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and then varying it, we recover dynamic semantics with different evaluation strategies as well as summary-

based static analyses such as type analysis, all from the same generic interpreter. Among our contributions is

the first provably adequate denotational semantics for call-by-need. The generated traces lend themselves

well to describe operational properties such as evaluation cardinality, and hence to static analyses abstracting

these operational properties. Since static analysis and dynamic semantics share the same generic interpreter

definition, soundness proofs via abstract interpretation decompose into showing small abstraction laws about

the abstract domain, thus obviating complicated ad-hoc preservation-style proof frameworks.
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1 INTRODUCTION
A static program analysis infers facts about a program, such as “this program is well-typed”, “this

higher-order function is always called with argument λ̄𝑥 .𝑥 + 1” or “this program never evaluates

𝑥”. In a functional-language setting, such static analyses are often defined compositionally on the

input term. For example, consider the claim “(even 42) has type Bool”. Type analysis asserts that
even :: Int→ Bool, 42 :: Int, and then applies the function type to the argument type to produce the

result type even 42 :: Bool. The function type Int→ Bool is a summary of the definition of even:

Whenever the argument has type Int, the result has type Bool. Function summaries enable efficient

modular higher-order analyses, because it is much faster to apply the summary of a function instead

of reanalysing its definition at use sites in other modules.

If the analysis is used in a compiler to inform optimisations, it is important to prove it sound,

because lacking soundness can lead to miscompilation of safety-critical applications [Sun et al.

2016]. In order to prove the analysis sound, it is helpful to pick a language semantics that is also
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1:2 Sebastian Graf, Simon Peyton Jones, and Sven Keidel

compositional, such as a denotational semantics [Scott and Strachey 1971]; then the semantics and

the analysis “line up” and the soundness proof is relatively straightforward. Indeed, one can often

break up the proof into manageable sub goals by regarding the analysis as an abstract interpretation

of the compositional semantics [Cousot 2021].

Alas, traditional denotational semantics does not model operational details – and yet those details

might be the whole point of the analysis. For example, we might want to ask “How often does e
evaluate its free variable 𝑥?”, but a standard denotational semantics simply does not express the

concept of “evaluating a variable”. So we are typically driven to use an operational semantics [Plotkin

2004], which directly models operational details like the stack and heap, and sees program execution

as a sequence of machine states. Now we have two unappealing alternatives:

• Develop a difficult, ad-hoc soundness proof, one that links a non-compositional operational

semantics with a compositional analysis.

• Reimagine and reimplement the analysis as an abstraction of the reachable states of an oper-

ational semantics. This is the essence of the Abstracting Abstract Machines (AAM) [Van Horn

and Might 2010] recipe, a very fruitful framework, but one that follows the call strings ap-

proach [Sharir et al. 1978], reanalysing function bodies at call sites. Hence the new analysis

becomes non-modular, leading to scalability problems for a compiler.

In this paper, we resolve the tension by exploring denotational interpreters: total, mathematical

objects that live at the intersection of structurally-defined definitional interpreters [Reynolds 1972]

and denotational semantics. Our denotational interpreters generate small-step traces embellished

with arbitrary operational detail and enjoy a straightforward encoding in typical higher-order pro-

gramming languages. Static analyses arise as instantiations of the same generic interpreter, enabling

succinct, shared soundness proofs just like for AAM or big-step definitional interpreters [Darais

et al. 2017; Keidel et al. 2018]. However, the shared, compositional structure enables a wide range of

summary mechanisms in static analyses that we think are beyond the reach of non-compositional

reachable-states abstractions like AAM.

We make the following contributions:

• We use a concrete example (absence analysis) to argue for the usefulness of compositional,

summary-based analysis in Section 2 and we demonstrate the difficulty of conducting an

ad-hoc soundness proof wrt. a non-compositional small-step operational semantics.

• Section 4 walks through the definition of our generic denotational interpreter and its type

class algebra in Haskell. We demonstrate the ease with which different instances of our

interpreter endow our object language with call-by-name, call-by-need and call-by-value

evaluation strategies, each producing (abstractions of) small-step abstract machine traces.

• A concrete instantiation of a denotational interpreter is total if it coinductively yields a

(possibly-infinite) trace for every input program, including ones that diverge. Section 5.2

proves that the by-name and by-need instantiations are total by embedding the generic

interpreter and its instances in Guarded Cubical Agda.

• Section 5.1 proves that the by-need instantiation of our denotational interpreter adequately

generates an abstraction of a trace in the lazy Krivine machine [Sestoft 1997], preserving its

length as well as arbitrary operational information about each transition taken.

• By instantiating the generic interpreter with a finite, abstract semantic domain in Section 6,

we recover summary-based usage analysis, a generalisation of absence analysis in Section 2.

Further examples in the Appendix comprise Type Analysis and 0CFA control-flow analysis,

demonstrating the wide range of applicability of our framework.

• In Section 7, we apply abstract interpretation to characterise a set of abstraction laws that

the type class instances of an abstract domain must satisfy in order to soundly approximate
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AJ K : Exp→ (Var ⇀ AbsTy) → AbsTy

AJxK𝜌 = 𝜌 (x)
AJλ̄x.eK𝜌 = funx (𝜆𝜃 . AJeK𝜌 [x↦→𝜃 ])
AJe xK𝜌 = app(AJeK𝜌 ) (𝜌 (x))

AJlet x = e1 in e2K𝜌 = AJe2K𝜌 [x↦→x&AJe1K𝜌 ]

funx (𝑓 ) = ⟨𝜑 [x ↦→ A], 𝜑 (x) : 𝜍⟩
where ⟨𝜑, 𝜍⟩ = 𝑓 (⟨[x ↦→ U],Rep U⟩)

app(⟨𝜑 𝑓 , 𝑎 : 𝜍⟩)(⟨𝜑𝑎, ⟩) = ⟨𝜑 𝑓 ⊔ (𝑎 ∗ 𝜑𝑎), 𝜍⟩

𝑎 ∈ Absence ::= A | U
𝜑 ∈ Uses = Var→ Absence
𝜍 ∈ Summary ::= 𝑎 : 𝜍 | Rep 𝑎
𝜃 ∈ AbsTy ::= ⟨𝜑, 𝜍⟩

Rep 𝑎 ≡ 𝑎 : Rep 𝑎

A ∗ 𝜑 = [] U ∗ 𝜑 = 𝜑

x & ⟨𝜑, 𝜍⟩ = ⟨𝜑 [x ↦→ U], 𝜍⟩

Fig. 1. Absence analysis

by-name and by-need interpretation. None of the proof obligations mention the generic

interpreter, and, more remarkably, none of the laws mention the concrete semantics or the

Galois connection either! This enables to prove usage analysis sound wrt. the by-name and

by-need semantics in half a page, building on reusable semantics-specific theorems.

• We compare to the enormous body of related approaches in Section 8.

2 THE PROBLEMWE SOLVE
What is so difficult about proving a compositional, summary-based analysis sound wrt. a non-

compositional small-step operational semantics? We will demonstrate the challenges in this section,

by way of a simplified absence analysis [Peyton Jones and Partain 1994], a higher-order form of

neededness analysis to inform removal of dead bindings in a compiler.

2.1 Object Language
To set the stage, we start by defining the object language of this work, a lambda calculus with

recursive let bindings and algebraic data types:

Variables x, y ∈ Var Constructors 𝐾 ∈ Con with arity 𝛼𝐾 ∈ N
Values v ∈ Val ::= λ̄x.e | 𝐾 x𝛼𝐾

Expressions e ∈ Exp ::= x | v | e x | let x = e1 in e2 | case e of 𝐾 x𝛼𝐾 → e

This language is very similar to that of Launchbury [1993] and Sestoft [1997]. It is factored into

A-normal form, that is, the arguments of applications are restricted to be variables, so the difference

between lazy and eager semantics is manifest in the semantics of let. Note that λ̄𝑥 .𝑥 (with an

overbar) denotes syntax, whereas 𝜆𝑥 . 𝑥 + 1 denotes an anonymous mathematical function. In this

section, only the highlighted parts are relevant, but the interpreter definition in Section 4 supports

data types as well. Throughout the paper we assume that all bound program variables are distinct.

2.2 Absence Analysis
In order to define and explore absence analysis in this subsection, we must clarify what absence

means, semantically. A variable x is absent in an expression e when e never evaluates x, regardless
of the context in which e appears. Otherwise, the variable x is used in e.
Figure 1 defines an absence analysis AJeK𝜌 for lazy program semantics that conservatively

approximates semantic absence.
1
It takes an environment 𝜌 ∈ Var ⇀ Absence containing absence

1
For illustrative purposes, our analysis definition only works for the special case of non-recursive let. The generalised

definition for recursive as well as non-recursive let is AJlet x = e1 in e2K𝜌 = AJe2K𝜌 [x ↦→lfp(𝜆𝜃 . x&AJe1K𝜌 [x↦→𝜃 ] ) ] .
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information about the free variables of e and returns an absence type ⟨𝜑, 𝜍⟩ ∈ AbsTy; an abstract

representation of e. The first component 𝜑 ∈ Uses of the absence type captures how e uses its free
variables by associating an Absence flag with each variable. When 𝜑 (x) = A, then x is absent in e;
otherwise, 𝜑 (x) = U and x might be used in e. The second component 𝜍 ∈ Summary of the absence

type summarises how e uses actual arguments supplied at application sites. For example, function

𝑓 ≜ λ̄𝑥 .𝑦 has absence type ⟨[𝑦 ↦→ U],A :Rep U⟩. Mapping [𝑦 ↦→ U] indicates that 𝑓 may use its free

variable𝑦. The literal notation [𝑦 ↦→ U] maps any variable other than𝑦 to A. Furthermore, summary

A : Rep U indicates that 𝑓 ’s first argument is absent and all further arguments are potentially used.

The summary Rep U denotes an infinite repetition of U, as expressed by the non-syntactic equality

Rep U ≡ U : Rep U.
We illustrate the analysis at the example expression e ≜ let 𝑘 = λ̄𝑦.λ̄𝑧.𝑦 in 𝑘 𝑥1 𝑥2, where

the initial environment for e, 𝜌e (x) ≜ ⟨[x ↦→ U],Rep U⟩, declares the free variables of e with a

pessimistic summary Rep U.

AJlet 𝑘 = λ̄𝑦.λ̄𝑧.𝑦 in 𝑘 𝑥1 𝑥2K𝜌e (1)

= AJ𝑘 𝑥1 𝑥2K𝜌e [𝑘 ↦→𝑘&AJλ̄𝑦.λ̄𝑧.𝑦K𝜌e ] (2)

= app(app(𝜌1 (𝑘)) (𝜌1 (𝑥1))) (𝜌1 (𝑥2)) (3)

= app(app(𝑘 &AJλ̄𝑦.λ̄𝑧.𝑦K𝜌1
) (𝜌1 (𝑥1))) (𝜌1 (𝑥2)) (4)

= app(app(𝑘 & fun𝑦 (𝜆𝜃𝑦 . fun𝑧 (𝜆𝜃𝑧 . 𝜃𝑦))) (...)) (...) (5)

= app(app(⟨[𝑘 ↦→ U], U : A : Rep U⟩)( 𝜌1 (𝑥1) )) (...) (6)

= app(⟨[𝑘 ↦→ U, 𝑥1 ↦→ U], A : Rep U⟩)( 𝜌1 (𝑥2) ) (7)

= ⟨[𝑘 ↦→ U, 𝑥1 ↦→ U],Rep U⟩ (8)

Unfold AJlet x = e1 in e2K. NB: Lazy Let!

