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Abstract

Models of computations over the integers are equivalent from a computability
and complexity theory point of view by the Church-Turing thesis. It is not possible
to unify discrete-time models over the reals. The situation is unclear but simpler for
continuous-time models, as there is a unifying mathematical model, provided by
ordinary differential equations (ODEs). Each model corresponds to a particular class
of ODEs. For example, the General Purpose Analog Computer model of Claude
Shannon, introduced as a mathematical model of analogue machines (Differential
Analyzers), is known to correspond to polynomial ODEs. However, the question of
a robust complexity theory for such models and its relations to classical (discrete)
computation theory is an old problem. There was some recent significant progress:
it has been proved that (classical) time complexity corresponds to the length of the
involved curves, i.e. to the length of the solutions of the corresponding polynomial
ODEs. The question of whether there is a simple and robust way to measure space
complexity remains. We argue that space complexity corresponds to precision and
conversely.

Concretely, we propose and prove an algebraic characterisation of FPSPACE,
using continuous ODEs. Recent papers proposed algebraic characterisations of
polynomial-time and -space complexity classes over the reals, but with a discrete-
time: those algebras rely on discrete ODE schemes. Here, we use classical (continu-
ous) ODEs, with the classic definition of derivation and hence with the more natural
context of continuous-time associated with ODEs. We characterise both the case of
polynomial space functions over the integers and the reals. This is done by proving
two inclusions. The first is obtained using some original polynomial space method
for solving ODEs. For the other, we prove that Turing machines, with a proper
representation of real numbers, can be simulated by continuous ODEs and not just
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discrete ODEs. A major consequence is that the associated space complexity is
provably related to the numerical stability of involved schemas and the associated
required precision. We obtain that a problem can be solved in polynomial space if
and only if it can be simulated by some numerically stable ODE, using a polynomial
precision.

1 Introduction
Recently, there has been a renewed interest in models of computations over the reals
and their associated complexity classes. The fact that these models appear in complexity
issues of deep learning models (a.k.a. neural networks) partially explains it. For example,
various problems, such as the training of fully connected neural networks, have been
proved to be a ∃R-complete problem [2]. Complexity classes like FIXP were introduced
to discuss the complexity of continuous functions’ fixed points in various contexts, such
as game theory [31]. These classes and statements are related to discrete-time models
of computation over the reals.

For discrete-time models of computations over the reals, the most famous approaches
are computable analysis, based on the Turing machine model in [58] and [62] and
algebraic models such as the Blum Shub Smale (BSS) model of computation [8, 7]. The
class ∃R corresponds to the (constant-free, equivalently uniform) non-deterministic time
of the BSS model of computation. An extensive list of decision problems was proved
recently to be in this class. Both models were tailored for very different applications and
it is well-known we cannot unify existing models with the equivalent of a Church-Turing
thesis. For example, computable functions in a computable analysis model need to be
continuous, while the BSS model intends to consider functions and problems over the
polynomials that are not. It is also explained by the fact that some models have not
been introduced with the idea of corresponding to actual physical machines but also to
discuss abstract complexity (lower and upper bounds) for associated problems.

Among models of computation over the reals, we can also distinguish continuous-
time models. This includes models of old, first-ever built computers, such as the
Differential Analysers [60]. A famous mathematical model of such machines is the
General Purpose Analog Computer model of Claude Shannon [54]. It covers many
historical machines and today’s analogue devices [59, 61] too. It also includes various
recent approaches and models from deep learning such as Neural ODEs [23, 44] with
many variants. In the context of continuous-time, the situation is clearer than with
discrete-time models, as there is a unifying way to describe these models, provided by
ODEs. Each model corresponds to a particular class of ODEs. For example, the GPAC
corresponds to polynomial ODEs [36], and Neural ODEs are made by selecting the best
solution among a parameterised class of ODEs: see, e.g. [44].

Even if particular classes of ODES can describe such models, defining a robust
and well-defined computation theory for continuous-time computations is not an easy
problem: see [18] for the most recent survey. In short, the problem with time complexity
is that considering the time variable as a measure of time is not robust: a curve can always
be re-parameterised using a change of variable. The problem with space complexity
is similar: reparameterisation corresponds to a change of time variable, but also of
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space-variable, introducing space and time contractions: See e.g. [18, 16]. Furthermore,
many problems for simple dynamical systems are known to be undecidable, hence
forbid PSPACE-completeness see [37] and [38].

There was a recent breakthrough in [15, 16], where the authors relate time with
the length of the solution curve of an ODE. It holds for polynomial ODEs, and their
projections, known to cover a very wide class of functions, including all common
functions or functions that can be built from them [34]. As the length of a curve is an
invariant, this solves the issue of a possible change of variable. Furthermore, the authors
prove that for polynomial ODEs, this is polynomially related to the time required to
solve an ODE, hence providing a robust notion of time for ODEs. These statements
and underlying constructions, which allow the simulation of Turing machines, led to
solving several open problems: the existence of a universal ODE [17], the proof of the
Turing-completeness of chemical reactions [32], or statements about the hardness of
several dynamical systems problems [38].

The question of whether we can give a simple equivalent defining space-complexity
remains. We argue here that space complexity is polynomially related and conversely to
the numerical stability of ODEs and their associated precision. We prove that a problem
can be solved in polynomial space iff it can be simulated by some numerically stable
ODE, using a polynomial precision. We prove this holds both for classical complexity
over the discrete (functions over the integers) and also for space complexity for real
functions in the model of computable analysis.

NB 1. In the literature, there are two possible definitions for FPSPACE, according to
whether functions with non-polynomial size values are allowed or not. In this article,
when we talk about FPSPACE, we always assume the outputs remain of polynomial
size. Otherwise, the class is not closed by composition: the issue is about not counting
the output as part of the total space used. Given f computable in polynomial space
and g in logarithmic space, f ◦g (and g◦ f ) is computable in polynomial space. But, if
exponential size output is allowed, this is not true: if we assumed only f and g to be
computable in polynomial space since the first might give an output of exponential size.

These questions of providing characterisations of classical complexity using ODEs
can also be seen from the so-called “implicit complexity” point of view. Having "sim-
ple" characterisations of computability and complexity classes is useful for various
fundamental and applied science fields. We are interested here in "algebraic" characteri-
sations of those classes: we want to define them as the smallest set [ f1, . . . , fk;o1, . . . ,ol ]
where the fi’s are functions, closed under the operators oi’s. For example, the set of
computable functions over the integers is well-known to be:

[0,1,π i
k;composition, minimisation, primitive recursion].

Implicit complexity aims at giving similar algebras for classes of complexity theory:
a reference survey is [24, 25]. The main benefit is to avoid the use of the framework
of Turing machines, which is rather heavy and not necessarily well-known outside
fundamental computer science. Several characterisations for PTIME over the integers
were proposed. The first is due to Cobham in [26], but relies on explicit ah-hoc bounds.
Other approaches have then been proposed, see surveys [24, 25]. Recently, Bournez and
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Durand in [10] suggested an algebra using the so-called "linear-length" discrete ODEs.
Instead of having explicit bounds, the linearity of the involved discrete ODE guarantees
polynomial time complexity.

Using a similar approach, Blanc and Bournez in [3] and in [4] extended the construc-
tions to a characterisation of PTIME for function over the reals. The latter extended
the result to PSPACE, defining robust ODEs as in Definition 4. However, those models
rely on discrete ODEs, which are discrete-time and less natural than continuous ODEs.
We review all those results in Section 3.2.

This paper can be related to [15, 16]: the authors of these articles provided a
characterisation of PTIME with continuous ODEs, establishing that time complexity
corresponds to the length of the involved curve, i.e. the motto time complexity =
length. Here, we get a motto of the form space complexity = precision. Some of our
constructions have similarities with statements in [6]. In the later paper, the authors
introduce various robustness concepts and prove they lead to tractability. See the
references in [6] for similar robustness statements. Robustness can also be associated
with a dual motivation: the authors of [39] introduced a concept of robust undecidability,
while here we want a concept of robustness leading to tractability.

This is not the first time FPSPACE is characterised using continuous ODES. How-
ever, the existing characterisation [33, 11] is obtained with complicated conditions on
ODEs, while we have a simpler statement, linking complexity to precision in a simple
manner. Notice that the latter approach dealt with polynomial ODEs, while we do not
restrict to polynomial ODEs. We obtain our statements by revisiting the approach of
the latter papers but working over a compact domain and dealing with error correction
more finely.

Intuitively, this can also be read as being in PSPACE for an ODE is consistent with
having an attractor easily discretisable when there is one. We can also define the notion
of robustness, as the insensitivity to “small" perturbations.

