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Abstract

The interpolation method for mean field spin glass models developed by Guerra and Talagrand
is extended to a quantum mean field spin glass model. This extension enables us to obtain both
replica-symmetric (RS) and one step replica-symmetry breaking (1RSB) solutions of the free energy
density in the transverse field Sherrington-Kirkpatrick model. It is shown that the RS solution is
exact in the paramagnetic phase. We provide a sufficient condition on coupling constants where the
1RSB solution gives better bound than the RS one. This condition reduced to physical quantities
in disordered single spin systems allows a simple computer-assisted proof for the existence of the de
Almeida-Thouless-type instability.
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1 Introduction

The transverse field Sherrington-Kirkpatrick (SK) model is well-known as one of the simplest quan-
tum spin glass models, and has been studied extensively. Several studies have been conducted in
mathematically rigorous methods [1, 5, 11, 13, 15, 16]. Recently, Leschke, Manai, Ruder and Warzel
have proven that the variance of the overlap operator does not vanish in the transverse SK model
[15] using the Falk-Bruch inequality [7, 18] and the Z2-symmetry of the model. Their rigorous and
striking result has been appreciated by many researchers studying spin glasses and quantum complex
systems, since the finite variance of the overlap operator is recognized as a necessary condition for
the existence of replica-symmetry breaking (RSB) [12]. This has brought further attention to the
interesting question of whether the distribution of the overlap operator is broadened around the one
of two peaks of the Z2-symmetric pair, since their argument relies on the fact that the expectation
of the overlap operator vanishes due to the Z2-symmetry.

It is well-known that the square root interpolation method developed by Guerra and Talagrand
is useful to obtain rigorous bounds on many physical quantities in the spin glass models [8, 22].
This method gives the replica-symmetric (RS) and the RSB bounds on the free energy density in
SK model, rigorously. In particular, one step RSB (1RSB) solution gives the de Almeida-Thouless
(AT) line which is a phase boundary of the unstable region of the RS solution [2, 22]. To extend this
method to quantum systems is interesting to study.
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In the present paper, we obtain variational solutions of the free energy density in the transverse
field SK model. We extend the square root interpolation method for RS and 1RSB variational
solutions of the free energy density given by Guerra and Talagrand [8, 22] to quantum mechanically
perturbed models. First, we prove that the obtained RS solution becomes exact in the paramagnetic
phase assuming the unbroken replica- and Z2-symmetries. For sufficiently low temperature and
sufficiently weak transverse field, however, the finite variance of the overlap operator [15] enables us
to prove that this paramagnetic RS solution cannot be exact. In this case, our interest is possibility
that another spin glass RS solution becomes exact. Next, we construct a 1RSB solution, and find a
condition on the unstable region of the RS solution, where the 1RSB solution gives better bound on
the free energy density than RS solutions. If the condition is satisfied, the AT-type instability exists
in the transverse field SK model. We represent a sufficient condition for AT-type instability in terms
of disordered single spin systems, using the Falk-Bruch inequality [7, 18]. Then, a computer-assisted
proof by simple numerical calculations becomes possible to confirm this condition. This unstable
region specified in the coupling constant space must be contained in the RSB phase.

The present paper is organized as follows. In section 2, we define the Hamiltonian and other
physical quantities in the transverse field SK model. In section 3, the RS solution of the free energy
density in the transverse field SK model is obtained by the square root interpolation method extended
to quantum spin glass systems. The exactness and inexactness of the paramagnetic RS solution are
shown even in this quantum model in the paramagnetic phase, as in the classical SK model. In
section 4, the 1RSB solution of the free energy density in the transverse field SK model is obtained.
In section 5, we obtain a sufficient condition that the 1RSB solution gives better bound on the free
energy density than the RS solution. This condition is confirmed numerically at several points in the
coupling constant space.

2 Definitions of the model

Here, we study quantum spin systems with random interactions. Let N be a positive integer and a
site index i (≤ N) is also a positive integer. A sequence of spin operators (σw

i )w=x,y,z,1≤i≤N on a
Hilbert space H :=

⊗N

i=1 Hi is defined by a tensor product of the Pauli matrix σw acting on Hi
∼= C

2

and unities. These operators are self-adjoint and satisfy the commutation relation

[σy

k , σ
z
j ] = 2iδk,jσ

x
j , [σz

k, σ
x
j ] = 2iδk,jσ

y
j , [σx

k , σ
y
j ] = 2iδk,jσ

z
j ,

and each spin operator satisfies
(σw

j )2 = 1.

The Sherrington-Kirkpatrick (SK) model is well-known as a disordered classical spin system [21]. The
transverse field SK model is a simple quantum extension. Here, we study a magnetization process for
a local field in these models. Consider the following Hamiltonian with coupling constants b, c ∈ R,
c ≥ 0

H(σ, b, g) := − 1√
N

∑

1≤i<j≤N

gi,jσ
z
i σ

z
j −

N
∑

j=1

bσx
j , (1)

where g = (gi,j)1≤i<j≤Nare independent identically distributed (i.i.d) standard Gaussian random
variables obeying a probability density function

p(g) :=
∏

1≤i<j≤N

1√
2π
e−

g2
i,j
2 (2)

The Hamiltonian is invariant under Z2-symmetry Uσz
i U

† = −σz
i for the discrete unitary transforma-

tion U :=
∏

1≤i≤N
σx
i . For a positive β, the partition function is defined by

ZN (β, b, g) := Tre−βH(σ,b,g), (3)

where the trace is taken over the Hilbert space H.

