x+y+z=0mod?2,
a, a+x,b+y

for all translations by (x, y, z) that leave the initial data surface k invariant. In the case of (r, s, 1)
parallel initial data planes, only translations such that rx + sy + tz = 0 are allowed. The lat-
ter property is key to allow us to use the explicit value of p( 0/oko) " for varying (7, j) and fixed
(ig> Jos ko = k; ;) to browse through the local densities of the dlmer model. Indeed, instead of
interpreting this quantity as a local density of the (i, j, k) dimer model, we may use translational
invariance (3.5)) to reinterpret it as the local density at some varying point ~ (i, — i, j, — j) in a
dimer model whose graph is centered at a fixed point ~ (0, 0) close to the origin.

The T-system relation allows to derive a linear recursion relation for p, by simply differentiating
w.r.t. f,

ig»Jos ko
(ig-Jo-ko) (ig-Jo-ko) __ (ig-Jo-ko) (ig-Jo-ko) (ig.Jo-ko) (ig-Jo-ko)
(3.6) pi,j,k+1 +'01]k 1 _Li,j,k (pi+l,j,k +p, 1j.k )+Ruk(pu+1k +le 1.k ),
where
37 L . Ti+1J,k Ti—l,j,k R _ Ti,j+1,k Ti,j—l,k —1—L
(.7) ik S ik = o b T ik
i k11t k—1 i k+14i0j,k—1

p is further determined by the initial conditions p( odoko) — = 6,6, .0k, along the initial data surface
k.
The density p can be explicitly computed whenever the solution T; ; , of the T'-system is explicit.

This is done in the next sections for (r, s, t)-slanted initial data planes planes (P,),7 =0,1,...,2t—
1.

3.2.2. The density of the uniform case. In the uniform case, we have the solution 7 ; , = a™"~D/2
where m = ri + sj + tk, leading to the coefficients

Lijx= ,2_,2’ R = “SQ_Iz,
independent of i, j, k, while @ > 1 is the solution of (3.2). Let us define the function u(i, j, k) =
ri + sj + tk. It will be convenient to gather solutions of (3.6) into generating functions

P2 1= D a2

ijkez
p(i.j,k)=0
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As a first example, taking (i, ji, k) = (0,0, 0), and using the recursion relation (3.6)), multiplying
by x'y/z¥ and summing over i, j, k € Z gives
2
1= p9x,y,2) = - :
1+2z2— za’Z‘ﬂ(x + i) - zasz—’2<y+ i)

easily derived by noting that p,,, = —1. For later use, we define
(3.8) D,  (x,y,z) i=1+2*— za’Z_’2<x + l) - zasz_’2<y + l)
.5, X y

This denominator will govern the arctic phenomenon for the pinecones.
More generally, we define the refined densities for m =0, 1, ...,2t — 1:
(ig-Jo-ko) . Go-Jo-ko) i Lj k
P00 (x, y, z) 1= Z P XYz
i.jEZ, keZ

u(inj k)20, pu(i.j.k)=m[21]

All these functions can be obtained from the density ploJo%0) via the following:

Lemma 3.2. Setting o = e'?, we have the identity

2t—1

igsjo-k _ —mt (ig.jo-k re st 17
pEnOJO 0)(3@)”2)—520) p(OJO 0)(XCO » Y » Z00 )
=0
Proof. We compute
1 2t—1 1 2t—1
- i _ i0.j0.k . . .
Z w meé p(to,jo,ko)(xwrf’ywsf’ ZC()M) — Z Z w me Z pl(l;) io o)xlylzka)rtf+s1f+tkf
=0 £=0 i,j.k
2t—1
— l Z p(io’jo’ko)xi y’ 7k qof ritsi+tk—m)
ij.k
2t =0 \i.j.k

= pyiof(x, y, 2)

where in the last line we have used the identity &, = % ;:01 w’x=m O

Note that if r, s, t are all odd integers, then u(i, j, k) only takes even integer values, due to the
condition i + j + k = 0 [2], hence only even m’s contribute to the refined densities. This simplifies
the study of solutions to (3.6)), which we postpone to the end of this section.

Assume r, s, t are not all odd. In this case, we may find a triple of integers u, v, w € Z? such that

ru+sv+tw = 1andu+v+w = 0[2]. Then u(mu, mv, mw) = m. Assume that (i, j, k) > 0 and
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u(i, j, k) = m[2t]. Consider the integer k, ; such that u(i, j, k; ;) = m (and therefore k—k, ; € 27),
so that we have p(mu — i, mv — j, mw — k; ;) = 0. We may use the translational invariance (3.5)

for the translation vector (mu — i, mv — j, mw — k; j) to rewrite

(ig-Josko) __ (mu+ig—i,mv+jo—j mw+ko—k; ;)
pi,j,k - mu,mo,mw+k—k; ; ’

where the values of the initial data 7,, = ¢ are unchanged, as the translation is par-

a+mu,b+mv
allel to the initial data planes. This equation allows us to re-interpret the generating function
plrrko)(x y. z) as that of the local dimer densities of the dimer model for T, mumomuwo+k—k, ;- HEre K
governs the size of the dimer graph and the coordinates i, j allow to explore its faces at positions
(mu+iy—i,mv+ j,—Jj).

More precisely, we may rewrite the generating function:

(ig-joko) _ (mu+z'0—i,mv+j0—j,mw+k0—k,-’j) i ik
pm (X, Y Z) - pmu,mu,mw+k—k['j X y]Z
ij.kez
u(i j k)20, p(i,jk)=m[21]
. . (l’,/ NS ) Y
— xmu+10 me+_]0 0 x y J Zk""+ k

mu,mv,mw+2k’
i"j'ez, Kez,

where i" = mu + i, — i, j’ = mv + j, — j, and kj, is such that p = u(iy, jo. ko) = u(@’,j’, ky),
and where we have expressed k = k; ; + 2k’, so that the summation is over integers k" such that
m+2tk’ > 0,ie. k' > 0as0 < m <2t Using finally k; , = (m —ri —sj)/t = (m — mru — msv —
rig — Sjo + ri’ +sj’)/t, we arrive at

(@' k)

(ig-Jo-ko) _ mutig L mutjy mw+ky—p/t
pm (X, Y, Z) =X Y z mu,mv,mw+2k’(Z

r/t —INi' o8/t —1Nj 2Kk
I 2y Y 2
i"jez, kKez,

(@".J' k)

il ! Zk/ .
umvamws2i X Y 2718 expressed

This implies that the generating function g, ,,(x, y, z) = D i
as

(3.9) Pom(X, p, 2) = x™Hoymotho zmmlt pliodoko)(zr/1xt 25yl 7).

This generating function however only explores points with fixed value of u(i, j,, k,) = p, and
we need to consider values of (i, j,, k,) pertaining to the different planes (F,), (P))....,(£,_;) to
explore all the faces of the dimer graph. To this end, we must compute the generating function
pliodoko)(x, y, z) for all values u(iy, jy, ko) = p € [0, 2t — 1]. We have the following:
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Theorem 3.3. For all triples (i, jq, ko) such that u(iy, jo, ko) = p € [0,2t—1], we have plioio*o)(x, y, z) =
xoyhz* p (x,, z), where forr < s < t:

1—za’z"2<x+i)—zasz"2<y+i> O<Lp<t—ys)

l—za’Z"2<x+i>—zasz‘ﬂ(i) t—-s<p<t-r)

1 2_2(1 2_2(1
WV, Z) = —— 3 Y (L W ey i | _ ,
p,(X, ¥, 2) D(x.y.2) 1 - za <x> za <y> t—r<<p<t+r)
1—za’2"2<§> t+r<p<t+ys)
1 t+s<p<2t

and for s <r <t:

l—za’z"2<x+%>—zasz"2<y+i> O<Lp<t-vr)

l—za’z‘ﬂ(i)—zasz"2<y+l> t—-r<p<t-—ys)

1 2_2(1 2_2(1
X, V,2) = —— 1 _ ol S se—t* [ 1 —g< ,
p,(X, ¥, 2) D(x.y.2) 1-za <x) za <y> (t—s<p<t+ys)
l—za’S"2(£> (t+s<p<t+r)
1 (t+r<p<2

with D(x, y, z) as in (3.8).

Proof. Using the recursion relation (3.6), we see that the initial data at (i, j,, k,) propagates to
the following points (with k — k, = 1, 2):

o (igs jo» ko +2) with yu = 2t + p > 2t for all p;

o (ig+1,jp.kg+ 1) withy=t+r+p>2tforp>t—r;

o (igsjo+ Lkg+1)withy=t+s+p>2tforp>t—s;

o (ig— 1, jp.kg+ 1) withy=t—r+p>2tforp>t+r;

o (igsjo— Lkg+ 1) withy=t—s+p>2tforp>1t+s;
These govern the numerators in the above formulas for the densities p,. 0

Let us now consider the case when r, s, ¢ are all odd integers. In that case, we may find a triple

of integers (u, v, w) € Z* such that ru + sv + tw = 2, and u + v + w = 0[2]. As u(i, j, k) is

even, we write u(i, j, k) = 2m [2¢], and u(i, j, k; j) = 2m and apply again the same translation
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invariance. The net result is an even version of (3.9):

_ . _— W _ _
(310) p2p,2m(x’y’ Z) — xmu+10ymu+jOZ 2m/t p(zl,onjo 0)(Zr/tx 1, Zs/ty 1’ Z).

where p(mu + iy — i,mv + jy — j,mw + ko — k; ;) = p(iy, jo, ko) = 2p.
In all cases, combining the results of Lemma [3.2]and Theorem [3.3] we now have access to the
TN : g (G
large i’, j’, k" asymptotics of the local densities p

mu,mv,mw+2k’

which are governed by the singulari-
ties of their generating function ﬁp,m(x, ¥, z), namely the zeroes of their common denominator as
x,y, z approach 1. In all cases the denominator vanishes like

(3.11) A, (x,y,2) :=D,, "x", 2"y, 2),

as x,y, z approach 1. Note that in the scaling limit when i, j,k — oo with i/k, j/k finite, the
“center" (mu, mv) of the dimer domain, which depends on m € [0, 2t — 1] scales uniformly to the
origin.

3.3. Arctic phenomenon.

3.3.1. Asymptotics of the density function and arctic curve. As shown in the previous section the
singularities of the density are governed by the zeros of the function A(x, y, z) (3.11). We now
apply the method of multivariate generating functions by [33] [34]] for conical singularities, letting

x = e, y > e and z > e¢x*) and expanding at leading order in €, we find
Ar,s,t(eex’ eey’ e—e(ux+uy)) - €2 Hr,s,;(x’ ¥, Z) + 0(64)

for some explicit polynomial H of x, y (we drop the subscript r, s, when there is no ambiguity).
Further imposing that H(x,y) = d,H(x,y) = d,H(x,y) = 0 has a non-trivial solution in x, y

- . . . 0°H 0.0 H
leads to the vanishing condition of the Hessian determinant: |~ ¥ 1 =0, and finally to
0.0, H aiH
the (dual) arctic curve:
(3.12) (1-APWP+ APV — Al - A (ru+sv+1)>=0
where
(3.13) A=A, =a"" 1-A=a""

It is easy to show that > — Ar> > 0 and > — (1 — A)s?> > 0, while 0 < A < 1 generically, so that
the curve (3.12)) is always an ellipse.
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Let us also derive the scaling limit of the pinecone domain, centered at the origin. In the original
(i, j, k) coordinates, it is the intersection of the pyramid |x| + |y| = |k — z| and of the slanted
initial data planes P,: rx+sy+tz=mm =0, 1,...,2t — 1. After rescaling by k, setting u = x/k,
v=y/kand w = z/k, we get for k - oo: |u|+|v| = |1 —w| and ru+ sv+tw = 0. The resulting
4 equations #(1 + u + v) + ru+ sv = 0 give rise to 4 segmentﬂ

t t+r t t+r t
I e il B Gl Rl
N N S — S — r
(.14) t t—r t t—r !
V= ————+ u, vV=——+ u ue |0, .
r+s r+s s —1 s —1 t—r

We summarize the results into the following:

Theorem 3.4. The limit shape of typical large size (1,s,t)-pinecone domino tilings associated

m(m—1)/2

to the solution of the T-system with uniform initial data t,; = « on each slanted plane

m=ri+sj+tk=0,1,--,2t—1, is the ellipse (3.12)) inscribed in the scaling domain (3.14). This

“arctic" ellipse separates a liquid phase (center) from four frozen crystalline phases (corners).

NN y
/

FIGURE 13. Arctic curves for r, s, t-pinecones, together with the scaled domain. Left:
(r,s,t) =(1,1,3), center: (r,s,t) = (0,1,3), right (r,s,1) = (1,2,3) .

/

3.3.2. Examples.

Example 3.5. Caser = 1,r = s = 0. In this case, we have a =2 and A =1—- A = % This is
the case of “flat" initial data planes k; ; = Mod(i + j,2) € {0, 1}, for which the pinecone dimer

IThe four corresponding segments are the images of the four segments 1 i of the pinecone formulation.
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configurations reduce to domino tilings of the Aztec diamond of size k. The corresponding arctic
curve is the celebrated arctic circle u®> + v* — % = 0, inscribed in the rescaled domain, the square
lu| + |v] = 1.

Example 3.6. Cases r = s < t. In this case, we have a = Zﬁ and A=1-A= % again. The

arctic ellipse takes the simple form:

Pu—v)Y+E-r?) u+v—r—t Z—L
2_p2) T2

This curve is displayed in Fig. |13|(left) forr = s =1 and t = 3.

Example 3.7. Cases r =0 < s < 1. We have o = 1+a*, A = a™", and the arctic ellipse reads:

A-Ast \° A - A
2—(1-A)s2) 2-=>1-=A)s

This curve is displayed in Fig. [I3|(center) forr =0, s = 1, and t = 3.