Unf. AJ K, 𝜌1 ≜ 𝜌e [𝑘 ↦→ 𝑘&AJλ̄𝑦.λ̄𝑧.𝑦K𝜌e ]

Unfold 𝜌1 (𝑘)

Unfold AJλ̄x.eK twice, AJxK

Unfold fun twice, simplify

Unfold app, 𝜌1 (𝑥1) = 𝜌e (𝑥1), simplify

Unfold app, simplify

Let us look at the steps in a bit more detail. Step (1) extends the environment with an absence type for

the let right-hand side of 𝑘 . The steps up until (5) successively expose applications of the app and fun

helper functions applied to environment entries for the involved variables. Step (5) then computes

the summary as part of the absence type fun𝑦 (𝜆𝜃𝑦 . fun𝑧 (𝜆𝜃𝑧 . 𝜃𝑦)) = ⟨[],U : A : Rep U⟩. The Uses
component is empty because λ̄𝑦.λ̄𝑧.𝑦 has no free variables, and 𝑘& ... will add [𝑘 ↦→ U] as the single
use. The app steps (6) and (7) simply zip up the uses of arguments 𝜌1 (𝑥1) and 𝜌1 (𝑥2) with theAbsence
flags in the summary U:A :Rep U as highlighted, adding the Uses from 𝜌1 (𝑥1) = ⟨[𝑥1 ↦→ U],Rep U⟩
but not from 𝜌1 (𝑥2), because the first actual argument (𝑥1) is used whereas the second (𝑥2) is absent.

The join on Uses follows pointwise from the order A ⊏ U, i.e., (𝜑1 ⊔ 𝜑2) (x) ≜ 𝜑1 (x) ⊔ 𝜑2 (x).
The analysis result [𝑘 ↦→ U, 𝑥1 ↦→ U] infers 𝑘 and 𝑥1 as potentially used and 𝑥2 as absent, despite

it occurring in argument position, thanks to the summary mechanism.

2.3 Function Summaries, Compositionality and Modularity
Instead of coming up with a summary mechanism, we could simply have “inlined” 𝑘 during analysis

of the example above to see that 𝑥2 is absent in a simple first-order sense. The call strings approach

to interprocedural program analysis [Sharir et al. 1978] turns this idea into a static analysis, and

the AAM recipe could be used to derive a call strings-based absence analysis that is sound by

construction. In this subsection, we argue that following this paths gives up on modularity, and

thus leads to scalability problems in a compiler.

Let us clarify that by a summary mechanism, we mean a mechanism for approximating the

semantics of a function call in terms of the domain of a static analysis, often yielding a symbolic,

finite representation. In the definition of AJ K, we took care to explicate the mechanism via fun

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.
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and app. The former approximates a functional (𝜆𝜃 . ...) : AbsTy→ AbsTy into a finite AbsTy, and
app encodes the adjoint (“reverse”) operation.

2

To support efficient separate compilation, a compiler analysis must be modular, and summaries

are indispensable in achieving that. Let us say that our example function 𝑘 = (λ̄𝑦.λ̄𝑧.𝑦) is defined
in module A and there is a use site (𝑘 𝑥1 𝑥2) in module B. Then a modular analysis must not

reanalyse A.𝑘 at its use site in B. Our analysis AJ K facilitates that easily, because it can serialise

the summarised AbsTy for 𝑘 into module A’s signature file. Do note that this would not have been

possible for the functional (𝜆𝜃𝑦 . 𝜆𝜃𝑧 . 𝜃𝑦) : AbsTy → AbsTy → AbsTy that describes the inline

expansion of 𝑘 , which a call strings-based analysis would need to invoke at every use site.

The same way summaries enable efficient inter-module compilation, they enable efficient intra-

module compilation for compositional static analyses such as AJ K.3 Compositionality implies that

AJlet 𝑓 = λ̄𝑥 .ebig in 𝑓 𝑓 𝑓 𝑓 K is a function of AJλ̄𝑥 .ebigK, itself a function of AJebigK. In order to

satisfy the scalability requirements of a compiler and guarantee termination of the analysis in the

first place, it is important not to repeat the work of analysing AJebigK at every use site of 𝑓 . Thus,

it is necessary to summariseAJλ̄𝑥 .ebigK into a finite AbsTy, rather than to call the inline expansion

of type AbsTy→ AbsTy multiple times, ruling out an analysis that is purely based on call strings.

2.4 Problem: Proving Soundness of Summary-Based Analyses
In this subsection, we demonstrate the difficulty of proving summary-based analyses sound.

Theorem 1 (AJ K infers absence). If AJeK𝜌e = ⟨𝜑, 𝜍⟩ and 𝜑 (x) = A, then x is absent in e.

What are the main obstacles to prove it? As the first step, we must define what absencemeans, in

a formal sense. There are many ways to do so, and it is not at all clear which is best. One plausible

definition is in terms of the standard operational semantics in Section 3:

Definition 2 (Absence). A variable x is used in an expression e if and only if there exists a trace

(let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→∗ ...
Look(x)
↩−−−−−−→ ... that looks up the heap entry of x, i.e., it evaluates x.

Otherwise, x is absent in e.

Note that absence is a property of many different traces, each embedding the expression e in
different machine contexts so as to justify rewrites via contextual improvement [Moran and Sands

1999]. Furthermore, we must prove sound the summary mechanism, captured in the following

substitution lemma [Pierce 2002]:
4

Lemma 3 (Substitution). AJeK𝜌 [x↦→𝜌 (y) ] ⊑ AJ(λ̄x.e) yK𝜌 .

Definition 2 and the substitution Lemma 3 will make a reappearance in Section 7. They are

necessary components in a soundness proof, and substitution is not too difficult to prove for a

simple summary mechanism. Building on these definitions, we may finally attempt the proof for

Theorem 1. We suggest for the reader to have a cursory look by clicking on the theorem number,

linking to the Appendix. The proof is exemplary of far more ambitious proofs such as in Sergey

et al. [2017] and Breitner [2016, Section 4]. Though seemingly disparate, these proofs all follow

an established preservation-style proof technique at heart.
5
The proof of Sergey et al. [2017] for a

2
Proving that fun and app form a Galois connection is indeed important for a soundness proof and corresponds to a

substitution Lemma 3.

3
Cousot and Cousot [2002] understand modularity as degrees of compositionality.

4
This statement amounts to 𝑖𝑑 ⊑ app◦ fun𝑥 , one half of a Galois connection. The other half fun𝑥 ◦app ⊑ 𝑖𝑑 is eta-expansion

AJλ̄x.e xK𝜌 ⊑ AJeK𝜌 .
5
A “mundane approach“ according to Nielson et al. [1999, Section 4.1], applicable to trace properties, but not to hyperproper-

ties [Clarkson and Schneider 2010].
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generalisation of AJ K is roughly structured as follows (non-clickable references to Figures and

Lemmas below reference Sergey et al. [2017]):

(1) Instrument a standard call-by-need semantics (a variant of our reference in Section 3) such

that heap lookups decrement a per-address counter; when heap lookup is attempted and

the counter is 0, the machine is stuck. For absence, the instrumentation is simpler: the Look

transition in Figure 2 carries the let-bound variable that is looked up.

(2) Give a declarative type system that characterises the results of the analysis (i.e., AJ K) in
a lenient (upwards closed) way. In case of Theorem 1, we define an analysis function on

machine configurations for the proof.

(3) Prove that evaluation of well-typed terms in the instrumented semantics is bisimilar to

evaluation of the term in the standard semantics, i.e., does not get stuck when the standard

semantics would not. A classic logical relation [Nielson et al. 1999]. In our case, we prove

that evaluation preserves the analysis result.

Alas, the effort in comprehending such a proof in detail, let alone formulating it, is enormous.

• The instrumentation (1) can be semantically non-trivial; for example the semantics in Sergey

et al. [2017] becomes non-deterministic. Does this instrumentation still express the desired

semantic property?

• Step (2) all but duplicates a complicated analysis definition (i.e., AJ K) into a type system (in

Figure 7) with subtle adjustments expressing invariants for the preservation proof.

• Furthermore, step (2) extends this type system to small-step machine configurations (in

Figure 13), i.e., stacks and heaps, the scoping of which is mutually recursive.
6
Another page

worth of Figures; the amount of duplicated proof artifacts is staggering. In our case, the

analysis function on machine configurations is about as long as on expressions.

• This is all setup before step (3) proves interesting properties about the semantic domain of the

analysis. Among the more interesting properties is the substitution lemma A.8 to be applied

during beta reduction; exactly as in our proof.

• While proving that a single step 𝜎1 ↩−→ 𝜎2 preserves analysis information in step (3), we

noticed that we actually got stuck in the Upd case, and would need to redo the proof using

step-indexing [Appel and McAllester 2001]. In our experience this case hides the thorniest of

surprises; that was our experience while proving Theorem 56 which gives a proper account.

Although the proof in Sergey et al. [2017] is perceived as detailed and rigorous, it is quite

terse in the corresponding EUpd case of the single-step safety proof in lemma A.6.

The main takeaway: Although analysis and semantics might be reasonably simple, the soundness

proof that relates both is not; it necessitates an explosion in formal artefacts and the parts of the

proof that concern the domain of the analysis are drowned in coping with semantic subtleties

that ultimately could be shared with similar analyses. Furthermore, the inevitable hand-waving in

proofs of this size around said semantic subtleties diminishes confidence in the soundness of the

proof to the point where trust can only be recovered by full mechanisation.

It would be preferable to find a framework to prove these distractions rigorously and separately,

once and for all, and then instantiate this framework for absence analysis or cardinality analysis, so

that only the highlights of the preservation proof such as the substitution lemma need to be shown.

Abstract interpretation provides such a framework. Alas, the book of Cousot [2021] starts from a

compositional semantics to derive compositional analyses, but small-step operational semantics

are non-compositional! This begs the question if we could have started from a compositional

denotational semantics. While we could have done so for absence or strictness analysis, denotational

6
We believe that this extension can always be derived systematically from a context lemma [Moran and Sands 1999, Lemma

3.2] and imitating what the type system does on the closed expression derivable from a configuration via the context lemma.
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Addresses a ∈ Addr ≃ N States 𝜎 ∈ S = Exp × E × H × K
Environments 𝜌 ∈ E = Var ⇀ Addr Heaps 𝜇 ∈ H = Addr ⇀ Var × E × Exp
Continuations 𝜅 ∈ K ::= stop | ap(a) · 𝜅 | sel(𝜌, 𝐾 x𝛼𝐾 → e) · 𝜅 | upd(a) · 𝜅

Rule 𝜎1 ↩−→ 𝜎2 where

Let1 (let x = e1 in e2, 𝜌, 𝜇, 𝜅) ↩−→ (e2, 𝜌
′, 𝜇 [a ↦→ (x, 𝜌 ′, e1)], 𝜅) a ̸∈ dom(𝜇), 𝜌 ′= 𝜌 [x ↦→ a]

App1 (e x, 𝜌, 𝜇, 𝜅) ↩−→ (e, 𝜌, 𝜇, ap(a) · 𝜅) a = 𝜌 (x)
Case1 (case e𝑠 of 𝐾 x→ e𝑟 , 𝜌, 𝜇, 𝜅) ↩−→ (e𝑠 , 𝜌, 𝜇, sel(𝜌, 𝐾 x→ e𝑟 ) · 𝜅)
Look(y) (x, 𝜌, 𝜇, 𝜅) ↩−→ (e, 𝜌 ′, 𝜇, upd(a) · 𝜅) a = 𝜌 (x), (y, 𝜌 ′, e) = 𝜇 (a)
App2 (λ̄x.e, 𝜌, 𝜇, ap(a) · 𝜅) ↩−→ (e, 𝜌 [x ↦→ a], 𝜇, 𝜅)
Case2 (𝐾 ′ 𝑦, 𝜌, 𝜇, sel(𝜌 ′, 𝐾 x→ e) · 𝜅) ↩−→ (e𝑖 , 𝜌 ′ [x𝑖 ↦→ a], 𝜇, 𝜅) 𝐾𝑖 = 𝐾

′, a = 𝜌 (y)
Upd (v, 𝜌, 𝜇, upd(a) · 𝜅) ↩−→ (v, 𝜌, 𝜇 [a ↦→ (x, 𝜌, v)], 𝜅) 𝜇 (a) = (x, , )

Fig. 2. Lazy Krivine transition semantics ↩−→

semantics is insufficient to express operational properties such as usage cardinality, i.e., “e evaluates
x at most 𝑢 times”, but usage cardinality is the entire point of the analysis in Sergey et al. [2017].