While discussing all these issues, we propose an algebraic characterisation of
PSPACE, using continuous ODEs with the algebra (RCD is for Continuous Robust
Differential). Schema robust ODE is formally defined in Definition 1:

RCD= [0,1,πk
i ,+,−,×, tanh,cos,π,

x
2
,

x
3

;composition,robust ODE]

For a function f : Rd → Rd′ sending every integer n ∈ Nd to the vicinity of some
integer of Nd , say at distance less than 1/4, we write DP( f ) for its discrete part: this is
the function from Nd→Nd′ mapping n ∈Nd to the integer rounding of f(n). For a class
C of such functions, we write DP(C ) for the class of the discrete parts of the functions
of C .

Theorem 1. DP(RCD) = FPSPACE∩NN.

We also provide a characterisation of functions over the reals computable in poly-
nomial space. Inspired by [4], this is obtained by adding a limit schema ELim to RCD. If
we consider RCD= [0,1,πk

i ,+,−,×, tanh,cos,π, x
2 ,

x
3 ;composition,robust ODE,ELim]

then:
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Theorem 2 (Generic functions over the reals). RCD∩RR = FPSPACE∩RR

More generally: RCD∩RNd×Rd′
= FPSPACE∩RNd×Rd

.

This article is organised as follows. In Section 2, we recall the concept of dynamical
systems and discuss some associated complexity issues. We introduce the concept of
robust ODE and prove that a robust ODE can be solved in polynomial time (Theorem 4).
This is obtained, using an original method for solving ODE, optimising space, inspired
by Savitch’s theorem. This provides one direction of all the above theorems. The other
direction is the object of the following sections, starting from Section 3. We first recall
some previous results on discrete ODEs in Section 3. Using extensions of constructions
from [4], we then prove that we can simulate a Turing machine using robust continuous
ODEs in Section 4. This is obtained by simulating some discrete ODEs using continuous
ODEs, dealing with error corrections, and using the fact that the functions are robust to
a controlled error. The main result of Section 3 is Theorem 10. It states we can simulate
Turing machines robustly with continuous ODEs when space remains polynomial. This
theorem leads to the proof of Theorem 1 in Section 4. In Section 5, we prove Theorem
2. In Section 6, we conclude and discuss future works.

Some basic concepts When we say that a function over the real is computable this is
always in the sense of computable analysis: see e.g. [62, 46, 20]. A reference book for
issues related to complexity theory in computable analysis is [46]. See also appendix
7.1.

2 Dynamical systems and associated complexity issues

2.1 Dynamical systems
Dynamical Systems are often used to model natural phenomena and in many applied
fields. The last decades have seen an impressive use of computers in studying and
analysing dynamical systems, with several visible theoretical breakthroughs. A famous,
notable example is the discovery of strange attractors in models such as Lorenz at-
tractors through numerical simulations [47], with only 40 years later the mathematical
proof of their existence [57]. The mathematical proof was obtained by checking some
quantitative invariant holds through computer-certified computations.

From a mathematical point of view, a discrete-time dynamical system is given by a
set D, called domain and some (possibly partial) function u from D to D. A trajectory
the system is a sequence f(t) evolving according to u: that is f(t +1) = u

(
f(t)

)
for all t.

A dynamical system can equivalently be described by its flow Φ: by definition, Φ(f0, t)
gives the position of the dynamics at time t, for an initial position f(0) = f0. It satisfies
the flow property

Φ(f0,0) = f0 Φ(f0, t + t ′) = Φ(Φ(f0, t), t ′) (1)

for all t, t ′. The transition dynamic u can be recovered from the flow function since
u(.) = Φ(.,1). Hence, describing a dynamical system by its dynamic u or by a flow

5



function is equivalent. All of this can be parametrised by some parameter x: u is also
some function of x, and f(t +1) = u

(
f(t),x

)
for all t, and the flow function is Φx(f0, t).

Up to that point, we were considering discrete-time systems, but we can also consider
continuous-time dynamical systems: a continuous-time dynamical system is given by a
set D⊆ Rd and some ODE of the form (f′ denotes the derivative with respect to time
variable t)

f′ = u(f(t)) (2)

on D. A trajectory starting from f0 is a solution of the associated Initial Value Problem
(IVP), with f(0) = f0. If we consider Φ(f0, t) as giving the value of the solution at time t,
starting from f0, it still satisfies the flow property (1). Assuming sufficient regularity on
Φ (namely that it is differentiable), Φ satisfies some ODE, and hence giving a dynamical
system is equivalent to giving its flow: u(.) can be recovered by u′ = Φ′(.,0). Here, we
can still consider that all of this is parameterised by some x.

Hence, in a very general view, a dynamical system is given by some function Φ

satisfying the flow property. The fact that it is continuous time or discrete time, is related
to the nature of its time (i.e. second) variable, that belongs to N or Z in the latter case,
and to R in the former. See [40] for a monography on the theory of dynamical systems
from a mathematical point of view.

In all previous discussions, we considered homogeneous dynamics in the sense that
u was only a function of f(t) and not also of t: but, for example, for discrete-time, to
cover the case f(t +1) = u

(
t, f (t)

)
for all t, it is sufficient to consider f(t) = (f(t), t),

and we come back to the previous settings, as we can write f(t + 1) = u(f(t)), with
u(f, t) = (u(f, t), t +1), that is a homogeneous dynamic.

As this is well-known, dynamical systems exhibit a very rich class of possible
behaviours. In particular, many dynamical systems are chaotic. We do not intend here
to recall how chaoticity can be defined in mathematical terms (see [30, 40]), but this
includes at least high sensitivity to initial conditions. From our point of view, we just
need to say this leads, in practice, to high unpredictability in the long run. As observed
in [52], while countless papers exist in the literature about computations in dynamical
systems, only a small fraction of them address the problem rigorously; i.e., how far is
the sought actual quantity from the computed one? And can a computer perform such
computation up to a very small pre-specified error? An important example where these
questions are of interest is given by the reachability problem: given a (finite) description
of a dynamical system, a description of its initial state, and the description of some
“unsafe” states, the question is to tell whether a trajectory can reach an unsafe state.

In the long run, dynamical systems may exhibit attractors. Although there is a clear
agreement about this intuitive concept, corresponding to the set of points to which most
points evolve, it is a hard task to provide a mathematical definition covering all cases,
and we refer to [49] for discussions of many possible ways of defining this concept,
and their relations. In the general case, the attractors of dynamical systems, even if the
system is very simple, can be very rich. We refer to [52] for a characterisation of the
hardness of computing attractors from a computable analysis point of view. We will
somehow restrict to a very robust one (numerically stable ones) for which the problem
is tractable. Somehow, our results state that the uncomputability discussed in [52] is
intrinsically due to the non-numerical stability of the considered dynamical systems
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there.

Example 1. The van der Pol equation gives a very famous example of a dynamical
system admitting an attractor y′′−µ

(
1− y2

)
x′+ y = 0 where µ is a parameter. Intro-

ducing z = y− y3/3− ẏ/µ , it can be also described by y′ = µ

(
y− 1

3 y3− z
)

, z′ = 1
µ

y.
It is a classical mathematical exercise to prove that the system has a limit cycle: this is
usually done as an application of Liénard’s theorem, which is established by studying the
flow of the dynamics, using qualitative arguments based on some formal mathematical
statements: see, e.g. [40].

Formally, a discrete-time dynamical system is given by a set D, called domain and
some (possibly partial) function u from D to D. A trajectory the system is a sequence
f(t) evolving according to u: that is f(t + 1) = u

(
f(t)

)
for all t. A continuous-time

dynamical system is given by a set D⊆ Rd and some ODE of the form

f′ = u(f(t)) (3)

on D. A trajectory starting from f0 is a solution of the associated Initial Value Problem
(IVP), with f(0) = f0. A dynamical system can equivalently be described by its flow:
Φ(f0, t) gives the position of the dynamics at time t, for an initial position f(0) = f0. It
satisfies the flow property

Φ(f0,0) = f0 Φ(f0, t + t ′) = Φ(Φ(f0, t), t ′). (4)

The dynamics or the flow can be parametrised by some parameter x: u is also some
function of x and the flow function is Φx(f0, t).

In the long run, dynamical systems may exhibit attractors. We refer to [49] for
discussions of many possible ways of defining this concept, and to [52] for a charac-
terisation of the hardness of computing attractors from a computable analysis point of
view. Somehow, our coming results state that the uncomputability discussed in [52] is
intrinsically due to the non-numerical stability of the considered dynamical systems
there.