(1 — A2u? + A2 — (1 - A)s?) <u -

(¢, y.kg)
mu,mv,mw+2k

ensemble of dimer configurations of the pinecone domain of size k, of the observable v, /2 —

Recall that the local densities p measure of the expectation value, within the statistical
1-N, (D), where N, (D) is the number of dimers occupying the edges around the face (x, y) of
the domain D, and Uy, is the valency of the face (x, y). The 4 corners of the scaled domain have
vanishing density, indicating a "frozen configuration", where each face is occupied by 1 (resp. 2)

edge(s) for square faces (reps. hexagonal faces), resulting in v, ,/2 — 1 —N_ = 0in both cases.
ik}
mu,mv,mw~+2k’

which is the coefficient of x'y/z* of the density generating function 5, ,(x, y, z) of eqs. (3.9) and

For completeness, we have computed numerically the value of the local density p

(3.10), in domains centered at the origin, for large k, as functions of (i /k, j /k). The corresponding
plots for the three cases (r, s,t) = (1,2, 3),(1, 1, 3), (1,0, 3) (with darker shades for larger values
of p, ; ) are represented in Fig. EFI, for large values of k. The domain of non-zero values of p show
the arctic ellipses, outside of which p — 0 (white zone delimited by the segments (3.14))). The
corresponding white-colored corners correspond to fundamental crystalline states as mentioned
above. There are four distinct such states, each corresponding to a (N,S,E,W) corner similar to the
case of the Aztec Diamond in [20], characterized by an occupation number N, (D) = 1 (resp. 2)
on each square (resp. hexagonal) face (x, y) (see Fig. |15|for an illustration). Thus, away from the



ARCTIC CURVES OF THE T-SYSTEM WITH SLANTED INITIAL DATA 31

Rk

(A) (r,5.0)=(1,2,3),k =90 (B) (r,s,t) =(1,1,3),k =90 (C) (r,5,1)=(1,0,3), k = 150

FIGURE 14. Density profile for r, s, t-pinecones obtained by extracting the coefficients of
x'y/zF in j, ,(x, y, z) and plotting the result as a function of i /k, j /k for fixed large ., i, j
in a suitable range around the origin. For better statistics, graphs for a few neighboring
values of k are superposed. The lighter color corresponds to the smaller value of p; ; ;.
and the light blue color indicates when p; ; ; is strictly 0.

corners, the dimer model has non-trivial entropy with p # 0, indicating the liquid phase (darker
shades) in Fig[14]

Remark 3.8. We expect the four corners of the quadrangular scaling domain of (r, s, t) pinecones
to be in a crystalline phase, where each square face is singly occupied and each hexagonal face
is doubly occupied (see Fig. [I5] where we also listed the various (a) square (up to rotation)
and (b),(c) hexagonal face configurations). In general, the (r, s, t) pinecones can be drawn on a
square lattice, with missing vertical edges corresponding to hexagons. The crystal phases of the
Aztec diamond graph (with only square faces) are either of the 4 “brick wall" configurations (2
horizontal and 2 vertical obtained from each other by respectively a horizontal/vertical translation
by one unit) depicted up to translation in Fig. [16|(left). Three of these four give rise to admissible
crystal phases of the pinecone drawn on the same lattice (see Fig. [16](right) for the case (1,1,3),
where each row is a succession of a sequence of two squares followed by one horizontal hexagon,
and successive rows are shifted by one unit to the right). Indeed the condition of each square
being singly occupied and each hexagon being doubly occupied is obviously satisfied. In general,

we expect the bulk of the crystal phases to be in analogues of the three abovementioned states,
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(a) (b) (c

FIGURE 15. The four frozen dimer configurations (up to rotation) in the four corners of
the (r,s,t) = (1,0, 3)-pinecone dual graph. In a larger case, one should see that these
frozen facets concentrate at the 4 corners of the dual graph. The blue regions of brickwall
configurations stay frozen outside of the "active" zone

governed by either of the three hexagon configurations of Fig[I3|(b). Outside of the scaled domain,

every faces are hexagonal and oriented in such ways that the contributing weight is alway 0.
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OR - -

h 4

FIGURE 16. From horizontal/vertical “brick wall" crystalline phases on the square lattice
(left) to that on pinecones (right), illustrated here in the case (1,1,3), where the correspond-
ing stepped surfaces are drawn on a square lattice with missing vertical edges (middle of
hexagons). Out of the four possible brick wall crystals on the square lattice, only three are
compatible with the hexagon arrangement.

4. THE CASE OF SLANTED 2 X 2-PERIODIC INITIAL DATA: SOLUTION AND PERIODICITIES

In this section, we will focus on a specific initial data on the stack of slanted (r, s, 1) = (r, 1, 1)-
planes, which has periodicity two in both i and j direction, namely, on each slanted plane P,
me{0,1,--,2t—1}:

Q

(i=0,j=0mod 2)
b (i=0,j=1mod?2)
(i=1,j=0mod 2)
d (i=1,j=1mod?2)

4.1) t, = amm i g

o
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1
suchthat ri + sj +tk = m, i+ j+ k = 0 mod 2, and with @ = 27-2 as in Example This
initial data determines entirely the solution of the T-system, and its built-in periodicity induces a
periodicity property of the quantities L, ;, and R, ; , which allows to derive the density function

exactly, as we show in the sections below.

4.1. Thecaseofr = sandtin2Z+ 1. When r = s and 7 are odd coprime integers, the condition
r(i + j) + tk = u, together with the fact that i + j + k = 0 mod 2, forces u to be an even integer.
Indeed, the quantity r(i + j) +tk =r(i+ j+ k) + (t —r)k mustbe even asbothr —rand i+ j + k

are even. In particular, only even planes P,,, m € [0,7 — 1], contain initial data points, and the

2m>

solution is defined on even planes as well. Writing r(i + j + k) + (t — r)k = 2m, we see that k
is constrained by the relation I_Tr k = mmod r. As r and ¢ are coprime this is easily solved as

k = 60 m mod r, where 6 € [0, r — 1] denotes the inverse of ’_7’ modulo .
This suggests to apply a change of variables (i, j, k) — (i, k,m), withm =r # + I_Tr k, and
1—

k = 6 m mod r, which allows to recover j = (m — Tr k)/r. Accordingly, we write T, ;, = le,i”

For these new variables, the initial data ¢/, is naturally indexed by pairs i, k € Z, in bijection with
the initial data ¢, ;. Indeed, from the discussion of Section 1.1, the stepped surface of initial data is
(i.J.k; ;) with k; ; as in (2.3), and we have the initial data assignments #,; =T, ;, =T, Z’ :’ |
[2.2), where 2m, ; = Mod(r(i + j) + t Mod(i + j,2),2¢). In the particular case of 2 X 2 periodic
initial data @.1)), with t,,, ; =1, ;,, =1

= t;,ki ;
ij» We have the following.

Lemma 4.1. For every i, k, the following periodicity relations hold for all initial data planes
m=0,1,..,t-1:

2m  __ 2m
T;'+2,k - T'i,k
2m _ 72m
T;',k+2r - T'i,k

Proof. The first relation follows from the fact that (i + 2, j, k) and (i, j + 2, k) belong to the same

plane 2m = r(i + j + 2) + tk, therefore share the same value of 7,,, ; = ¢, ;,, =1, ; and therefore

Tjr”; P = Tf,T For the second relation, note that the points (i + 2¢, j, k) and (i, j, k + 2r) belong to

the same plane with 2m = r(i + j) + tk + 2rt, therefore share the same value of 7,,,, ; =7, ;, hence
2m  _ p2m _ 2

Ti+,;z,k - Ti,1:n+2r - T:I?l

O

Recall that for fixed m, k must satisfy k& = 6m mod r. From Lemma lelf’ depends only
on k mod 2r, which takes only two values k, and k,, where k, = Mod(m,r) € [0,r — 1] and
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k, = ky+r € [r,2r — 1]. Moreover, as r is odd, k, and k, have opposite parities, and we deduce
that le,:" = t;’k only depends on k mod 2 (as well as i mod 2 from the Lemma). This results in the

correspondence of initial data: ¢/ t

L Mod(4j2) = namely on each plane P,,:

i.j?

too =10, = a”Cm=1) g

4.2) oy = 1o, = a""Vb
. tl,o — t/ll — a,m(2m—1) c
t, =t ,=a""Vd

Using the change of variables T, ; , — Tiz’”, we may rewrite the quantities L of (3.7) as

2m+r—tT2m—r—t

i+1,k—17"i—1,k—1

L, ,=L"=—"——""
LJs ik T2m—2tT2m
i,k—2 ik

The next theorem 1is the key of our study of the arctic phenomenon for 2 X 2-periodic initial
data.

Theorem 4.2. The solution of the T-system with 2 X 2-periodic initial data has the following
periodicity properties:
(1) Li’;, for k = Om mod r, depends only on i, k modulo 2.
dm+dt _ 1 2m
2) Li,k+ f= Li,k'

Proof. The proof uses the uniqueness of the solution le,z” of the T-system subject to the initial

data. Let us define recursively a new variable 9122" by:

(4.3) O = 0 fim) (k€ Z;m>0)
om . . t+r—-2
(4.4) o = 1, (ikezime o),
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where the functions f;,(m) depend only on i, k mod 2 with

<a2+d2 )n(m) % <b2+c2 )"(m_%)
2 2

—r

! (m) pHm=50) o1 (=55 1 ()

i—r
<a2+dz >"<’"> N <bz+cz )’“'"—7)
2 2

r+t
fO’O(m) =a - (dm+r+t—1)

2 dmtr+1-1
fl’O(m) =az2 ( " ) ’ t—r t—r = f0,0(m)
(4.5) i) pH M=) i m==2) 14 (m) aed,bec
| (mz )’“"’-"7’) v <bz+cz )W")
r+t 2 2
— o (@m+r+t-1) _
m)=a:2 = m
Jo.1(m) I oy, = Joom)| L
a 2 ) pu' (m) o pu(m) 4 7
(a2+d2 )ﬂ(m—tTr) <b2+c2 )ﬂ(m)
X
r+t 2 2
_ = @Gm+r+t-1) _
fl,l(m) =qa:? M/(m_f—_r) ; (m_f__r) —_ fo’o(m) oebod
a 2 ) pum) o' (m) g H 2 aeec,
and

t—r

n(m):l + m-— = _lm—(t—r)J

t—r t—r
+1
=2|"5
u(m) o

W (m) =2 [%J +1.

~ |3

Our aim is to show that 012’,;’ = le];" forall i,k € Z and m > 0. By construction the initial values
for0 < m < %’ — 1 coincide. To show the identity between 67 and T, we must show that
they agree on the remaining initial data planes, and that moreover they obey the same T'-system

relations. This is the content of the following lemma:

m o 2m r+t
Lemma 4.3. (1) sz = lek for all — <m<t-1
(2) The 2 quantities

2m+r—t 02m—r—l 2m+r—t92m—r—t
om  itlk=1Yi=1k-1 om ik=1 Yik-1
M= ——————— — and :R =
ik 02m—2192m ik 92m—2t02m
i,k=2 Tik i,k=2 “ik

. ’ . : 2m 2m _
can be expressed as ratios of f’s, which satisfy Li’ w + fRi’k =1

Proof. First note that as both the initial data 7, and the transition functions f;,(m) only depend

on i, k mod 2, so does 9122" for all m > 0. It is sufficient to check (1) in the case where i, k = 0 [2],
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as we can reach the other cases by a permutation of the variables (a, b, ¢, d) (as is clear from (.5))).
For0 <m < ’_7’, we have:

—r t—r
<a2+d2 >'I(m) x <b2+C2 >'I(m—7) <a2+d2 )ﬂ(m) y <b2+62 >71(m—7)
02m+r+t — 92m 2 2 =cX 2 2

L ) p(m=155) o m=5) 1y Qi () pHOm=55) =) o)

. t—r—2 . . . .
We must compare this to Tozg’““ =afor0<m< — The desired identification follows

t—r

2

from the relations n(m) = n(m — t—Tr) = u(m —
t—r—2

) = p(m) = 0, f/(m - =) = 1 and

u'(m) = —1, all valid for 0 < m <

To show (2), first note that we have from @])
Sig—o(m—1)

ik r+
l fie Lk— (m — -

which depends only on i, kK mod 2. The quantity fRf’;’ can be easily related to le']j by noting that it

2m __

corresponds to an interchange of the roles of i and j in the original variables, which is implemented

by the interchange b < c in the initial data. This gives:

2m 2m
:Ri, Lz k

boc’
also depending only on i and k mod 2. We may restrict ourselves to the case i = k = 0 mod 2 as
all the other parities of i, k are obtained by permuting a, b, ¢, d.

We compute

t+r
b2+c? @lm= T)
2

b2+c? (p(m_H—Tr)
foo(m_t) _ < 2 ) RZm 52m| —
boc 2B "(m=15) w(m—’+—')

i 4 t+r 0,0 0,0
fl (m r ) 2blll(m )CW (m— )

expressed in terms of the functions

(4.6) L(Z)”g =

o(m) =n(m+r—1)—n(m), y(m)=pm+r—1) —um), y'(m =y (m+r—1)—u'(m).
Notice that these can only take finitely many values. Specifically, we note that p(m + 1) = @(m),

and

—1 for me[0,f—r—1]mod¢t
p(m) =
0 for me[t—r,t—1]modt
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We also have w(m) = w'(m + 1), y/'(m + 2t) = y'(m), and

, 0 for me|[t—r,2t— 1]mod2t
y(m) =
-2 for me[0,t —r—1]mod?2t¢

0 for me&|[—r,t— 1]mod2t

= ! +1)=
w(m) wim+1 {—2 for m € [—1,—r — 1]Jmod 2t

We deduce that if m € [t — r,t — 1] mod 2¢, then w(m) = yw'(m) = 0, and similarly for
m € [2t — r, 2t — 1] mod 2¢, while in both cases @(m) = 0. On the other hand, if m € [0,f —r — 1]
mod 2t, then y/(m) = =2, w(m) = 0, whereas if m € [t,2t — r — 1] mod 2¢, then y'(m) = 0,
w(m) = =2, while in both cases ¢(m) = —1. This leads finally to:

1 t—3r t—r
2m  __ 2m __
Lo,o = Ro,o = for me [ 5 Ty T 1] mod ¢
2 2
m c om b t+r t—3r
LO,O = m, RO,O_ m, for me |:- 5 . 5 — 1] mod 2¢
b? c? t—r 3t—3r
2m 2m _ —
Lio = EppEL Rio = Rk for me[ ) l] mod 2t

In all cases this gives Lé"g) + Ré’g = 1, which is equivalent to the T-system relation for i,k = 0
mod 2. .

We conclude that the variables 912’,;’ and TIZIZ" are identical, as they obey the same T'-system
relations with the same initial data. The statement (1) of Theoremfollows, as L?’;’ = L’z’lz’ only
depends on i, k mod 2. The statement (2) follows from the fact that the functions ¢, y,y’ are
2t-periodic in m. Indeed, restricting again to the case i = k = 0 mod 2, the periodicity property

L(ng”’ = L&’g follows immediately from eq. (4.6). O

4.2. The case of r = s and ¢ of opposite parity. Most of the results in this section are proved
identically to those of Section4.1] In the case when r = s and ¢ have opposite parity, all integer
values of m = r(i + j + k) + (t — r)k contribute. We now have a unique solution k = £ém mod 2r
where £ is the inverse of (f — r) mod 2r. The periodicity Lemma.1|now becomes:
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Lemma 4.4. For every i, k, the following periodicity relations hold for all initial data planes
m=0,1,..,2t—1:

m _m
7-vi+2,k - T;',k

m _m
T'i,k+2r - T;',k

Note that as a consequence of 2r-periodicity in k, and the fact that k is fixed mod 2r (to the

value ém mod 2r), we may drop the index k from the initial data. Finally Theorem 4.2 becomes:

Theorem 4.5. The solution of the T-system with 2 X 2-periodic initial data has the following
periodicity properties:

(1) Ll’.f’ , for k = Em mod 2r, depends only on i modulo 2, and not on k.

) Lj.f',j‘“ =L,

The technical details of the proof are somewhat cumbersome and will be given elsewhere.

5. THE CASE OF SLANTED 2 X 2-PERIODIC INITIAL DATA: ARCTIC PHENOMENON

Throughout this section we restrict to the case when 0 < r = s < ¢, with r,t coprime, and to
the 2x2 periodic (r, r, t)-slanted initial data (4.1

5.1. General case: deriving the density function. Using the change of variables (i, j, k) —
(i, k, m), the local density of dimers at (i, j,, k,) in the domain centered at (i, j) can be written
pijx = P and satisfies the equation (3.6), namely

m m—=2t __ m m—t+r m—t—r m m—t+s m—t—s
(.1 I R S VAT AP Ri,k (0 0+ P )s

subject to the initial conditions p}, = &;; &y k. Opm.riytsjo+ik,-

In the previous sections, we have established periodicity properties of the coefficients L, ; , =
L;f’k and R = Lfk in the variables i, k, m.