7

For these reasons, we set out to find a compositional semantics that exhibits operational
detail just like the trace-generating semantics of Cousot [2021], and were successful. The example

of usage analysis in Section 6 (generalising AJ K, as suggested above) demonstrates that we can

derive summary-based analyses as an abstract interpretation from our semantics. Since both

semantics and analysis are derived from the same compositional generic interpreter, the equivalent

of the preservation proof for usage analysis in Lemma 9 takes no more than a substitution lemma

and a bit of plumbing. Hence our denotational interpreter does not only enjoy useful compositional

semantics and analyses as instances, the soundness proofs become compositional in the semantic

domain as well.

3 REFERENCE SEMANTICS: LAZY KRIVINE MACHINE
Before we get to introduce our novel denotational interpreters, let us recall the semantic ground

truth of this work and others [Breitner 2016; Sergey et al. 2017]: The Mark II machine of Sestoft

[1997] given in Figure 2, a small-step operational semantics. It is a Lazy Krivine (LK) machine

implementing call-by-need. (A close sibling for call-by-value would be a CESK machine [Felleisen

and Friedman 1987].) A reasonable call-by-name semantics can be recovered by removing the Upd

rule and the pushing of update frames in Look. Furthermore, we will ignore Case1 and Case2 in

this section because we do not consider data types for now.

The configurations 𝜎 in this transition system resemble abstract machine states, consisting of a

control expression e, an environment 𝜌 mapping lexically-scoped variables to their current heap

address, a heap 𝜇 listing a closure for each address, and a stack of continuation frames 𝜅. There is

one harmless non-standard extension: For Look transitions, we take note of the let-bound variable y
which allocated the heap binding that the machine is about to look up. The association from address

to let-bound variable is maintained in the first component of a heap entry triple and requires slight

adjustments of the Let1, Look and Upd rules.

The notation 𝑓 ∈ 𝐴 ⇀ 𝐵 used in the definition of 𝜌 and 𝜇 denotes a finite map from 𝐴 to 𝐵,

a partial function where the domain dom(𝑓 ) is finite and rng(𝑓 ) denotes its range. The literal

7
Useful applications of the “at most once” cardinality are given in Sergey et al. [2017]; Turner et al. [1995], motivating

inlining into function bodies that are called at most once, for example.
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notation [𝑎1 ↦→ 𝑏1, ..., 𝑎𝑛 ↦→ 𝑏𝑛] denotes a finite map with domain {𝑎1, ..., 𝑎𝑛} that maps 𝑎𝑖 to 𝑏𝑖 .

Function update 𝑓 [𝑎 ↦→ 𝑏] maps 𝑎 to 𝑏 and is otherwise equal to 𝑓 .

The initial machine state for a closed expression e is given by the injection function init (e) =
(e, [], [], stop) and the final machine states are of the form (v, , , stop). We bake into 𝜎 ∈ S the

simplifying invariant of well-addressedness: Any address a occurring in 𝜌 , 𝜅 or the range of 𝜇 must

be an element of dom(𝜇). It is easy to see that the transition system maintains this invariant and

that it is still possible to observe scoping errors which are thus confined to lookup in 𝜌 .

We conclude with two example traces. The first one evaluates let 𝑖 = λ̄𝑥 .𝑥 in 𝑖 𝑖:

(let 𝑖 = λ̄𝑥 .𝑥 in 𝑖 𝑖, [], [], stop) Let1

↩−−−→ (𝑖 𝑖, 𝜌1, 𝜇, stop) App1

↩−−−→ (𝑖, 𝜌1, 𝜇, 𝜅)
Look(𝑖 )
↩−−−−−→

(λ̄𝑥 .𝑥, 𝜌1, 𝜇, upd(a1) · 𝜅)
Upd

↩−−→ (λ̄𝑥 .𝑥, 𝜌1, 𝜇, 𝜅)
App2

↩−−−→ (𝑥, 𝜌2, 𝜇, stop)
Look(𝑖 )
↩−−−−−→

(λ̄𝑥 .𝑥, 𝜌1, 𝜇, upd(a1) · stop) Upd

↩−−→ (λ̄𝑥 .𝑥, 𝜌1, 𝜇, stop)
(1)

where 𝜅 = ap(a1) · stop, 𝜌1 = [𝑖 ↦→ a1], 𝜌2 = [𝑖 ↦→ a1, 𝑥 ↦→ a1], 𝜇 = [a1 ↦→ (𝑖, 𝜌1, λ̄𝑥 .𝑥)]

The corresponding by-name trace simply omits the highlighted update steps. The second example

evaluates e ≜ let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖 𝑖 , demonstrating memoisation of 𝑖:

(e, [], [], stop) Let1

↩−−−→ (𝑖 𝑖, 𝜌1, 𝜇1, stop) App1

↩−−−→ (𝑖, 𝜌1, 𝜇1, 𝜅1)
Look(𝑖 )
↩−−−−−→ ((λ̄𝑦.λ̄𝑥 .𝑥) 𝑖, 𝜌1, 𝜇1, 𝜅2)

App1

↩−−−→ (λ̄𝑦.λ̄𝑥 .𝑥, 𝜌1, 𝜇1, ap(a1) · 𝜅2)
App2

↩−−−→ (λ̄𝑥 .𝑥, 𝜌2, 𝜇1, 𝜅2)
Upd

↩−−→ (λ̄𝑥 .𝑥, 𝜌2, 𝜇2, 𝜅1)
App2

↩−−−→ (𝑥, 𝜌3, 𝜇2, stop)
Look(𝑖 )
↩−−−−−→ (λ̄𝑥 .𝑥, 𝜌2, 𝜇2, upd(a1) · stop) Upd

↩−−→ (λ̄𝑥 .𝑥, 𝜌2, 𝜇2, stop)

(2)

where

𝜌1 = [𝑖 ↦→ a1], 𝜌2 = [𝑖 ↦→ a1, 𝑦 ↦→ a1], 𝜌3 = [𝑖 ↦→ a1, 𝑦 ↦→ a1, 𝑥 ↦→ a1],
𝜇1 = (𝜌1, (𝑖, λ̄𝑦.λ̄𝑥 .𝑥) 𝑖), 𝜇2 = [a1 ↦→ (𝑖, 𝜌2, λ̄𝑥 .𝑥)], 𝜅1 = ap(a1) · stop, 𝜅2 = upd(a1) · 𝜅1

4 A DENOTATIONAL INTERPRETER
In this section, we present the main contribution of this work, namely a generic denotational

interpreter
8
for a functional language which we can instantiate with different semantic domains.

The choice of semantic domain determines the evaluation strategy (call-by-name, call-by-value,

call-by-need) and the degree to which operational detail can be observed. Yet different semantic

domains give rise to useful summary-based static analyses such as usage analysis in Section 6,

all from the same interpreter skeleton. Our generic denotational interpreter enable sharing of

soundness proofs, thus drastically simplifying the soundness proof obligation per derived analysis

(Section 7).

Denotational interpreters can be implemented in any higher-order language such as OCaml,

Scheme or Java with explicit thunks, but we picked Haskell for convenience.
9

4.1 Semantic Domain
Just as traditional denotational semantics, denotational interpreters assign meaning to programs in

some semantic domain. Traditionally, the semantic domain D comprises semantic values such as

base values (integers, strings, etc.) and functionsD→ D. One of the main features of these semantic

domains is that they lack operational, or, intensional detail that is unnecessary to assigning each

8
This term was coined by Might [2010]. We find it fitting, because a denotational interpreter is both a denotational

semantics [Scott and Strachey 1971] as well as a total definitional interpreter [Reynolds 1972].

9
We extract from this document a runnable Haskell file which we add as a Supplement, containing the complete definitions.

Furthermore, the (terminating) interpreter outputs are directly generated from this extract.
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data Exp
= Var Name | Let Name Exp Exp
| Lam Name Exp | App Exp Name
| ConApp Tag [Name] | Case Exp Alts

type Name = String
type Alts = Tag :⇀ ( [Name], Exp)
data Tag = ...; conArity :: Tag→ Int

Fig. 3. Syntax

type (:⇀) = Map; 𝜀 :: Ord k ⇒ k :⇀ v

[ ↦→ ] :: Ord k ⇒ (k :⇀ v) → k → v → (k :⇀ v)
[ ↦→ ] :: Ord k ⇒ (k :⇀ v) → [k ] → [v ]

→ (k :⇀ v)
(!) :: Ord k ⇒ (k :⇀ v) → k → v

dom :: Ord k ⇒ (k :⇀ v) → Set k
(∈) :: Ord k ⇒ k → Set k → Bool
(◁) :: (b→ c) → (a :⇀ b) → (a :⇀ c)
assocs :: (k :⇀ v) → [ (k, v) ]

Fig. 4. Environments

observationally distinct expression a distinct meaning. For example, it is not possible to observe

evaluation cardinality, which is the whole point of analyses such as usage analysis (Section 6).

A distinctive feature of our work is that our semantic domains are instead traces that describe

the steps taken by an abstract machine, and that end in semantic values. It is possible to describe

usage cardinality as a property of the traces thus generated, as required for a soundness proof

of usage analysis. We choose Dna, defined below, as the first example of such a semantic domain,

because it is simple and illustrative of the approach. Instantiated at Dna, our generic interpreter

will produce precisely the traces of the by-name variant of the Krivine machine in Figure 2.

We can define the semantic domain Dna for a call-by-name variant of our language as follows:
10

type D 𝜏 = 𝜏 (Value 𝜏); type Dna = D T
data T v = Step Event (T v) | Ret v
data Event = Lookup Name | Update | App1 | App2

| Let0 | Let1 | Case1 | Case2

data Value 𝜏 = Stuck | Fun (D 𝜏 → D 𝜏) | Con Tag [D 𝜏 ]

instance Monad T where
return v = Ret v
Ret v >>= k = k v

Step e 𝜏 >>= k = Step e (𝜏 >>= k)

A trace T either returns a value (Ret) or makes a small-step transition (Step). Each step Step ev rest is

decorated with an event ev, which describes what happens in that step. For example, event Lookup x

describes the lookup of variable x :: Name in the environment. Note that the choice of Event is
use-case (i.e. analysis) specific and suggests a spectrum of intensionality, with data Event = Unit
on the more abstract end of the spectrum and arbitrary syntactic detail attached to each of Event’s
constructors at the intensional end of the spectrum.