3 RS bound on the free energy density

Guerra and Talagrand have provided the well-known square root interpolation method, which repre-
sents a variational solution of the free energy density in the classical mean field model in terms of that
in the single spin model with suitable corrections [8, 22]. Here, we apply this method to the transverse
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field SK model, as for the SK model. Let (zj)1≤j≤N be a sequence of i.i.d standard Gaussian random
variables. Consider the following interpolated Hamiltonian with parameters s ∈ [0, 1] for q ∈ [0, 1]

H(s, σ) := −
√

s

N

∑

1≤i<j≤N

gi,jσ
z
i σ

z
j −

N
∑

j=1

[
√

q(1− s)zjσ
z
j + bσx

j ]. (4)

This interpolated Hamiltonian for b = 0 is identical to that in the SK model obtained by Guerra and
Talagrand [8, 22]. Define an interpolated function ϕN (s)

ϕN(s) :=
1

N
E log Tre−βH(s,σ) (5)

where E denotes the expectation over all Gaussian random variables (gi,j)1≤i<j≤N and (zi)1≤i≤N .
Since the function ϕN (1) is given by

ϕN (1) =
1

N
E logZN (β, b, g), (6)

the free energy density of the transverse field SK model is −ϕN(1)/β. Let f be an arbitrary function
of a sequence of spin operators σ = (σw

i )w=x,y,z,1≤i≤N . The expectation of f in the Gibbs state is
given by

〈f(σ)〉s =
Trf(σ)e−βH(s,σ)

Tre−βH(s,σ)
. (7)

The derivative of ϕN (s) with respect to s is given by

ϕ′
N (s) =

β

2N
3
2
√
s

∑

1≤<j≤N

Egi,j〈σz
i σ

z
j 〉s −

β
√
q

2N
√
1− s

N
∑

i=1

Ezi〈σz
i 〉s. (8)

Identities for the Gaussian random variables gi,j and zi and their probability distribution function

gi,jp(g, z) = − ∂p

∂gi,j
, zip(g, z) = − ∂p

∂zi

and the integration by parts imply

ϕ′
N (s) =

β2

2N2

∑

1<i≤<j≤N

E[(σz
i σ

z
j , σ

z
i σ

z
j )s − 〈σz

i σ
z
j 〉2s]−

β2q

2N

N
∑

i=1

E[(σz
i , σ

z
i )s − 〈σz

i 〉2s]

=
β2(N − 1)

4N
E(σz

i σ
z
j , σ

z
i σ

z
j )s −

β2q

2
E(σz

i , σ
z
i )s −

β2

4
E〈(R1,2 − q)2〉s + β2

4

(

q2 +
1

N

)

, (9)

where The Duhamel function for bounded linear operators A,B is defined by

(A,B) =

ˆ 1

0

dt〈eβtHAe−βtHB〉, (10)

and the overlap operator Ra,b is defined by

Ra,b :=
1

N

N
∑

i=1

σz,a
i σz,b

i , (11)

for independent replicated Pauli operators σz,a
i (a = 1, 2, · · · , n) obeying the same Gibbs state with

the replica Hamiltonian

H(s, σ1, · · · , σn) :=

n
∑

a=1

H(s, σa).

This Hamiltonian is invariant under permutation of replica spins. This permutation symmetry is
known to be the replica symmetry. The order operator Ra,b measures the replica symmetry breaking
as an order operator. Define a function

ρ(s, q) :=
(N − 1)

N
[1− E(σz

i σ
z
j , σ

z
i σ

z
j )s] + 2q[E(σz

i , σ
z
i )s − 1], (12)

which is non-negative valued. The identity (9) imply

ϕ′
N (s) =

β2

4
(1− q)2 − β2

4
E〈(R1,2 − q)2〉s − β2

4
ρ(s, q) (13)

Integration of this identity over s ∈ [0, 1] gives the following lemma.
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Lemma 3.1 (Extended Guerra’s identity for RS bound)
Define a function by

Φ(β, b, q) := E log 2 coshX(z, q) +
β2

4
(1− q)2 − β2

4

ˆ 1

0

dsρ(s, q), (14)

where the above random variable is defined by

X(z, q) := β
√

qz2 + b2. (15)

For arbitrary (β, b, q) ∈ [0,∞)2 × [0, 1], the following identity is valid

ϕN(1) = Φ(β, b, q)− β2

4

ˆ 1

0

dsE〈(R1,2 − q)2〉s, (16)

Proof. Integration of the identity (13) over s ∈ [0, 1] gives

ϕN (1) = ϕN (0) +
β2

4

ˆ 1

0

ds[(1− q)2 − ρ(s, q)− E〈(R1,2 − q)2〉s].