Assume that L, ;  is periodic along some lattice A C Z°, then p, ;, = P, can be computed
explicitly by the method of [20] (See section (3.2) in particular), which consists of splitting the
generating function p(x, y,2) = X, ez rissjsncs0 Pij 4 X ¥ 2* into pieces corresponding to equiva-
lence classes of points (i, j, k) modulo the periodicity lattice A. The results of previous sections
display naturally the lattice A in the variables (i, k, m). For short, we write L;f’k =L 5 pZ’k = pps

etc. with f# = (i, k, m). The periodicity property is Lz, = £,. We have the density generating
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function

. m—tk—ri
Py = Y Xy 2= ) puy(x, v, 2),
i,k€Z, mez, B

B3=thh=rhy .- . P
where wﬂ(x, y,z) = xPiy” < z% are additive weights, namely satisfying Wwew, = Wg,. The

recursion relation (5.1) reads:

(5.2) Pot Pp_0220 = LpPprci—tr—n T Pp—tiser) T R (Pprio—15-0 F Pp—0.1.049)-

The above splitting amounts to write p(x,y,z) = Zye F p(x, v, z) where F is a fundamental

domain for A, and

p(y)(x’ ya Z) = Z pﬂ wﬁ(x, ya Z)'
BEY+A, 320

This allows to rewrite (5.2) in terms of generating functions with f summed over y + A. For all
y € F, we get:

) (r—022) _ (r+(,—Lr-0) (r=(1,1,4r))
P+ W00 = € +L, (W _1,np” TVt w_ g 4np” ™)

0,—1,s— —(0,1,
(5.3) +gzy (w(O,—l,s—z) p(7+( s=0) 4 W01 19) p(r .14y

where all superscripts are understood modulo A, and represented by elements of the fundamental
domain F. The term €, corresponds to the initial condition p; ;, = 6, 6, ; 6, ,, along the plane

P, . withmg = riy+sj,+ ko, namely e, = 6 k,)- This gives a linear system of | F'| equations

7.(mg,ig,
for the functions p = p)(x, y, z), y € F, which can be solved by Cramer’s rules. The common
feature to all p*)(x, y, z) is that they are rational functions of (x, y, z) with common denominator

D(x,y, z) given by the | F| X | F| determinant of the system.

5.2. Singularity loci. By the same argument as in Section|3.3.1], we deduce that the singularities
of the actual dimer density generating function come from the function

A(x,y,z) = D(z"/'x71, 28/ y71, 2).

We finally have to apply ACSV [33] 35 34, [1} 20] to the vicinity of the point (x, y, z) = (1,1, 1)
to derive the arctic curve of the model.

5.3. Elimination.

For r > 1, similarly to Sect.3.1.1, we expand

(5.4) A(e™, e, ety = (H (x, y,u, v) + O(€))
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at leading order in e, leading to polynomials H(x, y,u, v) generically of higher degree 6 > 2.
Explicit calculations up to ¢ = 8 lead us to conjecture:

Conjecture 5.1.

(5.5) 0=0,,, :=2(t+1+ Mod(r,2)).

r’r’

To find the (dual) arctic curve, we must eliminate the x, y variables from the system H (x, y, u, v) =
0. H(x,y,u,v) = 6yH (x,y,u,v) = 0. To that effect, we perform the euclidean division of the
polynomial H (x,y,u,v) by 0 .H(x,y,u,v), both considered as polynomials of x. This gives:
H(x,y) = q,(x)(0,H(x,y))+R,(x), which we iterate in the form R,_,(x) = g;,;(x)R;(x)+R,,,(x)
fori > 1, with Ry(x) = d,H(x,y). The process is iterated until we reach the "constant" (say
R, (y,u,v)) term, which will be a polynomial in y, u, v where y can be factored since the starting
polynomial H(x, y,u,v) is homogenous in x and y. After removing the y dependent factor, we
end up with a polynomial of u, v which determines the arctic curve. Note that in this elimination
process, there are instances when at some i-th iteration of the Euclidean algorithm, the remainder
R,(x) already factors out some polynomial in u, v independent of x, y. However, such polynomials
in general are either linear or of lower degree than the one of interest, reached only at the last step.

5.4. Symmetries. As we only consider the cases with r = s, we note that the (r, r, t)-slanted
initial data planes are invariant under the translation (i, j, k) — (i+1, j—1,k) = (i, j, k)+(1,—1,0).
However, the initial data assignments are not invariant: this translation corresponds to a
permutation (a, b, c,d) — (d, ¢, b, a). In the scaling limit of large k and finite i /k, j /k, the dimer
partition functions T; ; , and T, ;_, , become undistinguishable: in particular, such a (bounded)
translation does not affect the limit shape, therefore we expect the limiting arctic curve to be
invariant under the permutation (a, b,c,d) — (d, c, b, a).

We may repeat the argument with translations by (1, -2, 1) and (-2, 1, 1), which do not leave
the (r,r,t)-slanted planes invariant but map them on uniformly close ones in the scaling limit.
As a consequence, we expect the limiting arctic curve to be invariant under the permutations
(a,b,c,d) — (c,d,a,b)and (a, b,c,d) — (b,a,d, c) as well.

5.5. Examples. For both cases of Sections|4.1|and[4.2] the fundamental domain of A has | F| = 8¢
points. This number is quite large in general, and we choose to give a few meaningful examples in
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the following sections. Throughout the reamaining sections, we use the following two parameters:
a’ b?

_—, c=—.

a’+d? b? + c?

The arctic curves are determined using the method described in Sect. [5.3] We use the notation

(5.6) T =

H, (x,y,u,v) for the generic (r, s, ) case. The symmetries described in Sect. imply that the

arctic curves are invariant under each of the three transformations:
(c,7) > (1 —-0,1-1), (0,7) = (1,0), (c,7) > (1 —-1,1-0).

5.5.1. Thecaser =s =1, t odd in general.

For simplicity, the coefficients of the linear system (5.3)) may be organized into quadruples Q,, =

(5(2),’3, 5%,’3, 53,”1” Li"l’) form € [0, 1, ---, 2t — 1]. The periodicity lattice A for the triples (i, k, m) for

L;‘:’,’C”s and Ri’,f’s is generated by (2,0, 0), (0,2, 0), (0,0, 2¢) with F = [0, 1] x [0, 1] X [0,2¢ — 1].
We mainly discuss the case (r = s = 1,¢ = 3) in full detail, as higher odd values of ¢ display

similar behaviors. On F, the coefficients of the system (5.3) read:

Qy=(,1-0,7,1-7) O, =( %) O,=(1-0,0,1-1,7)
O,=(-o0,0,1-7,7) Q,=( 2 Qs=(0,1-0,7,1-7)

in terms of the parameters (5.6)).

b

(5.7) "2

1
2’
1

)

(SRS
N | = | —

2

’2

Remark 5.2. Notice from the vector Q,, that L3 =1 — L3% and L3 = 1 — L3". This is simply

2m _ 2m .
a consequence of @.3)) and the fact that L7}! = R7Y For example, the case:

aed,boc
om — Joolm—1) _ Soolm —1)
(5.8) 0.0 f],](m - H-Tr) fo,o(m - HTr)|a<_>c,b<_>d
' fo,o(m —1)

2m _ D2m _ ,2m _
- L],O - Rl,o - ’Cl,o|b<—>c,a<—>d = Ty
f0,0(m - T)la(—)c,bed

The coefficient matrix of the linear system (5.7) is shown in the appendix A. Following the steps
of ACSV like in Section[3.3.1] we find that the leading expansion (5.1)) of the scaled determinant
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of the system leads to 6 = 0, ; ; = 10 and:

H\ | 5(x,y,u,0) = 1024 (x + 2ux — y + 20y)(—x + 2ux + y + 2vy)

X Qux +2vy+20tx—0ox—1x—x—20ty+oy+1ty—2y)
(5.9)
X (4ux +4vy+20tx —ox —1x+2x — 20ty +0oy+ty+y)

*
X H 5(x,y,u,0)

H ;“’1’3(x, ¥, u, v) is the factor of interest with the highest degree, which yields the arctic curves in
our case. The full expression is cumbersome (see Appendix A for a birds-eye view). We provide
some initial examples where we pick somewhat arbitrary values of ¢ and 7. This provides us with
2 inner regions inside the "initial" ellipses from the uniform case. However, in this case, the initial
polynomial to which we apply the elimination procedure of Section [5.3]is generically of degree

6, while the final (dual) arctic curve is of degree 14.

&>
N G Y

A)o=1/47=1/2 B)o=1/4,t=1/8 (C)o=1/41=1/16 (D)o=1/4,7=1/64

FIGURE 17. Arctic curves for (r,s,t) = (1,1, 3), together with the scaled domain with
fixed o = 1/4.

Through investigating different values of ¢ and 7, we observe interesting collapses of inner
regions when for instance 7 becomes small (see e.g. Fig.[1/|(D)), which is the motivation for the
next section.

» 7 = () case.

For = = 0, the function H, | 5(x, y,u, v) factors into a product of some linear and two quadratic
polynomials, denoted H,(x, y,u, v) and H,(x, y,u, v). Imposing the condition of vanishing of the
Hessian like in section [3.3.1] on each of the latter results in two tangent ellipses. The full phase

separation also includes segments obtained by including the other factors.
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FIGURE 18. Artic Curve for (r,s,t) = (1,1,3)fort =0and ¢ = %

We have:
(5.10)

H(x,y,u,v)|,og = 1024(=2ux — 2vy + x — Y2 (=2ux — 20y — x + y)2(=2ux — 20y 4+ 6x + x — 6y + 2y)(—4ux — 4vy + 6x — 2x — 6y — y)
X Hy(x, y,u,v) Hy(x, y,u,0)
H (x,y,u,v) = (4u*x? — Suvxy + 2oux® — 4ux® — 2ouxy — 2uxy + 4v*y* 4+ 2ovxy — dvxy — 200y — 20y* = 3ox* + x> + xy + 3037 — 2)7)

H,(x,y,u,v) = (8u2x2 + 16uvxy + 60ux? — 6ouxy + 6uxy + 8v°y* + 66vxy — 660y* + 6v)? + 306x> — 2x* + xy — 30)% + yz)

which gives the 2 elliptic pieces of arctic curves:
P,(u,v) = —(4 — 10u — 140 + 32uv)* + (2 — 28u + 32u*)(—10 — 200 + 320%)

(5.11)
Py(u,v) = —(4 + 18u + 60 + 64uv)* + (=10 + 12u + 64u*)(2 + 360 + 640v7)

These encompass the liquid phase (see Fig: [I8]).

In addition to the two tangent ellipses, we find segments that are tangent to the ellipses. We
argue that these are the degenerate limits when ¢ — 0 of the smooth arctic curve with = > 0. This
can be visualized by comparing Fig. |18|to the last plots (C), (D) of Fig. upon interchanging
the roles of ¢ and 7.

We end this section by providing another 4 arctic curves corresponding to (r, s,7) = (1,1,3)
and (r, s, 1) = (1, 1,5) with ¢ = 0 and some choices of ¢ in Fig{I9
e 0 = T case.

Another interesting case is when ¢ = 7. The leading term H (x, y,u, v) at the leading order A'°
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FIGURE 19. Arctic curves for r, s, t-pinecones, together with the scaled domain for fixed
v = 0. Left: (.5, = (1,1,3),0 = 5, Center: (r,s5,t) = (1,1,5,0 = 3, Right:

Wi |

(r,s,t)=(1,1,5),0 = = .
reads:
H(x,y,u,v)|,,, =1024Qux + x + 2vy — y)Qux — x + 2vy + y)
X (=X + 2ux — 2y 4+ 2vy — 2x0 + 2y0 + 2x06°* — 2y0?)
(5.12) X (2x + 4ux + y + 4vy — 2x0 + 2y0 + 2x06* — 2y0?)

X (=X 4 2ux 4+ y + 2vy + 2x0 — 2y6 — 2x0* + 2yc?)?
X H*(x, y,u, )

where H*(x, y,u,v) is the highest order polynomial factor of interest (see Appendix A for an
explicit expression).(A.I))) . Note that this case H*(x, y, u, v) has degree 4 in x, y, hence we must
use the elimination process of (5.3)).

We display in Fig{20] the resulting arctic curves, for 1/2 > 7 > 0. Observe the development of
inner curves from the interior of a bigger curve as ¢ = 7 decreases.

An interesting feature of these curves is that when 7 = ¢ = 0, the curve degenerates into a
polygon. We will provide a combinatorial intepretation of this phenomenon in the discussion
section. To conclude this section, we notice that a similar behavior happens when ¢ = 1 — 7 (see
Fig: 21).

5.5.2. The case r,t not both odd.
» 0,7 general
We fix the case of interest to be (r, s,t) = (2,2,3). Recall that theorem @ the periodicity of

L and R only dependent on i modulo 2. The periodicity lattice A for the £’s and R’s is now
generated only by (2,0,0),(0,0,47),1.e. F = {(i,m)} =[0,1]x[0,47 — 1]
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=
(A)o=7=17/16 (B)o=71=15/32 (C)o=1r=1/4 D)o=7=1/8

/>

(BE)o=7=1/16 Fo=r=1/32 (G) Curves (A-F) H)o=1=0

FIGURE 20. Arctic Curves for (r,s,t) = (1,1,3)andc =7

AN
\v,

AWeo=1-1t=17/32

N

Do=1-1t=15/16 (E) Curves (A-D) Fo=1-7=0

FIGURE 21. Arctic Curves for (r,s,t) =(1,1,3)andec =1—-7

The coefficients of the linear system (5.3) may be organized into Q,, = (L[, L") for m €
[0,1,---,47—1] which also gives | F| = 24, as F = [0, 1] X [0, 4t — 1]. The difference with section
(5.5.1) where both r, t are odd is that each Q, contains only two values since £ depends only on i
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(A)r=0,0=1/4 (B)r=1/32,6=1/4 (C)r=1/16,6 =1/4

== ==

D) r=1/40=1/4 (BE) r=17/32,6 =1/4 (F) t=3/4,6=1/4 G)r=1/2,6=1/2

FIGURE 22. Some arctic curves for (r, s,1) = (2,2, 3)

modulo 2 but there are twice as many values of m to be considered. On F, the coefficients read
(5.13)
Qy=(0,1-0) 0,=(3 0:=(G3) =G5 0,=G.3) 0Os=U-1,7)
Os=(-0,0) 0;=(3 Q=3 Q=G5 Cp=G3) 0,=@1-1)
in terms of the variables o, 7 of (5.6).
The coefficient matrix for the linear system (5.13) is shown in Appendix B. We apply a similar
1

technique as previous section and obtain the following data. Notice that the choice ¢ = 7 = 3

reduces to the uniform case, and we recover an ellipse with no inner region:
P, V)] ye ey jp = (206” + 24u — 18) (2007 + 240 — 18) — (20uv + 12u + 120)°

For general ¢ and 7, the expansion is up to order & = 8, and the quantity H,,;(x, y,u,v) is a
homogenous polynomial of order 8 in x, y, which necessitates seven iterations of the eliminating
process of H,,;(x, y,u, v) and its derivative w.r.t. x to obtain the final arctic curve P(u, v). We end
this section with some explicit examples of (2, 2, 3)-slanted 2x2 toroidal initial data. However, the
detail of the computation for these cases is cumbersome and will be available only upon request.
« 7 = () case

The polynomial H(x, y,u, v)|,_, reads:
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H(x,y,u,v)|,_o = 16Q2ux + 2vy + x — y)2ux + 2vy — x + y)

X (3213 x? + 961 vxy + 48u*x® + 4812 X2y + 96uv’xy? + 96uvx*y + 96uvxy? — 24oux’

— 2ux® + 28ux?y + 24cuxy* — 26uxy’ + 320°y* + 48v°xy? + 48v%y — 246vxty — 2ux*y

+ 280x)” + 2460y — 260y + dox® — 5x° — 120x%y + 9x%y + 120x)* — 3x)y* — 46y® — )

x (1601’ x> + 480u’vx*y — 640u’ x> — 16u° x> + 640u’ x>y — 80u’ x>y + 480uv’xy*

— 128cuvx*y — 32uvx*y + 128cuvxy* — 160uvxy® + 24oux® — 34ux® + 44ux’y

—24ouxy* — 10uxy® + 1600°y* — 6400’ xy? — 160°xy* + 6400°y® — 800%y° + 240vx%y

— 34vx°y + 44vxy* — 240vy® — 100y + dox® + x> — 120x%y + 3x%y + 126xy* — 9x)?

— 46y’ +5)°)
Note that in this case, the polynomial factors into two polynomials, each of order 3 in x, y. This
results in two higher degree curves, which delimit two tangent regions like in the previous section
(see Fig. 23| for an illustration).