11

A trace in Dna = T (Value T) eventually terminates with a Value that is either stuck (Stuck), a
function waiting to be applied to a domain value (Fun), or a constructor constructor application
giving the denotations of its fields (Con). We postpone worries about well-definedness and totality

of this encoding to Section 5.2.

4.2 The Interpreter
Traditionally, a denotational semantics is expressed as a mathematical function, often written

JeK𝜌 , to give an expression e :: Exp a meaning, or denotation, in terms of some semantic domain

10
For a realistic implementation, we would define D as a newtype to keep type class resolution decidable and non-

overlapping. We will however stick to a type synonym in this presentation in order to elide noisy wrapping and unwrapping

of constructors.

11
If our language had facilities for input/output and more general side-effects, we could have started from a more elaborate

trace construction such as (guarded) interaction trees [Frumin et al. 2023; Xia et al. 2019].
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SJ K :: (Trace d,Domain d,HasBind d)
⇒ Exp→ (Name :⇀ d) → d

SJeK𝜌 = case e of
Var x | x ∈ dom 𝜌 → 𝜌 ! x

| otherwise → stuck

Lam x body → fun x $ 𝜆d →
step App2 (SJbodyK(𝜌 [x ↦→d ] ) )

App e x | x ∈ dom 𝜌 → step App1 $

apply (SJeK𝜌 ) (𝜌 ! x)
| otherwise → stuck

Let x e1 e2 → bind

(𝜆d1 → SJe1K𝜌 [x ↦→step (Lookup x ) d1 ])
(𝜆d1 → step Let1 (SJe2K𝜌 [x ↦→step (Lookup x ) d1 ]))

ConApp k xs

| all (∈ dom 𝜌) xs, length xs ≡ conArity k

→ con k (map (𝜌 !) xs)
| otherwise
→ stuck

Case e alts→ step Case1 $

select (SJeK𝜌 ) (cont ◁ alts)
where
cont (xs, 𝑒𝑟 ) ds | length xs ≡ length ds

= step Case2 (SJ𝑒𝑟 K𝜌 [xs ↦→ds])
| otherwise
= stuck

class Trace d where
step :: Event→ d → d

class Domain d where
stuck :: d

fun :: Name→ (d → d) → d

apply :: d → d → d

con :: Tag→ [d ] → d

select :: d → (Tag :⇀ ( [d ] → d)) → d

class HasBind d where
bind :: (d → d) → (d → d) → d

(a) Interface of traces and values

instance Trace (T v) where
step = Step

instance Monad 𝜏 ⇒ Domain (D 𝜏) where
stuck = return Stuck
fun f = return (Fun f )
apply d a = d >>= 𝜆v → case v of
Fun f → f a; → stuck

con k ds = return (Con k ds)
select dv alts = dv >>= 𝜆v → case v of
Con k ds | k ∈ dom alts→ (alts ! k) ds

→ stuck

instance HasBind Dna where
bind rhs body = let d = rhs d in body d

(b) Concrete by-name semantics for Dna

Fig. 5. Abstract Denotational Interpreter

D. The environment 𝜌 :: Name :⇀ D gives meaning to the free variables of e, by mapping each

free variable to its denotation in D. We sketch the Haskell encoding of Exp in Figure 3 and the API

of environments and sets in Figure 4. For concise notation, we will use a small number of infix

operators: (:⇀) as a synonym for finite Maps, with m ! x for looking up x in m, 𝜀 for the empty

map, m[x ↦→ d] for updates, assocs m for a list of key-value pairs in m, f ◁m for mapping f over

every value in m, dom m for the set of keys present in the map, and (∈) for membership tests in

that set.

Our denotational interpreter SJ K :: Exp → (Name :⇀ Dna) → Dna can have a similar type

as J K . However, to derive both dynamic semantics and static analysis as instances of the same

generic interpreter SJ K , we need to vary the type of its semantic domain, which is naturally

expressed using type-class overloading, thus:

SJ K :: (Trace d,Domain d,HasBind d) ⇒ Exp→ (Name :⇀ d) → d .
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We have parameterised the semantic domain d over three type classes Trace, Domain and HasBind,
whose signatures are given in Figure 5a.

12
Each of the three type classes offer knobs that we will

tweak to derive different evaluation strategies as well as static analyses.

Figure 5 gives the complete definition of SJ K together with instances for domain Dna that we

introduced in Section 4.1. Together this is enough to actually run the denotational interpreter to

produce traces. We use read :: String → Exp as a parsing function, and a Show instance for D 𝜏

that displays traces. For example, we can evaluate the expression let 𝑖 = λ̄𝑥 .𝑥 in 𝑖 𝑖 like this:

𝜆> SJread "let i = λx.x in i i"K𝜀 :: Dna

Let1 ↩−→ App1 ↩−→ Look(𝑖) ↩−→ App2 ↩−→ Look(𝑖) ↩−→ ⟨𝜆⟩,

where ⟨𝜆⟩ means that the trace ends in a Fun value. We cannot print Dnas or Functions thereof,
but in this case the result would be the value λ̄𝑥 .𝑥 . This is in direct correspondence to the earlier

call-by-name small-step trace (1) in Section 3.

The definition of SJ K , given in Figure 5, is by structural recursion over the input expression.

For example, to get the denotation of Lam x body, we must recursively invoke SJ K on body,

extending the environment to bind x to its denotation. We wrap that body denotation in step App2,

to prefix the trace of body with an App2 event whenever the function is invoked, where step is a

method of class Trace. Finally, we use fun to build the returned denotation; the details necessarily

depend on the Domain, so fun is a method of class Domain. While the lambda-bound x :: Name
passed to fun is ignored in in the Domain Dna instance of the concrete by-name semantics, it

is useful for abstract domains such as that of usage analysis (Section 6). The other cases follow

a similar pattern; they each do some work, before handing off to type class methods to do the

domain-specific work.

TheHasBind type class defines a particular evaluation strategy, as we shall see in Section 4.3. The

bind method of HasBind is used to give meaning to recursive let bindings: it takes two functionals

for building the denotation of the right-hand side and that of the let body, given a denotation for the

right-hand side. The concrete implementation for bind given in Figure 5b computes a d such that

d = rhs d and passes the recursively-defined d to body.
13
Doing so yields a call-by-name evaluation

strategy, because the trace d will be unfolded at every occurrence of x in the right-hand side e1. We

will shortly see examples of eager evaluation strategies that will yield from d inside bind instead of

calling body immediately.

We conclude this subsection with a few examples. First we demonstrate that our interpreter is

productive: we can observe prefixes of diverging traces without risking a looping interpreter. To

observe prefixes, we use a function takeT :: Int→ T v → T (Maybe v): takeT n 𝜏 returns the first

n steps of 𝜏 and replaces the final value with Nothing (printed as ...) if it goes on for longer.

𝜆> takeT 5 $ SJread "let x = x in x"K𝜀 :: T (Maybe (Value T))

Let1 ↩−→ Look(𝑥) ↩−→ Look(𝑥) ↩−→ Look(𝑥) ↩−→ Look(𝑥) ↩−→ ...

𝜆> takeT 9 $ SJread "let w = λy. y y in w w"K𝜀 :: T (Maybe (Value T))

Let1 ↩−→ App1 ↩−→ Look(𝑤) ↩−→ App2 ↩−→ App1 ↩−→ Look(𝑤) ↩−→ App2 ↩−→ App1 ↩−→ Look(𝑤) ↩−→ ...

12
One can think of these type classes as a fold-like final encoding [Carette et al. 2007] of a domain. However, the significance

is in the decomposition of the domain, not the choice of encoding.

13
Such a d corresponds to the guarded fixpoint of rhs. Strict languages can define this fixpoint as d ( ) = rhs (d ( ) ) .
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SnameJeK𝜌 = SJeK𝜌 :: D (ByName T)
newtype ByName 𝜏 v = ByName {unByName :: 𝜏 v }
instance Monad 𝜏 ⇒ Monad (ByName 𝜏) where ...
instance Trace (𝜏 v) ⇒ Trace (ByName 𝜏 v) where ...
instance HasBind (D (ByName 𝜏)) where ...

Fig. 6. Redefinition of call-by-name semantics from Figure 5b

The reason SJ K is productive is due to the coinductive nature of T’s definition in Haskell.
14

Productivity requires that the monadic bind operator (>>=) for T guards the recursion, as in the

delay monad of Capretta [2005].

Data constructor values are printed as 𝐶𝑜𝑛(𝐾), where 𝐾 indicates the Tag. Data types allow for

interesting ways (type errors) to get Stuck (i.e., the wrong value of Milner [1978]), printed as  :

𝜆> SJread "let zro = Z() in let one = S(zro) in case one of { S(z) -> z }"K𝜀 :: Dna

Let1 ↩−→ Let1 ↩−→ Case1 ↩−→ Look(𝑜𝑛𝑒) ↩−→ Case2 ↩−→ Look(𝑧𝑟𝑜) ↩−→ ⟨Con(𝑍 )⟩

𝜆> SJread "let zro = Z() in zro zro"K𝜀 :: Dna

Let1 ↩−→ App1 ↩−→ Look(𝑧𝑟𝑜) ↩−→ ⟨ ⟩

4.3 More Evaluation Strategies
By varying the HasBind instance of our type D, we can endow our language Exp with different

evaluation strategies. The appeal of that is, firstly, that it is possible to do so! Furthermore, we thus

introduce the — to our knowledge — first provably adequate denotational semantics for call-by-need.

We will go on to prove usage analysis sound wrt. by-need evaluation in Section 7. The different

by-value semantics demonstrate versatility, in that our approach is applicable to strict languages as

well and thus can be used to study the differences between by-need and by-value evaluation.

Following a similar approach as Darais et al. [2017], we maximise reuse by instantiating the

same D at different wrappers of T, rather than reinventing Value and T.

4.3.1 Call-by-name. We redefine by-name semantics via the ByName trace transformer in Figure 6,

so called because ByName 𝜏 inherits its Monad and Trace instance from 𝜏 and in reminiscence of

Darais et al. [2015]. The old Dna can be recovered as D (ByName T) and we refer to its interpreter

instance as SnameJeK𝜌 .

4.3.2 Call-by-need. The use of a stateful heap is essential to the call-by-need evaluation strategy in

order to enable memoisation. So how do we vary 𝜃 such that D 𝜃 accommodates state? We certainly

cannot perform the heap update by updating entries in 𝜌 , because those entries are immutable

once inserted, and we do not want to change the generic interpreter. That rules out 𝜃 � T (as for

ByName T), because then repeated occurrences of the variable x must yield the same trace 𝜌 ! x.

However, the whole point of memoisation is that every evaluation of x after the first one leads to

a potentially different, shorter trace. This implies we have to paramaterise every occurrence of x

over the current heap 𝜇 at the time of evaluation, and every evaluation of x must subsequently

update this heap with its value, so that the next evaluation of x returns the value directly. In other

words, we need a representation D 𝜃 � Heap→ T (Value 𝜃,Heap).