2.2 Some complexity results on graphs
We need to discuss the hardness of solving IVP, or equivalently of computing Φ(y, t).
For pedagogical reasons, we first discuss the case of a simple setting, namely the case
of a (deterministic) directed graph. Indeed, observe that a discrete-time dynamical
system (D,u) can also be seen as a particular (deterministic) directed graph G = (V,→),
where, in the general case, V is not necessarily finite: G corresponds to V = D and→
to the graph of the function u, i.e. xt → xt+1 iff xt+1 = u(xt). The obtained graph is
deterministic because any vertex has an outdegree 1. Starting from some point x0, there
is at most one possible path, and consequently, for a given time T , we can talk about
its position at time t, i.e. Φ(x0,T ) is T th element of this path: (as usual in complexity
theory, the length of some integer x is the length of its binary representation, denoted by
ℓ(x)).
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Proposition 1 (The case of finite graphs). Let s(n) ≥ log(n) be space-constructible.
Assume the vertices of G = (V,→) can be encoded in binary using words of length s(n).
Assume the relation→ is decidable using a space polynomial in s(n). Then,

• given the encoding of u ∈V and of v ∈V , we can decide whether there is some
path from u to v, in a space polynomial in s(n).

• given the encoding of u ∈V , and integer T in binary, we can compute Φ(u,T ), in
a space polynomial in s(n) and the length of T .

The second item is even a characterisation of the complexity of the problem. Indeed,
the converse is true: If, given the encoding of u ∈V , and integer T in binary, we can
compute Φ(u,T ), in a space polynomial in s(n) and the length of T , then as→ is given
by Φ(.,1), then→ is decidable using a space polynomial in s(n).

Proof. It is well-known that for finite graphs, given a directed graph G = (V,→) and
some vertices u,v ∈ V , determine whether there is some path between u and v in G,
denoted by u ∗→ v is in NLOGSPACE: the rough idea is to guess non-deterministically
the intermediate nodes. The formal proof is detailed in [55]. The same algorithm,
working over representations of vertices, when vertices are encoded using words of
length s(n) will work in NSPACE(s(n)) (with the addition of the binary encoding of T
if for the second item, if it bigger than s(n)). We then observe that NSPACE(s(n)) =
SPACE(s(n)) from Savitch’s theorem, recalled below.

Theorem 3 (Savitch’s theorem, [55, Theorem 8.5]). For any space-constructible1

function s : N→ N with s(n)≥ logn, we have NSPACE(s(n))⊆ SPACE(s2(n)).

Recall that the key argument of the proof of Theorem 3 is to express the ques-
tion as a recursive procedure (expressing reachability in less than 2t steps, called
CANY IELD(x,y, t) in [55]) guaranteeing the required space complexity: we write that
relation CANY IELD(x,y, t) is relation x→ y when t = 1, and is relation ∃z such that
CANY IELD(x,z, t/2) and CANY IELD(z,y, t/2) otherwise. If one prefers, this can also
be understood as “guessing” some intermediate node z.

NB 2 (Attractor point of view). We presented the above statement in terms of computing
the flow Φ(x,T ). This could alternatively be interpreted in terms of attractors. Indeed,
when the above hypothesis holds, then dynamics is captured by a graph. In the long
run, in particular if T is greater than the number of vertices, any trajectory loops (i.e.
reaches an attractor). The above statement could then also be read as the fact that such
an attractor is then polynomial space computable.

2.3 Solving efficiently ODEs: what is known
This idea leads to an original method for solving ODEs. At least, this is original for the
numerical analysis literature, as far as we know.

We review what is known about the complexity of ODE solving. A more complete
survey is [38]. First, it is important to distinguish the case where we want to solve

1As proved in [55], this hypothesis can be avoided, at the price of a slightly more complicated proof.
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the ODE on a bounded (hence a compact) domain, from the case of the full domain
R: in the latter case, we might ask questions about the evolution of the system on the
long run, which is harder. Over a compact domain, it is known that there exists some
polynomial-time computable function u : [−1,1]× [0,1]→ R such that f ′ = u( f , t) has
no computable solution, even over [0,δ ], for any δ > 0: see [45], extending [51, 1].
The involved ODE has no unique solution. It is known over compact or non-compact
domains that if unicity holds, then its solution is computable [27, 28, 53]. However, the
complexity can be arbitrarily high [46, 48].

If we want to get to tractability, then some regularity hypotheses must be assumed.
A classical hypothesis is to assume the ODE to be Lipschitz.

Over a compact domain, it has been observed in several references (see e.g. [46])
that a careful analysis of Euler’s method proves that, if u : B(0,1)× [0,1]→ Rn, with
B(0,1) ⊆ Rn, is a polynomial time computable (right-)Lipschitz function then any
solution f : [0,1]→ B(0,1) of f ′ = u( f , t) must be polynomial-space computable: see
the discussions around Theorem 3.2 in [38] with the several references. Kawamura has
proved in [41] that there exists a polynomial-time computable function u : [−1,1]×
[0,1]→R, which satisfies a Lipschitz condition, such that the unique solution f : [0,1]→
R takes values in [−1,1] and computing it leads to a PSPACE-complete problem. Hence,
the question of solving ODEs over a compact domain in polynomial time is exactly the
question PTIME = PSPACE [41], even for C ∞-functions [42].

However, all these results are over compact domains, and dealing with non-compact
domains, i.e. in the long run, is harder. PSPACE membership is not true, without
stronger hypotheses. The difficulty comes from the possibility of simulating any Turing
machine by some finite-dimensional polynomial ODE [37] over a non-compact domain.
This leads to many undecidability results for analytic, and even very simple ODEs.
For example, it follows that there is an analytic and computable function u : R→ R
such that the unique solution of the associated homogeneous ODE is defined on a non-
computable maximal interval of existence [37]. Futhermore, if we consider f1(t) = et ,

and fi+1(t) = eyi(t)−1 then fd(t) is ee.e
et
−1 −1, while all these functions are solutions of

a simple polynomial ODE over Rd , namely f ′1(t) = f1(t) and f ′d(t) = f1 . . . fd(t): i.e. a
solution can grow faster than a tower of exponentials in the description of the ODE, and
hence is necessarily intractable for time or space: see the discussion in [38, Section 3.2].
A possible way to analyse efficiency is then to analyse the complexity of the solution
assuming a bound on the growth of the function (i.e. using parameterised complexity).
It was proved in [14] that one can solve a polynomial ODE in polynomial time assuming
a bound on Y(T ) = max0≤t≤T ∥f(t)∥. This result can be extended to non-polynomial
ODEs assuming polynomial-time computability of the higher derivatives of f and an
appropriate (polynomial) bound on the growth of those derivatives [14].

The result for polynomial ODEs was later improved in [50], where it is proved
that the time T and parameter Y can be replaced by a single parameter, namely the
length of the curve for polynomial ODEs. Furthermore, this parameter does not need
to be given as input to the algorithm. This is a key argument for one direction of the
moto “time complexity = length” we mentioned several times. This is obtained using
a non-classical method, from the point of view of classical numerical analysis: this
is not a fixed-order numerical method, but somehow a method whose order is chosen
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as a function of the inputs. A similar method was independently proposed in [56, 43],
considering parametrised complexity for analytic functions.

To get polynomial-time complexity over a non-compact domain, it is mandatory not
to use most classical methods from numerical analysis. Indeed, from the general theory
of numerical methods, presented for example in [29], every such numerical method
come with a given fixed order k, and from the general theory of step-based methods,
interval [0,T ] is divided into N steps, each of width hn ≤ h, and the error θn at step n
can be bounded by θn+1 ≤ (1+Λhn)θn + |εn|: there is a multiplicative error due to the
Lipschitz constant Λ of u, and some numerical additive error εn due to the used precision.
Using Discrete Grönwall Lemma (see [29, page 213], or lemma 12 in appendix) the
final error satisfies between computed approximation f̃n and exact solution fn at step
n satisfies max0≤n≤N

∣∣∣ f̃n− fn

∣∣∣ ≤ eΛT
∣∣∣ f̃0− f0

∣∣∣+ eΛT−1
Λ

∣∣∣max εn
h

∣∣∣. If N = T/h, we have

max0≤n≤N

∣∣∣ f̃n− fn

∣∣∣ ≤ eΛT
∣∣∣ f̃0− f0

∣∣∣+ eΛT−1
Λ

∣∣∣max εn
h

∣∣∣. To go to zero, the last factor is
chosen to be of the form exp(−O(T )).

The same problem happens when discussing space complexity: a non-classical
method is required to guarantee polynomial space complexity in the long run (i.e. on the
non-compact domain). As far as we know, no such method has yet been proposed, and
this is the purpose of the coming subsection. Actually, for space complexity, in addition
to all the problems mentioned, in all the above space or time analyses, the problem
is that the complexity is (possibly implicitly) dependent on the Lipschitz constant or
the length of the solution. In a system as simple as linear dynamics, the state at time
T depends in Lipchitz way from the state at time 0, and the number or additional bits
required to guarantee some precision 2−n growth linearly with T . But the problem is
that in a space polynomial in the input size, T has no reason to remain polynomial
(consider, for example, a system simulating a Turing machine, as we will consider soon).
Hence, the required precision is possibly exponential in the input size.