The model at s = 0 becomes independent spin model, and therefore ϕN (0) is represented in terms of
the partition function of a disordered single spin system

ϕN(0) = E log Tr exp β[
√
qzσz + bσx] = E log 2 coshX(z, q). (17)

This completes the proof. �
Note that Φ(β, b, q) gives the following bound

ϕN(1) ≤ Φ(β, b, q), (18)

where the right hand side is called the RS bound.
To obtain lower and upper bounds on Φ(β, b, q), let us evaluate ρ(s, q). The Falk-Bruch inequality

[7, 18] and a well-known inequality [3, 19] for the Duhamel function of an arbitrary bounded linear
operator A give

F
( 〈[A†, [βH,A]〉s

2〈{A†, A}〉s

)

≤ 2(A†, A)s
〈{A†, A}〉s

≤ 1, (19)

where the function F : [0,∞) → (0, 1] is defined by

F (x tanhx) =
tanh x

x
, (20)

and F (0) = 1. This function is monotonically decreasing and convex. Therefore

F (2βb tanh βb) ≤ F (βb(〈σx
i 〉s + 〈σx

j 〉s)) = F
(β

4
〈[σz

i σ
z
j , [H,σ

z
i σ

z
j ]〉s

)

≤ (σz
i σ

z
j , σ

z
i σ

z
j )s ≤ 1,(21)

tanh βb

βb
= F (βb tanhβb) ≤ F (βb〈σx

i 〉s) = F
(β

4
〈[σz

i , [H,σ
z
i ]〉s

)

≤ (σz
i , σ

z
i )s ≤ 1, (22)

where an upper bound tanhβb ≥ 〈σx
i 〉s has been used as shown by Leschke, Manai, Ruder and Warzel

[15]. These inequalities (21), (22) and a well-known inequality given by Dyson, Lieb and Simon [6]

F (t) ≥ t−1(1− e−t), (23)

yield the following lower and upper bounds on the function ρ(s, q)

2q
( tanhβb

βb
− 1

)

≤ ρ(s, q) ≤ N − 1

N

(

1− 1− e−2βb tanhβb

2βb tanhβb

)

. (24)

Lower and upper bounds (24) on ρ(s, q) give the following lemma for the RS bound.

Lemma 3.2 The RS bound Φ(β, b, q) satisfies

ΦL(β, b, q) ≤ Φ(β, b, q) ≤ ΦU (β, b, q), (25)

where lower and upper bounds are defined by

ΦL(β, b, q) := E log 2 coshX(z, q) +
β2

4

[

(1− q)2 −
(

1− 1− e−2βb tanh βb

2βb tanhβb

)]

(26)

ΦU (β, b, q) := E log 2 coshX(z, q) +
β2

4

[

(1− q)2 + 2q
(

1− tanh βb

βb

)]

. (27)
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A variational solution with the best bound is obtained by minimizing the right hand side of (14).
The minimizer q should satisfy

0 =
∂

∂q
Φ(β, b, q) =

β2

4

[

2E
z2 tanhX(z, q)

X(z, q)
+ 2q − 2− ∂

∂q

ˆ 1

0

dsρ(s, q)
]

. (28)

This minimizer q gives the best bound on ϕN (1) as a variational solution

ϕN (1) ≤ min
q∈[0,1]

Φ(β, b, q)

= min
q∈[0,1]

[

E log 2 coshX(z, q) +
β2

4
(1− q)2 − β2

4

ˆ 1

0

dsρ(s, q)
]

, (29)

minq∈[0,1] Φ(β, b, q) is called RS solution.

Here, we discuss the exactness of the RS solution. Assume that the replica-symmetry is unbroken
and there exists q ∈ [0, 1] such that

lim
N→∞

ˆ 1

0

dsE〈(R1,2 − q)2〉s = 0. (30)

The bound Φ(β, b, q) with the above q gives the exact solution of ϕ∞(1), as in the classical SK model.
Only the minimizer q of Φ(β, b, q) can give the equality, since the inequality (18) is valid for any q.
In fact, this exactness can be shown in the case for q = 0. Consider the model for q = 0 in the
paramagnetic phase where the replica-symmetry and Z2-symmetry are unbroken. Substitute q = 0
into the equation (16) in Lemma 3.1, and the extended Guerra’s identity becomes

ϕN (1) = Φ(β, b, 0)−
ˆ 1

0

dsE〈R2
1,2〉s (31)

≤ Φ(β, b, 0) = log 2 cosh βb+
β2

4
− β2

4

ˆ 1

0

dsρ(s, 0). (32)

Then, the following theorem is obtained.

Theorem 3.3 (Exactness of the paramagnetic RS solution)
In the paramagnetic phase, Φ(β, b, 0) gives the exact solution

lim
N→∞

Φ(β, b, 0) = lim
N→∞

ϕN (1). (33)

Proof. The existence of the right hand side in the infinite-volume limit is proven by [1, 5]. The
Z2-symmetry and the replica-symmetry imply

〈R1,2〉s = 0, lim
N→∞

E〈(R1,2 − E〈R1,2〉s)2〉s = 0.

