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CONSTRUCTIBLE REPRESENTATIONS

AND CATALAN NUMBERS

George Lusztig and Eric Sommers

Dedicated to the memory of Gary Seitz

0. Introduction

0.1. The sequence of Catalan numbers is the sequence Catn, (n = 1, 2, 3, . . . )

where Catn = (2n)!
n!(n+1)! . According to [La], Catalan numbers first appeared in the

work of Ming Antu (1692-1763). They were rediscovered by Euler (1707-1783).
See also [St].

In this paper we give a new way in which Catalan numbers appear in connection
with Lie theory.

0.2. Let G be a connected reductive algebraic group of adjoint type over C whose
Weyl group W is assumed to be irreducible. Let Ŵ be the set of (isomorphism
classes of) irreducible representations (over Q) of W .

In [L79], a partition of Ŵ into subsets called families was defined and in [L82]
a class of not necessarily irreducible representations (later called constructible rep-
resentations, see [L03]) of W with all components in a family c (which we now
fix) was defined by an inductive procedure. Let Con(c) be the set of constructible
representations (up to isomorphism) attached to c. In [L82] it was conjectured
that the representations in Con(c) are precisely the representations associated in
[KL] to the various left cells of W contained in the two-sided cell of W defined
by c; this conjecture was proved in [L86]. It is known that |c| = 1 if W is of

type A, |c| =
(

D+1
D/2

)

(with D ∈ 2N) if W is of type B,C or D, and |c| is one of

1, 2, 3, 4, 5, 11, 17 if W is of exceptional type.

0.3. We would like to find an explicit formula for |Con(c)|.
If |c| is one of 1, 2, 3, 4, 5, 11, 17 then |Con(c)| is 1, 1, 2, 2, 3, 5, 7 respectively.
In the remainder of this paper we assume that

(a) |c| =
(

D+1
D/2

)

with D = 2d ∈ 2N.

In §1 we prove the following result.
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2 GEORGE LUSZTIG AND ERIC SOMMERS

Theorem 0.4. We have |Con(c)| = Catd+1.

It is known (see [L22,2.13]) that if W is of type D then |Con(c)| = |Con(c′)|
for some family c′ in a Weyl group of type B or C. We will therefore assume in
the rest of the paper that W is of type B or C.

0.5. According to [HM, Cor.4], we have

(a) Catn =
n
∑

p=1

N(n, p)

where

N(n, p) = (1/n)

(

n

p

)(

n

p− 1

)

are the Narayana numbers.
We denote by F the field with two elements.
In [L87] a bijection between Con(c) and a certain collection Xc of subgroups

of F d is described. For each p, 1 ≤ p ≤ d + 1 let Xc,p be the set of subgroups of
cardinal 2p−1 in Xc. Th following refinement of Theorem 0.4 is proved in §2.

Theorem 0.6. We have |Xc,p| = Nd+1,p.

0.7. In §3 we state a conjecture according to which Catalan numbers appear in
connection with the study of Springer fibres for G.

0.8. For any i ≤ j in Z we set [i, j] = {h ∈ Z; i ≤ h ≤ j}.

1. Proof of Theorem 0.4

1.1. Let D ∈ 2N. Let VD be an F -vector space with a nondegenerate symplectic
form <,>: VD × VD −→ F and with a given subset {e1, e2, e3, . . . , eD} such that
< ei, ej >= 1 if i− j = ±1 and < ei, ej >= 0 otherwise.

Assuming that D ≥ 2 and i ∈ [1, D] we define a linear (injective) map Ti :
VD−2 −→ VD by

ea 7→ ea if a < i− 1,
ei−1 7→ ei−1 + ei + ei+1,
ea 7→ ea+2 if a ≥ i.
(We regard VD−2 as a subspace of VD in an obvious way.)
Let F(VD) be the family of isotropic subspaces associated in [L20,1.17] to VD

and its basis {e1, e2, . . . , eD}. (The characteristic functions of these subspaces
form a basis of the C-vector space of functions VD −→ C.) We have a partition
F(VD) = ⊔k≥0F

k(VD). We will only give here the definition of F0(VD) and
F1(VD). The definition is by induction on D. When D = 0, F0(VD) consists of
0 and F1(VD) is empty. Assume now that D ≥ 2. A subspace E of VD is said
to be in F0(VD) if either E = 0 or if there exists i ∈ [1, D] and E′ ∈ F0(VD−2)
such that E = Ti(E