The above comment can be interpreted informally as the fact that “most” (this could
be “generic” in the sense of [52], i.e. (effective) descriptive theory) dynamical systems
are intrinsically unstable, and an error method introduced at some step can make the
method unavoidably incorrect in the long run unless we have a means to “guess” what
will happen.

NB 3 (Attractor point of view). We presented the above statement in terms of computing
the flow Φ(f0, t). But, this could alternatively be interpreted in terms of attractors. The
point is that computing the attractors of a given dynamical system is hard in general, as
this involves long-run behaviours. This explains all the undecidability results obtained
in [52], even for very simple dynamics. However, as we will see, this is also explained
by the fact that the latter paper is discussing numerically unstable systems.

2.4 Solving efficiently ODEs: a space efficient method
This leads to an alternative approach to optimize space complexity: this can be seen
as either using a non-deterministic algorithm that “guesses” the correct intermediate
positions of the dynamics or, from the proof of Savitch’s theorem approach, as an
original recursive method to solve ODEs. As far as we know, we have never seen such a
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method discussed in the literature for solving ODEs.
Concretely: from the flow property, a strategy to compute Φ(f0,T ) is either to use

a particular numerical method if T is small, says smaller than ∆ > 0. Otherwise, we
know that Φ(f0,T ) = Φ(z,T/2), where z = Φ(f0,T/2). This always holds, so if we can
compute both quantities, we will solve the problem. The difficulty is that we cannot
precisely compute z in practice, but some numerical approximation z̃. If the system is
numerically stable, we may assume this strategy works. The case when this strategy
will not work is if the trajectory starting from z̃, for the second half of the work from
time T/2 to T , has a behaviour different from the one starting in z: in other words, if
there is a high instability somewhere, namely in z.

This leads to the following concept: we write a =n b for ∥a−b∥ ≤ 2−n for concise-
ness.

Definition 1 (Robust (continuous) ODE). A function f :R→R is robustly ODE definable
(from initial condition g, and dynamic u) if

1. it corresponds to the solution of the following continuous ODE:

f(0,x) = g(x) and
∂ f(t,x)

∂ t
= u(f(t,x),h(t,x), t,x), (5)

2. and there is some rational ∆> 0, and some polynomial p such that the schema 5 is
(polynomially) numerically stable on [0,∆]: for all integer n, considering ε(n) =
p(n+ ℓ(x)) we can compute f(t,x) by working a precision ε(n): if you consider
any solution of x̃ =ε(n) x and h̃(t, x̃) =ε(n) h(t, x̃), and f̃(0, x̃) =ε(n) g(x) and
∂ f̃(t,x̃)

∂ t =ε(n) u(f̃(t, x̃), h̃(t, x̃), t, x̃) then f̃(t, x̃) =ε(n) f(t,x) when 0≤ t ≤ ∆.

3. For t ≥ ∆, we can compute f(t,x) by computing some approximation ˜f(t/2,x) of
f(t/2,x) at precision ε(n), i.e. of Φ(g(x), t/2), and then some approximation of

Φ( ˜f(t/2,y), t/2), working at precision ε(n).

Theorem 4. Consider an IVP as in the previous definition. If g, h and u are computable
in polynomial space, then the solution f can be computed in polynomial space.

Proof. From definitions and above arguments, all bits of Φ(y, t) can be computed
non-deterministically with precision n (i.e. at 2−n) using computations with precision
ε(n), hence is in NPSPACE = PSPACE. From the argument of the proof of Sav-
itch’s theorem, this can also be turned into a deterministic polynomial space recursive
algorithm.

The above theorem is the key argument to obtain one direction of our main theorems.
We now go in the reverse direction. This requires talking about discrete ODEs, and
some previous constructions.
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3 Discrete ODEs: some previous results and construc-
tions

3.1 Preliminary
We will use the concept of discrete ODE defined as follows (notice that we will write δ f

δn
for discrete derivation, by opposition of the classical ∂ f

∂n to help to distinguish discrete
vs continuous ODEs. )

Definition 2 (Discrete derivation, notation δ ). For f : N→ Rd → Rd′ , the discrete
derivation of f is δ f

δn (n,x) = f(n+1,x)− f(n,x).

3.2 Algebraic characterisation with discrete ODEs: state of the art
In this subsection, we review some of the results already obtained using discrete ODEs.

NB 4. Notice that we do not need any of these statements directly, even if we will
sometimes reuse some of their constructions (and some of their ideas).

Characterising PTIME over the integers:
The concept of derivation along the length was introduced in [9]. A characterisation of
FPTIME for functions over the integers has then been obtained in [9]:

Theorem 5 (Functions over the integers [9]). LDL∩NN = FPTIME∩NN, for LDL=
[0,1,πk

i , ℓ(x),+,−,×,sg(x) ;composition, linear length ODE], with πk
i the projection

function, and sg(x) is 0 for x < 0 and 1 for x > 0.

Toward the real numbers: characterising real sequences:
Later, the authors of [3] introduced

Definition 3 (Operation ELim). Given f̃ :Rd×N→Rd′ ∈LDL• such that for all x∈Rd ,
n∈N, ∥f̃(x,2n)−f(x)∥≤ 2−n for some function f, then ELim(f̃) is the (uniquely defined)
corresponding function f : Rd → Rd′ .

and then considered the class

LDL• = [0,1,πk
i , ℓ(x),+,−,×,cond(x),

x
2

;composition, linear length ODE,ELim],

with cond(x) a sigmoid valuing 0 when x < 1
4 and 1 when x > 3

4 . They proved this
provides a characterisation of functions from N to R computable in polynomial time.

Theorem 6 (Sequences of reals [3]). LDL• = FPTIME∩RN.

Characterisation of PTIME and PSPACE for functions over the real with discrete
ODEs:
The same authors later succeeded in obtaining a characterisation of functions over the
real computable in polynomial time and even space.
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Theorem 7 (FPTIME, , Generic functions over the reals [4]). LDL◦ ∩RNd×Rd′
=

FPTIME∩RNd×Rd
, with

LDL◦ = [0,1,πk
i , ℓ(x),+,−, tanh,

x
2
,

x
3

;composition, linear length ODE,ELim].

Consider the following schema:

Definition 4 (Robust Discrete ODE [4]). A bounded function f is robustly ODE definable
if:

1. it corresponds to the solution of the following discrete ODE:

f(0,x) = g(x) and
δ f(t,x)

δ t
= u(f(t,x),h(t,x), t,x), (6)

2. where the schema (6) is (polynomially) numerically stable: there exists some
polynomial p such that, for all integer n, writing ε(n) = p(n+ ℓ(y)), if you
consider any solution of ỹ =ε(n) y and h̃(x, ỹ) =ε(n) h(x, ỹ), and f̃(0, ỹ) =ε(n)

g(y) and ∂ f̃(x,ỹ)
∂x =ε(n) u(f̃(x, ỹ), h̃(x, ỹ),x, ỹ) then f̃(x, ỹ) =ε(n) f(x,y).

A robust discrete ODE is said to be linear if u is essentially linear in f and h.
Consider

RLD◦ = [0,1,πk
i , ℓ(x),+,−, tanh,

x
2
,

x
3

;composition,robust linear ODE,ELim].

Theorem 8 (FPSPACE, Generic functions over the reals [4]). RLD◦∩RR=FPSPACE∩
RR

More generally: RLD◦∩RNd×Rd′
= FPSPACE∩RNd×Rd

.

Notice that previous classes mix functions with integer and real arguments. Further-
more, they all involve some various types of discrete ODEs. We need to avoid all these
issues, as we consider only continuous ODEs.

3.3 Simulating a discrete ODE using a continuous ODE
We first prove that it is possible to simulate a discrete ODE with a continuous ODE.
The underlying idea can be attributed to [19], and has been improved in many ways by
several authors. We present here the basic ideas, reformulated in our context. A more
precise analysis will come (Proposition 2).

Definition 5 ("Ideal iteration trick", [19]). Consider the following initial value problem
for a discrete ODE, given by functions g and u:

f(0,x) = g(x)
δ f
δ t

(t,x) = u(f(t,x), t,x)
(7)
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Then, let G(v, t,x) = u(v, t,x)+v, and consider the (continuous) IVP:
y1(0,x) = y2(0,x) = g(x)

y′1 = c(G(r(y2),r(t),x)−y1)
3
θ(sin(2πt))

y′2 = c(r(y1)−y2)
3
θ(−sin(2πt))

(8)

where c a constant, θ(x) = 0 if x ≤ 0 and θ(x) > 0 if x > 0. We abusively write r(y)
for the application of function r : R→ R componentwise on vector y. Here, r is a
rounding function: we mean, by construction, G preserves the integers, and r is a
function that maps a real value close to some integer to this integer: assume, say, that
for z ∈ [n− 1

4 ,n+
1
2 ], r(z) = n, for any integer n ∈ Z.