14
In a strict language, we need to introduce a thunk in the definition of Step, e.g., Step of event * (unit -> ’a t).
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SneedJeK𝜌 (𝜇) = unByNeed (SJeK𝜌 :: D (ByNeed T)) 𝜇
type Addr = Int; type Heap 𝜏 = Addr :⇀ D 𝜏 ; nextFree :: Heap 𝜏 → Addr
newtype ByNeed 𝜏 v = ByNeed {unByNeed :: Heap (ByNeed 𝜏) → 𝜏 (v,Heap (ByNeed 𝜏)) }
get :: Monad 𝜏 ⇒ ByNeed 𝜏 (Heap (ByNeed 𝜏)); get = ByNeed (𝜆𝜇 → return (𝜇, 𝜇))
put :: Monad 𝜏 ⇒ Heap (ByNeed 𝜏) → ByNeed 𝜏 (); put 𝜇 = ByNeed (𝜆 → return ((), 𝜇))
instance Monad 𝜏 ⇒ Monad (ByNeed 𝜏) where ...

instance (∀v. Trace (𝜏 v)) ⇒ Trace (ByNeed 𝜏 v) where step e m = ByNeed (step e ◦ unByNeed m)
fetch :: Monad 𝜏 ⇒ Addr→ D (ByNeed 𝜏); fetch a = get >>= 𝜆𝜇 → 𝜇 ! a

memo :: ∀𝜏 . (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ Addr→ D (ByNeed 𝜏) → D (ByNeed 𝜏)
memo a d = d >>= 𝜆v → ByNeed (upd v)

where upd Stuck 𝜇 = return (Stuck :: Value (ByNeed 𝜏), 𝜇)
upd v 𝜇 = step Update (return (v, 𝜇 [a ↦→ memo a (return v)]))

instance (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (ByNeed 𝜏)) where
bind rhs body = do 𝜇 ← get

let a = nextFree 𝜇

put 𝜇 [a ↦→ memo a (rhs (fetch a))]
body (fetch a)

Fig. 7. Call-by-need

Our trace transformer ByNeed in Figure 7 solves this type equation via 𝜃 ≜ ByNeed T. It embeds

a standard state transformer monad,
15
whose key operations get and put are given in Figure 7.

So the denotation of an expression is no longer a trace, but rather a stateful function returning

a trace with state Heap (ByNeed 𝜏) in which to allocate call-by-need thunks. The Trace instance
of ByNeed 𝜏 simply forwards to that of 𝜏 (i.e., often T), pointwise over heaps. Doing so needs a

Trace instance for 𝜏 (Value (ByNeed 𝜏),Heap (ByNeed 𝜏)), but we found it more succinct to use

a quantified constraint (∀v. Trace (𝜏 v)), that is, we require a Trace (𝜏 v) instance for every choice

of v. Given that 𝜏 must also be a Monad, that is not an onerous requirement.

The key part is again the implementation of HasBind for D (ByNeed 𝜏), because that is the only
place where thunks are allocated. The implementation of bind designates a fresh heap address a to

hold the denotation of the right-hand side. Both rhs and body are called with fetch a, a denotation

that looks up a in the heap and runs it. If we were to omit the memo a action explained next,

we would thus have recovered another form of call-by-name semantics based on mutable state

instead of guarded fixpoints such as in ByName and ByValue. The whole purpose of the memo a d

combinator then is to memoise the computation of d the first time we run the computation, via

fetch a in the Var case of SneedJ K ( ). So memo a d yields from d until it has reached a value, and

then updates the heap after an additionalUpdate step. Repeated access to the same variable will run

the replacement memo a (return v), which immediately yields v after performing a step Update
that does nothing.

16

Although the code is carefully written, it is worth stressing how compact and expressive it is.

We were able to move from traces to stateful traces just by wrapping traces T in a state transformer

15
Indeed, we derive its monad instance via StateT (Heap (ByNeed 𝜏 ) ) 𝜏 [Blöndal et al. 2018].

16
More serious semantics would omit updates after the first evaluation as an optimisation, i.e., update with 𝜇 [a ↦→ return v ],

but doing so complicates relating the semantics to Figure 2, where omission of update frames for values behaves differently.

For now, our goal is not to formalise this optimisation, but rather to show adequacy wrt. an established semantics.
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SvalueJeK𝜌 = SJeK𝜌 :: D (ByValue T)
newtype ByValue 𝜏 v = ByValue {unByValue :: 𝜏 v }
instance Monad 𝜏 ⇒ Monad (ByValue 𝜏) where ...
instance Trace (𝜏 v) ⇒ Trace (ByValue 𝜏 v) where ...

class Extract 𝜏 where getValue :: 𝜏 v → v

instance Extract T where getValue (Ret v) = v; getValue (Step 𝜏) = getValue 𝜏

instance (Trace (D (ByValue 𝜏)),Monad 𝜏, Extract 𝜏) ⇒ HasBind (D (ByValue 𝜏)) where
bind rhs body = step Let0 (do v1 ← d; body (return v1))

where d = rhs (return v) :: D (ByValue 𝜏)
v = getValue (unByValue d) :: Value (ByValue 𝜏)

Fig. 8. Call-by-value

ByNeed, without modifying the main SJ K function at all. In doing so, we provide the simplest

encoding of a denotational by-need semantics that we know of.
17

Here is an example evaluating let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖 𝑖 , starting in an empty heap:

𝜆> SneedJread "let i = (λy.λx.x) i in i i"K𝜀 (𝜀) :: T (Value ,Heap )
Let1 ↩−→ App1 ↩−→ Look(𝑖) ↩−→ App1 ↩−→ App2 ↩−→ Upd ↩−→ App2 ↩−→ Look(𝑖) ↩−→ Upd ↩−→ ⟨(𝜆, [0↦→ ])⟩
This trace is in clear correspondence to the earlier by-need LK trace (2). We can observe memoisation

at play: Between the first bracket of Look and Upd events, the heap entry for 𝑖 goes through a beta

reduction before producing a value. This work is cached, so that the second Look bracket does not

do any beta reduction.

4.3.3 Call-by-value. Call-by-value eagerly evaluates a let-bound RHS and then substitutes its value,

rather than the reduction trace that led to the value, into every use site.

The call-by-value evaluation strategy is implemented with the ByValue trace transformer shown

in Figure 8. Function bind defines a denotation d :: D (ByValue 𝜏) of the right-hand side by mutual

recursion with v :: Value (ByValue 𝜏) that we will discuss shortly.
As its first action, bind yields a Let0 event, announcing in the trace that the right-hand side of a

let is to be evaluated. Then monadic bind v1 ← d; body (return v1) yields steps from the right-hand

side d until its value v1 ::Value (ByValue 𝜏) is reached, which is then passed returned (i.e., wrapped

in Ret) to the let body. Note that the steps in d are yielded eagerly, and only once, rather than

duplicating the trace at every use site in body, as the by-name form body d would.

To understand the recursive definition of the denotation of the right-hand side d and its value v,

consider the case 𝜏 = T. Then return = Ret and we get d = rhs (Ret v) for the value v at the end

of the trace d, as computed by the type class instance method getValue :: T v → v.
18
The effect of

Ret (getValue (unByValue d)) is that of stripping all Steps from d.
19

Since nothing about getValue is particularly special to T, it lives in its own type class Extract so
that we get aHasBind instance for different types of Traces, such as more abstract ones in Section 6.

Let us trace let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖 𝑖 for call-by-value:
17
It is worth noting that nothing in our approach is particularly specific to Exp or Value! We have built similar interpreters

for PCF, where the rec, let and non-atomic argument constructs can simply reuse bind to recover a call-by-need semantics.

The Event type needs semantics- and use-case-specific adjustment, though.

18
The keen reader may have noted that we could use Extract to define aMonadFix instance for deterministic 𝜏 .

19
We could have defined d as one big guarded fixpoint fix (rhs ◦ return ◦ getValue ◦ unByValue) , but some co-authors prefer

to see the expanded form.
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SvinitJeK𝜌 (𝜇) = unByVInit (SJeK𝜌 :: D (ByVInit T)) 𝜇
newtype ByVInit 𝜏 v = ByVInit {unByVInit :: Heap (ByVInit 𝜏) → 𝜏 (v,Heap (ByVInit 𝜏)) }
instance (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (ByVInit 𝜏)) where

bind rhs body = do 𝜇 ← get

let a = nextFree 𝜇

put 𝜇 [a ↦→ stuck]
step Let0 (memo a (rhs (fetch a))) >>= body ◦ return

Fig. 9. Call-by-value with lazy initialisation

SclairJeK𝜌 = runClair $ SJeK𝜌 :: T (Value (Clairvoyant T))
data Fork f a = Empty | Single a | Fork (f a) (f a); data ParT m a = ParT (m (Fork (ParT m) a))
instance Monad 𝜏 ⇒ Alternative (ParT 𝜏) where

empty = ParT (pure Empty); l <|> r = ParT (pure (Fork l r))
newtype Clairvoyant 𝜏 a = Clairvoyant (ParT 𝜏 a)
runClair :: D (Clairvoyant T) → T (Value (Clairvoyant T))
instance (Extract 𝜏,Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (Clairvoyant 𝜏)) where

bind rhs body = Clairvoyant (skip <|> let
′) >>= body

where skip = return (Clairvoyant empty)
let
′ = fmap return $ step Let0 $ ... fix ... rhs ... getValue ...

Fig. 10. Clairvoyant Call-by-value

𝜆> SvalueJread "let i = (λy.λx.x) i in i i"K𝜀

Let0 ↩−→ App1 ↩−→ App2 ↩−→ Let1 ↩−→ App1 ↩−→ Look(𝑖) ↩−→ App2 ↩−→ Look(𝑖) ↩−→ ⟨𝜆⟩

The beta reduction of (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 now happens once within the Let0/Let1 bracket; the two subse-

quent Look events immediately halt with a value.

Alas, this model of call-by-value does not yield a total interpreter! Consider the case when the

right-hand side accesses its value before yielding one, e.g.,

𝜆> takeT 5 $ SvalueJread "let x = x in x x"K𝜀

Let0 ↩−→ Look(𝑥) ↩−→ Let1 ↩−→ App1 ↩−→ Look(𝑥) ↩−→ ^CInterrupted

This loops forever unproductively, rendering the interpreter unfit as a denotational semantics.

4.3.4 Lazy Initialisation and Black-holing. Recall that our simple ByValue transformer above yields

a potentially looping interpreter. Typical strict languages work around this issue in either of two

ways: They enforce termination of the RHS statically (OCaml, ML), or they use lazy initialisation

techniques [Nakata 2010; Nakata and Garrigue 2006] (Scheme, recursive modules in OCaml). We

recover a total interpreter using the semantics in Nakata [2010], building on the same encoding as

ByNeed and initialising the heap with a black hole [Peyton Jones 1992] stuck in bind as in Figure 9.

𝜆> SvinitJread "let x = x in x x"K𝜀 (𝜀) :: T (Value ,Heap )

Let0 ↩−→ Look(𝑥) ↩−→ Let1 ↩−→ App1 ↩−→ Look(𝑥) ↩−→ ⟨( , [0↦→ ])⟩

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.