′) +Fei. A subspace E of VD is said to be in F1(VD) if either
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E = F (e1 + e2 + · · · + eD) or if there exists i ∈ [1, D] and E′ ∈ F1(VD−2) such
that E = Ti(E

′) + Fei.
For example if D = 2, F0(VD) consists of 0, F e1, F e2 and F1(VD) consists of

F (e1 + e2). If D = 4, F0(VD) consists of

0, F e1, F e2, F e3, F e4, F e1 + Fe3, F e1 + Fe4, F e2 + Fe4,

F (e1 + e2 + e3) + F (e2), F (e2 + e3 + e4) + F (e3)

and F1(VD) consists of

F (e1 + e2 + e3 + e4), F (e1 + e2 + e3 + e4) + Fe2,

F (e1 + e2 + e3 + e4) + Fe3, F (e1 + e2) + Fe4, F e1 + F (e3 + e4).

We have
F0(VD) = F0

D/2(VD) ⊔ F0
<D/2(VD)

where
F0

D/2(VD) = {E ∈ F0(VD); dim(E) = D/2},

F0
<D/2(VD) = {E ∈ F0(VD); dim(E) < D/2}.

1.2. Let G0
D (resp. G1

D) be the set of lines in VD of the form F (ea+ea+1+ · · ·+eb)
where a ≤ b in [1, D] satisfy b − a = 1 mod 2 (resp. b − a = 0 mod 2). Let
GD = G0

D ⊔ G1
D. For E ∈ F(VD) let BE = {L ∈ GD;L ⊂ E}. According to [L22,

1.2(e),(f),(g)], if E ∈ F(VD) then E = ⊕L∈BE
L; moreover we have E ∈ F0(VD)

if and only if BE ⊂ G1
D; we have E ∈ F1(VD) if and only if BE contains a unique

line LE in G0
D.

It follows that if E ∈ F1(VD) we can write E = E0 + LE where E0 =
⊕L∈BE ;L 6=LE

L.
We show:
(a) E0 ∈ F0(VD).

We argue by induction on D. If D = 0 then F1
D = ∅ and there is nothing to

prove. Assume now that D ≥ 2. If E = F (e1 + e2 + · · · + eD), then E0 = 0
and (a) is obvious. If E is not of this form then there exists i ∈ [1, D] and
E′ ∈ F1

D−2 such that E = Ti(E
′) + Fei. By the induction hypothesis we have

E′ = E′
0 ⊕LE′ where E′

0 ∈ F0
D−2. We have E = Ti(E

′
0)+Fei + Ti(LE′) = Ẽ0 + L̃

where Ẽ0 = Ti(E
′
0) + Fei ∈ F0(VD) and L̃ = Ti(LE′) ∈ G0

D (from the definition

of Ti). Since L̃ ⊂ E we must have L̃ = LE . We have BE = BẼ0
∪ {LE} (the

union is disjoint since BẼ0
⊂ G1

D, LE ∈ G0
D. Thus BẼ0

= BE − {LE}. Since

Ẽ0 =
∑

L∈B
Ẽ0

=
∑

L∈BE−{LE} L = E0 we see that E0 = Ẽ0 ∈ F0(VD). This

proves (a).
Note that in (a) (which is a direct sum) we have dim(E) ≤ D/2, dim(LE) = 1

hence dim(E0) < D/2. Thus we can define a map ΞD : F1(VD) −→ F0
<D/2(VD) by

E 7→ E0 (notation of (a)).
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We show:
(b) For any E0 ∈ F0

<D/2(VD) there exists E ∈ F1(VD) such that ΞD(E) = E0.