Then, the solution of continuous ODE (8) simulates in a continuous way the discrete
ODE (7): Indeed, y1 corresponds to the actual computation of the iterates of G (and
hence computes the successive values of f) and y2 acts as a “memory" equation. Let us
detail how it works. We denote by t =ε z the fact that |t− z| ≤ ε .

NB 5. We describe here an “ideal" computation, as θ(x) is exacly 0 when x≤ 0, and
r(z) is exactly some integer on suitable domains. Later in the paper, we will deal with a
not-so-ideal θ and r.

Initially, f(0,x)= y1(0,x)= y2(0,x)= g(x). For t ∈ [0,1/2], we have θ(−sin(2πt))=
0, and hence y′2 = 0, so y2 is fixed and kept at value g(x) for t ∈ [0, 1

2 ]. Consequently,
for t ∈ [0,1/2], r(y2) is also fixed and kept at value g(x), and r(t) is also fixed and kept
at value 0. Consequently, on this interval, if we write C(t) = cθ(sin(2πt)), then the
dynamics of y1 is given by

y′1 =C(t)(G(g(x),0,x)−y1)
3 (9)

Lemma 1 (Analysis of ODE (9)). The solution y1(t,x) of ODE (9) is converging to
G(g(x),0,x) for any initial condition. Furthermore, for any initial condition y1(0,x) ̸=
G(g(x),0,x), we have

∥∥∥y1(
1
2 ,x)−G(g(x),0,x)

∥∥∥≤ √
2

2

√∫ 1
2

0 C(z)dz

. In particular, for any

m ∈ N, we can select constant c such that for any initial condition y1(0,x),∥∥∥∥y1(
1
2
,x)−G(g(x),0,x)

∥∥∥∥≤ 2−m.

Proof of Lemma 1, Adapted from [19]. If initially, or at any instant y1(0,x)=G(g(x),0,x)
then the result holds, as y′1 = 0, and y1 remains constant. Otherwise, we have

y′1
G(g(x),0,x)−y1)3 =C(t).

Integrating this equality between 0 and t, we obtain

1
2(G(g(x),0,x)−y1(t))2 −

1
2(G(g(x),0,x)−y1(0))2 =

∫ t

0
C(z)dz,
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hence
1

2(G(g(x),0,x)−y1(t))2 ≥
∫ t

0
C(z)dz.

This yields the property.

Consequently, y1(t,x) will approach G(g(x),0,x) = f(1,x) on this interval. Thus,
y1(

1
2 ,x) =ε f(1,x) and y2(

1
2 ,x) = g(x), for some ε > 0, that we can consider less than

1
4 = 2−2, by selecting a big enough constant c (just taking m = 2 above). At t = 1

2 , y1
will hence have simulated one step of discrete ODE (7).

Now, for t ∈ [ 1
2 ,1] the roles of y1 and y2 are exchanged : y′1(t,x) = 0, so y1 is kept

fixed, y2 approaches r(y1) = f(1,x), thus y1(1,x) =ε y2(1,x) =ε f(1,x).
By induction, from the same reasoning, we obtain that, for all n ∈ N, y1(n,x) =ε

y2(n,x) =ε f(n,x), and actually, we also have y1(t + 1
2 ,x) =ε y2(t,x) =ε f(n,x) for all

t ∈ [n,n+ 1
2 ], for any integer n.

To implement such an ODE, we have to fix a function θ(x) with the above property.
Taking ReLU(x) = max(0,x) would satisfy it, but it is not a derivable function, and
hence would not lead to a (classical) ODE. We could then take θ(x) = 0 for x≤ 0, and
exp(−1/x) for x > 0. The point is that such a function is not real analytic. The base
functions we consider in our class RCD are all real analytic, and real analytic functions
are preserved by composition, so we cannot get such a function by compositions from
our base functions. Futhermore, it is known that a real analytic function that is constant
on some interval (we assumed it is 0 for x≤ 0!) is constant. Hence the above-considered
function θ(x) cannot be real analytic. So, implementing this trick cannot be done
directly using our base functions, using only compositions.

In Proposition 2, we will do a similar construction, but dealing with errors and not
exact function θ(z) and r(x). Furthermore, here the purpose of function r was to correct
errors around integers, i.e. around N: this will be possibly around other Nδ for some
δ > 0.

3.4 Encoding of Turing machines configurations
Our proofs rely on some constructions from [4]. Concretely, we need to simulate the
execution of a Turing machine (TM) M by some dynamical system over the reals. This
requires to encode the configurations of a Turing machine into some real numbers. We
recall some of the definitions and constructions from [4].

Consider a Turing machine defined by M = (Σ,Q, I,F,δ ), with Σ the working
alphabet, Q the set of states, I,F ⊆ Q respectively the sets of initial and final states,
δ : Q×Σ→Q×Σ×{←,→} the transition function. For some practical reasons, similar
to the ones in [4], we assume that the working alphabet is made of the symbols 1 and 3,
and that the blank symbol is symbol 0.

We explicit the encoding we will use. We assume Q = {0,1, . . . , |Q|−1}. Let

. . . l−kl−k+1 . . . l−1l0r0r1 . . .rn. . . .

denote the content of the tape of the Turing machine M. In this representation, the
head is in front of symbol r0, and li,ri ∈ {0,1,3} for all i. Furthermore, we assume that
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there are no non-blank symbols between two blank symbols, i.e. that blank symbols,
i.e. symbol 0, can only be eventually on the right, or eventually on the left. Such a
configuration C can be denoted by C = (q, l,r), where l,r ∈ Σω are words over alphabet
Σ = {0,1,3} and q ∈ Q denotes the internal state of M.

Now, write: γword : Σω → R for the function that maps a word w = w0w1w2 . . . to
the dyadic (hence real) number γword(w) = ∑n≥0 wn4−(n+1).

The idea is that configuration C can also be encoded by some element C = (q, l,r) ∈
N×R2, by considering r = γword(r) and l = γword(l). In other words, we encode the
configuration of a bi-infinite tape Turing machine M by real numbers using their radix
4 encoding, but using only digits 1,3. Notice that this lives in Q× [0,1]2. Denoting the
image of γword : Σω → R by I , this even lives in Q×I 2.

In other words, we consider the following encodings: γcon f ig(C) = (q, l,r) with
l = l04−1+ l−14−2+ · · ·+ l−k4−(k+1)+ . . . and r = r04−1+r14−2+ · · ·+ ln4−(n+1)+ . . . .

3.5 Revisiting some previous constructions
We denote by RCD∗ the algebra [0,1,πk

i ,+,−,×, tanh,cos,π, x
2 ,

x
3 ;composition]. This

is close to the class

LDL◦ = [0,1,πk
i , ℓ(x),+,−, tanh,

x
2
,

x
3

;composition, linear length ODE],

considered in [5, 4], but without the function ℓ(x), and wihtout the possiblity of defining
functions using linear length ODE (and with multiplication added).

We will reuse some of the construction from [4] (some corrections and more details
can be found in [5]) but avoid systematically any use of linear length ODE and the length
function ℓ(x). Furthermore, the class considered in [4] is mixing functions from the
integers to the reals, and from the reals to the reals, and we need to keep only functions
over the reals.

The following was stated in [4, Lemma 19].

Lemma 2. We denote by Y (x,2m+2) the function 1+tanh(2m+2x)
2 . For all integer m, for all

x ∈ R, |ReLU(x)− xY (x,2m+2)| ≤ 2−m, where ReLU(x) = max(0,x).

First, we observe that considering Y (x,z) = 1+tanh(4xz)
2 would yield a function in

RCD∗ with the same property: we avoid the computation of 2m by a substitution of a
variable, and using a multiplication. We then write ReLU-s(Y,x) for xY (x,z): we have
|ReLU-s(2m,x)−ReLU(x)| ≤ 2−m.

In particular, this was used to prove we can uniformly approximate the continuous
sigmoid functions (when 1/(b− a) is in LDL◦) defined as: s(a,b,x) = 0 whenever
w≤ a, x−a

b−a whenever a≤ x≤ b, and 1 whenever b≤ x. The above trick provides a new
version of [4, Lemma 20].