[git] •

1:16 Sebastian Graf, Simon Peyton Jones, and Sven Keidel

4.3.5 Clairvoyant Call-by-value. Clairvoyant call-by-value [Hackett and Hutton 2019] is an ap-

proach to call-by-need semantics that exploits non-determinism and a cost model to absolve of the

heap. We can instantiate our interpreter to generate the shortest clairvoyant call-by-value trace

as well, as sketched out in Figure 10. Doing so yields an evaluation strategy that either skips or

speculates let bindings, depending on whether or not the binding is needed:

𝜆> SclairJread "let f = λx.x in let g = λy.f in g"K𝜀 :: T (Value (Clairvoyant T))
Let1 ↩−→ Let0 ↩−→ Let1 ↩−→ Look(𝑔) ↩−→ ⟨𝜆⟩
𝜆> SclairJread "let f = λx.x in let g = λy.f in g g"K𝜀 :: T (Value (Clairvoyant T))
Let0 ↩−→ Let1 ↩−→ Let0 ↩−→ Let1 ↩−→ App1 ↩−→ Look(𝑔) ↩−→ App2 ↩−→ Look(𝑓 ) ↩−→ ⟨𝜆⟩
The first example discards 𝑓 , but the second needs it, so the trace starts with an additional Let0

event. Similar to ByValue, the interpreter is not total so it is unfit as a denotational semantics

without a complicated domain theoretic judgment. Furthermore, the decision whether or not a

Let0 is needed can be delayed for an infinite amount of time, as exemplified by

𝜆> SclairJread "let i = Z() in let w = λy.y y in w w"K𝜀 :: T (Value (Clairvoyant T))
^CInterrupted

The program diverges without producing even a prefix of a trace because the binding for 𝑖 might

be needed at an unknown point in the future (a liveness property and hence impossible to verify

at runtime). This renders Clairvoyant call-by-value inadequate for verifying properties of infinite

executions.

5 TOTALITY AND SEMANTIC ADEQUACY
In this section, we prove that SneedJ K produces small-step traces of the lazy Krivine machine and

is indeed a denotational semantics.
20
Excitingly, to our knowledge, SneedJ K is the first denotational

call-by-need semantics that was proven so! Specifically, denotational semantics must be total and

adequate. Totality says that the interpreter is well-defined for every input expression and adequacy

says that the interpreter produces similar traces as the reference semantics. This is an important

result because it allows us to switch between operational reference semantics and denotational

interpreter as needed, thus guaranteeing compatibility of definitions such as absence in Definition 2.

As before, all the proofs can be found in the Appendix.

5.1 Adequacy of SneedJ K
For proving adequacy of SneedJ K , we give an abstraction function 𝛼 from small-step traces in the

lazy Krivine machine (Figure 2) to denotational traces T, with Events and all, such that

𝛼 (init (e) ↩−→ ...) = SneedJeK𝜀 (𝜀),
where init (e) ↩−→ ... denotes the maximal (i.e. longest possible) LK trace evaluating the closed

expression e. For example, for the LK trace (2), 𝛼 produces the trace at the end of Section 4.3.2.

It turns out that function 𝛼 preserves a number of important observable properties, such as

termination behavior (i.e. stuck, diverging, or balanced execution [Sestoft 1997]), length of the trace

and transition events, as expressed in the following Theorem:

Theorem 4 (Strong Adequacy). Let e be a closed expression, 𝜏 ≜ SneedJeK𝜀 (𝜀) the denotational
by-need trace and init (e) ↩−→ ... the maximal lazy Krivine trace. Then

• 𝜏 preserves the observable termination properties of init (e) ↩−→ ... in the above sense.

20
Similar results for SnameJ K and SvinitJ K ( ) should be derivative.
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• 𝜏 preserves the length (i.e., number of Steps) of init (e) ↩−→ ... (i.e., number of transitions).

• every ev :: Event in 𝜏 = Step ev ... corresponds to the transition rule taken in init (e) ↩−→ ....

Proof sketch. Define 𝛼 by coinduction and prove 𝛼 (init (e) ↩−→ ...) = SneedJeK𝜀 (𝜀) by Löb

induction. Then it suffices to prove that 𝛼 preserves the observable properties of interest. The full

proof for a rigorous reformulation of this result can be found in the Appendix. □

5.2 Totality of SnameJ K and SneedJ K
Theorem 5 (Totality). The interpreters SnameJeK𝜌 and SneedJeK𝜌 (𝜇) are defined for every e, 𝜌 , 𝜇.

Proof sketch. In the Supplement, we provide an implementation of the generic interpreter

SJ K and its instances at ByName and ByNeed in Guarded Cubical Agda, which offers a total type

theory with guarded recursive types Møgelberg and Veltri [2019]. Agda enforces that all encodable

functions are total, therefore SnameJ K and SneedJ K must be total as well.

The essential idea of the totality proof is that there is only a finite number of transitions between

every Look transition. In other words, if every environment lookup produces a Step constructor,

then our semantics is total by coinduction. Such an argument is quite natural to encode in guarded

recursive types, hence our use of Guarded Cubical Agda is appealing. See Appendix B.1 for the

details of the encoding in Agda. □

6 STATIC ANALYSIS
So far, our semantic domains have all been infinite, simply because the dynamic traces they express

are potentially infinite as well. However, by instantiating the same generic denotational interpreter

with a finite semantic domain, we can run the interpreter on the program statically, at compile

time, to yield a finite abstraction of the dynamic behavior. This gives us a static program analysis.

We can get a wide range of static analyses, simply by choosing an appropriate semantic domain.

For example, we have successfully realised the following analyses as denotational interpreters:

• Appendix C.1 defines a Hindley-Milner-style type analysis with let generalisation, inferring

types such as ∀𝛼3. option (𝛼3 → 𝛼3). Polymorphic types act as summaries in the sense of

the Introduction, and fixpoints are solved via unification.

• Appendix C.2 defines 0CFA control-flow analysis [Shivers 1991] as an instance of our generic

interpreter. The summaries are sets of labelled expressions that evaluation might return.

These labels are given meaning in an abstract store. For a function label, the abstract store

maintains a single point approximation of the function’s abstract transformer.

• We have refactored relevant parts of Demand Analysis in the Glasgow Haskell Compiler into

an abstract denotational interpreter as an artefact. The resulting compiler bootstraps and

passes the testsuite.
21
Demand Analysis is the real-world implementation of the cardinality

analysis work of [Sergey et al. 2017], implementing strictness analysis as well. This is to

demonstrate that our framework scales to real-world compilers.

In this section, we demonstrate this idea in detail, using a much simpler version of GHC’s Demand

Analysis: a summary-based usage analysis, the code of which is given in Figure 11.

6.1 Trace Abstraction in Trace TU
In order to recover usage analysis as an instance of our generic interpreter, we must define its finite

semantic domain DU. Often, the first step in doing so is to replace the potentially infinite traces T

21
There is a small caveat: we did not try to optimise for compiler performance in our proof of concept and hence it regresses

in a few compiler performance test cases. None of the runtime performance test cases regress and the inferred demand

signatures stay unchanged.
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data U = U0 | U1 | U𝜔
type Uses = Name :⇀ U
class UVec a where
(+) :: a→ a→ a

(∗) :: U→ a→ a

instance UVec U where ...
instance UVec Uses where ...

data TU v = ⟨Uses, v⟩
instance Trace (TU v) where

step (Lookup x) ⟨𝜑, v⟩ = ⟨[x ↦→ U1] + 𝜑, v⟩
step 𝜏 = 𝜏

instance Monad TU where
return a = ⟨𝜀, a⟩
⟨𝜑1, a⟩ >>= k = let ⟨𝜑2, b⟩ = k a in ⟨𝜑1 + 𝜑2, b⟩

SusageJeK𝜌 = SJeK𝜌 :: DU

instance Domain DU where
stuck = ⊥
fun x f = case f ⟨[x ↦→ U1],Rep U𝜔 ⟩ of
⟨𝜑, v⟩ → ⟨𝜑 [x ↦→ U0], 𝜑 !? x : v⟩

apply ⟨𝜑1, v1⟩ ⟨𝜑2, ⟩ = case peel v1 of
(u, v2) → ⟨𝜑1 + u ∗ 𝜑2, v2⟩

con ds = foldl apply ⟨𝜀,Rep U𝜔 ⟩ ds
select d fs =

d >> lub [ f (replicate (conArity k) ⟨𝜀,Rep U𝜔 ⟩)
| (k, f ) ← assocs fs ]

instance HasBind DU where
bind rhs body = body (kleeneFix rhs)

data ValueU = U : ValueU | Rep U
type DU = TU ValueU
instance Lat U where ...
instance Lat Uses where ...
instance Lat ValueU where ...
instance Lat DU where ...

peel :: ValueU → (U,ValueU)
peel (Rep u) = (u, (Rep u))
peel (u : v) = (u, v)
(!?) :: Uses→ Name→ U
m !? x | x ∈ dom m = m ! x

| otherwise = U0

Fig. 11. Summary-based usage analysis

in dynamic semantic domains such as Dna with a finite type such as TU in Figure 11. A usage trace

⟨𝜑, val⟩ :: TU v is a pair of a value val :: v and a finite map 𝜑 :: Uses, mapping variables to a usage U.
The usage 𝜑 !? x assigned to x is meant to approximate the number of Lookup x events; U0 means

“at most 0 times”, U1 means “at most 1 times”, and U𝜔 means “an unknown number of times”. In

this way, TU is an abstraction of T: it squashes all Lookup x events into a single entry 𝜑 !? x ::U and

discards all other events.

Consider as an example the by-name trace evaluating e ≜ let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑗 𝑗 :

Let1 ↩−→ Let1 ↩−→ App1 ↩−→ App1 ↩−→ Look(𝑖) ↩−→ App2 ↩−→ Look( 𝑗) ↩−→ App2 ↩−→ Look( 𝑗) ↩−→ ⟨𝜆⟩

We would like to abstract this trace into ⟨[ i ↦→ U1, j ↦→ U𝜔 ], ...⟩. One plausible way to achieve this

is to replace every Step (Lookup x) ... in the by-name trace with a call to step (Lookup x) ... from
the Trace TU instance in Figure 11, quite similar to foldr step on lists. The step implementation

increments the usage of x whenever a Lookup x event occurs. The addition operation used to carry

out incrementation is defined in type class instances UVec U and UVec Uses, together with scalar

multiplication.
22
For example,U0+u = u andU1+U1 = U𝜔 inU, as well asU0∗u = U0,U𝜔 ∗U1 = U𝜔 .

These operations lift to Uses pointwise, e.g., [ i ↦→ U1 ] + (U𝜔 ∗ [ j ↦→ U1 ]) = [ i ↦→ U1, j ↦→ U𝜔 ].
Following through on the foldr step idea to abstract a T into TU amounts to what Darais et al.

[2017] call a collecting semantics of the interpreter. Such semantics-specific collecting variants are

easily achievable for us as well. It is as simple as defining a Monad instance on TU mirroring trace

concatenation and then running our interpreter at, e.g., D (ByName TU) � TU (Value TU) on

22
We think that UVec models U-modules. It is not a vector space because U lacks inverses, but the intuition is close enough.
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expression e from earlier:

SJ(let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑗 𝑗)K𝜀 = ⟨[i ↦→U1, j ↦→U𝜔 ], 𝜆⟩ :: D (ByName TU).

It is nice to explore whether the Trace instance encodes the desired operational property in this

way, but of little practical relevance because this interpreter instance will diverge whenever the

input expression diverges. We fix this in the next subsection by introducing a finite ValueU to

replace Value TU.

6.2 Value Abstraction ValueU and Summarisation in Domain DU

In this subsection, we complement the finite trace type TU from the previous subsection with a

corresponding finite semantic value type ValueU to get the finite semantic domain DU = TU ValueU
in Figure 11, and thus a static usage analysis SusageJ K when we instantiate SJ K at DU.