We argue by induction on D. If D = 0 then F0
<D/2(VD) is empty and there is

nothing to prove. Assume now thatD ≥ 2. If E0 = 0 then E = F (e1+e2+· · ·+eD)
is as required. Now assume that E0 6= 0. Then there exists i ∈ [1, D] and
E′

0 ∈ F0(VD−2) such that E0 = Ti(E
′
0)+Fei. Since this sum is necessarily a direct

sum we have dim(E′
0) = dim(Ti(E

′
0)) = dim(E0)− 1 < (D/2)− 1 = (D − 2)/2 so

that E′
0 ∈ F0

<(D−2)/2)VD−2. By the induction hypothesis there exists L ∈ G0
D−2

such that E′
0 + L ∈ F1(VD−2). Let E = Ti(E

′
0 + L) + Fei. We have E ∈ F1(VD)

and E = E0+Ti(L). Note that Ti(L) ∈ G0
D and is contained in E hence it is equal

to LE . It follows that E0 = ΞD(E). This proves (b).
We show:
(c) Assume that E,E′ in F1(VD) satisfy Ξ(E) = Ξ(E′). Then E = E′.

We have E = E0⊕L,E′ = E0⊕L′ where E0 ∈ F0(VD) and L = F (ea+ea+1+· · ·+
eb), L

′ = F (ea′ + ea′+1 + · · ·+ eb′), where a < b in [1, D] a′ < b′ satisfy b − a = 1
mod 2, b′−a′ = 1 mod 2. (In fact, from [L20, 1.3(e), see (P2)] we have that a = 1
mod 2, b = 0 mod 2, a′ = 1 mod 2, b′ = 0 mod 2.) Assume first that a < a′ so
that a ≤ a′−2. From [L20, 1.3(e), see (P2)] we see that there exist 1 ≤ c ≤ c′ ≤ D
such that c ≤ a ≤ c′ and such that the line L = F (ec+ec+1+ · · ·+ec′) is contained
in E0 hence also in G1

D. But then the pair of distinct lines L, L would violate [L20,
1.3(e), see (P0)]. We see that we must have a ≥ a′. Similarly we have a′ ≥ a hence
a′ = a.

Assume next that that b < b′ so that b + 2 ≤ b′. From [L20, 1.3(e), see (P2)]
we see that there exist 1 ≤ c ≤ c′ ≤ D such that c ≤ b′ ≤ c′ and such that the
line L = F (ec + ec+1 + · · · + ec′) is contained in E0 hence also in G1

D. But then
the pair of distinct lines L, L′ would violate [L20, 1.3(e), see (P0)]. We see that
we must have b ≥ b′. Similarly we have b′ ≥ b hence b′ = b.

We see that L = L′ hence E = E′. This proves (c).

1.3. From (a),(b),(c) we see that
|F0

<D/2(VD)| = |F1(VD)|

hence |F0(VD)| − |F0
D/2(VD)| = |F1(VD)| that is,

|F0
D/2(VD)| = |F0(VD)| − |F1(VD)|.

According to [L20, 1.27] we have

|F0(VD)| =

(

D + 1

D/2

)

, |F1(VD)| =

(

D + 1

(D − 2)/2

)

.

It follows that

|F0
D/2(VD)| =

(

D + 1

D/2

)

−

(

D + 1

(D − 2)/2

)

=
(2d+ 2)!

(d+ 1)!(d+ 2)!
= Cd+1

where D = 2d.
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1.4. In [L81] the set c is identified with a subset of VD. Now any object in Con(c)
is multiplicity free hence may be identified with a subset of c hence with a subset
of VD. This subset is a Lagrangian subspace of VD. Thus Con(c) is identified
with a subset of the set of Lagrangian subspaces of VD. This subset is the same
as F0

D/2(VD) (see [L19, 2.8(iii)]). We see that |Con(c)| = Cd+1 and Theorem 0.4

is proved.