Lemma 3 (Uniform approximation of any piecewise continuous sigmoid). Assume
a,b, 1

b−a is in RCD∗. Then there is some function C -s(z,a,b,x) ∈ RCD∗ such that for
all integer m, |C -s(2m,a,b,x)− s(a,b,x)| ≤ 2−m.
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Proof. Take C -s(z,a,b,x) = (x−a)Y (x−a,z21+c)−(x−b)Y (x−b,z21+c)
b−a . observing that (b−

a)s(a,b,x)=ReLU(x−a)−ReLU(x−b). From triangle inequality, it will hold, choos-
ing c with 1

b−a ≤ 2c.

The authors of [4] proved the existence of some function corresponding to a contin-
uous (controlled) approximation of the fractional part function:

Theorem 9 ([4, Lemma 28]). There exists some function ξ : N2→ R in LDL◦ such
that for all n,m ∈ N and x ∈ [−2n,2n], whenever x ∈ [⌊x⌋+ 1

8 ,⌊x⌋+
7
8 ],∣∣∣∣ξ (2m,2n,x)−{x− 1

8
}
∣∣∣∣≤ 2−m.

We say that some real function is a real extension of a function over the integers if
they coincide for integer arguments It is not clear that we have a real extension of ξ in
our algebra RCD∗, but if we add a real extension of such a function, from the proof of
[4, Corollary 22], we obtain the bestiary of functions considered in [4, Corollary 22]:
we write RCD∗+ξ for the algebra where some real extension of function ξ is added as
a base function.

Corollary 1 (A bestiary of functions). There exist

1. ξ1,ξ2 : N2×R 7→R ∈RCD∗+ξ such that, for all n,m ∈N, ⌊x⌋ ∈ [−2n +1,2n],
whenever x ∈ [⌊x⌋− 1

2 ,⌊x⌋+
1
4 ] , |ξ1(2m,2n,x)−{x}| ≤ 2−m, and whenever x ∈

[⌊x⌋,⌊x⌋+ 3
4 ] , |ξ2(2m,2n,x)−{x}| ≤ 2−m.

2. σ1,σ2 : N2×R 7→R ∈RCD∗+ξ such that, for all n,m ∈N, ⌊x⌋ ∈ [−2n+1,2n],
whenever x ∈ [⌊x⌋− 1

2 ,⌊x⌋+
1
4 ], |σ1(2m,2n,x)−⌊x⌋| ≤ 2−m, and whenever x ∈

I2 = [⌊x⌋,⌊x⌋+ 3
4 ], |σ2(2m,2n,x)−⌊x⌋| ≤ 2−m.

3. λ : N2×R 7→ [0,1] ∈ RCD∗+ ξ such that for all m,n ∈ N, ⌊x⌋ ∈ [−2n +1,2n],
whenever x ∈ [⌊x⌋+ 1

4 ,⌊x⌋+
1
2 ], |λ (2

m,2n,x)− 0| ≤ 2−m, and whenever x ∈
[⌊x⌋+ 3

4 ,⌊x⌋+1], |λ (2m,2n,x)−1| ≤ 2−m.

4. mod 2 : N2×R 7→ [0,1] ∈ RCD∗+ ξ such that for all m,n ∈ N, ⌊x⌋ ∈ [−2n +
1,2n], whenever x ∈ [⌊x⌋− 1

4 ,⌊x⌋+
1
4 ], | mod 2(2m,2n,x)-⌊x⌋ mod 2| ≤ 2−m.

5. ÷2 : N2×R 7→ [0,1] ∈ RCD∗+ξ such that for all m,n ∈ N, ⌊x⌋ ∈ [−2n +1,2n],
whenever x ∈ [⌊x⌋− 1

4 ,⌊x⌋+
1
4 ], | ÷2 (2m,2n,x)−⌊x⌋//2| ≤ 2−m, with // the

integer division.

Proof. There were given by ξ1(M,N,x) = ξ (M,N,x− 3
8 )−

1
2 , ξ2(M,N,x) = ξ (N,x−

7
8 ), σi(M,N,x) = x−ξi(M,N,x), λ (M,N,x) = C -s(2M,1/4,1/2,ξ (2M,N,x−9/8)),
mod 2(M,N,x)= 1−λ (M,N/2, 1

2 x+ 7
8 ),÷2(M,N,x)= 1

2 (σ1(M,N,x)− mod 2(M,N,x)).

Similarly, the equivalent of [4, Lemmas 23,24 and 25] still hold in RCD∗+ ξ .
Namely:
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Lemma 4. There exists C -if ∈RCD∗+ξ such that, l ∈ [0,1], if we take |d′−0| ≤ 1/4,
then |C -if(2m,d′, l)−0| ≤ 2−m, and if we take |d′−1| ≤ 1/4, then |C -if(2m,d′, l)− l| ≤
2−m.

Lemma 5. Let α1,α2, . . . , αn be some integers, and V1,V2, . . . ,Vn some constants. We
write send(αi 7→Vi)i∈{1,...,n} for the function that maps any x ∈ [αi−1/4,αi +1/4] to
Vi, for all i ∈ {1, . . . ,n}.

There is some function in RCD∗+ ξ , that we write C -send(2m,αi 7→Vi)i∈{1,...,n},
that maps any x ∈ [αi− 1/4,αi + 1/4] to a real at distance at most 2−m of Vi, for all
i ∈ {1, . . . ,n}.

Lemma 6. Let N be some integer. Let α1,α2, . . . ,αn be some integers, and Vi, j for 1≤
i≤ n some constants, with 0≤ j < N. We write send((αi, j) 7→Vi, j)i∈{1,...,n}, j∈{0,...,N−1}
for the function that maps any x ∈ [αi−1/4,αi +1/4] and y ∈ [ j−1/4, j+1/4] to Vi, j,
for all i ∈ {1, . . . ,n}, j ∈ {0, . . . ,N−1}.

There is some function in RCD∗+ξ , that we write C -send(2m,(αi, j) 7→Vi, j)i∈{1,...,n}, j∈{0,...,N−1},
that maps any x ∈ [αi−1/4,αi +1/4] and y ∈ [ j−1/4, j+1/4] to a real at distance at
most 2−m of Vi, j, for all i ∈ {1, . . . ,n}, j ∈ {0, . . . ,N−1}.

Working with one step of a Turing machine As the proof of [4, Lemmas 30] is done
using all the functions provided by these lemmas, we obtain:

Lemma 7. We can construct some function Next in RCD∗+ ξ that simulates one
step of M, i.e. that computes the Next function sending a configuration C of Turing
machine M to C′, where C′ is the next one: ∥Next(2m,2S,C)−C′∥ ≤ 2−m. Furthermore,
it is robust to errors on its input, up to space S: considering ∥C̃−C∥ ≤ 4−(S+2),
∥Next(2m,2S,C̃)−C′∥ ≤ 2−m remains true.

Converting integers an dyadics to words and conversely The authors of [4] also
defined some functions for converting integers and dyadics to their encoding as words,
and conversely. Namely, they consider the following encoding: every digit in the
binary expansion of dyadic d is encoded by a pair of symbols in the radix 4 expansion
of d ∈ I ∩ [0,1]: digit 0 (respectively: 1) is encoded by 11 (resp. 13) if before the
“decimal” point in d, and digit 0 (respectively: 1) is encoded by 31 (resp. 33) if after.
For example, for d = 101.1 in base 2, d = 0.13111333 in base 4. Conversely, given d,
they provided a way to construct d. This corresponds to [4, Lemmas 33 and 34]:

Lemma 8 (From N to I ). We can construct some function Decode : N2→ R in LDL◦
that maps m and n to some point at distance less than 2−m from γword(n).

Lemma 9 (From I to R, and multiplying in parallel). We can construct some function
EncodeMul : N2× [0,1]×R→ R in LDL◦ that maps m, 2S, γword(d) and (bounded) λ

to some real at distance at most 2−m from λd, whenever d is of length less than S.

As for ξ , it is not clear that we have some real extensions of these functions in RCD∗:
we write RCD∗+ξ +Decode+Encode for the algebra where some real extension of
these functions is added as a base function.
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3.6 Constructing the missing functions
We need a way to construct some substitute of “missing functions” (ξ , Decode and
EncodeMul). As all of them are defined using discrete ODEs, an idea is to use a contin-
uous ODE to simulate the respective discrete ODEs: we hence revisit the construction
of the ideal iteration trick of Section 3.3, dealing with errors and not exact functions
θ(z) and r(x).

The key is to revisit Lemma 1, and do a more detailed analysis of possible involved
errors in dynamics of the form (9). This equation has been studied by various authors
in several articles, including [21, 22, 35, 13, 33]. We use the following statement
from [33, Lemma 4.5], [11, Lemma 5.2], obtained basically by a case analysis of error
propagations in Lemma 1.