These and the above identity (31) conclude that the paramagnetic RS solution is exact

lim
N→∞

Φ(β, b, 0) = ϕ∞(1).

This completes the proof. �

Theorem 3.3 is consistent with the result in [16]. On the other hand, using the Falk-Bruch
inequality (19), and assuming the ground state energy density −κ ≃ −0.763 of the classical SK
model and the Z2-symmetry 〈R1,2〉s = 0, Leschke, Manai Ruder and Warzel have proven

lim inf
N→∞

E〈R2
1,2〉s ≥ F (2βb tanh βb)− 2κ

β
√
s
, (34)

in the model defined by the Hamiltonian (4) for q = 0 [15], where the function F is defined by (20).
This inequality and the identity (31) imply the following theorem.

Theorem 3.4 (Non-exactness of the paramagnetic RS solution)
If β and b satisfy βF (2βb tanh βb) > 2κ, then the inequality (32) becomes strict

ϕ∞(1) < lim inf
N→∞

Φ(β, b, 0).

5



Proof. Define
√
s0 :=

2κ

βF (2βb tanhβb)
. Then, the assumption s0 < 1 and inequality (34) enables us

to evaluate the deviation

lim inf
N→∞

[Φ(β, b, 0)− ϕN (1)] ≥ lim inf
N→∞

ˆ 1

s0

dsE〈R2
1,2〉s

≥
ˆ 1

s0

ds
[

F (2βb tanhβb)− 2κ

β
√
s

]

= F (2βb tanh βb)(1−√
s0)

2 > 0.

This completes the proof. �

In this case, the bound Φ(β, b, 0) becomes an approximate solution of ϕ∞(1), and a better one
may be given by a spin glass RS solution Φ(β, b, q) with the minimizer q > 0. Either spin glass RS or
RSB phase is possible in this region of coupling constants, since there is no ferromagnetic long-range
order in this model [11]. After next section, we show in a different way that the spin glass RS solution
is not exact

ϕ∞(1) < lim
N→∞

min
q∈[0,1]

Φ(β, b, q),

like the paramagnetic RS one, and therefore the identity (30) does not hold either.

In the classical limit b→ 0, the bound (14) becomes

ϕN (1) ≤ E log 2 cosh β
√
qz +

β2

4
(1− q)2, (35)

which is identical to the RS solution in the SK model. The equation (28) becomes

q = E tanh2 β
√
qz. (36)

This has a solution q = 0. In the classical case b = 0, it was conjectured that the replica symmetry
is preserved with

lim
N→∞

E〈(R1,2 − q)2〉1 = 0,

and the SK solution of the free energy density is exact for

E
β2

cosh4 β
√
qz

≤ 1,

whose boundary is called the AT line [2, 23]. This condition becomes β ≤ 1 for q = 0. Recently,
Chen has proven rigorously that the SK solution is exact in the classical model [4].

4 1RSB bound on the free energy density

Guerra obtained the RSB bound in the SK model in the square root interpolation [9]. This bound
can find the AT line [2, 22, 23]. Here, we extend this method to the transverse field SK model and
demonstrate that a 1RSB solution gives better bound on the free energy density than the RS one (29).
Assume the following square root interpolation of Hamiltonian with a parameter s ∈ [0, 1] between
the transverse field Sherrington-Kirkpatrick model and an independent spin model

H(s, σ, g, z, z1) := −
√

s

N

∑

1≤i<j≤N

gi,jσ
z
i σ

z
j −

√
1− s

N
∑

j=1

(
√
q1zj +

√
q2 − q1z

1
j )σ

z
j −

N
∑

j=1

bσx
j , (37)

where variational parameters q1, q2 satisfy 0 ≤ q1 ≤ q2 ≤ 1 and zj , z
1
j are i.i.d standard Gaussian

random variables. This interpolated Hamiltonian for b = 0 is identical to that in the SK model given
in [22]. Define a partition function

Z(s) := Tre−βH(s,σ,g,z,z1). (38)

Define an interpolation for a free energy density with another variational parameter m ∈ [0, 1]

ψN (s) :=
1

Nm
E logE1Z(s)

m, (39)

where E1 denotes the expectation only over (z1i )1≤i≤N and E denotes the expectation over all random
variables. Note that this function for s = 1 is identical to the function (6)

ψN (1) = ϕN (1), (40)

6



and −ψN (1)/β is the free energy density of the transverse field SK model. The derivative of ψN (s) is

ψ′
N (s) = − β

N
E

1

E1Z(s)m
E1Z(s)

m〈 ∂
∂s
H(s, σ, g, z, z1)〉s = I + II + III, (41)

where three terms are defined by

I :=
β

N
E

1

E1Z(s)m
E1Z(s)

m 1

2
√
sN

∑

1≤i<j≤N

gi,j〈σz
i σ

z
j 〉s, (42)

II := − β

N
E

1

E1Z(s)m
E1Z(s)

m 1

2
√
1− s

N
∑

j=1

√
q1zj〈σz

j 〉s, (43)