The definition of ValueU is just a copy of 𝜍 ∈ Summary in Figure 1 that lists argument usage

U instead of Absence flags; the entire intuition transfers. For example, the ValueU summarising

λ̄𝑦.λ̄𝑧.𝑦 is U1 : U0 : Rep U𝜔 , because the first argument is used once while the second is used 0

times. What we previously called absence types 𝜃 ∈ AbsTy in Figure 1 is now the abstract semantic

domain DU. It is now evident that usage analysis is a modest generalisation of absence analysis in

Figure 1: a variable is absent (A) when it has usage U0, otherwise it is used (U).
Consider SusageJ(let 𝑘 = λ̄𝑦.λ̄𝑧.𝑦 in 𝑘 𝑥1 𝑥2)K𝜌𝑒 = ⟨[k ↦→U1, x1 ↦→U1],Rep U𝜔 ⟩, analysing the

example expression from Section 2. Usage analysis successfully infers that 𝑥1 is used at most once

and that 𝑥2 is absent, because it does not occur in the reported Uses.
On the other hand, SusageJ(let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑖 𝑗)K𝜀 = ⟨[i ↦→U𝜔 , j ↦→U𝜔 ],Rep U𝜔 ⟩

demonstrates the limitations of the first-order summary mechanism. While the program trace

would only have one lookup for 𝑗 , the analysis is unable to reason through the indirect call and

conservatively reports that 𝑗 may be used many times.

The Domain instance is responsible for implementing the summary mechanism. While stuck

expressions do not evaluate anything and hence are denoted by ⊥ = ⟨𝜀,Rep U0⟩, the fun and apply

functions play exactly the same roles as funx and app in Figure 1. Let us briefly review how the

summary for the right-hand side λ̄𝑥 .𝑥 of 𝑖 in the previous example is computed:

SJLam x (Var x)K𝜌 = fun x (𝜆d → step App2 (SJVar xK𝜌 [x ↦→d ]))
= case step App2 (SJVar xK𝜌 [x ↦→⟨[x ↦→U1 ],Rep U𝜔 ⟩ ]) of ⟨𝜑, v⟩ → ⟨𝜑 [x ↦→ U0], 𝜑 !? x : Rep U𝜔 ⟩
= case ⟨[x ↦→ U1],Rep U𝜔 ⟩ of ⟨𝜑, v⟩ → ⟨𝜑 [x ↦→ U0], 𝜑 !? x : Rep U𝜔 ⟩
= ⟨𝜀,U1 : Rep U𝜔 ⟩

The definition of fun x applies the lambda body to a proxy ⟨[x ↦→ U1],Rep U𝜔 ⟩ to summarise

how the body uses its argument by way of looking at how it uses x.
23
Every use of x’s proxy will

contribute a usage of U1 on x, and multiple uses in the lambda body would accumulate to a usage

of U𝜔 . In this case there is only a single use of x and the final usage 𝜑 !? x = U1 from the lambda

body will be prepended to the summarised value. Occurrences of x must make do with the top

value (Rep U𝜔 ) from x’s proxy for lack of knowing the actual argument at call sites.

The definition of apply to apply such summaries to an argument is nearly the same as in Figure 1,

except for the use of + instead of ⊔ to carry over U1 + U1 = U𝜔 , and an explicit peel to view a

ValueU in terms of : (it is Rep u ≡ u : Rep u). The usage u thus pelt from the value determines

how often the actual argument was evaluated, and multiplying the uses of the argument 𝜑2 with u

accounts for that.

23
As before, the exact identity of x is exchangeable; we use it as a De Bruijn level.
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class Eq a⇒ Lat a where ⊥ :: a; (⊔) :: a→ a→ a;

kleeneFix :: Lat a⇒ (a→ a) → a; lub :: Lat a⇒ [a] → a

kleeneFix f = go ⊥ where go x = let x′ = f x in if x
′ ⊑ x then x

′ else go x
′

Fig. 12. Order theory and Kleene iteration

The example SusageJ(let 𝑧 = 𝑍 () in case 𝑆 (𝑧) of 𝑆 (𝑛) → 𝑛)K𝜀 = ⟨[z ↦→U𝜔 ],Rep U𝜔 ⟩ illustrates
the summary mechanism for data types. Our analysis imprecisely infers that z might be used many

times when it is only used once. That is because we tried to keep ValueU intentionally simple, so

our analysis assumes that every data constructor uses its fields many times.
24
This is achieved in

con by repeatedly applying to the top value (Rep U𝜔 ), as if a data constructor was a lambda-bound

variable. Dually, select does not need to track how fields are used and can pass ⟨𝜀,Rep U𝜔 ⟩ as
proxies for field denotations. The result uses anything the scrutinee expression used, plus the upper

bound of uses in case alternatives, one of which will be taken.

Much more could be said about the way in which finiteness of DU rules out injective imple-

mentations of fun x :: (DU → DU) → DU and thus requires the aforementioned approximate

summary mechanism, but it is easy to get sidetracked in doing so. There is another potential source

of approximation: the HasBind instance discussed next.

6.3 Finite Fixpoint Strategy in HasBind DU and Totality
The third and last ingredient to recover a static analysis is the fixpoint strategy in HasBind DU, to

be used for recursive let bindings.

For the dynamic semantics in Section 4wemade liberal use of guarded fixpoints, that is, recursively

defined values such as let d = rhs d in body d in HasBind Dna (Figure 5). At least for SnameJ K
and SneedJ K , we have proved in Section 5.1 that these fixpoints always exist by a coinductive

argument. Alas, among other things this argument relies on the Step constructor — and thus the

step method — of the trace type T being lazy in the tail of the trace!

When we replaced T in favor of the finite, inductive type TU in Section 6.1 to get a collecting

semantics D (ByName TU), we got a partial interpreter. That was because the step implementation

of TU is not lazy, and hence the guarded fixpoint let d = rhs d in body d is not guaranteed to exist.

In general, finite trace types cannot have a lazy step implementation, so finite domains such

as DU require a different fixpoint strategy to ensure termination. Depending on the abstract

domain, different fixpoint strategies can be employed. For an unusual example, in our type analysis

Appendix C.1, we generate and solve a constraint system via unification to define fixpoints. In case

ofDU, we compute least fixpoints by Kleene iteration kleeneFix in Figure 12. kleeneFix requires us to

define an order onDU, which is induced byU0⊏U1⊏U𝜔 in the same way that the order on AbsTy in
Section 2.2 was induced from the order A ⊏ U on Absence flags. The iteration procedure terminates

whenever the type class instances of DU are monotone and there are no infinite ascending chains

in DU.

The keen reader may feel indignant because our ValueU indeed contains such infinite chains, for

example, U1 : U1 : ... : Rep U0! This is easily worked around in practice by employing appropriate

widening measures such as bounding the depth of ValueU. The resulting definition of HasBind is

safe for by-name and by-need semantics.
25

24
It is clear how to do a better job at least for products; see Sergey et al. [2017].

25
Never mind totality; why is the use of least fixpoints even correct? The fact that we are approximating a safety prop-

erty [Lamport 1977] is important. We discuss this topic in Appendix D.2.
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Mono

d1 ⊑ d2 f 1 ⊑ f 2

apply f 1 d1 ⊑ apply f 2 d2 and so on, for all methods of Trace, Domain, HasBind

Step-App

step ev (apply d a) ⊑ apply (step ev d) a
Step-Sel

step ev (select d alts) ⊑ select (step ev d) alts
Unwind-Stuck

stuck ⊑ ⊔{apply stuck a, select stuck alts}
Intro-Stuck

stuck ⊑ ⊔{apply (con k ds) a, select (fun x f ) alts}

Beta-App

f d = step App2 (SD̂JeK𝜌 [x ↦→d ])
f a ⊑ apply (fun x f ) a

Beta-Sel

(alts ! k) ds | len ds . len xs = stuck

| otherwise = step Case2 (SD̂J𝑒𝑟 K𝜌 [xs ↦→ds])

(alts ! k) (map (𝜌1 !) ys) ⊑ select (con k (map (𝜌1 !) ys)) alts
Bind-ByName

rhs d1 = SD̂Je1K𝜌 [x ↦→step (Lookup x ) d1 ] body d1 = step Let1 (SD̂Je2K𝜌 [x ↦→d1 ])
body (lfp rhs) ⊑ bind rhs body

Step-Inc

d ⊑ step ev d

Update

step Update d = d

Fig. 13. By-name and by-need abstraction laws for type class instances of abstract domain D̂

It is nice to define dynamic semantics and static analyses in the same framework, but another

important benefit is that correctness proofs become simpler, as we will see next.

7 GENERIC BY-NAME AND BY-NEED SOUNDNESS
In this section we prove and apply a generic abstract interpretation theorem of the form

abstract (SneedJeK𝜀) ⊑ SD̂JeK𝜀 .

This statement reads as follows: for a closed expression e, the static analysis result SD̂JeK𝜀 on the

right-hand side overapproximates (⊒) a property of the by-need semantics SneedJeK𝜀 on the left-hand

side. The abstraction function abstract :: D (ByNeed T) → D̂ describes what semantic property

we are interested in, in terms of the abstract semantic domain D̂ of SD̂JeK𝜌 , which is short for

SJeK𝜌 :: D̂. In our framework, abstract is entirely derived from type class instances on D̂.
We will instantiate the theorem at DU in order to prove that usage analysis SusageJeK𝜌 = SDUJeK𝜌

infers absence, just as absence analysis in Section 2. This proof will be much simpler than the proof

for Theorem 1.

This section will only discuss abstraction of closed terms in a high-level, top-down way, but of

course the underlying Theorem 56 in the Appendix considers open terms and is best approached

bottom-up.
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7.1 Sound By-name and By-need Interpretation
This subsection is dedicated to the following proof rule for sound by-need interpretation, referring

to the abstraction laws in Figure 13 by name:

Mono Step-App Step-Sel Unwind-Stuck

Intro-Stuck Beta-App Beta-Sel Bind-ByName Step-Inc Update

abstract (SneedJeK𝜀) ⊑ SD̂JeK𝜀
In other words: prove the abstraction laws for an abstract domain D̂ of your choosing and we give

you for free a proof of sound abstract by-need interpretation for the static analysis SD̂JeK𝜀 !
This proof rule is opinionated, in so far as we get to determine the abstraction function abstract

based on the Trace, Domain and Lat instance on your D̂. The gist is as follows: abstract eliminates

every Step evt in the by-need trace with a call to step evt, and eliminates every concrete Value at the
end of the trace with a call to the corresponding Domain method. That is, Fun turns into fun, Con
into con, and Stuck into stuck, considering the final heap for nested abstraction (the subtle details

are best left to the Appendix). Thanks to fixing abstract, the abstraction laws can be simplified

drastically, as discussed at the end of this subsection. The precise definition of abstract can be found

in the proof of the following theorem, embodying the proof rule above:

Theorem 6 (Sound By-need Interpretation). Let D̂ be a domain with instances for Trace, Domain,
HasBind and Lat, and let abstract be the abstraction function described above. If the abstraction laws

in Figure 13 hold, then SD̂J K is an abstract interpreter that is sound wrt. abstract, that is,

abstract (SneedJeK𝜀) ⊑ SD̂JeK𝜀 .

Let us unpack law Beta-App to see how the abstraction laws in Figure 13 are to be understood.