Lemma 10 (Improved error analysis of ODE (9), [33, Lemma 4.5] [11, 5.2]). Consider
a point b∈R, some γ > 0 some reals t0 < t1, and a function φ : R→R with the property
that φ(t) ≥ 0 for all t ≥ t0 and

∫ t1
t0 φ(t)dt > 0. Let ρ,δ ≥ 0 and let b,E : R→ R be

functions such that that |b(t)−b| ≤ ρ and |E(t)| ≤ δ for all t ≥ t0. Then the IVP defined
by

z′ = c(b(t)− z)3
φ(t)+E(t)

with the initial condition z(t0) = z0, where γ > 0 and c≥ 1
2γ2 ∫ t1

t0
φ(t)dt

satisfies

1.
∣∣z(t1)−b

∣∣< ρ + γ +δ (t1− t0), independently of the initial condition z0 ∈ R

2. min(z0,b−ρ)−δ (t1− t0)≤ z(t)≤max(z0,b+ρ)+δ (t1− t0) for all t ∈ [t0, t1].

Proposition 2 (Simulating a discrete ODE by a continuous ODE). Assumge G is almost
constant around Nδ and r is a rounding function around Nδ for some δ > 0. Suppose
that, in (8), we replace function θ(z) and function r(z) by some suitable approximations:
we take θ(x) = ReLU(x), θε ′(x), rε ′(z) such that θ(z) =ε ′ θ(z), and rε ′(x) =ε ′ , and
take constant c big enough. Then the solution of the obtained ODE will continuously
simulate the discrete ODE (7), with same bounds as in the analysis in Section 3.3, i.e.
with error at most ε if ε ′ is taken sufficiently small. To guarantee ε = 2−n, it is sufficient
to take ε ′ = 2−p(n) and θε ′(x) = ReLU-s(2p(n),x) for some polynomial p.

Proof. The key is that involved errors propagate additively, from Lemma 10. Namely,
they are in O(ε ′), but they are then corrected from the reasoning in Section 3.3: rounding
function corrects errors or order ε whenever its argument is at distance less than 1/4δ

of some nδ exactly as in the reasoning in Section 3.3 (where δ = 1, even if now it
introduces some error ε ′ at every step; but the latter is corrected at the next step).
Observe that the involved constant c, is of order 2n.

We did up to that point the reasoning, assuming that parameter x is fixed. But if we
consider a function that either depends in a controlled way on t on that parameter, or
that is such that a small perturbation on its inputs does not change much its output (we
mean in a controlled way, in the way we consider the rounding function r), then the
analysis remains perfectly valid, even when this parameter may not be exact.

19



We claim that for all n ∈ N, y1(n,x) =ε y2(n,x) =ε f(n,x), and y1(t + 1
2 ,x) =ε

y2(t,x) =ε f(n,x) for all t ∈ [n,n+ 1
2 ].

For n = 0, initially f(0,x) = y1(0,x) = y2(0,x) = g(x). For t ∈ [n,n+1/2], we have
θ(−sin(2πt)) =ε ′ 0, and hence y′2 =ε ′ 0, so y2 is kept close to value g(x) for t ∈ [0, 1

2 ],
with an error less than 1

2 ε ′.
Consequently, for t ∈ [0,1/2], r(y2) is kept close to a constant value g(x), when an

error less than ε ′, if we choose ε ′ < 1
4 δ . Meanwhile, r(t) is also at a value close to n

with error less than ε ′.
Consequently, on this interval, if we write C(t) = cθ(sin(2πt)), then the dynamics

of y1 is given by a dynamic of the form of Lemma 10. This lemma states that y1(t,x)
will approach G(g(x),0,x) = f(1,x) on this interval, with an error of order ε ′+ε ′+ 1

2 ε ′.
Here the hypothesis that G is almost constant around Nδ means that its value is

guaranteed to be at ε ′ from G(g(x),0,x) on the interval.
Thus, y1(

1
2 ,x) =ε/2 f(1,x), if we choose 5

2 ε ′ < ε/2. At t = n+ 1
2 , y1 will hence

have simulated one step of discrete ODE (7), with error less than ε/2, and y2 will be
close to g(x) with error less than ε ′ < ε/2.

Now, for t ∈ [n+ 1
2 ,n+1] the roles of y1 and y2 are exchanged : y′1(t,x) =ε ′ 0, so

y1 is kept almost fixed, with a new error less than 1
2 ε ′. In the same time y2 approaches

r(y1) = f(1,x) by Lemma 10, with some new error of order less than 5
2 ε ′ < ε/2.

Consequently, we get the property at rank n+1.

NB 6. Observe that, somehow, the constructions always replace every function with
a function that does not change much locally (i.e., change in a controlled way). This
is the key that provides a robust ODE as in Definition 1, leading to polynomial space
complexity by Theorem 4.

In other words, whenever we have some discrete ODE as in (7) defining some
function f(t,x), we can construct some continuous ODE, using only functions from
RCD∗, such that one of its projection provides a function f(z, t,x), with the guarantee
f(2n, t,x) is 2−n close to f(n,x), whenever t is close (at distance less than 1/4) to some
integer n.

This works, as we can obtain such a rε ′(x) from the functions from Corollary 1:
Consider r(x,2m) = σ2(2m,2n,x+ 1

4 ) that works over ⌊x⌋ ∈ [−2n +1,2n], and observe
that this is sufficient to apply the trick for the required functions, from the form of the
considered discrete ODE in [4].

Except that we have a bootstrap problem: ξ was defined using a discrete ODE in
[4], and as the functions from Corollary 1 are defined above using ξ , we cannot apply
this reasoning to get function ξ . But the point is that for the special case of ξ , it is easy
to construct a function in RCD that corresponds to some real extension of ξ , as we have
functions such as sin(x) = cos(π

2 − x) and π .

Lemma 11. Function ξ has some real extension in RCD∗.

Proof. If we succeed to obtain a function i(2m,2n,x) that values ⌊x⌋ whenever x ∈
[⌊x⌋,⌊x⌋+ 3

4 ], we are done, as we can then obtain ξ (2m,2n,x) by considering ξ (2m,2n,x)=
x+ 7

8 − i(2m,2n,x+ 7
8 ).
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A possible solution is then the following: consider function Re(x) := s(x,0,e/2),
and then te(x) = (1−Re(sin(2πx)))((1−Re(sin(4πx))). If we put aside some interval
of width e/2 around 1

2 and 7
8 where it takes values in [0,1], it values 0 on [⌊x⌋,⌊x⌋+ 7

8 ],
and then 1 on [⌊x⌋+ 7

8 ,⌊x⌋+ 1] (see following graphical illustration). We can then
consider Ie(t) = 8

∫ t
0 te(x)dx (i.e. the solution of ODE l′e = 8te), and then i(t) =e.t le(t).

It is then sufficient to replace s by C -s, in the above expressions, in order to control the
error and make it smaller than 2−m.

Here is a graphical representation of R 1
10
(x):

Then of R 1
10
(sin(2πx)):

and R 1
10
(sin(4πx)):
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We then get t 1
10
(x).

Its integral is then close to 1
8⌊x⌋ on [⌊x⌋,⌊x⌋+ 3

4 ].

Consequently, this is true that we can substitute a discrete ODE with a continuous
ODE for the required functions Decode and EncodeMul: just replace ξ in the involved
schemas by the above function. Notice that we can also easily get a real extension of
the function that maps n to 2n.

3.7 Working with all steps of a Turing machines
We can then go from one step of a Turing machine, to arbitrarily many steps. We are
following the idea of [4], but replacing discrete ODEs with continuous ODEs.
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Theorem 10. Consider some Turing machine M that computes some function f : Σ∗→
Σ∗ in some polynomial space S(ℓ(ω)) on input ω . One can construct some function
f̃ : N2×R→ R in RCD that does the same: we have f̃ (2m,2S(ℓ(ω)),γword(ω)) that is
at most 2−m far from γword( f (ω)).

Proof. We denote by M the Turing machine computing f . Similarly to the arguments
in [4], we can state that there exists a function Exec solution of a robust linear discrete
ODE (E) that "computes" the execution of M , with Cinit the initial configuration :

(E) :


Exec(2m,0,2S,Cinit) =Cinit

δExec(2m, t,2S,Cinit)

δ t
= Next(2m,2S,Exec(2m, t,2S,Cinit))−Exec(2m, t,2S,Cinit)

For any configuration C of M , let write F(C))=F(2m,2S,C)=Next(2m,2S,C)+C,
associated to the righthand side of the above discrete ODE. Denoting by C̃ the errorless
encoding of the configuration C, from the constructions of [4] (Lemma 7), it is true
that if

∣∣∣C−C̃
∣∣∣ ≤ 4−(S+2), then

∣∣∣F(C)−F(C̃)
∣∣∣ ≤ 4−(S+2). F does not change much

locally on the space of configuration. Denoting by S the space of M , and replacing
m by m+ 2S+ 4 as in [4], we have

∣∣∣Next(2m,2S,C)−C
∣∣∣ ≤ 4−(S+2). So at each step

of the TM, the error is fixed (and bounded). We can then apply the above arguments
(Proposition 2) to simulate continuously (E), with some controlled error: all involved
quantities have encoding polynomials in the size of the inputs.