SNINSN

(A)r=06=0 (B)r=0,06=1/8 (C©)r=0,6=1/2 (D) r=0,0=3/4

FIGURE 23. Arctic curves for (r, s,1) = (2,2,3) with fixed t = 0

However, one different feature for this case is that when 7 = ¢ = 0, the arctic curve no longer
degenerates into a polygon.
e T = 0 case
When r = o, the leading coefficient H,,,(x, y, u, v) is ahomogenous polynomial of degree 8 in x, y
and the curve P(u, v) is of degree 20 in u, v (see Fig. 24| for some illustration). Note the symmetry
7 — 1 — 7 as expected from Sect. We will provide this computation in the Appendix B.
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DODDD

Art=1/4 ®)rt=1/8 ©r=1/32 o T=3/4 (B) T =31/32

FIGURE 24. Arctic curves for (r, s, 1) = (2,2, 3) with some sample values of ¢ = 7

5.5.3. The caser > 1, t odd.

We fix the case of interest to be (r, s, ) = (3, 3,5). For the most general values of o, 7, the order
of the expansion is & = 6555 = 14, but our computational capability does not provide credible
resolution for the arctic curves. As the value of 6 increases, we expect more inner regions within
the scaled domain. However, as before, the calculation simplifies in special cases such as 7 = 0
or T = ¢ described below.

« 7 = 0 and ¢ arbitrary

When r = 0 and for all o, the coefficient H(x, y, u, v) is of the form:

H(x,y,u,v)|,_o = 4096(2ux + x + 2vy — Y2 Qux — x + 2vy + y)*
(5.14) X Qux + ox +2x +2vy+ 3y — yo)(8ux + ox — 3x + 8vy — 2y — yo)
X Hl(x’ya u, U) X HZ(xa y.u, U)

where H, and H, are two factors of degree 4 as polynomials of x, y. We obtain a similar situation
as in previous section (see Fig. [25]), where the arctic curve consists of two tangent components
corresponding to the two factors H, and H,.

» 7 = o arbitrary

In this case, the factor of interest H*(x, y, u, v) in the coefficient H(x, y, u, v) is of degree 6 in x, y

(see Appendix C for details), resulting in two inner regions (see Fig: [26)).

6. A HOLOGRAPHIC PRINCIPLE FOR T-SYSTEM LIMIT SHAPES

6.1. General principle. In this paper we have studied new exact solutions of the T-system, with
(r, s, t)-initial data specified along parallel planes prependicular to some direction (r, s,t). The
“flat" case studied in [20] corresponds to r = s = 0, ¢+ = 1, and used different solutions of the

T'-system with various periodicities. In this section, starting from a solution of the T-system for
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O N O N o)

(A)r=0,0=1/64 B)t=0,0=1/16 ©r=0,6=1/4 D) r=0,6=1/3

E®B)r=0,6=1/2 ®r=0,6=2/3 (G)r=0,06=3/4

FIGURE 25. 2 pieces curve of (r,s,1) = (3,3,5),7 =0

O~ O D

A)r=0=1/32 B)r=0c=1/8 ©r=0c=1/4 D)r=0=3/4

FIGURE 26. 2 pieces curve of (r,s,t) = (3,3,5),7=0¢

some (r, s,1)-initial, we re-interpret the same solution as corresponding to some different initial
data along some (7, 5, 7)-planes. The latter is simply dictated by the exact solution of the former,
however simple (r, s, ¢) initial data (such as the uniform case studied in Section [3.1)) naturally lead
to highly non-uniform and more complicated initial data in arbitrary (7, 5, 7)-planes. In particular,
when (7, 5,7) = (0,0, 1) our 2x2 periodic solutions give rise to new solutions of the T-system
with “flat " initial data in the planes k = 0, 1, which were not considered in [20]. However the
holographic principle described below allows to derive arctic curves for those as well.

Using the new (7, 5, 7) initial data settings, the solution of the T-system is interpreted as partition
function for dimers on (7, §, 7) pinecones, whose limit shape is governed by the same equations as
the original (r, s,?) setting. In particular, the determinant of the linear system for the density p,
which is a function D, (x, y, z) of (r, 5, 1), remains the same. However, due to the new interpre-

tation, we must apply the rescaling (3.11)) with the new values (7, 5, 7) instead of (r, s, ), therefore
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the singularities of the density generating function p(x, y, z) are governed by the function:

(6.1) A (x,y,2) = D,,S,,(zg/x, Zé/ ¥y, 2)

r,s,t

This amounts to simply changing the “point of view" on the same solution of the T-system,
namely considering it from the perspective of another direction (7, 5, 7) # (r, s, 1), providing a sort
of holographic view on the former result.

In the next sections, we illustrate this holographic principle for uniform and 2x2 periodic cases.

6.2. The uniform case. To illustrate the holographic concept, let us first consider the simplest
case of uniform (r, s, t)-plane initial data viewed from the “flat" perspective with (7, §,7) = (0,0, 1).
Specifically, we re-interpret the solution T; ; , of the T'-system with (r, s, #)-slanted uniform initial
data in section as new “flat" initial data the solution for k = 0, 1. This new initial data reads

fij = TijMoaies 2> With:

(ritsj)(ri+sj—1)

To=a > (i +j = 0mod2)

1

ﬂ’j’l _ a(ri+sj+t)(;i+sj+t—1) (l +J _ 1 mod 2)
with @ > 1 asin (3.2). This non-uniform initial data , ; on the flat stepped surface k; ; = i+ j mod
2 depends explicitly on (i, j, k) via the quantity ri +sj +tk and on (r, s, ) via a as well. Applying
the rescaling (6.1)) with (7, 5, f) = (0,0, 1), and repeating the derivation of the dual curve as in
Section[3.3.1] we find that the arctic curve (3.12)) is replaced with:

6.2) (1-A*+Ar—A(1-A)=0

where A = A, , as in (3.13)). Note that the result amounts to substituting (r, s, 1) = (7,5,7) =
(0,0, 1) in (3.12)), while keeping the value of A = A, , unchanged. The above is a family of
ellipses parameterized by A, inscribed in the Aztec square |u| + |[v] = 1. Note that when r = s,
(6.2) reduces to the artic circle, asa = 1 —a = % We provide computational evidence for this
observation in Fig. for a few values of (r, s, 1).
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(A) (r,s,0)=(1,1,3) (B) (r,s,1) =(1,2,5) (©) (r,s,1)=(1,7,9) D) r,s,0)=(1,7,15)

(E) (r,s5,0) = (2,2,9) (F) (r,s5,1) =(5,0,8) (G) (r,s,0) =(7,0,13) (H) (r,s,0) = (3,0,4)

FIGURE 27. Density profile for given (r, s, ¢)-slanted values viewed from the (0, 0, 1) perspective on the scaled domain
lul + |v] = 1. We have represented the coefficient p; ; , of the generating series p(x, y, z) of order k = 45 and k = 46,
written as a function of (i/k, j/k), fori € {—45,--,45} and j € {45, ---,52}

More generally, let us examine the (r, s, t)-uniform solution from the generic (7, §,7) point of
view. Recall the value (3.8)) of the denominator D, ,,(x, y, z) of the density generating function

p©00(x, y, z) for the uniform (r, s, r)-slanted case. Using the new rescaling (6.1]), we get:

AMSi(x, y,2) 1= D, (2%, 27y, 2),

r,s,t

and expanding at leading order in 4, we find:
AP, e, e Mty = 32 H (x, y,u, v) + O(A*)

We again have an explicit polynomial H (x, y,u,v) for which the vanishing Hessian condition

leads to the following family of ellipses:
(6.3) (1-APWP+AP VPP -A0-AFu+sv+D)*=0

with A = A, , as in (3.13).

6.3. 2 X 2-toroidal case. We now illustrate the holographic principle in the case of (r,r,#)-2 X 2
periodic initial data as in (4.2), with the solution as in Section[4.1] viewed from the “flat" perspec-
tive with (7, 5,7) = (0,0,1). As before, the new initial data is simply 7, ; = T} \joqi1,.2)» Where
T,;oand T, ; are the solutions of the 2 X 2-toroidal, (r, r, t)-slanted T'-system.
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D)r=0,6=1/2 (BE)r=0,0=3/4

FIGURE 28. Arctic curves library for non-uniform data, fixed 7 = 0 and ¢ varied

For the remainder of this section, let us restrict to the case (r,r,t) = (1,1,3). As explained
above, the singularities of the density function are governed by the rescaled determinant of the
system AM'(x,y,2) 1= Dy ;3(x”,y7!,z) with D, ; = D as in Sect. This leads to new
dual arctic curves inscribed in the Aztec square |x| + |y| = 1. We now follow the sequence of

results of Section which we reinterpret in the (7, 5,7) = (0, 0, 1) setting.

6.3.1. case v = 0.
For 7 = 0, we again obtain the same type of inner curves but now with the scaling domain
lul + |v| = 1 of the Aztec Diamond (see Fig. 28). The leading order terms at A'° and depending
on o, x, y takes the form:

H(x,y) = 1024Qux + 2vy + x — y)*Qux + 20y — x + y)?

X Bux +3vy—ox—x+0y—2y)3ux+3vy—ox+2x+oy+y)

X (6142)62 + 12uvxy + 4oux® + ux® — douxy + Suxy + 60°y* + dovxy + vxy — dovy* + Svy* + 30x> — 2x* + xy — 363 + y2)

X (6142x2 + 12uvxy + doux® — Sux® — douxy — uxy + 60°y* + 4ovxy — Svxy — 4ovy* — vy* — 3ox* 4+ x> + xy + 3637 — 2y2)
By the same techniques as before, we obtain similar curves as in Section[5.5.2] but with the scaled
domain for (7, 5,7) = (0,0, 1).

6.3.2. case v = o.
We repeat the above with the case ¢ = 7 in Fig[29)and the case ¢ # 7 in Fig[30] Explicit forms

of arctic curves are available upon request.



54 PHILIPPE DI FRANCESCO AND HIEU TRUNG VU

4 D
%

Kl/‘/

D)r=0=1/20 (BE) r=0=1/40 (F) Curves (A-E)

FIGURE 29. Arctic curves library for non-uniform data, = = ¢ varied

6.3.3. case = = 1/2, o arbitrary.
The case = 1/2 and o arbitrary is represented in Fig.[30]

(A)r=1/2.6=1/4 B)r=1/2,6=1/8 (©)r=1/2,6=1/16

W o=1/4,1=1/2,
® o=18,1=112
° mo=116,1=12

W 0=1/64,1=1/2

(D) r=1/2,0=1/64 (E) Curves (A-D)

FIGURE 30. Arctic curves library for non-uniform data, fixed r = 1/2 and o varied
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6.3.4. Generic holography.

Remark 6.1. While our 2X2 toroidal solutions only hold in the (r, r, t) cases, there is no restriction
on the “point of view" direction (F, 3, 1). Indeed, we can take any triple (F, 3, 1) encoding the desired

stepped surface where the new initial data f; ; lies.

To illustrate the remark above, we show in Fig. several arctic curves from different (7, §, 7)-
stepped surfaces points of view, taking for initial data the 2 X 2-toroidal (1, 1, 3)-slanted T'-system

. 1 1
WlthO'ZEal’ldTZZ.

N s

(A) 75D =(7,411) (B) (75,0 =3.4,7) (C) (75,0 =(1,2,3) (D) 75D =(52.9)

FIGURE 31. Several (7,5,7) views of arctic curves of the (1, 1,3) slanted 2x2 periodic
solution with = 1/4, 0 = 1/2.

6.4. m-toroidal holography. In this section, we apply the holographic principle to the m-toroidal
solutions of the T-system with flat iniital data with (r, s,7) = (0,0, 1) (see Section 4 in Ref. [20]).
The m-toroidal initial data on the flat initial data plane (r, s,7) = (0,0, 1) are prescribed to be:

(6.4) a; =T _io=tiyi— bi=T s i110="tis2it1
¢=T,_,=1t_ d =T,

i irl—itll = Lit1—it1

for i € Z, with the additional restriction:

ti+m,j—m = ti,j and ti+2,j+2 = ti,j (i,j € 2)

The T-system with this initial data was solved explicitly (see Theorem 4.2 of [20] for details).

For our interest, we want an explicit description of the quantities L, ; , and R, ; ; in the recursion
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relation for the density p, ; ,. They obey the following periodicities:
Li+2,j+2,k = Li,j,k Li+m,j—m,k = Li,j,k Li+1,j+1,k+2 = Li,j,k
Ri+2,j+2,k = Ri,j,k Ri+m,j—m,k = Ri,j,k Ri+1,j+1,k+2 = Ri,j,k

Therefore, the density function can split as above, modulo the periodicity lattice A C Z3 generated

a;b;
by the vectors (2, 2, 0), (m, —m, 0) and (1, 1,2), and obeys a linear system. Let A, = S et
a_yb; +a;b,_,
14,
andpy, =L, »,_;11, = — 1 These quantities are not indepedent and satisfy the relation:
T qdigy ted,
m—1 1 m—1 1
——1= ——D=1
R

The solution of the general system of m-periodic densities is the rational function in x, y, z with
denominator the determinant of the following block matrix:

Z_II zI _M(x’ y) _M(y_]’x_l)
65) C- zl z7'I -MGy x| —M(x,y)
' —P(x,y) |—-P(y',xh 7' zI
_P(y_lax_l) —P(X, y) zl Z_II
where
Ho 0 1=y
S oa g ;
y b
P(_x,y) = 0 Iw m 0
y X
O O l_l"m—l Hm—1
y X
and
e 0
y
0 A A 0
y X
Mx,y)=| o o =% 2 0
. .{} ) Am—Z
ol 000 o
X y

and P is P where y; and 1 — y;, interchanged and M is M where y, and 1 — y; interchanged.
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By the holographic principle, we now wish to view the exact solution of the T-system with m-
toroidal “flat" initial data from an (7, 3, 7)-slanted perspective. Setting Dy (x,y, z) = det(C), the
denominator of the density in the new persective reads: A(’;’j)’i (x,¥,2) := Dy, (z7/ix1, 25Ty 7).
The corresponding dual curves give the limit shapes of large (7, 3, 7) pinecones corresponding to
the m-toroidal solutions. In Figs.[32H34] we list these new arctic curves for the same parameters

as in section (4.2) of [20] for (7, 5,7) = (1,2,3), (1,0, 3) and (2, 3, 5) respectively.

(A) 4, =1/5 (B) A, =4/9 (c) 4, =9/10 (D) 4, =200/201
FIGURE 32. Arctic curves for the 3-toroidal initial data corresponding to different values

A, where Ag = 1/2, 4, = 1 — A; and py = pu; = py = 1/2. View from (7, 5,7) = (1,2,3)
perspective.

(A) A, =1/5 (B) A; =4/9 (©) A, =9/10 (D) 4; = 200/201

FIGURE 33. Arctic curves for the 3-toroidal initial data corresponding to different values
Ay, where Ag = 1/2, 4, = 1 — A, and py = pu; = py = 1/2. View from (7, 5,7) = (1,0,3)
perspective.
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(A) 4, =1/5 (B) A; =4/9 (©) 4, =9/10 (D) 4; = 200/201

FIGURE 34. Arctic curves for the 3-toroidal initial data corresponding to different values
Ay, where Ag = 1/2, 4, = 1 — A, and py = pu; = py = 1/2. View from (7, 5,7) = (2,3,5)
perspective.

7. DISCUSSION/CONCLUSION

7.1. The “facet'" or “pinned' phase. In this paper, we have investigated the limit shape of
large typical dimers configurations on r, s, f-pinecones, in the cases of uniform (initial data plane-
dependent) and 2x2 periodic slanted plane initial data. Whereas the uniform case only displays a
liquid region separated from frozen corners by an arctic ellipse, the periodic case shows the emer-
gence of a new “facet" phase already observed in the case of the domino tilings of large Aztec
diamonds with 2x2 periodic weights [20]. In this work, the phase was investigated in the limit
when a — 0, where the liquid phase disappears, and shown to be “pinned" on the sublattice of
square faces with initial data weight a.