2. Proof of Theorem 0.6

2.1. We preserve the notation of VD. We have VD = V 0
D⊕V 1

D where V 0
D has basis

{e2, e4, . . . , eD} and V 1
D has basis {e1, e3, . . . , eD−1}. Assuming that D ≥ 2 we

define for any i ∈ [1, D] a linear map Ti : V
1
D−2 −→ V 1

D by
ek 7→ ek if k ≤ i− 2,
ek 7→ ek+2 if k ≥ i,
ei−1 7→ {ei−1, ei+1} if i even.
Following [L19, 2.3] we define a collection C(V 1

D) of subspaces of V 1
D by induction

on D. If D = 0, C(V 1
D) consists of {0}. Assume now that D ≥ 2. A subspace

E of V 1
D is said to be in C(V 1

D) if either E = {0} or if there exists i ∈ [1, D] and
E ′ ∈ C(V 1

D−2) such that
E = Ti(E

′) + Fei (if i is odd)
E = Ti(E

′) (if i is even).
For example, C(V 1

2 ) consists of 2 subspaces: 0, F e1; C(V
1
4 ) consists of 5 sub-

spaces:
0, F e1, F e3, F (e1 + e3), F e1 + Fe3;
C(V 1

6 ) consists of 14 subspaces:
0, F e1, F e3, F e5, F (e1 + e3), F (e3 + e5), F (e1 + e3 + e5),
Fe1 + Fe3, F e1 + Fe5, F e3 + Fe5, F (e1 + e3) + Fe5, F e1 + F (e3 + e5), F (e1 +

e3 + e5) + Fe3, F e1 + Fe3 + Fe5.

2.2. If E ∈ C(V 1
D) we set E ! = {x ∈ V 0

D;< x, E >= 0}. The following result
appears in [L19, 2.4].

(a) E 7→ E ⊕ E ! defines a bijection C(V 1
D)

∼
−→ F0

D/2(VD). The inverse bijection

is given by E 7→ E ∩ V 1
D.

2.3. Let Z∗
D be the set of all elements of V 1

D of the form
ea,b = ea + ea+2 + ea+4 + · · ·+ eb
for various numbers a ≤ b in {1, 3, . . . , D − 1}.
For any s ≥ 0 let Zs

D be the set of all finite unordered sequences

ea1,b1 , ea2,b2 , . . . , eas,bs

in Z∗
D such that for any n 6= m in {1, 2, . . . , s} we have either

an ≤ bn < am ≤ bm or am ≤ bm < an ≤ bn,
or an < am ≤ bm < bn or am < an ≤ bn < bm.
Let ZD = ∪s≥0Z

s
D (a disjoint union).
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For example, Z2 consists of 2 sequences: ∅, {e1};
Z4 consists of 5 sequences: ∅, {e1}, {e3}, {e1 + e3}, {e1, e3};
Z6 consists of 14 sequences:
∅, {e1}, {e3}, {e5}, {e1 + e3}, {e3 + e5}, {e1 + e3 + e5},
{e1, e3}, {e1, e5}, {e3, e5}, {e1+e3, e5}{e1, e3+e5}, {e1+e3+e5, e3}, {e1, e3, e5}.
We have the following result.

Theorem 2.4. The assignment

ΘD : (ea1,b1 , ea2,b2 , . . . , eas,bs) 7→ Fea1,b1 + Fea2,b2 + · · ·+ Feas,bs

defines a bijection ZD
∼
−→ C(V 1

D).

When D ≤ 6 this follows from 2.1, 2.3. Note that the Theorem gives an order
preserving bijection between the set of non crossing partitions (see [St]) and C(V 1

D)
(with the order given by inclusion).

2.5. Assuming that D ≥ 2 we define for any i ∈ [1, D] a map σi : Z
∗
D−2 −→ Z∗

D by
ea,b 7→ ea+2,b+2 if i ≤ a,
ea,b 7→ ea,b+2 if a < i ≤ b+ 1,
ea,b 7→ ea,b if i > b+ 1.
Note that
σi(ea,b) = Ti(ea,b) if i is even,
σi(ea,b) = Ti(ea,b) if i is even and i ≤ a or i > b,
σi(ea,b) = Ti(ea,b) + ei if i is odd and a < i ≤ b.

2.6. Assume that D ≥ 2 and i ∈ [1, D]. Let ea,b, ea′,b′ be in Z∗
D−2 and let

eã,b̃ = σi(ea,b), eã′,b̃′ = σi(ea′,b′). We show:

(i) If b < a′ then b̃ < ã′.

(ii) If a < a′ and b′ < b then ã < ã′ and b̃′ < b̃.