III := − β

N
E

1

E1Z(s)m
E1Z(s)

m 1

2
√
1− s

N
∑

j=1

√
q2 − q1z

1
j 〈σz

j 〉s. (44)

Integration by parts and (σz
i σ

z
j , σ

z
i σ

z
j )s ≤ 1 for the first term (42) imply

I =
β

2N
3
2
√
s

∑

1≤i<j≤N

E
∂

∂gi,j

1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉s

=
β2

2N2

∑

1≤i<j≤N

E

[

−m
( 1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉s

)2

+
m− 1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉2s +

1

E1Z(s)m
E1Z(s)

m(σz
i σ

z
j , σ

z
i σ

z
j )s

]

=
β2(1−N)

4N
E

[

m
( 1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉s

)2

+
1−m

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉2s −

1

E1Z(s)m
E1Z(s)

m(σz
i σ

z
j , σ

z
i σ

z
j )s

]

. (45)

Integration by parts and (σz
j , σ

z
j )s ≥ tanhβb/(βb) by the Falk-Bruch inequality (19) for the second

term (43) imply

II = − β

2N
√
1− s

N
∑

j=1

E
∂

∂zj

1

E1Z(s)m
E1Z(s)

m√
q1〈σz

j 〉s

=
β2q1
2

E

[

m
( 1

E1Z(s)m
E1Z(s)

m〈σz
j 〉s

)2

+
1−m

E1Z(s)m
E1Z(s)

m〈σz
j 〉2s

− 1

E1Z(s)m
E1Z(s)

m(σz
j , σ

z
j )s

]

. (46)

The third term (44) can be evaluated in the same way

III = − β

2N
√
1− s

N
∑

j=1

E
1

E1Z(s)m
E1

∂

∂z1j
Z(s)m

√
q2 − q1〈σz

j 〉s

=
β2(q2 − q1)

2
E

[ 1−m

E1Z(s)m
E1Z(s)

m〈σz
j 〉2s −

1

E1Z(s)m
E1Z(s)

m(σz
j , σ

z
j )s

]

. (47)

Therefore, ψ′
N (s) is represented as

ψ′
N (s) = I + II + III

= −β
2

4

[

mE

( 1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉s

)2

+ (1−m)E
1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉2s

− 2mqE
( 1

E1Z(s)m
E1Z(s)

m〈σz
j 〉s

)2

− 2(1−m)q2E
1

E1Z(s)m
E1Z(s)

m〈σz
j 〉2s

− 1 + 2q2 + ρ1(s,m, q1, q2)
]

, (48)

where a non-negative valued function ρ1(s,m, q1, q2) is defined by

ρ1(s,m, q1, q2) := E
1

E1Z(s)m
E1Z(s)

m[2q2(σ
z
j , σ

z
j )s − 2q2 +

N − 1

N
[1− (σz

i σ
z
j , σ

z
i σ

z
j )s]]. (49)

7



Inequalities (21), (22 )and (23) give the following uniform lower and upper bounds independent of
(s,m, q)

2q2
( tanhβb

βb
− 1

)

≤ ρ1(s,m, q1, q2) ≤
N − 1

N

(

1− 1− e−2βb tanh βb

2βb tanh βb

)

. (50)

Next, we represent the above bound on ψ′
N (s) in a replicated model. Define a two replicated Hamil-

tonian by
H2(s, σ

1, σ2) := H(s, σ1, g, z1) +H(s, σ2, g, z2), (51)

where the right hand side consists of the interpolated one step RSB Hamiltonian defined by (37) with
i.i.d. standard Gaussian random variables (zai )1≤i≤N,a=1,2. Note that the partition function of this
replicated model is factorized into the original partition functions

Z2(s) := Tre−βH(s,σ1,σ2) = Tre−βH(s,σ,g,z1)Tre−βH(s,σ,g,z2). (52)

The following expectation of the overlap operator defined by (11) is represented in terms of expectation
values of the original model

E
1

E1E2Z2(s)m
E1E2Z2(s)

m〈R1,2〉s,2 = E

( 1

E1Z(s)m
E1Z(s)

m〈σz
i 〉s

)2

, (53)

where Ea denotes the expectation value only over (zai )1≤i≤N,a=1,2 and the Gibbs expectation value
of f(σ1, σ2) is defined by

〈f(σ1, σ2)〉s,2 :=
1

Z2(s)
Trf(σ1, σ2)e−βH(s,σ1,σ2).

Note also

E
1

E1E2Z2(s)m
E1E2Z2(s)

m〈R2
1,2〉s,2 =

N − 1

N
E

( 1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉s

)2

+
1

N
. (54)

These identities give

E
1

E1E2Z2(s)m
E1E2Z2(s)

m〈(R1,2 − q1)
2〉s,2

=
N − 1

N
E

( 1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉s

)2

− 2q1E
( 1

E1Z(s)m
E1Z(s)

m〈σz
i 〉s

)2

+ q21 +
1

N
. (55)

If the delta function is defined by

δ(z1, z2) :=
N
∏

i=1

√
2πe

(z1
i
)2

2 δ(z1i − z2i ), (56)

then

E
1

E1E2Z2(s)
m
2 δ(z1, z2)

E1E2Z2(s)
m
2 〈R1,2〉s,2δ(z1, z2) = E

1

E1Z(s)m
E1Z(s)

m〈σz
i 〉2s,

E
1

E1E2Z2(s)
m
2 δ(z1, z2)

E1E2Z2(s)
m
2 〈R2

1,2〉s,2δ(z1, z2) =
N − 1

N
E

1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉2s +

1

N
.