We argue that a similar structure holds in the 2 X 2 slanted case considered in this paper. Let
us first restrict to the case (r, s,t) = (1, 1, 3). To investigate this new facet phase, we note that the
limit ¢, 7 — 0 of Figs. [20[ suppresses the liquid phase to leave us with only a central facet phase
separated from the frozen corners by a quadrangular arctic separation. (The same phenomenon
occurs in all (1, 1,7) cases for odd ¢.). We may therefore concentrate on the o, 7 — 0 limit.

Let us consider as an example the tessellation domain for the case (r, s,1) = (1, 1, 3) where we

only include the active region in Fig: [35] along with its dual graph:
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FIGURE 35. (a): Tessellation domain of (r, s,t) = (1, 1, 3), (b): Dual graph to the tessel-
lation with the initial values a, b, ¢, d indicated in each face.

2
As explained above, the facet phase is maximal for ¢ = aZidZ — Qand7 = bzl;ﬂ — 0, obtained by
sending a, b — 0 while ¢, d remain finite and positive. From the defintion of the partition function,

/2= 1=N,
5 / 7. Thus,

as a,b — 0, the contribution of maximally occupied dimer configurations around the a, b faces

the contribution of the local weight at face (x, y) to the partition function is ti

dominates the partition function T} ; ,, expressed as Laurent polynomial of initial data 7, . As
i,j,k — oo, the dominating configurations are those corresponding to Laurent monomial terms
with highest total degree in a, b in the denominator. We illustrate this with two examples for the

case (r, s,1) = (1, 1, 3) via the explicit 2 X 2 periodic solutions Ty, , and T 4.

7.1.1. Ty and Ty, 4 with 6,7 — 0. The explicit solution T, , as Laurent polynomial of initial
data is displayed in Fig. [44] of Appendix A. Applying the initial data {.1)), we find four leading
terms when a, b, — 0 namely T, is up to a numerical factor:

(7.1)
fyofoistoatiofis o afoistiofiofis Togofoiolootiofiitis Toi—ifoiofi2tiofiihis

fo.-1%00%02%03 fo-1%02%03%1,-1 fo—1foolo1f02012 fo—1fo1looti—1t12
Similarly, T' ; 4 is dominated by the following 8 terms:
(7.2)
t—l,Ot—1,2ti1t1,4t2,—1t3,1t3,4 roloiatiitiohiala1faatza ool iofiofiitials 1031034

Loolo1t02820%2112 3804 Toolo20320%2,1123824 To0fo,1%0282,0%2312 4130

2
I_yol_1atiotintials—1taitse Torofinfi lista—ilaatsnlaa 1oyt 5ty 0t 5t 1831030054

To0f02t030200232.4%30 Looloatoot2082112282313 3 To0fo2t0302,02,1%2.282 313 3
I_oliotiofintiats—ifsilsnlza Tyl 13l 01201303 2183.1030034

To0lo,180282,0%2212 383013 3 To0fo280382,082282 383013 3
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In each of these contributions, it is easy to track the maximally occupied faces (i, j), as they
contribute 7. The four (resp. eight) terms in (7.117.2) correspond to the following dimer con-
figurations:

FIGURE 36. Dimer configurations corresponding to (7.1)) for the dominant terms in the
(1,1,3)-slanted solution T 4. The maximally occupied faces are shaded.



ARCTIC CURVES OF THE T-SYSTEM WITH SLANTED INITIAL DATA 61

FIGURE 37. Dimer configurations corresponding to (7.2)) for the dominant terms in the
(1,1,3)-slanted solution T ; 4, with shaded maximally occupied faces.

The structure of the slanted planes gives a sequence of square and hexagonal faces on the
pinecone. Upon examining Figs. [36] and [37] we observe that some specific hexagonal ¢ and b
type faces are always maximally occupied by three dimers, each with two independent “pinned"
equally probable configurations, while their surroundings vary. Alternatively, the dominant terms
listed in (7.1)) and (7.2)) share some particular terms in the denominator that correspond to these
pinned hexagonal faces. We argue that this structure generalizes to arbitrary size for 6,7 — 0.
To see how, we display in Fig. below some sample densities plookoiix say for m = 26 (P1.18)
and m = 30 (p 1): First note that the local density only takes values —1, —%, 0, %, 1. The value
—1 corresponds to maximally occupied faces, among which hexagons form a sublattice. The
hexagons correspond to the red faces (value —1) which alternate with blue faces (also hexagons,

but with value 1) along diagonal lines with direction (1, —1), spaced by 3 units. Once we fix the
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FIGURE 38. Local density p, ; g (top) and py 1o (bottom) at all points (i, jj)-

configuration of these maximally occupied hexagonal faces, there is a unique configuration of
their surroundings, and averaging over the two possible configurations of each such face produces
the factors %(1 +0) = % or %(—1 +0) = —% i.e. the green and brown faces, while the blue
hexagons correspond to an average over 4 configurations determined by the choices of the two
pinned adjacent hexagons: i(O + 1+ 1+2)=11i.e. the blue faces. In other words, we have the
following local structure in Fig[39] From Fig[39)left, we see that the squares at the left and right
of the pinned hexagon are occupied by 1 or O dimer (average %), while those on top and bottom
are occupied by 1 or 2 (average —%), and it is easy to reconstruct the unique configuration for each
choice of the pinned hexagon configurations.

In summary, like in the Aztec case of [20], the facet phase observed here is pinned on a particular
sublattice (here of hexagons of type a, b), but has a non-zero entropy of 2 per pinned hexagon.
This explains the fact that the partition function has always 2"# contributions, where n,; is the
number of pinned hexagons (n,; =2 and 3 in the examples of Figs. [36|and 37). We argue that
this is the general structure of the facet phase occurring in general as bubbles inside the liquid
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1
Pij+1 = 3

_ —1 L= _ -1
Pi-1j =5 pij=1 Pitlj =5

_1
Pij—1 =3

FIGURE 39. Local density configuration around the maximally- (left) and minimally
(right) occupied hexagonal face (i, j) of the dimer model in the thermodynamic limit
k — 0.

zones. The same structure holds for more general slanted planes (1, 1,7) for odd . However,
in addition to a sublattice of pinned hexagons, there are additional frozen domains where strips
of t — 3 consecutive squares are maximally occupied by dimers, next to shifted strips of r — 3
consecutive empty squares in alternance, between rows of pinned hexagons. For example, the

(1, 1, 5)-slanted density profile for p, o reads:
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- o oo
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FIGURE 40. Local density p; (¢ for the case of (1, 1, 5)-slanted initial data

In Fig[d0] we observe the usual alternance of red/blue hexagons along diagonals in the direction
(1, —1), now spaced by 5 units. In addition, we have pairs of consecutive red (maximally occupied)
square faces along vertical lines spaced by 2 units, alternating with pairs of consecutive blue

(empty) squares.
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FIGURE 41. The surface for the T-system with (1,1,3)-slanted uniform initial data (de-
picted in orange/brown), together with Left: the original slanted initial data plane P, ; 5
(depicted in blue); Right: the holographic section in the direction (1, 3, 5), i.e. the plane
P35 (depicted in blue).

More generally, the number of square faces between two hexagonal faces along vertical lines is
t—11in the case of (1, 1, )-slanted initial data. Inbetweeen two consecutive pinned (red) hexagons
along a vertical, say at positions (i, j) and (i, j +1), there is a sequence of  —3 maximally occupied
(red) square faces (with only one frozen configuration, with all their horizontal edges occupied) at
positions (i, j+2), -+, (i, j +t—2), while between the two (blue) hexagons at positions (i+1, j—1)
and (i + 1,j — 1 + ¢) there is a sequence of t — 3 empty (brown) squares at positions (i + 1, j +
1),---,(i+1,j+t—1). The pattern is repeated on a lattice generated by (2, —2) and (0, 7). The
only variations in the configurations are determined by the 2 choices for each pinned hexagonal

face. We expect a similar “pinned" structure to hold within all the facet phases observed above.

7.2. 3D view of the Holographic principle. In Section [6.1] we introduced a holographic prin-
ciple which allows to re-interpret in dimer language any given solution of the T-system with an
(r, s, t)—slanted initial data giving rise to an arctic phenomenon, in terms of any other slanted
direction (7, §,7). We argue now that the two arctic curves pertaining to the same solution of the
T-system are simply intersections of a single two-dimensional surface in three dimensions with
the corresponding slanted planes. This is easy to see on the uniform case of Section[6.2] Indeed,

the holographic arctic ellipse equation (6.3) may indeed be interpreted as the intersection in 3D
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space with coordinates (u, v, w) of the slanted plane P;;; : 7u + 5v 4+ fw = 0 with the curve

e (1-A, Ju*+A,  v—-A,  (1-A )w-1’=0

r,s,t ° r,s,t

The latter is a coneﬁ with apex (0, 0, 1) which is parameterized by the initial data direction (r, s, 1),
and contains the original arctic curve of the uniform (1, 1, 3)—slanted model in the plane P, , , (as
the original arctic ellipse is the intersection of the plane P, ; ; with the surface C, ). In fact, the
surface C, _, is also defined as the family of lines through the apex (0, O, 1) that intersect the (r, s, t)

defined by:

r,s,t

arctic curve in the plane P

r,s,t°

ru+sv+tw=0, and (1-A, )ruw'+A,  rPv*—A,,(1-A )Fu+sv+1)°=0.

r,s,t

We may therefore think of the curve (6.3)) as the 2D holographic view of the surface C, ;, in 3D
(see Fig.[d1]for the example r = 1, s = 1,7 = 3). Note finally that the domain for the dimer models
corresponds to the inside of the pyramid |u| + |v| = |w — 1|, which is tangent to the surface C, ,
along four lines.

We suspect the surface C, , , may have a physical meaning as the singularity locus of some 3D

r.s;t
statistical model inside the pyramid |u| + |v| = |w — 1|, where the surface corresponds to sharp
phase separations like in the 2D interpretation.

We expect this phenomenon to be general, namely that all holographic views of any given
(r, s,t)-model studied in this paper are obtained as the intersection of a suitable cone in 3D (con-
jecturally defined by the family of lines through the apex (0, 0, 1) that intersect the original (r, s, )-
arctic curve in the plane P, ), with the corresponding view-planes.

As an illustration, we have represented in Fig. the surface for the (1,1, 3)— slanted 2x2
periodic case for 0 = v = 1/4 (in orange/brown) in two different views showing the above and
below parts. The blue plane is the original slanted plane P, ;, and the intersection with the
surface was depicted in Fig. 12 (C). The actual equation of the surface (a cone of homogeneous

degree 8) is available on demand from the authors.

7.3. Conclusion and perspectives. This paper has introduced new solutions of the T-system
and interpreted them in terms of dimer partition functions with special initial data. This study
is by no means exhaustive and would deserve a more systematic approach, leading possibly to a
classification of exact solutions. However, the study has allowed us to find explicit arctic curves

for a large class of suitably weighted pinecone dimer models, thus extending widely the results

“This property is easily seen from the homogeneity of the surface equation in the variables (u, v, w — 1).
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FIGURE 42. The surface for the T-system with (1,1,3)-slanted 2x2-periodic initial data
with ¢ = ¢ = 1/4 (depicted in orange/brown), and the original slanted initial data plane
P13 (depicted in blue). Left: upper side view. Right: Lower side view.

of [20]]. In particular, we have identified the structure of the new included “facet" phase forming
bubbles inside the liquid phase, as being pinned on some sublattice of hexagonal faces of the
pinecones, while keeping a non-zero entropy.

We also introduced a holographic principle allowing for re-interpreting exact solutions from
different points of view, and eventually exhibiting an underlying three-dimensional structure.

Dimer models have many different formulations, and it would be interesting to investigate the
non-intersecting lattice path/network formulation associated to the (r, s, #) pinecones. This formu-
lation has the advantage of giving an alternative route to access to thermodynamic properties of
the models, and in particular the arctic phenomenon: we may hope to be able to use the so-called
tangent method of Colomo and Sportiello 13,15, (14,11}, 19, 8l 12], and compare the results
to those obtained in the present paper. Some advances in this direction were perfomed in [36] for

the case of the two-periodic Aztec diamond.



Coefficient matrix for the linear system determining the density generating function:
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APPENDIX A. THE CASE (r,s,t) = (1,1, 3)

=T —
=l —
=R —
S
=l —
=T
= —
= ——
OI
5
|
a <=
o o
=T —
=
1
= o
|
=
=
S
1
= =
|
=
=
=
= =
IS
Q
o =
=

= =
= =
= =
o o
= =
= =
= =
= =
= =
= =
I
=
I
ra =
=
I
= o
|
=
=]
)
|
o =
|
R
=
-
= =
=
= 2
=
1
T o

L

< = |2
o o
o o
= L
! =)

o\:i
=l <=
= =2
=
! =)
o o
o o

=

2 =
= o = o
= 5
a
= 2 = 2
= 5
) )
| 1
= o =
| 1
= =
= ™
S E)
| 1
o = oo =
| I
= =
= ™

o o o <o

o o o <

o o o o

2 )
= = = o Pl o
= =
Q Q -
= = = ~= o |u
ra L
hal hal
1 1
=z o = owie o
| |
= Xal
] =)
S S
1 1
o oo = oie
| |
= Xal
= =]

S R
1 1
o%|?o,|?'_c>
o o o L o o
o o )l o o o
o L o o o o

o o o o o o

o oo o o o

o o o o o

oS o o oy owln o

= o B4 = o =R

= g o o elE o

ra =) =) =) = |5

Ll o

=>4
= L
! =
S
o o
o o
o o
o o
= o
= o
SIS
o o
= o

1

IS
L

1
=
L

o o
o o
==t
= o lE

0=)1-29) 2= 0

21

0

E

el o =R

= =R

=

L o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
=
*a
I
N
o o
o o
=3
E)
I
1
=
=
=
a
=
=
=
I
o‘|?
=R =
= =2

67



68 PHILIPPE DI FRANCESCO AND HIEU TRUNG VU

2x°-8ux®-8u?x®464u’x®-320ut x®-1280u° x®+ 128U x® -3 X7y +10ux®y+8UP X"y 48P X"y 16Ut x®y 32U x°y-8vx®y-16uvx®y+192uvx®y-128uPvx®y-640utvx®y 768U v X y-6x'y?iduxty?s
240 x* y?ragud xy? m128 Ut xty? 10 v xt y? s 16 uv xt y? S 144 0P vxt y? s ea ud vxt y? o160 ut v xt y? o8 v xty? 1192 uv? x*y? - 192 0 v2 x*y? - 1280 U3 v2 X y? 1920 uf v Xt y? L 14 X yP a8 u Xty -
4w xPyP-eaud P yPiavxdytiaguvxdyt 14402 vy os12 0P v yR a8 v Py o144 uv? P yP o6 u? v X3 y? 320 03 v X3 yP e 64 v X3 y? 128 uv? xP y? 1280 0% v X3 y? L2560 u% v xP YR o6 xP yt -
28ux?yti16u? x?yt a8V x?yto80uv x?yt o192 u? vx? yt i 24 vE x? yt i 144 uv? Xyt o768 uP v Xyt - 48 v Xyt i ea u v Xyt 32007 v Xyt o 32 v Xyt o 40 u v Xyt L 192007 v Xyt o3 xyt s
14uxy®-28vxy +32uvxy®-40 v xy®-192uv? xy®+48 V3 xy®-512uvi xy®+16 v xy® 4160 uv xy® - 128 VO xy® 768 UV xy® +2y® 14 vyt 16 v? yO 64 v y® o128 v Y0320y 128 V0 O o9 xC o
100ux®o+72u xP0-80ud x® 0-144u* x® 0+160 U x® 0+ 18 Xy o-2ux yo-96u Xy o+48 U x°yo+96 Ut xPyo-160U° X°yo+10v XSy o+144uvx®yo-240ul v xSy o-576ulv X’y o+800ut vy o
9xty?o-20uxy?o-144 W3 x*y? 048 ut X y? o-2vxty? 0-192uvxty? 0+ 144 u? v x* y? 0+ 384 U v x* y? 0-800 ut v x* y? o+ 72 v2 x* y? 0-240 uv? x* y? 0-864 u? v x* y? 541600 U3 v x* y? o -