(iii) If i is odd and ã ≤ i ≤ b̃ then ã < i < b̃.

In the setup of (i) assume that ã′ ≤ b̃. Then we have a′ ≤ b or a′ + 2 ≤ b or
a′ + 2 ≤ b + 2 or a′ ≤ b + 2. The first 3 cases are clearly impossible; in the 4th
case we have b+ 2 = a′ (since b+2 ≤ a′ ≤ b+ 2), b′ +1 < i and b+1 ≥ i, so that
b > b′ ≥ a′, a contradiction.

In the setup of (ii) assume that ã ≥ ã′. Then we have a ≥ a′ or a + 2 ≥ a′ + 2
or a ≥ a′+2 or a+2 ≥ a′. The first 3 cases are clearly impossible, in the 4th case
we have a + 2 = a′ (since a + 2 ≤ a′ ≤ a + 2), a′ < i and a ≥ i, so that a > a′, a
contradiction. Thus, ã < ã′.

Again, in the setup of (ii) assume that b̃′ ≥ b̃. Then we have b′ ≥ b or b′+2 ≥ b+2
or b′ ≥ b+2 or b′ +2 ≥ b. The first 3 cases are clearly impossible. In the 4th case
we have b′ + 2 = b (since b ≥ b′ + 2 ≥ b), b+ 1 < i and b′ + 1 ≥ i so that b′ > b, a

contradiction. Thus, b̃′ < b̃′.
In the setup of (iii) assume that ã = i. We have ã = a or ã = a + 2. If ã = a

we have a = i and b < i hence b < b̃ so that b̃ = b + 2; this implies i ≤ b, a
contradiction. If ã = a+ 2 we have a+ 2 = i, i ≤ a, a contradiction. Thus ã < i.
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In the setup of (iii) assume that b̃ = i. We have ã = b or b̃ = b+ 2. If b̃ = b we

have b = i and b < i, a contradiction. If b̃ = b + 2 we have b + 2 = i and either
a ≥ i or a < i ≤ b. In the first case we have a ≥ b+ 2 > b, a contradiction; in the
second case we have b+ 2 ≤ b, a contradiction. Thus, i < b̃.

2.7. From 2.6(i)-(iii) we see that when D ≥ 2 and i ∈ [1, D], there is a well defined
map Σi : ZD−2 −→ ZD given by

(ea1,b1 , ea2,b2 , . . . , eas,bs) 7→ (σi(ea1,b1), σi(ea2,b2), . . . , σi(eas,bs), ei)

if i is odd,

(ea1,b1 , ea2,b2 , . . . , eas,bs) 7→ (σi(ea1,b1), σi(ea2,b2), . . . , σi(eas,bs))

if i is even.

2.8. Let ǫ ∈ ZD, ǫ 6= ∅. Let ea,b ∈ ǫ be such that b − a is minimum. If b − a = 0
we set i = a = b; we have i ∈ [1, D] and i is odd. If b − a > 0 we define i ∈ [1, D]
by a = i− 1 < i+ 1 ≤ b; then i is even.. We will show that

(a) ǫ is in the image of Σi : ZD−2 −→ ZD.
If i is odd we can write

ǫ = (eã1,b̃1
, eã2,b̃2

, . . . , eãs,b̃s
, ei).

If i is even we can write
ǫ = (eã1,b̃1

, eã2,b̃2
, . . . , eãs,b̃s

)
where at = a, bt = b for some t.

To eãt,b̃t
(t = 1, 2, . . . , s) we associate the element

eat,bt = eãt−2,b̃t−2 if i ≤ ãt − 2,

eat,bt = eãt,b̃t−2 if ãt < i ≤ b̃t − 1,

eat,bt = eãt,b̃t
if b̃t < i.

(Note that we cannot have i = ãt or i = b̃t. Moreover when i is even we see
from the definitions that we cannot have i = ãt − 1.) This element is in Z∗

D−2.
Consider n 6= m in {1, 2, . . . , s}. We set

(ãn, b̃n, ãm, b̃m) = (ã, b̃, ã′, b̃′)
(an, bn, am, bm) = (a, b, a′, b′).
We show:
(i) If b̃ < ã′, then b < a′.