These identities give

E
1

E1E2Z2(s)
m
2 δ(z1, z2)

E1E2Z2(s)
m
2 〈(R1,2 − q2)

2〉s,2δ(z1, z2)

=
N − 1

N
E

1

E1Z(s)m
E1Z(s)

m〈σz
i σ

z
j 〉2s − 2q2E

1

E1Z(s)m
E1Z(s)

m〈σz
i 〉2s + q2

2 +
1

N
. (57)

Identities (48), (55) and (57) enable us to represent the upper bound on ψ′
N(s)

ψ′
N (s) = − β2

4

[

mE
1

E1E2Z2(s)m
E1E2Z2(s)

m〈(R1,2 − q1)
2〉s,2

+ (1−m)E
1

E1E2Z2(s)
m
2 δ(z1, z2)

E1E2Z2(s)
m
2 〈(R1,2 − q2)

2〉s,2δ(z1, z2)
]

+
β2

4
[m(q21 − q2

2) + (1− q2)
2 − ρ1(s,m, q1, q2)]. (58)
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Since the first and second terms in (58) are non-positive, the ψN (1) is bounded by

ψN(1) ≤ ψN (0) +
β2

4

[

m(q21 − q2
2) + (1− q2)

2 −
ˆ 1

0

ρ1(s,m, q1, q2)ds
]

. (59)

The partition function for s = 0 can be calculated easily

Z(0) = Tr expβ
N
∑

i=1

[
√
q1ziσ

z
i +

√
q2 − q1z

1
i σ

z
i + bσx

i ] = [2 cosh Y (z, z1, q1, q2)]
N , (60)

where the above random variable is defined by

Y (z, z1, q1, q2) := β
√

(
√
q1z +

√
q2 − q1z1)2 + b2. (61)

Note that q1 = q2 = q implies the following relation to the random variable defined by (15)

Y (z, z1, q, q) = X(z, q). (62)

Define 1RSB bound by the following function

Ψ(β, b,m, q1, q2) := (63)

1

m
E logE1[2 cosh Y (z, z1, q1, q2)]

m +
β2

4

[

m(q21 − q2
2) + (1− q2)

2 −
ˆ 1

0

ρ1(s,m, q1, q2)ds
]

.

The following lemma represents ψN (1) in terms of 1RSB bound.

Lemma 4.1 (Extended Guerra’s identity for 1RSB bound)
For any (β, b,m, q1, q2) ∈ [0,∞)2 × [0, 1]3 ψN (1) has an upper bound

ψN (1) = Ψ(β, b,m, q1, q2)− β2

4

ˆ 1

0

ds
[

mE
1

E1E2Z2(s)m
E1E2Z2(s)

m〈(R1,2 − q1)
2〉s,2

+ (1−m)E
1

E1E2Z2(s)
m
2 δ(z1, z2)

E1E2Z2(s)
m
2 〈(R1,2 − q2)

2〉s,2δ(z1, z2)
]

. (64)

Obviously, Ψ(β, b,m, q1, q2) for any (m, q1, q2) gives an upper bound on ψN (1). The inequalities
(50) give the following lemma.

Lemma 4.2 Lower and upper bounds on Ψ(β, b,m, q1, q2) are given by

ΨL(β, b,m, q1, q2) ≤ Ψ(β, b,m, q1, q2) ≤ ΨU (β, b,m, q1, q2), (65)

where above functions are defined by

ΨL(β, b,m, q1, q2) :=
1

m
E logE1 cosh

m Y (z, z1, q1, q2)

+
β2

4

[

m(q21 − q2
2) + (1− q2)

2 −
(

1− 1− e−2βb tanhβb

2βb tanhβb

)]

, (66)

ΨU (β, b,m, q1, q2) :=
1

m
E logE1 cosh

m Y (z, z1, q1, q2)

+
β2

4

[

m(q21 − q2
2) + (1− q2)

2 + 2q2
(

1− tanh βb

βb

)]

. (67)

The identity (62) implies that the 1RSB bound is identical to the RS bound defined by (14) for
q1 = q2 = q ∈ [0, 1] for any m ∈ [0, 1],

Φ(β, b, q) = Ψ(β, b,m, q, q). (68)

Define the 1RSB solution by
min

0≤m≤1,0≤q1≤q2≤1
Ψ(β, b,m, q1, q2). (69)
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5 AT-type instability

The lower bound (26) in Lemma 3.2 and the upper bound (67) in Lemma 4.2 enable us to obtain the
following theorem.