367y  0-28ux®y?o+176 U X y? 0-20v Py  0-432 03 VP ¥ 04192 WP vxd Yy 0-96 v X3 yP o+ 144 uv? xP y? 04576 U2 v x3 y? 0-1600 U v2 X3 y? 0-80 V¥ xP yP 0-576 uvd x® y® 0+ 1600 u? v3 X3 yP o+
9x?ytorTaux?y 04240 X2yt o-28vxPyt o528 ulvx?yto-432uvix?y? 0+288 Ul Vi xPyt 0448 V3 X2yt 04384 uvi x?yt 0-1600u% V3 x? Yyt o-144 v X2yt o800 UV X2yt o+ 18 xyP o-34uxy® o
Tavxy®  0+48uv Xy’ 0+528uvixy®o-144v3 xy® 0+192uvi xy® 0496 Vv xy® 0-800 uvt xy® o160 Vo Xy -9y  0-34vy® 5+24v2y0 54176 V3 y® 0448 Vv y® 0-160 v® y® o9 x® 0?4 12 ux® o? -

48 U2 x® 0?48 WP x® 02+ 48Ut x® 0?18 x° y 0? -36u X’y ot + 48P xSy o448 U Xy o? - 96Ut xTy P+ 12vx®Py ol -96uv Xy ol -144 WP vx®y o +192 P vx®yo? -9 xty? 0?24 uxt y? 0?4 48 U xF y? o? +
48Ut X y? 0?36 vxty? 0P+ 96 uv xty? 0? + 144 WP v xt y? 0% -384 WP vxt y? 0 - 48 V2 X y? 0? 144 uv? X y? 02 +288 UP v XM y? 02 436 X3 yP o2+ 24 uxPyP 0«48 U P yP o? —a8 WP X3y 0?24 v Py o 4

144 0P v P y? 0?4192 WP vxP y? 0?48 v P P 0?4144 uv? P y? 02 - 576 uP v P P 0?48 VA X3 YR 0 v 192 uvi P YR 02— 9Pyt 0P m36ux?yt 0?48 Ul X2yt o2+ 24 v Xyt 0P v 96 uv X? vt o? - 144 uP v xP Yt o
144 uv? X2y 0?1288 UP Vi x? Yyt 02 + 48 V3 X2yt 0 -384 uvd X2yt o2 148 v Xyt 0 - 18 Xy 0? + 12 uxy® 0? -36 vxy® o?-96uv xy® o +48 V2 xy® o? - 144 uv? xy® 0% +48 V¥ xy® 02 + 192 uv? x y° o -

96 v  xy® 02+ 9y 0? +12vy® 0?48 v2y® 0% - 48 V3 y® 0% 448 v ye 0?9 x® r410uxX® t+T2u? X% 80U X r-144 Ut X8 £+ 160U x® t+ 18Xy r-2ux®y 96Ul Xy c+48 U X°y r+96 Ut XPy T

160U Xy t+10v Xy t+144uvx®y-240 Ul vx®y t-576 WP vx®y c+800 Ut vx®y t+9x y? r-20uxty? r-144 Ui x*y? caa8ut Xy ro2vxfy?P c-192 uvxty? ce144 02 vxty? 43840 vty -

800 ut v x*y? 72 vix* y? c-240 uv? x* y? £ -864 U2 v? x*y? 141600 U V2 x*y? t-36x3y? r-28ux’y? ca176 Ul xPyP co20v Py r-432 0t vxP Y 0192 W v yP r-96 v X3yt 144 uv X3 YR s

576 u2 v2 x3 y® 1-1600 03 v2 x3 y? t-80 v P y? t-576 uvi x3y? t 416002 V3 X3yt 9 Xyt caTaux?yt re24u? X2yt ro28 v Pyt 528Ul vxPyt r-432uvix?yt c4288 Ul Vi Xyt ca8 Vi X2yt o

384 uv3 x?y? £-1600u? V3 X2yt 144 v X2yt 14800 UV X? y* T4 18 Xy  t-34uxy® t+TAvXyY® t+48uvxy® 4528 uvi xy® t-144 V3 xy® £+192uv xy® t+96 v xy® r-800 uv! xy® r+160 VS xy® T~
9y® t-34vy® 24V y® 176 V¥ YO c a8 v Yot o160 V0 Y t+38x 0 r+48ux®or-296ut x o r-48uPx® o448 Ut xPor-320u"x 0 r-84x yor-144ux’yor+320ul X yor+144ud xPyot-

5120t x®y0r+320 U X yor+48vx°yor-592uvx’yor-144ulvx®yor+1792ud vx®yor-1600ut vxiyor-6xty?or+96uxty?or-48ul x*y?or+4a32u x ylor+64ut xtylor-144v iyl o
640 uvxty?or+a32u vx'y? or-2048ud vxty? or+1600u vxty? or-296 V2 x*y?or-144uv? x*y? o r+2688ul v x?y2 0 r-3200u v Xy or+104x° Yl or+96uxiylor+320ut Xyl ot

5283 X3yl or+96vxiylor-96uvx Pyl or+1296ulvxPylor+256 WP vyt o320V xPytor+a32uvi Yyl or-3072ul v Py or+3200u Vi Py or-48 V3 X3Py o r+1792uvi P yP ot -

320002 V3 xPylor-6x ytor-144uxPytor-296ul X2y o+ 96 v X2yt or+640 uv Xyt or-1584ut vxPyt or-48 v X2yt or+1296uvi X2y  or+384 Ul vixPy o144 V3 Xyt o -2048uvi Pyt ot
320002 V3 x?y* or+448 v X2yt or-1600uvt X2yt or-8axy  or+48uxy’or-144v Xy  0r-592uvxy’or+320v2 Xy  or-1584uvixy’or+432vixy or+256uvi xy’or-512vixylore

1600 u Vv xy°* 0r-320vi xy® 01 +38yP or+48vytor-296v2y0or-528VviyPor+64viy® o320V Y or-38x%0% t-180ux®o? t+152u? X% o +336 U x®0? t-256 U x® 0% t48aXSy ol T4
372ux®yo? -32ux°yo? t-43203 xPy o 4512 U Xy o? 1-180 vx®y ol t+304uv X’y o t+1008ul v x®yo? 1-1024U vx®y ol t+6x y? o? t-120ux? y? o? t+48 u? x? y? o 144 ¥ x* y? o? -

256 ut x* y? o 4372 v Xy o? t-64uv xty? 0% t-1296 U v x* y? 0% £+2048 U v x* y? 0% t4152 v2 x* y? 0% £+ 1008 u v x* y? 0% t-1536 U2 V2 x* y? 0% t-104 X3 yP o? t-T2ux®y? o? t-608 u? X3 y? o? T+

240 3 X3 y2 o t-120v X3 yP o2 t+96uv iyt o t-43202 vyt o? t-1024 0P v yP o t-32 v P P 0? £-1296u v xPy? o? £+3072u V2 X3 YR 0? 1+336 v xPyP 0? t-1024uVvi Py o? t+6 X2yt o T -
8aux?yto? r+440 U xP Yyt o? t-T2v X2yt o? t-1216uv Pyt o? t+ 720 Ul VX Yy o? t+48 V2 X2yt o t-432uv? X2yt o 11536 U7 v2 X2yt o 1-432 V3 X2yt 0 1+2048u v X2yt o 1256 v x? vt o? T4

84xy  o? t+84uxy’ o? t-84vxy® o t+880uv Xy’ 0? r-608VvIxy® ol r+720uvExy® o? t-144 V3 xy® 0? 1-1024u Vi xy® 0? 1+512 v xy® 0% t-38y° 0? +84vy® o? r+440 v? y® o r+240 V3 y® o? ¢ -

256 v y® o2 1488 ux®® t+96 Ul x® P 1-32u3 X0 r-152ux®y ol t-192ui Xy t496 U XPy P r+88vxiy ol re192uvx®yadr-96ulvxiy ol rrl6uxty? ol t-96ud xty? o r-152vxty? o 0o
384uvxty?o® 288Ul vxty? ot 96 vixty? ol t-96uvi Xyl ot ro16uxdyt o t19202 X3yt 32 Py P rr16vxPyt ot 288Ul vy ot t-192vE P yP 0P re288uvi iyl ot t-32v3 3 yR ot o
152ux?y* o’ t-96u? X2yt P r-16vxiyt o t+384uvx®ytod 96Ul vx?yt o® r-288uvix?yt 0® t4 96V X2yt 0P r-88uxy®o® t+152vxy ot t-192uvxy®o® t+192vixy®o® t+96 UV xy® o T
96V xy*  o®r-88vy® ol t-96viyPod te32viy0o? ta9x® e 12ux® 248U X8 248U x® 448U X8 218 x5y 2 -36ux®y ct48ul Py 2448 xSy 296Ut xPy tPe12vx®yt?-96uv X’y c?-
144 0 vx®y 24192 W vx®y 2 -oxty? 224 uxty? i21a8 0 xty? 248Ut Xt y? 1236 v Xt y2 2196 uv xt y? c? 144 0P vxt y? 12 o384 P v xt y? 2 - 48 v x*t y? t? - 144 uv? x*ty? 1?2 0288 u? v Xt y? %
367y 24240y} 248U Py 2 -a8 WP X3 yP 224 vyt 24144 WP v y? 124192 03 v YR 12148 vE P YR 2144 uvE X3 y? 2576 W2 v X3 y? 248 v X3y 2 e 192 uvi P YR r2 -9 Xyt 2 -
36ux?yt t2-a8 WXyt t2h2av Xyt t2a96uv iyt o144 0 vxP vt 21144 uv? Xyt 124288 uP v xP Yt 2 a8 V3 Pyt t2 o384 uvd X2yt 2 i a8 v Xyt 12 o 18 xy® 2+ 12uxyS 2 -36 v xy® -

96uvxy t2+48v2xyS 2144 uv? xy® 2448 V3 xy® t2 4192 uvi xy® r2-96 v xy® t2 1 9y® 2 12vy® 248 v?y® 2483 yo 12148 v y® 12 -38x° 0 t?-180ux® or? 152 u? x® o2 +336ud x® o -

256 ut x® o2+ 84x yor?+372ux®yor?-32uxPyor?-43203 xPyor?+512ut X yor?-180 vx®y o t?+304uvx®yor?+1008ul vx®yor?-1024udvx®yor?+6xty?or?-120uxty? ol

48U x*y?or?-144 W x*y? o2 - 256 ut xt y? ot 4372 vxt y? o P -6auv Xt y? 012 - 1296 U v x* y? 012 +2048 ud v x* y? 0 t? + 152 v x* y? 0 12 + 1008 u v2 x* y? 0 t? - 1536 u? v x* y? 0 2 - 104 x3 y? o % -
72uxyor?-608ul Xyl or?+240 WP X3Pyl ot -120v Pyl or?e96uv iyl or?-432 0l vyt oc?-1024 WP vt yP o232 v P yP o r? - 1296 uv? X3y o t?+3072u? v2 X3y 0 t?+336 V3 P yP o r? -
1024uVv Pyl o2+ 6x2y o2 -84auxtyt ot 440Ul X2yt o -T2 vxtytor?-1216uv iyt ot? 7200 vl yt o2 s 48 Vi Xyt o c? 432 uvi Xyt ot 1536 WP Vi Xyt o2 - 432 V3 Xyt o it

2048u v x?yt o t?-256 v X2yt 0P 8axy ot +84uxy o2 -84vxy 0r?+880uv Xy’ or?-608vixy®or?+T20uvixy® 0?1443 xy® o2 -1024uvi xy® or?+512vixySot?-38y° o+

84vy® or?+440v? y® 01?240 V3 Y0 02 =256 v y® o r? -2 x% 0? 12 +396 ux® o? 1?2 +136 U2 x® 0% 12-432 03 x® 0? 124256 Ut x® 0?2+ 12Xy o? 12 -684u xSy o 12544 u? X®y o 2+ 720 U X°y o? T2 -

5120t x®y 0? 124396 vXx®yo? t2+272uv X’y ol t2-1296u vx®yo? 241024 U vx®yo? 1?2 -30 x* y2 o 2+ 72 ux? y? o? 2 - 48 u? x* y? o? 12 - 144 03 x* y? o? 12+ 256 uf x* y? 0% 12 - 684 v X! y? o? % -

1088 u v x* y? 0? 1242160 u? v x* y? o t2-2048 u® v x* y? 0 12+ 136 v2 x* y? o 12 - 1296 uv? x* y? 0 12+ 1536 U2 V2 x* y? 0% 12440 x° yP o? 2 -T2 ux® y? o? 1?2+ 1184 U X3 y? o? 2 - 144 WP X3 yP o? 1Py

72vxPyP o i -96uv X’y o? 2243207 vixPy? o? 1241024 U0 v X3 y? o? 7 - 544 v xP y? o7 1242160 uvE xP y? o? 12 - 30720 vP X y® o 17 - 432 v X% y? 0% 1241024 u Vi X% y? % 12 - 30 X2 yt o tP

684 ux2yto? 27282 X2yt 0?2 -T2v Pyt o? t?242368uv x?yt o? 1?2 -432 uP vx? y* o? 12 -a8v2 X2yt 0% 12 =432 uv? X2 y* 0% 1?2+ 1536 U2 v x? y* 0% 1?4720 v3 X% y* o? 17 - 2048 u V3 x? y* o? 1?4

256 v x2 y* o 12412 xy® 0% 12 -396 uxy® o? 12+ 684 v xy® o t2-1456uv xy® o t2+1184v2 xy® o t2-432 uv? xy® o? 12 - 144 v3 x y® 0% 2 +1024uv? xy® 0% 1?2 -512 vt xy® o? 12 -2y® 0% 12 -396 v y® o? % -
728 v2 y® 0% 12 - 144 v3 y® 0% 121256 v* y® 02 12+ 80 x® 0% 12 - 168 ux® o® t2-288 U x® 0?12+ 96 uP x® 0% 12192 x° y o 2 +168 ux®y o’ t?+576 Ul Xy o’ t2-288 P x®yo® t?-168v XSy o® o576 uv X’y ol
288 U2 vx®yo® 248 x y? o® i+ 144 ux?y? o® 124288 U3 x* y? 0% 1?2+ 168 v xty? 0¥ 1241152 uv x* y? 0% 12864 u? v xty? 0% 12288 v2 x*y? 0% 124288 uvi x*y? o® 124128 X3 y3 o® 12240 u P y2 0% 02 -
576 W2 x3y2 o 12-96 U P yP 0?12+ 144 v P yP 0?12+ 864 Ul v P yP 0?2+ 576 VA xP yP o® r2-864 uvi P yP 0?12+ 96 V3 X3y o® 12448 X2 y' 0?2 - 744 ux? yt o® 1?4288 U x? y* 0¥ 24240 v xP Yt o® 1 -
1152 uv x? y* o® t2-288 Ul vx? y* o® 2+ 864 uv? x? y' 0?12 -288 v x? y* 0?12 -192 xy® 0% 124360 uxy® o® t?-T44vxy® o® 24576 uv xy®o® t?-576 vi xy® o’ t?-288 uv? xy® o® t? 4288 V3 xy®od it
80y°® o® t2+360 vy® o® 1?4288 v2y0 0% t2-96Vv3y® P t?2-40x° 0 t2-48ux® ot 12496 x° y ot 124144 uxPy ot t2-a8v xSy ot 224 xtyr ot 296 uxty? ot 21144 v Xt y? of 12 - 64 X3 y? ot 2 -