4 Proof of Theorem 1
Proof. ⊆: In this direction, we just need to prove that RCD contains only functions
over the reals that are computable in polynomial space. Indeed, then for a function
f : Rd → Rd′ sending every integer n ∈ Nd to the vicinity of some integer of Nd , at
a distance less than 1/4, by approximating its value with precision 1/4 on its input
arguments, and taking the closest integer, we will get a function from the integers to the
integers, that corrresponds to DP( f ), and that will be in FPSPACE∩NN.

This is indeed the case, since i) all the base functions of RCD are in FPSPACE:
they are even in FPTIME, see [46] ii) RR∩FPSPACE is stable under composition. iii)
stability under robust ODE follows from Theorem 4.
⊇: In the other direction, we use an argument similar to [4]: namely, as the function is
polynomial space computable, this means that there is a polynomial space computable
function g : Nd′′+1→{1,3}∗ so that on m,2n, it provides the encoding φ(m,n) of some
dyadic φ(m,n) with ∥φ(m,n)− f(m)∥ ≤ 2−n for all m. The problem is then to decode,
compute and encode the result to produce this dyadic. More precisely, from Theorem
10, we get g̃ with

|g̃(2e,2p(max(m,n)),Decode(2e,m,n))− γword(g(m,n))| ≤ 2−e

for some polynomial p corresponding to the time required to compute g, and e =
max(p(max(m,n)),n). Then we need to transform the value to the correct dyadic: we

23



mean
f̃(m,n) = EncodeMul(2e,2t , g̃(2e,2t ,Decode(2e,m,n)),1), where
t = p(max(m,n)), e = max(p(max(m,n)),n) provides a solution with ∥f̃(m,2n)−
f(m)∥ ≤ 2−n.

5 Proof of Theorem 2
Proof. ⊆: To prove that RCD⊆ RR∩FPSPACE, we only need to add to the previous
arguments that RR∩FPSPACE is also stable under ELim.
⊇: In this direction, we have the same issue as in [4]: the strategy of decoding, working
with the Turing machine, and encoding is not guaranteed to work for all inputs. But, we
can solve it by using an adaptative barycenter technique as in [4].

We recall the principle here for a function whose domain is R, but it can be gener-
alised to Rd . The idea is to construct some function λ : N2×R→ [0,1] definable in
RCD∗ as in Corollary 1, but with a continuous ODE : Adapting the proof from [4] and
using the simulation of ξ in our continuous framework, we can consider λ (2m,N,x) =
Ψ(Ξ(2m+1,N,x−9/8)) where Ψ(x) = C -s(2m+1,1/4,1/2,x). In particular, by defini-
tion, λ ∈ RCD∗. Thus, by Lemma 9, if λ (2m,N,x) =2−m 0, then σ2(2m,N,x) =2−m ⌊x⌋.
If λ (2m,N,x) =2−m 1, then σ1(2m,N,x) =2−m ⌊x⌋ and if λ (2m,N,x) ∈ (0,1), then
σ1(2m,N,x) =2−m ⌊x⌋+1 and furthermore σ2(2m,N,x) =2−m ⌊x⌋. So,

λ (·,2n,x)Formula1(x,u,M,n)+(1−λ (·,2n,n))Formula2(x,u,M,n)

and we are sure to be close (up to some bounded error) to some 2−m approximation of a
function f .

6 Conclusion
We characterised polynomial space using an algebraically defined class of functions,
using a finite set of basic functions, closure under composition, and a schema for
defining functions from robust ODEs. We proposed a concept of robust ODEs solvable
in polynomial space. As far as we know, this is an original method for solving ODEs
optimising space. It is based on classical constructions such as Savitch’s theorem. We
extended existing characterisations to a characterisation of functions over the reals and
not only over the integers.

The interesting message from our statements is that we provide a clear and simple
concept associated with continuous ODEs for space: space corresponds to the precision
for numerically stable systems. Hence, compiled with [16], we now know the length of
solutions corresponds to time and precision to memory.

Considering future work: We have an algebraically defined class of functions. It
remains to know whether this could be transferred at the level of polynomial ODE. We
know that soluting of polynomial ODEs defined a very robust class of functions, stable
by many operations: sum, products, division, ODE solving, etc: see [34, 12]. Hence,
all the base functions we consider in our algebraic class can be turned into polynomial
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ODEs, by adding some variables. It would be interesting to understand if we could
define space complexity directly at the level of polynomial ODEs, using precision.

Recently, a characterisation of PSPACE was obtained for polynomial ODEs using
rather ad-hoc definitions in [33, 11] and working over a non-compact space. Could
our characterisation be put at this simplest class of ODEs, but working with precision?
The point is that the characterisation there uses unbounded domains, hence, precision
is harder to interpret in their constructions, where the schemas are somehow done to
control errors.

Of course, from our statements, adding any FPSPACE-computable function over
the reals among the base functions would not change the class. However, we did not
intend to minimise the number of base functions. For example, tanh(t) is solution of
ODE f ′ = 1+ f 2 and cos(t) can be obtained by the two dimensional ODE y′1 =−y2,
y′2 = y1. Minimising the number of base functions is also left for future work. We
believe that even in this settings, proving space complexity corresponds to precision is
already significant, independently of this question of a minimal set of base functions.
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7 Appendix

7.1 Very basics of computable analysis
In very short, repeating [6], the idea behind classical computability and complexity is to
fix some representations of objects (such as graphs, integers, etc.) using finite words
over some finite alphabet, say Σ = {0,1} and to say that such an object is computable
when such a representation can be produced using a Turing machine. The computable
analysis is designed to be able to also talk about objects such as real numbers, functions
over the reals, closed subsets, compacts subsets, . . . , which cannot be represented
by finite words over Σ (a clear reason for it is that such words are countable while
the set R, for example, is not). However, they can be represented by some infinite
words over Σ and the idea is to fix such representations for these various objects, called
names, with suitable computable properties. In particular, in all the following proposed
representations, it was proved that an object is computable iff it has some computable
representation.

NB 7. Here the notion of computability involved is one of Type 2 Turing machines, that
is to say, computability over possibly infinite words: the idea is that such a machine has
some read-only input tape(s), that contains the input(s), which can correspond to either
a finite or infinite word(s), a read-write working tape and one (or several) write-only
output tape(s). It evolves as a classical Turing machine, the only difference being that
we consider it outputs an infinite word when it writes forever the symbols of that word
on its (or one of its) write-only infinite output tape(s): see [62] for details.

A name for a point x ∈ Rd is a sequence (In) of nested open rational balls with
In+1 ⊆ In for all n ∈ N and {x}=

⋂
n∈N In. Such a name can be encoded as an infinite

sequence of symbols.
We call a real function f :⊆ R→ R computable, iff some (Type 2 Turing) machine

maps any name of any x ∈ dom( f ) to a name of f (x). For real functions f :⊆ Rn→ R
we consider machines reading n names in parallel. A computable function is necessarily
continuous: see [62] for all details.

We also need the concept of polynomial time computable function in computable
analysis: see [46]. In short, a quickly converging name of x ∈Rd is a name of x, with In
of radius < 2−n. A function f : Rd → Rd′ is said to be computable in polynomial time,
if there is some oracle TM M, such that, for all x, given any fast converging name of x
as an oracle, given n, M produces some open rational ball of radius < 2−n containing
f(x), in a time polynomial in n.

A function f : Rd → Rd′ is computable in polynomial space if there exists an oracla
TM M, such that, for all x, given any fast converging name of x as an oracle, given n, M
produces some open rational ball of radius < 2−n containing f(x), in a space polynomial
in n.
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7.2 Some classical statements from numerical analysis
Lemma 12 (Discrete Grönwall’s lemma, e.g [29, page 213]). Consider sequences
hn,θn ≥ 0 and εn ∈ R such that

θn+1 ≤ (1+Λhn)θn + |εn|

Then
θn ≤ eΛ(tn−t0)θ0 + ∑

0≤i≤n−1
eΛ(tn−ti+1)|εi|

Proof. By recurrence over n. For n = 0, the inequality is θ0 ≤ θ0.
Suppose now the inequality at order n. Observe that

(1+Λhn)≤ eΛ(tn+1−tn)

By hypothesis, we have

θn+1 ≤ eΛ(tn+1−tn)θn + |εn|
≤ eΛ(tn+1−t0)θ0 + ∑

0≤i≤n−1
eΛ(tn+1−ti+1)|εi|+ |εn|

The inequality at order n+1 follows.
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