Theorem 5.1 For any (β, b, q,m, q1, q2) ∈ [0,∞)2 × [0, 1]4 with q1 ≤ q2, the difference between the
RS and the 1RSB variational solutions has a lower bound

min
q∈[0,1]

Φ(β, b, q)−Ψ(β, b,m, q1, q2) ≥ min
q∈[0,1]

Θ(β, b, q,m, q1, q2), (70)

where the function in the right hand side is defined by

Θ(β, b, q,m, q1, q2) := ΦL(β, b, q)−ΨU (β, b,m, q1, q2). (71)

The RS solution cannot be the exact solution, if the 1RSB solution (69) gives better bound for
ψN(1) = ϕN (1) than the RS one (29). This corresponds to the AT-type instability. Let us show
this instability in the RS solution on the basis of the bound given by Theorem 5.1. For some
(m,q1, q2) ∈ [0, 1]3 satisfying q1 ≤ q2, the condition

min
q∈[0,1]

Θ(β, b, q,m, q1, q2) > 0, (72)

is sufficient for the AT-type instability in the RS solution (29). Since the function Θ(β, b, q,m, q1, q2) is
represented in terms of physical quantities of disordered single spin systems, its numerical calculation
can be done easily. Numerical calculations by Mathematica for Θ(β, b, q,m, q1, q2) with its minimizer
q ∈ [0, 1] at several points (β, b) ∈ [0,∞)2 are obtained as follows:

Θ(1/0.10, 10−3, 0.92, 0.70, 0.88, 0.99) = 3.60 × 10−2, (73)

Θ(1/0.30, 10−3, 0.73, 0.76, 0.71, 0.91) = 4.64 × 10−3, (74)

Θ(1/0.50, 10−3, 0.53, 0.78, 0.51, 0.64) = 4.81 × 10−4, (75)

Θ(1/0.70, 10−3, 0.32, 0.90, 0.31, 0.38) = 1.44 × 10−5, (76)

Θ(1/0.90, 10−3, 0.12, 0.99, 0.10, 0.22) = 1.50 × 10−5. (77)

Therefore, a computer-assisted proof by simple calculations shows that the AT-type instability exists
in the RS solution for the transverse field SK model.

6 Discussions

In the present paper, the square root interpolation method developed by Guerra and Talagrand has
been extended to a mean field quantum spin glass model. We have studied the transverse field
Sherrington-Kirkpatrick (SK) model with the Z2-symmetry. First, we obtain the replica-symmetric
(RS) bound Φ(β, b, q) for the logarithm of partition function per spin, where β > 0, b > 0 and q ∈ [0, 1]
are inverse temperature, strength of the transverse field and a variational parameter, respectively.
Theorem 3.3 shows that the RS bound Φ(β, b, 0) is the exact solution, if the replica-symmetry and
the Z2-symmetry are unbroken in the paramagnetic phase. On the other hand, Theorem 3.4 indicates
that this paramagnetic RS solution cannot be exact, if the variance of overlap R1,2 does not vanish
in sufficiently low temperature and sufficiently weak transverse field [15]. Next, we study whether
the spin glass RS solution Φ(β, b, q) with a positive minimizer q can be exact in this low temperature
region. We obtain also one step replica-symmetry breaking (1RSB) bound Ψ(β, b,m, q1, q2) with
variational parameters (m, q1, q2) ∈ [0, 1]3 satisfying q1 ≤ q2. Note that Ψ(β, b,m, q, q) = Φ(β, b, q)
for any m ∈ [0, 1]. Using the Falk-Bruch inequality [7], we obtain Theorem 5.1, which gives a bound
on the difference minq Φ(β, b, q)−Ψ(β, b,m, q1, q2) in terms of disordered single spin systems. On the
basis of Theorem 5.1, simple numerical calculations for disordered single spin systems indicate that
the 1RSB bound gives better bound than the RS bound at several points. These show the existence of
the de Almeida-Thouless(AT)-type instability in the RS solution. Although surely confirmed unstable
region is quite narrow in the coupling constant space, our result is consistent with recently obtained
results including numerical simulations [14, 15, 17, 20, 24].

In the transverse field SK model under an applied Z2-symmetry breaking longitudinal field, there
is no proof that the RS solution minq Φ(β, b, q) is exact even in the high temperature region, since
E〈R1,2〉s may depend on s ∈ [0, 1]. In the low temperature region of this model, however, it can
be confirmed numerically also that the 1RSB solution gives better bound than the RS solution in
sufficiently weak longitudinal and transverse fields, as in the classical SK model. Then, the RS
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solution cannot be exact either under the applied longitudinal field. It turns out that the existence
of the AT-type instability is not sensitive against the application of any weak longitudinal field.

It should be studied still whether the infinite RSB (∞RSB) occurs in the transverse field SK
model. Also 2RSB bound is confirmed numerically to be a better bound than 1RSB solution. Since a
kRSB bound gives better bound than the (k− 1)RSB solution in the classical SK model, there exists
b0 > 0, such that a kRSB bound gives a better bound than the (k − 1)RSB solution for any b ≤ b0
also in the transverse field SK model [10]. Therefore, the ∞RSB solution is predicted to be exact in
the transverse field SK model, as in the classical SK model.