(ii) If ã′ < ã ≤ b̃ < b̃′, then a′ < a ≤ b < b′.

In the setup of (i) assume that a′ ≤ b. Then we have ã′ ≤ b̃ or ã′ − 2 ≤ b̃ or

ã′ − 2 ≤ b̃ − 2 or ã′ ≤ b̃ − 2. The first 3 cases are clearly impossible. In the 4th
case we have b̃ < ã′ ≤ b̃− 2 hence b̃ < b̃− 2 a contradiction. Thus b < a′.

In the setup of (ii), a′, a, b, b′ is as follows:

ã′ − 2, ã− 2, b̃− 2, b̃′ − 2 if i ≤ ã′ − 2;
ã′, ã− 2, b̃− 2, b̃′ − 2 if ã′ < i ≤ ã− 2 (so that ã′ < ã− 2);
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ã′, ã, b̃− 2, b̃′ − 2 if ã < i ≤ b̃− 1 (so that ã ≤ b̃− 2);

ã′, ã, b̃, b̃′ − 2 if b̃ < i ≤ b̃′ − 2 (so that b̃ < b̃′ − 2);

ã′, ã, b̃, b̃′ if b̃′ < i.
Since i is distinct from each of ã′, ã′ − 1, ã, ã− 1, b̃, b̃′, b̃′ − 1 we see that we must
be in one of the 5 cases above. Note that a′ < a ≤ b < b′ in each case.

From (i),(ii) we see that
ǫ′ := (ea1,b1 , ea2,b2 , . . . , eas,bs) belongs to ZD−2.

From the definitions we see that ǫ = Σi(ǫ
′). Hence (a) holds.

2.9. We define a subset Z ′
D of ZD by induction on D. If D = 0, Z ′

D consists of
the empty sequence. Assume now that D ≥ 2. A sequence ǫ ∈ ZD is said to be
in Z ′

D if either ǫ is the empty sequence or if there exists i ∈ [1, D] and ǫ′ ∈ Z ′
D−2

such that ǫ = Σi(ǫ
′). (Note that Σi(ǫ

′) is well defined.) Using 2.8(a) we see by
induction on D that

(a) ZD = Z ′
D.

2.10. Assume that D ≥ 2 and i ∈ [1, D]. For ǫ′ ∈ ZD−2 we have
(a) ΘD(Σi(ǫ

′)) = Ti(ΘD−2ǫ
′) + Fei if i is odd;

(b) ΘD(Σi(ǫ
′)) = Ti(ΘD−2ǫ

′) if i is even.
We can write ǫ′ = (ea1,b1 , ea2,b2 , . . . , eas,bs). Then

ΘD(Σi(ǫ
′)) = Fσi(ea1,b1) + Fσi(ea2,b2) + · · ·+ Fσi(eas,bs) + Fei

if i is odd,

ΘD(Σi(ǫ
′)) = Fσi(ea1,b1) + Fσi(ea2,b2) + · · ·+ Fσi(eas,bs)

if i is even.
Using the definitions we see that

ΘD(Σi(ǫ
′)) = FTi(ea1,b1) + FTi(ea2,b2) + · · ·+ FTi(eas,bs) + Fei

= Ti(Fea1,b1 + Fea2,b2 + · · ·+ Feas,bs) + Fei = Ti(XD−1(ǫ
′)) + Fei

if i is odd,

ΘD(Σi(ǫ
′)) = FTi(ea1,b1) + FTi(ea2,b2) + · · ·+ FTi(eas,bs)

= Ti(Fea1,b1 + Fea2,b2 + · · ·+ Feas,bs) = Ti(XD−1(ǫ
′))

if i is even. This proves (a),(b).

2.11. We prove the following part of Theorem 2.4.
(a) The map ΘD in 2.4 is well defined.

We argue by induction on D. When D = 0, (a) is obvious. Assume now that
D ≥ 2. Let ǫ ∈ ZD. If ǫ = ∅ then ΘD(ǫ) = 0 ∈ FD. Assume now that ǫ 6= ∅.
Using 2.8, we can find i ∈ [1, D] and ǫ′ ∈ ZD−2 such that ǫ = Σi(ǫ

′) so that
ΘD(ǫ) = ΘD(Σi(ǫ

′)). By the induction hypothesis we have ΘD−2ǫ
′ ∈ C(V 1

D−2).