96ux®y ot r2-96vxdyPot i?-24x?y ot 2144 ux?y ot t2-96 v X2yt ot 12496 xy ot t?-48uxyP ot 12144 v xy® ot t?2-40y0 ot 248 vyt ot 288 uxPordi96ulxCord-32uxb o
152ux’yor®-192u x°yor?+96 Ul x°yor®+88vx®yor®+192uvxiyor®-96ulvx®yord+16uxty?ord-96udixty?or®-152vxty?or®-384uvxty?or®i288ulvxty?ordi96vixtyt o
g6uvixty?orP-16uxiylord+192u? P ylodi32ud iyl ot i16vdylort-288ul v ylort o192 vi Py ot a288uvixiyl o o322Vl yioti152ux?yto? 96wl xiyto P16 v Xyt ot
3

384uvx®ytordr96ul vyt or®-288uvix?yt o496V X2yt or?-88uxyt ot +152vxyi ot -192uvxy o +192vixy ol +96uvixy ot -96vixySor?-88vylord-96viyt o

323y 0?4800 x° 0 t3-168ux®o? r3-288 Ul x®0? 12+ 96 P X% 0? 2-192x° yo? 3 +168 ux®y ol 24576 uP Xy o? 1 -288 WP Py o? t®-168 v XSy o 3576 uvXx®yo? t?+288uvx®yo? ?+a8xty? o? d
144 uxty? 0% 1?4288 U x* y? 0% 2+ 168 v x* y? o? 1+ 1152 uv x? y? 0% 1® - 864 Ul v xty? o? 12 -288 V2 xty?o? 4288 uvixty?o? 24128 X3 yPo? P 240 u X yP o 2576 Ul X2 yP o P96 ud xPyd 0?1 e
144 vx3y? o? 12+ 864 U2 vxPy? 0? 1?4576 V2 X3y o? 1? - 864 uvixPy? o? 12496 V3 X3 yP o? 1248 x? Yt o? 1P - T44 ux? yt o? 1?4288 U2 x? Yt o? 1?4240 v X2yt 0% - 1152 uv Xyt o? 1288 u? v X2yt o? P
864 uv2x?yto? t2-288 V3 X2yt 0? 12-192xy% 0? t34360 uxy® o? i3 -T44 v xy® o? 1P +576 uvxy® o? P -576 V2 xy® o? t3-288uv? xy® o? t3+288 V3 xy® o r2+80y® o? 1?4360 vyt o? r3+288 v?y® o 3o

96 Vv y® 0? 22160 x° 0® 1216 ux® 0 24192 U x° 0?2 -64 P X0 0% 124384 x°y o Pe272ux®yo® o384l X0y o P 19203 X0y P P16V Xy od P 4384uvx®yod ®-192uP vx®yod ¥

96 x"y? 0?2 -352uxy? o® o192 W Xt y? o® 272 vxty? o® - 768 uv Xt y? o® P usTe Ul vxty? o® 12192 V2 xty2 o® 12192 uv Xty o® 12256 X3 P o 2416 ux yP o 24384 U Py ot 3.

64U Py 0?2352V Pyl P 2576 Ul vy 0?2384 VI xP Y 0?2576 uVE Xy P P -84 Vi3 YR 0?1296 Xyt 0P 2880 ux? Yyt o® P - 192 ur Xyt 0¥ P -a16 v Xyt 0¥ 24768 uv X2yt o® P

192w vx?y 0?2 o576 uvi X2yt 0?2 4192 v X2yt 0® 134384 xy® 0¥ 1 -368uxy® o 12880 v Xy 0P r?-384uvxy®od?+384vExy®od i 192 uvixy®o® t®-192 v xy® o® 1P -160y0 o r3-368 vyt od -
192v2y® o® 2464 V3 Yo o® 280 xC ot P96 ux® ot P o192 %%y ot P -288ux®y ot P96 vy ot a8 xt y? ot Pe192 uxty? of P o288 v xty? ot P 4128 %3 yP ot 14192 ux® YR of 2192 v X3 yR ot 3
48 x? y* o* 2 o288 ux?yt of P 192 vx? yt ot 2 o192 xy® o P96 uxy® ot 2 o288 vxy® ot 2480 y0 ot 2496 vyt ot P40 x8 0% 1P -48uxPo? P96 xPy o tti144ux®y o tt-a8 v Py o? ot -

2ax'y?o? tto9euxty? ol tti1aavxty? ottt ieaxP Yyl o it -6 u xR ot 1t -96 v Xyl o? 11— 242yt o? tt v 144 ux? vyt o? tt - 96 v Xyt o? 11496 xy° o? tf -48uxy® o tt 144 v x 0 o tf - 40 yO o? ¢t -
48vy® o? 1480 x° 0% t* 496 ux® o’ P -192x°yo® tt-288ux®y P 196 vxiyod tt a8 xty? P 192 uxty? 0?1 o288 vxtyro® 1t 1283 yP 0?1t 192 u P YR ot e 192 v Py o rtras Xyt of ot -
288 ux?y* o tt 4192 v X2yt o t* o192 xy° ® 196 uxy® o tt-288 v xy 0P tt 80 yP o® tt v 96 vy® od 140 X% ottt -48uxC ot P96 X y ot tt 144 uxPy ot P -a8 v Py ottt -24 Xty ot ot -

96uxty? ot ttr14avxty? ot it oeaxPyP ottt m96uxP Yottt moe v yP ottt i2a Xyt ot tt i 14aux?yt ottt 96 v X2yt ottt h 96 xy® ot tf 48 uxy® of tt 144 vxy® ot o1 - 40 y® ottt -8 v YO ot ot

FIGURE 43. Polynomial H ,(x, y,u,v) with generic parameters o, 7 of (5.9)



ARCTIC CURVES OF THE T-SYSTEM WITH SLANTED INITIAL DATA

Polynomial H*(x, y, u, v) in the case (r, s,t) = (1,1,3), 7 = o:
(A1)

H*(x,y,u,v) = 32u*x* — 12u6*x* — 106*x* + 24uc®x* 4+ 2063 x* — 161°x* — 161°62x* + 241262 x*
+ 24uc’x* + 1612 ox* — 24uP6x* — 36ucx* — 100x* + 2x* + 12uyc*x® — 120y6*x® + 4yc*x®
— 24uyeix® + 24vy6’x® — 8y + 161’ yo x> — 48uPvyc*x® + 48uvye’x® + 24vye?x’
— 2417 yx3 — 4P yx® + 6uyx® + 1280 vyx® — 32uvyx® + yx* — 168 yox® + 12uyox® + 48u*vyox’
— 48uvyox® — 36vyox® + 4yox® + 12uy?c*x? + 12076 x? + 12%6*x% — 24uy*c3x?
— 240y*63x? — 24y%63x% — 1612y X% + 19202 0*y*x? — 1607y x% — 12uy*x* — 120 vy*x* — Suvy’x?
+ 60y x? — 6°x% — 24Uy 62X — 48uv?y o’ x? + 240°y* 62 x? 4 48uPvyP o’ x? + 241y P o x?
+ 48uv?y?ox? — 240 y?0x* + 12uy*ox? — 48uPvy*ox® + 12v0y%0x? + 12y%6x* — 12uy’c*x + 12vy°c*x
+4y’6x + 128ur’y’x — T2uv?y*x — 40y x + 6uy’x — 32uvy’x — 120y°x + y’x + 24uy’cx
—24vy’6’x — 8y 6’ x — 160°y 6% x + 48uv®y*o*x — 24uy’c’x — 48uvy’o’x
+ 160y ox — 48uv®yPox + 12uy’ox + 48uvy’ox + 12vy°ox + 4y’ ox + 320*y* — 240°y* — 160%y*
+ 60y* + 2y* — 120y*6* — 10y*6* + 24vy*6> + 20y*6° + 160°y*6? — 240%y*6” — 24vy*c?

— 160°y*c + 24v%y*o + 120y%c — 10y*c

Polynomial H*(x, y, u, v) in the case (r, s,t) = (1,1,3), 7 =1 —o:
(A2)

H*(x, y,u,v) = 32u*x* — 12uc*x* — 106*x* — 241 x* + 24uc>x* + 200°x* — 161°x* + 161°6°x* — 24 6*x*
— 24uc?x* + 6ux* — 1603 ox* + 24u*6x* + 12uox* — 100x* + 2x* + 12uyo*x® — 120y6* x>
+ 4yotx® — 24uye’x® + 24vycix® — 8yo’x? — 16ulyo?x + 48uPvye?x’ — 48uvys®x® — 24vye?x’
— diPyx® — 12uyx® + 1281 vyx® — 7207 vyx® — 32uvyx® + 6vyx® 4+ yx* + 161 yox>
+ 12uyox® — 48uPvyox® + 48uvysx® + 12vyex® + 4yox® + 12uy’6*x? + 120y°6* x> + 12y%c*x?
— 24uy*cx? — 24vy*03x? — 24y°6° X% — 1612y + 19207 0%y x? — T2ur?y*x? — 1607y x* + 6uy*x*
— 8uvy*x? — 120y°x% — 6y°x” + 24u”y* 62 x? + 48uv*y?6°x? — 24v*y*6°x? — 48uP vyt ol x?
—24u*y*ox? — 48uv*y o x® + 240v* Y20 x* + 12uy*ox? + 48uPvyPox? + 120y 0 x>
+ 12y%0x% — 12uy’c*x + 120y°c*x + 4y°c*x + 128uv’y’ x — 240°y’ x — 40%y*x — 32uvy*x + 6V’ x
+ ¥ x + 24uy’e3x — 24vy°6’x — 8y 6 x + 160°y 6% x — 48uv? Yol x + 24uy e’ x + 48uvy’ o x
— 160y’ ox + 48uv’y’ox — 36uy’ox — 48uvy’ox + 120y’ x + 4y°ox + 320*y*
— 160%y* + 2y* — 120y%6¢* — 10y*6* + 24vy*6® 4+ 20y*6° — 160°y*6° + 240%y*6? + 240y 6?

+ 160°y*o — 240%y*e — 36vyo — 10y's

69



70

PHILIPPE DI FRANCESCO AND HIEU TRUNG VU
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+ + + +
to,0 to,3 to,-1 to,0 to,3 to,-1 to,3 t1, 1 to,0 to,2 to,3 to,-1 to,0 to,2 to,3 to,-1 to,2 to,3 t1, 1
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+

+ + +
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toa,1te,1te,1ty, 1t 2
taote,2tinti;s taoetaiote, 2tiotintis ta, ataoty otietintys ta ate,aty 1 ta atistiszty 1 toote, 1tizty 1
+ +
taiety, 1ty

+ +
to, 1 to,0 to,1 to,2 t1,2 to,-1te,1 to,2 1,1ty to,3 t1,1 to,2 to,s t1, 1

to,0 to,2 1,2
tih,ataptiatisty 1 taote, 2ty taoetiate, 2tiots2
+

toata, ateetizty, 1 ta atisteoetizty 1

+ +
teo,1te,2 t1, 1 t12 to,0 t1,2 to, 1 to,0 to,1 t1,2

"
tretaity, oty taate,nty, 1ty
tooete,2ty, 2tiota,2 Tt 1te,0te,2t, 2t10t2,2

+

to,ataot, 2t et toite, 2te2tieta,2 taiot,2te, 2%e,2tiet22
+

+
to, -1 to,1 t1,-1 1,2 taate, 1ttty ti,ite, 1te,ntinty2 tiet, ittty taetante, 1ty atiati
ta,atat, 1t tooete, 1te,2ty, 1ty toity 1teete2te, 1ty ta 1ty oteete,2ts 1t

+ +

ta,1t1,2t0,0te,2t1, 2%1,0t2,2
+
taiety, ittty tretait, ittty taatenty, atinti

N
ti,ite, 1 te,nty, atinth2 to,1 t1, -1 t1,2

taot, 1t taatiot, a1t Toati ate1t, 1%, Taoete,1te,1t, 1%, tieti2t,2%,0%,2 T2,1%, 2%, %%,
+ +

+ +
to,0 t2,1 toa,tietan tietiitietsn to1,0 to,0 ti,0 t2,1 toa,nte, 1ty ta ta,ite, 1ttt
T, 1ti,2t,0t, 1t0t2,2

+

ta,1taoteety, 2t ot toote,nty, 2t otrs to 1t 1%e,ote,1ty, 2t20t22
+

+ +
ta,ite, 1ttt toaety, 1ttty taetanite, 1ty 1ty yto, tiat, i tietinten
Tai0ti,2%, 2%, Toite,2%,1%,1 ta,ati2%,0t, 2%,
+ +

taote, 1to,1tz, 1t20t2,2 toont,1teete,nts, 1t20t2,2
N
ty,ite, 1t toi,ite, 1t toa,te, 1ty 1t

+
toi,e0ty, 1 tie it taetait,atietyntan

tooete,nty, 2tz toaty 1toete,nty, 2t ta, atisteets, 1t3,n toote, 1%te,1ty 1t
+

too,1ta, 1te,0te,1 t2, 1ts,1
+

+ +
toi,0ty, 1t taetaite, 1ty 1t taaty, atieton toi,0ty, 1 ti,0t2,n toaeta,nty, atieta

toaty, 1tenti, ity 1t31 taoote, 1te,nti ity 1ty ta ataots 1ts
+

+
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+

N
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+ + + +
toi,0ta,1t2,0ts,0 to1,0 to,0 t2,0 ts,0 to,o t2,0 ts,0 toi,1ts,0 taeta,ntse t.1,0 to,0 t3,0 to,0 t3,0

FIGURE 44. Exact solution T 4 of the (r,s,7) = (1,1, 3)-slanted T-system in terms of
initial data t, ;



ARCTIC CURVES OF THE T-SYSTEM WITH SLANTED INITIAL DATA
APPENDIX B. THE CASE (r, s,t) = (2,2,3)