Acknowledgments It is pleasure to thank K. Hukushima, H. Leschke and M. Yamaguchi for
enlightening discussions. C.I. is supported by JSPS (21K03393).

Conflict of interest statement The authors declare no conflicts of interest.

Data availability statement The authors declare that the data (73)-(77) in this study are
openly available. There are no other data.

References

[1] Adhikaria, A., Brennecke, C., :Free-energy of the quantum Sherrington-Kirkpatrick spin-glass
model with transverse field J. Math. Phys. 61, 083302,1-16 (2020).

[2] de Almeida, J. R. L., Thouless, D. J. :Stability of the Sherrington-Kirkpatrick solution of spin
glass model. J. Phys. A :Math.Gen. 11, 983-990 (1978).

[3] Brankov, J.G., Tonchev, N.S: Generalized inequalities for the Bogoliubov-Duhamelinner product
with applications in the ApproximatingHamiltonian Method. Cond. Matt. Phys.14,13003 (2011).

[4] Chen, W.-K., :On the Almeida-Thouless transition line in the Sherrington-Kirkpatrick model
with centered Gaussian external field. Electron. Commun. Probab. 26, 65, 1-9 (2021).

[5] Crawford, N. :Thermodynamics and universality for mean field quantum spin glasses. Commun.
Math. Phys.274, 821-839(2007)

[6] Dyson, F. J., Lieb, E. H., Simon, B. :Phase transitions in quantum spin systems with isotropic
and nonisotropic interactions . J. Stat. Phys. bf 18, 335-383 (1978).

[7] Falk, H., Bruch, L. W. :Susceptibility and fluctuation. Phys. Rev. 180, 442-444 (1969).

[8] Guerra, F.: Sum rules for the free energy in the mean field spin glass model. Fields Inst. Commun.
30, 161 (2001).

[9] Guerra, F.: Replica broken bounds in the mean field spin glass theory. Commun. Math. Phys.
233,1-12,(2003).

[10] Itoi, C., Fujiwara, K., Sakamoto, Y.:Parisi-type formula in the transverse field Sherrington-
Kirkpatrick model in preparation.

[11] Itoi, C., Ishimori, H., Sato, K., Sakamoto, Y. :Universality of replica-symmetry breaking in the
transverse field Sherrington- Kirkpatrick model. J. Stat. Phys. 190 65, 1-9 (2023).

[12] Itoi, C., Mukaida, H., Tasaki, H. :Griffiths-type theorem short-Rrange spin glass models. J. Stat.
Phys. 191 28, 1-30 (2024).

[13] Itoi, C., Sakamoto, Y. :Boundedness of susceptibility in spin glass transition of transverse field
mixed p-spin glass models JPSJ,92, 074001,1-11(2023)

[14] Kiss, A., Zarand, G., Lovas, I. :Complete replica solution for the transverse field Sherrington-
Kirkpatrick spin glass model with continuum-time quantum Monte Carlo method. Phys. Rev. B
109, 024431(1-20) (2024).

[15] Leschke, H., Manai, C., Ruder, R., Warzel, S. : Existence of RSB in quantum glasses. Phis. Rev.
Lett. 127, 207204,1-6 (2021).

[16] Leschke, H., Rothlauf, S., Ruder, R., Spitzer, W. :The free energy of a quantum Sherrington-
Kirkpatrick spin-glass model for weak disorder, J. Stat. phys. 182 55,1-41 (2021)

[17] Mukherjee, S., A. Rajak, A., Chakrabarti, B. K. :Possible ergodic-nonergodic regions in the
quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Phys.Rev. E 97,
022146,1-6(2018).

11



[18] Roepstorff, G. :A stronger version of Bogoliubov’s inequalities. Commun. Math. Phys.53, 143-
150 (1977).

[19] Shastry, B. S., :Bounds for correlation functions of the Heisenberg antiferromagnet. J. Phys. A:
Math. Gen. 25L249-L253(1992).

[20] Schindler, P. M., Guaita, T., Shi, T., Demler, E., Cirac, J. I. :Variational Ansatz for the Ground
State of the Quantum Sherrington-Kirkpatrick Model. Phys. Rev. Lett. 129 220401,1-6 (2022).

[21] Sherrington, S., Kirkpatrick, S. : Solvable model of spin glass. Phys. Rev. Lett. 35, 1792-1796,
(1975).

[22] Talagrand, M. : Mean field models for spin glasses I, II. Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, Vol. 54, 55. Springer-Verlag,
Berlin (2011).

[23] Toninelli, F., :About the Almeida-Thouless transition line in the Sherrington-Kirkpatrick mean
field spin glass model. Euro.Phys. Lett. 60,5,764-767 (2002)

[24] Young, A. P :Stability of the quantum Sherrington-Kirkpatrick spin glass model. Phys. Rev. E
96 032112, 1-6(2018).

12


	Introduction
	Definitions of the model
	RS bound on the free energy density
	1RSB bound on the free energy density
	AT-type instability
	Discussions