By the definition of C(V 1
D) we then have

Ti(ΘD−2ǫ
′) + Fei ∈ C(V 1

D) if i is odd; Ti(ΘD−2ǫ
′) ∈ C(V 1

D) if i is even.
Using 2.10, we can rewrite this as ΘD(ǫ) ∈ C(V 1

D). This proves (a).
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2.12. We prove the following part of Theorem 2.4.
(a) The map ΘD in 2.4 (see 2.11(a)) is surjective.

We argue by induction on D. When D = 0, (a) is obvious. Assume now that
D ≥ 2. Let E ∈ C(V 1

D). If E = 0 then E = ΘD(∅). Assume now that E 6= 0. We
can find i ∈ [1, D] and E ′ ∈ C(V 1

D−2) such that E = Ti(E
′) + Fei if i is odd and

E = Ti(E
′) if i is even. By the induction hypothesis we have E ′ = ΘD−2(ǫ

′) for
some ǫ′ ∈ ZD−2. Thus we have E = Ti(ΘD−2ǫ

′) + Fei if i is odd, E = Ti(ΘD−2ǫ
′)

if i is even. Using 2.10 we can rewrite this as E = ΘD(ǫ) where ǫ = Σi(ǫ
′) ∈ ZD.

This proves (a).

2.13. We have C(V 1
D) = ⊔s∈[0,d]C

s(V 1
D) where Cs(V 1

D) = {E ∈ C(V 1
D); dim E = s}.

Clearly, the map Θ in 2.4 restricts for any s ∈ [0, d] to a map Θs : Zs
D −→ Cs(V 1

D).
From 2.12(a) it follows that Θs is surjective for any s ∈ [0, d]. In [HM] it is shown
that |Zs

D| = Nd+1,s+1 (see 0.5) for any s ∈ [0, d]. Using this and 0.5(a) we see that

Catd+1 =
∑

s∈[0,d]

N(d+ 1, s+ 1) =
∑

s∈[0,d]

|Zs
D| = |ZD|.

We see that ΘD is a surjective map from a set with cardinal |ZD| = Catd+1 to
a set with the same cardinal |C(V 1

D)| = |F0
D/2(VD)| = Catd+1 (the first equality

holds by 2.2(a); the second equality follows from Theorem 0.4). It follows that Θ
is a bijection and Theorem 2.4 is proved.

This implies that Θs : Zs
D −→ Cs(V 1

D) is a bijection for any s ∈ [0, d]. We see
that Theorem 0.6 holds. (We use that Xc in 0.5 is the same as Cs(V 1

D) if we
identifyV 1

D = F d.)

3. A conjecture

3.1. In this section we fix a unipotent element u ∈ G. We assume that either
G is of type Cd(d+1), d ≥ 1 and u has Jordan blocks of sizes 2d, 2d, 2d− 2, 2d−

2, . . . , 2, 2 or that
G is of type Bd(d+1), d ≥ 1 and u has Jordan blocks of sizes 2d+1, 2d− 1, 2d−

1, . . . , 1, 1.
Let Bu be the variety of Borel subgroups of G that contain u and let [Bu] be

the set of irreducible components of Bu. Let A(u) be the group of components of
the centralizer of u in G. Note that A(u) acts naturally by permutations on [Bu].
For each ξ ∈ [Bu] we denote by A(u)ξ the stabilizer of ξ in A(u). Let Ξu be the
set of subgroups of A(u) of the form A(u)ξ for some ξ ∈ [Bu].

We assume that c is the family containing the Springer representation of W
associated to u and to the unit representation of A(u). We conjecture that

(a) there exists an isomorphism A(u)
∼
−→ V 1

D, D = 2d which carries Ξu to the
collection C(V 1

D) (see 2.1) of subspaces of V 1
D.

(This would imply that |Ξu| is a Catalan number.)
We have verified that (a) is true when d = 1, 2, 3.
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