Coefficient matrix for the linear system determining the density generating function:
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196608 u? v x® y* 0% + 491520 u% v? x° y® 0% + 12288 V® x° y® o® + 106496 u v? x° y? 0 - 491520 u? v3 x° y? o + 6080 x* y* o + 3840 ux? y* o® - 26112u% x* y* o® - 36864 u° x* y* o +
26624 u” x* y* 0 + 3840 v x* y? 0® + 45056 uv x* y? 0% + 73728 U vx? yt o® - 131072 U3 vixf yt 0% - 245760 Ut v xf y? 0% - 26112v2 x* y? 0% 4+ 73728u v x* yt 0% 4+ 73728 U2 v Xyt o0 4
491520u° v? x* y* 0 - 36864 V3 x* y* 0® - 131072uv? x* y* 0® + 491520 u% V3 x* y* 0% + 26624 v x* y* 0% - 245760 u v x* y* 0% - 6016 x% v 0% - 6912ux® y® 0% + 21504 u% X3 y° oF +
122880u° x® y® ¢® + 3840 v x? y° 0% - 52224 uv x® y® o - 110592 u? v X y® 0° + 106496 u® v x° y® 0® + 22528 v2 x® y® 0% + 73728 uv? x® y® o® - 196608 u? vZ x* y® o - 491520 u® v? x* y© o +
24576 v x* y° 0% + 49152uv? x® y© 0® + 491520 u% v x3 y° 0% - 32768 v x® y° 0% + 245760 u v X y® 0 - 49152v° x® y® o7 + 4736 x% y© % + 3840 ux? y® o® - 6656 U” x? y© o - 6912V x? y© o +
43008uvx?y® o’ +36864u% vx?y®o®-26112v? x? y® 0% - 110592uv? x2 y® 0% + 159744 u? vZ x? y© 0 + 24576 V3 x? y© 0® - 131072uv? x? y© 0® - 491520 u% v x? y® 0% + 12288 v x? y® 0% +
245760 u v x? y® 0% +49152v° x? y® o - 2176 x y’ 0% - 768uxy’ 0 +3840v xy’ o° - 13312uvxy’ o +21504v2 xy’ o° +36864uv xy’ o° -36864v> xy’ o +106496uv’ xy’ o® -
32768Vv* xy’ 0% - 245760uv* xy’ 0> +49152v° xy’ 0 4+ 416y° o® - 768V y® 0® - 6656 v y® 0 + 122883 y® % + 26624 v y® o® - 49152 v° y® 0% - 208 x® o* + 384 ux® o* + 33281 x® o -
6144 u® x® o* - 133120 x® o* + 24576 u% x® o* + 1088 x7 y o* - 1920ux” y ot - 10752u% x7 y o* + 18432u° x7 y o* + 16384 u* x7 y ot - 24576 u° x” y o* + 384v X yo' + 6656 uv Xy -
184320 vx"yo® -53248u% vx' y o' +122880u" vx'y o' -2368x° y? o +3456ux° y? o +13056u” x® y? o* - 12288 0% x° y? o* - 6144 u* X y? 0" - 24576u° x® y? 0 - 1920V x® y? o* -
21504uvx®y? o* + 55296 u% v x®y? o + 65536 U v x°® y? of - 122880 u? v x® y? of + 3328 v2 x® y? o* - 18432uv? x® y? of - 79872u% v2 x® y? 0" + 245760 u® v? x° y? o* + 3008 x° y3 o -
1920u x® y? o* - 11264 u? x® y* o* - 122880 x® v o* + 16384 u* x® y? 6% + 24576 u° x° y® o* + 3456 v x° y® o + 26 112uv x® y? o* - 36864 u” v x® y® o - 24576u% v x° y® of - 122880 u* v x® y? o -
10752 v? x® y? o* + 55296 uv? x° y® o + 98304 u? v2 x® y? 0" - 245760 u% v? x® y? o - 6144 v? x° y? 0" - 53248u V3 x® y? 0" + 245760 u% v x® v o - 3040 x* y* o* - 1920u x* y! o* +
13056 u” x* y* o* + 184320% x* y* o* - 133120 x* y* 0% - 1920 v x* y* o - 22528uv x? y* of - 36864 u% vx*y* o + 65536 U v X'y ot + 122880 ut v x* y* of + 13056 V2 x* y* o -
36864 uv? x* y* o - 36864 u% vZ x* y* of - 245760 u° v x* y* 0% + 184323 x* y* o* + 65536 U V3 x* y* o* - 245760 u% v x* y* o - 13312 v* x* y? 0% + 122880 u v x* y* 0% + 3008 x3 y® ot +
3456 u x> y® o - 10752u% X3 y® o - 6144 U3 x* y® of - 1920 v x® y° 0% + 26112u v x® y® o + 55296 u% v x* y® of - 532480 v X3 y® o - 112647 x® y® o - 36864 uv? x® y° 0" + 983041 V2 X y® o &
245760 u° v? x* y® of - 12288 V% x® y® o* - 24576 uv? X% y° o - 245760 u? v¥ X3 y® o + 16384 v* x* y® o - 122880 uv* X y® o + 24576 V% X y® of - 2368 x% y® o - 1920u x? y® o +
3328u% x? y® o + 3456 v x? y© o* - 21504uv x? y® o* - 184320 vx? y© 0* + 13056 v? x* y® o* + 55296 uv? X y© o - 79872u” v? x? y® o - 12288 V7 x? y® 0! + 65536u v’ x? y© ot +
245760 u? v? x2 y® o - 6144 v* x? y© 0" - 122880 uv* x? y© of - 24576 v° x? y© 0" + 1088 x y” of + 384uxy’ o - 1920vxy’ o + 6656uv Xy’ of - 10752v% xy” of - 18432uv? xy’ o* +
18432v3 xy” o* - 53248uv® xy’ 0% + 16384 v* xy’ o* + 122880 uv* xy’ o - 24576 v° xyT o - 208y® o* + 384 v y® of + 3328 V2 y® of - 61443 y® o - 13312v* y® o* £ 24576 V0 y® o*

FIGURE 45. Polynomial H,,5(x, y,u,v) for the case r = ¢
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APPENDIX C. THE CASE (r,s,t) = (3,3,5)

Polynomial H for the case (r, s,t) = (3,3,5), 0 = 7:

(C.1)

H(x,y,u,v),_, = 8192Qux + x + 2vy — y)(2ux — x + 2vy + y) (—2xtrz +2y6° + 2x0 — 2y6 + 2ux + 2x + 20y + 3y) (—2):0'2 +2y0” + 2x0 — 2y0 + 8ux — 3x + 8vy — Zy)

X (GuPx? + duc?x? + 7% + 2ux® — duox® — 6x* — duyo’x + 4vyo’x — 2yo’x — 2uyx + Suvyx + 20yx + duyox — dvyox + 2yox + 40°y? = 20y — 4vy’c? + y'o? + dvyle — yPo)
X (512u8x® + 3200°x° — 480u*x® + 4801’ 6*x® — 512126 x° + 166uc*x® — 176%x® — 641’ x® — 960u> 5> x® + 10241°6°x® — 332uc>x° + 346°x® + 96u*x°® + 384167 x°

+768u"67x® — 4001’6 x° — 4241262 x® + 234uc?x® — 2367x° — 4ux® — 38416 x° — 768u*ox°® + 880U cx® — 881 6x°® — 68ucx® + 66x° — 2x° — 480u’ yoix®

+ 7681’ yo*x* — 370uyc’x* + 144007 vyc® x> — 1024uvys’x® + 1660y’ x* + 52y6* x> + 9601 yo> x° — 1536u*yo>x> + 740uysx® — 2880u’vyc’x” + 2048uvys’x® — 332vy6°x°

— 104y0°x° — 3841 yo2x° + 3841’ yo? x° + 80u’yo? x° + 5761 yo’x® — 510uye?x® + 1920u*vye®x® + 3072u vyex® — 12000’ vye>x> — 848uvyc’x®

+2340y0°x° + 88y0°x’ + 64017 yx® + 160u*yx® — 48 yx® — 18412 yx® + 20uyx® + 30726 vyx® + 1600u* vyx® — 1920’ vyx® — 192u*vyx® + 192uvyx® — dvyx® + 12yx°

+ 3841’ yox* — 384’ yox° — 5601’ yox® + 192u’yox® + 140uyox® — 1920u* vyox® — 30721’ vyox® + 2640u*vyox’® — 176uvyox’ — 68vyox® — 36yox® — 480u’y?c*x*

=32’y ot x*t + 1440u0’y? o x* — 51207y 6 x* + 220uy’o*x*t — 1440020y’ 6 x* + 1536uvy’o*x* — 370vy%0*x* - 55y°c*x* + 9604’ o x* + 64’ y* o x*
—2880ur’y’ o x* + 10240%) 6 x* — 440uy’e’x* + 2880uPvy’ o’ x* — 3072uvy? o x* + T400y* 6 x* + 11020 x* — 480u*y*x* + 288y’ x* + 176u%y*x* + 7680u*v*y*x*
+ 320060y x* — 2880u*0?y x* — 192u0?y?x* 4 960°y*x* — 40uy’x* + 3200u*vy?x* + 6400 vy*x* — 14410y’ x* — 368uvy’x* + 200y*x* — 30y°x* — 1152u*y?6?x*

— 5601 y*02x* + 416u°y o x* + 38401307y o2 x* + 4608uP v’y o2 x* — 1200ur?y? o’ x* — 42407y 6% x* + 300uy*e?x* — 1920u*vy’6’x* + 15361 vy*ax* + 2400 vy’ 6% x*

44812 y*ox* — 38401 v*yPox* — 460812 v? Y ox* + 2640ur’yPoxt — 880y ox* — 80uyoxt + 1920utvy’oxt

+ 1152uvy’6’x* = 5100y%6%x* — 145y°6%x* + 1152u*y*ox* + 80u° y o x*

— 15360’ vy’ox* — 16801 vy ox* + 384uvy’ox* + 1400y ox* + 90y ox* + 4801’y o' x> + 4800°y 6 x* — 19217 y° 6% x* — 1440ur?yP6*x* + 76807y 6 x* — 100uy* o x* — 1440u%vy 64 x°

— 64uvy’ ot x* + 2200y % + 40764 X7 — 17617y x* + 102406° 03y x* + 320067 0%y %3 — 1920u0’ y*x* — 6407y x* — 18412 y* X + 64001 P x° + 960120y x° — 144uv?y’x® — 18407y %3

+40uy’x® — 192000y’ x* + 864uP vy’ x* + 352uvy’x® — 400y’ x* + 40y°x7 — 9601y o x> — 9600°y o X + 384Uy 6 X + 2880ur’y 6 x* — 1536071767 x* + 200uy’ 6’ x* + 2880u* vy’ o x?
y y ¥ y y Y y y ¥ y y y y

+ 128uvy’c x> — 4400y’ 6 x* — 80y x> + 880u’y o2 x? + 3840120y o2 + 3072uv’y 67X — 40007y 6% — 8641y o x — 38401 0%y 0 X + 2304207y 02 X + 240ur’y o’ X}

+5760%y}c?x® — 180uy’6’x* — 4608uvy’6x® — 168060y’ 0> x® + 832uvy*a?x* + 3000y’ 6’ x> + 160y°*x* — 4006y ox* — 384000y ox® — 3072uv’ Y ox® + 8800° P ox® + 6726y ox*

+ 384000yl ox® — 2304’ 0*yPox® — 1680uv’y ox’ + 19207y ox* + 80uy’ox® + 4608w vy’ ox® + 2400’ vy ox® — 896uvy’ox® — 80vy*ox® — 120y°6x* + 7680u*v*y*x* + 1600uv*y*x*

— 4800*y*x? + 6400’0y x? + 640uv’ y*x? — 4807y x® + 96uPy*x? — 28806’ 0%y x? + 864uv’y*x® + 17607y x® — 20uy*x? — 5281 vy*x® — 368uvy*x? + 40vy*x> — 30y*x* — 4800°y*o*x?

— 32’y o*x? — 1440uv’y*o*x® — 3207y o x? + 190uy*o*x® + 144012 vy o*x? — 384uvy*c*x? — 100vy*e*x® — 55y*c*x? + 9600°y*6*x? + 64’ y* o x? + 2880ur’y*c>x? + 6407 y*o*x?

— 380uy*o>x? — 2880u’vy* 6 x? + 768uvy* s x? + 2000y 6 x% + 110y*6°x? + 1920uv* y*6?x? + 7680 y* 62 x* — 38400’ y*62x* + 1536uv’y*6?x? + 800° y'6?x? + 29612 y* 67 x>

— 6912107 y* 6% x* — 1680ur?y*6?x? + 41607y 62x* + 330uy* o2 x? + 2640u*vy*67x? — 1728uvy*cx? — 180vy*cx? — 145y 62 x? — 1920uv’y*ox? — 7680y ox? + 3840u*0° y*ox?
—1536uv’y'ox? — 5600° ' ox? — 32812y ox? + 691217 vy ox® + 240ur’y o x? — 44807y ox? — 140uy’ox® — 12000 vy’ ox? + 1344uvy*ex® + 80vy'ox? + 90y'ox> + 3072ur’y x
+3200°y x + 3200uv*y’x + 1600*y° x — 1920ur’y’ x + 28807y’ x — 528uv’y’x — 1840°y°x + 4uy’x + 192uvy’x — 200y°x + 12y°x — 4800°y o x + 1440u’y’ o' x — 19207y 6% x

— 106uy’6*x — 64uvy’o*x + 1900y’ 6*x + 52y°c*x + 9600°y 6 x — 2880uv’y’ o°x + 3840°y 3 x + 212uy’6° x + 128uvy’6°x — 3800y’ > x — 104y°6°x + 3840°y° 6% x — 1920uv*y’c’x
+3840%y 6 x — 4608uv’y’ 6% x — 5600°y’ 62 x + 2640uv’y 6’ x — 8640y 6% x — 174uy 6 x + 592uvy’ 6’ x + 3300y 6’ x + 88y’ % x — 3840°y ox + 1920uv*y o x — 3840* Y ox
+4608uv’y’ox + 800° Y ox — 1200ur’y ox + 6720°y o x + 68uy o x — 656uvy’cx — 1400y’ ox — 36y ox + 5120°)° + 6400°y° — 4800*y° — 1760°y° + 960°y° + dvy° — 2)° + 4800°y°c*
—320%)°6* — 1060)°c* — 17)°6* — 9600°)°6° + 640%)°6° +2120)°6° + 34y°6° — 3840°y°6? — 11520*)°6% + 8800°y°0? + 2960°y°6> — 174vy°6° — 23)°0% + 3840° )0 + 11520 )0
—4000%y°c — 3280%)°0 + 680)°c + 6)°0)

73
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Polynomial H for the case of (r,s,t) = (3,3,5), 7 = 0 and o arbitrary:

H(x,y,u,0)|,_o = 4096(2ux + x + 20y — y)*(Qux — x + 20y + y)*
X Qux + ox+2x +2vy+ 3y — yo)(8ux + ox — 3x + 8vy — 2y — yo)
X (32u*x* + 481 x* + 812x* + 10uc’x* — o*x* — 4ux* — 161 6x* — 401’6 x*
—2uox* + ox* — 10uye®x® + 10vye?x® + 4yo?x® + 321 yx® + 240’ yx® + 12uyx®
+ 1283 vyx® + 144 vyx® + 16uvyx’ — 4vyx® + 166 yo x> — l4uyox® — 48uvyox’

— 80uvyox® — 2uyox® — dyox® — 3212y*x% + 19212 0% y*x* + 144uv®y* x> + 81%y*x2

— 12uy*x? + 9612 vy*x* + 48uvy’x* + 120y°x* — 10uy*c?x* — 10vy*62x* — 6y*c*x>

+ 40u2y*ox? — 48uv*y*ox® — 40020 x” + 34uy’ox? + 48u*vy o x? — l4vy*ox? + 6y ox?
+ 128ur’ Y x + 480° ¥ x + 96u?y’x + 240%y*x + duy’x — 64uvy’x — 120y’ x + 10uy’c>x
— 10vy*c%x + 4y’ c*x — 160y’ ox + 48u’y*ox — 18uy’ox + 80uvy’ox + 34vy’ox
—4y3ox + 320%* + 320°y* — 3208 + 4uy* + 10vyre? — ye? + 1607y e + 4007y e
— 18vy*c + y*0)

€2) x (128u*x* + 1613 x* — 32u*x* + 241 6% x* — 10uc?x* — 62x* — dux* — 112136 x*
+ 16uP0x* + 18ucx™ + ox* — 48u%yo*x> + 10uyc?x® + 48uvyc?x® — 10vye*x> + 4yo?x3
— 9613 yx? + 24uPyx® + 12uyx® + 5121 vyx® + 48uPvyx® — 6duvyx® — 4vyx®
+ 1123 yox® + 4812 yo x> — 34uyox® — 336ucvyox® + 32uvyox® + 18vyox® — 4yox®

212 x% + 48uv?y*x® — 3207 y*x? — 12uy*x? — 288u’vy?x? + 48uvy* x>

262x% + 240°y* 6% x? + 10uy*o*x* — 96uvy’s>x> + 10vy* 6% x>

+ 8u?y*x? + 768u”v
+ 120y*x* + 24u*y
— 6y%6%x? — 64’y ox? — 336ur*y’ox’ + 160*y*ox* 4 lduy*ox? + 3361 vy*ox?

+ 96uvy’ox? — 34vy*ox? 4+ 6y*0x> + 5S12uv’y’x + 160°y*x — 288uv?y*x + 24v%y*x
+ 4uy*x + 16uvy’x — 120y°x — 480%y*0%x — 10uy*o2x + 48uvy’o?x + 100y’ 6*x
+4y’6%x — 1120°y o x + 336uv’y ox + 480*y’ox + 2uy’ox — 128uvy’ox + 14vy’ox
—4y3ox + 1280y — 9603 y* + 80Py* + duy* + 2407y 6? — 10vy*6? — yie?

+ 1120%y*e — 64v%y*o + 2uy*o + y*o)
APPENDIX D. MATHEMATICA FILE FOR COMPUTATION IN THIS PAPER

The Mathematica files of the computations of this paper can be found at the following link:
https://uofi.box.com/s/qym61xgqaq70hb8dn90swafmjps85uxs.


https://uofi.box.com/s/qym61xgqaq70hb8dn90swafmjps85ux8
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