For a preliminary reading, it is best to ignore the syntactic premises above inference lines. To prove

Beta-App, one has to show that ∀f a x . f a ⊑ apply (fun x f ) a in the abstract domain D̂.26 This
states that summarising f through fun, then applying the summary to a must approximate a direct

call to f ; it amounts to proving correct the summary mechanism.
27
In Section 2, we have proved a

substitution Lemma 3, which is a syntactic form of this statement. We will need a similar lemma

for usage analysis below, and it is useful to illustrate the next point, so we prove it here:

Lemma 7 (Substitution). SusageJeK𝜌 [x ↦→𝜌 ! y ] ⊑ SusageJLam x e ‘App‘ yK𝜌 .

In order to apply this lemma in step ⊑ below, it is important that the premise provides us with

the syntactic definition of f d ≜ step App2 (SDUJeK𝜌 [x ↦→d ]). Then we get, for a ≜ 𝜌 ! y :: DU,

f a = step App2 (SDUJeK𝜌 [x ↦→a]) = SDUJeK𝜌 [x ↦→a] ⊑ SDUJLam x e ‘App‘ yK𝜌 = apply (fun x f ) a.
(1)

Without the syntactic premise of Beta-App to rule out undefinable entities in DU → DU, the rule

cannot be proved for usage analysis; we give a counterexample in the Appendix (Example 46).
28

Rule Beta-Sel states a similar substitution property for data constructor redexes, which is why

it needs to duplicate much of the cont function in Figure 5 into its premise. Rule Bind-ByName

expresses that the abstract bind implementation must be sound for by-name evaluation, that is, it

must approximate passing the least fixpoint lfp of the rhs functional to body.
29
The remaining rules

26
Again, the exact identity of x is irrelevant. We only use it as a De Bruijn level; it suffices that x is chosen fresh.

27
To illustrate this point: if we were to pick dynamic Values as the summary as in the “collecting semantics”D (ByNeed TU ) ,

we would not need to show anything! Then apply (return (Fun f ) ) a = f a.

28
Finding domains where all entities 𝑑 are definable is the classic full abstraction problem [Plotkin 1977].

29
We expect that for sound by-value abstraction it suffices to replace Bind-ByName with a law Bind-ByValue mirroring

the bind instance of ByValue, but have not attempted a formal proof.
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are congruence rules involving step and stuck as well as the obvious monotonicity requirement

for all involved operations. In the Appendix, we show a result similar to Theorem 6 for by-name

evaluation which does not require the by-need specific rules Step-Inc and Update.

Note that none of the laws mention the concrete semantics or 𝛼 . This is how our opinionated

approach pays off: because both concrete semantics and 𝛼 are known, the usual abstraction laws

such as 𝛼 (apply d a) ⊑ �
apply (𝛼 d) (𝛼 a) further decompose into Beta-App. We think this is an

important advantage to our approach, because the author of the analysis does not need to reason

about the concrete semantics in order to soundly approximate a semantic trace property expressed

via Trace instance!

7.2 A Much Simpler Proof That Usage Analysis Infers Absence
Equipped with the generic soundness Theorem 6, we will prove in this subsection that usage

analysis from Section 6 infers absence in the same sense as absence analysis from Section 2. The

reason we do so is to evaluate the proof complexity of our approach against the preservation-style

proof framework in Section 2.

The first step is to leave behind the definition of absence in terms of the LK machine in favor of

one using SneedJ K . That is a welcome simplification because it leaves us with a single semantic

artefact — the denotational interpreter — instead of an operational semantics and a separate static

analysis as in Section 2. Thanks to adequacy (Theorem 4), this new notion is not a redefinition but

provably equivalent to Definition 2:

Lemma8 (Denotational absence). Variable x is used in e if and only if there exists a by-need evaluation
context E and expression e

′
such that the trace SneedJE[Let x e

′
e]K𝜀 (𝜀) contains a Lookup x event.

(Otherwise, x is absent in e.)

We define the by-need evaluation contexts for our language in the Appendix. Thus insulated

from the LK machine, we may restate and prove Theorem 1 for usage analysis.

Lemma 9 (SusageJ K abstracts SneedJ K ). Let e be a closed expression and abstract the abstraction

function above. Then abstract (SneedJeK𝜀) ⊑ SusageJeK𝜀 .

Theorem 10 (SusageJ K infers absence). Let 𝜌𝑒 ≜ [y ↦→ ⟨[y ↦→ U1],Rep U𝜔 ⟩] be the initial en-
vironment with an entry for every free variable y of an expression e. If SusageJeK𝜌𝑒 = ⟨𝜑, v⟩ and
𝜑 !? x = U0, then x is absent in e.

Proof sketch. If x is used in e, there is a trace SneedJE[Let x e
′
e]K𝜀 (𝜀) containing a Lookup x

event. The abstraction function abstract induced by DU aggregates lookups in the trace into a

𝜑 ′ :: Uses, e.g., abstract (Look(𝑖) ↩−→ Look(𝑥) ↩−→ Look(𝑖) ↩−→ ⟨...⟩) = ⟨[ i ↦→ U𝜔 , x ↦→ U1 ], ...⟩.
Clearly, it is 𝜑 ′ !? x ⊒ U1, because there is at least one Lookup x. Lemma 9 and a context invariance

Lemma 38 prove that the computed 𝜑 approximates 𝜑 ′, so 𝜑 !? x ⊒ 𝜑 ′ !? x ⊒ U1 ≠ U0. □

Let us compare to the preservation-style proof framework in Section 2.

• Where there were multiple separate semantic artefacts such as a separate small-step semantics

and an extension of the absence analysis function to machine configurations 𝜎 in order to

state a preservation lemma, our proof only has a single semantic artefact that needs to be

defined and understood: the denotational interpreter, albeit with different instantiations.

• What is more important is that a simple proof for Lemma 9 in half a page (we encourage

the reader to take a look) replaces a tedious, error-prone and incomplete (for a lack of step

indexing) proof for the preservation lemma. Of course, we lean on Theorem 6 to prove what

amounts to a preservation lemma; the difference is that our proof properly accounts for heap
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update and can be shared with other analyses that are sound wrt. by-name and by-need such

as type analysis and 0CFA.

Thus, we achieve our goal of proving semantic distractions “once and for all”.

8 RELATEDWORK
Call-by-need, Semantics. Arguably, Josephs [1989] described the first denotational by-need seman-

tics, predating the work of Launchbury [1993] and Sestoft [1997], but not the more machine-centric

(rather than transition system centric) work on the G-machine [Johnsson 1984]. We improve on

Josephs’s work in that our encoding is simpler, rigorously defined (Section 5.2) and proven adequate

wrt. Sestoft’s by-need semantics (Section 5.1). Sestoft [1997] related the derivations of Launchbury’s

big-step natural semantics for our language to the subset of balanced small-step LK traces. Balanced

traces are a proper subset of our maximal LK traces that — by nature of big-step semantics —

excludes stuck and diverging traces.

Our denotational interpreter bears strong resemblance to a denotational semantics [Scott and

Strachey 1971], or to a definitional interpreter [Reynolds 1972] featuring a finally encoded do-

main [Carette et al. 2007] using higher-order abstract syntax [Pfenning and Elliott 1988]. The

key distinction to these approaches is that we generate small-step traces, totally and adequately,

observable by abstract interpreters.

Definitional Interpreters. Reynolds [1972] introduced “definitional interpreter” as an umbrella

term to classify prevalent styles of interpreters for higher-order languages at the time. Chiefly, it

differentiates compositional interpreters that necessarily use higher-order functions of the meta

language from those that do not, and are therefore non-compositional. The former correspond to

(partial) denotational interpreters, whereas the latter correspond to big-step interpreters.

Ager et al. [2004] pick up on Reynold’s idea and successively transform a partial denotational

interpreter into a variant of the LK machine, going the reverse route of Section 5.1.

Coinduction and Fuel. Leroy and Grall [2009] show that a coinductive encoding of big-step semantics

is able to encode diverging traces by proving it equivalent to a small-step semantics, much like we

did for a denotational semantics. The work of Atkey and McBride [2013]; Møgelberg and Veltri

[2019] had big influence on our use of the later modality and Löb induction.

Our trace type T is appropriate for tracking “pure” transition events, but it is not up to the task

of modelling user input, for example. We expect that guarded interaction trees [Frumin et al. 2023;

Xia et al. 2019] would be very simple to integrate into our framework to help with that.

Contextual Improvement. Abstract interpretation is useful to prove that an analysis approximates

the right trace property, but it does not make any claim on whether a transformation conditional

on some trace property is actually sound, yet alone an improvement [Moran and Sands 1999]. If we

were to prove dead code elimination correct based on our notion of absence, would we use our

denotational interpreter to do so? Probably not; we would try to conduct as much of the proof as

possible in the equational theory, i.e., on syntax. If need be, we could always switch to denotational

interpreters via Theorem 4, just as in Lemma 8. Hackett and Hutton [2019] have done so as well.

Abstract Interpretation and Relational Analysis. Cousot [2021] recently condensed his seminal

work rooted in Cousot and Cousot [1977]. The book advocates a compositional, trace-generating

semantics and then derives compositional analyses by calculational design, inspiring us to attempt

the same. However, while Cousot and Cousot [1994, 2002] work with denotational semantics

for higher-order language, it was unclear to us how to derive a compositional, trace-generating

semantics for a higher-order language. The required changes to the domain definitions seemed
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daunting, to say the least. Our solution delegates this complexity to the underlying theory of

guarded recursive type theory [Møgelberg and Veltri 2019].

We deliberately tried to provide a simple framework and thus stuck to cartesian (i.e., pointwise)

abstraction of environments as in Cousot [2021, Chapter 27], but we expect relational abstractions

to work just as well. Our generic denotational interpreter is a higher-order generalisation of

the generic abstract interpreter in Cousot [2021, Chapter 21]. Our abstraction laws in Figure 13

correspond to Definition 27.1 and Theorem 6 to Theorem 27.4.

Control-Flow Analysis. CFA [Shivers 1991] computes a useful control-flow graph abstraction for

higher-order programs. Such an approximation is useful to apply classic data-flow analyses such as

constant propagation or dead code elimination to the interprocedural setting. The contour depth

parameter 𝑘 allows to trade precision for performance, although in practice it is often 𝑘 ⩽ 1.

The Abstracting Abstract Machines [Van Horn and Might 2010] derives a computable reachable

states semantics [Cousot 2021] from any small-step semantics, by bounding the size of the heap.

Many analyses such as control-flow analysis arise as abstractions of reachable states. In fact, we

think that CFA can be used to turn any finite Trace instance such as TU into a static analysis,

without the need to define a custom summary mechanism.

Darais et al. [2017] and others apply the AAM recipe to big-step interpreters in the style of

Reynolds. Backhouse and Backhouse [2004] and Keidel et al. [2018] show that in doing so, correct-

ness of shared code follows by parametricity [Wadler 1989]. We found it quite elegant to utilise

parametricity in this way, but unfortunately the free theorem for our interpreter is too weak because

it excludes the syntactic premises in Figure 13.

Whenever AAM is involved, abstraction follows some monadic structure inherent to dynamic

semantics [Darais et al. 2017; Sergey et al. 2013]. In our work, this is apparent in the Domain (D 𝜏)
instance depending on Monad 𝜏 . Decomposing such structure into a layer of reusable monad

transformers has been the subject of Darais et al. [2015] and Keidel and Erdweg [2019]. The trace

transformers in Section 4 enable a similar reuse. Likewise, Keidel et al. [2023] discusses a sound,

declarative approach to reuse fixpoint combinators which we hope to apply in implementations of

our framework as well.

Summaries of Functionals vs. Call Strings. Lomet [1977] used procedure summaries to capture aliasing

effects, crediting the approach to untraceable reports by Allen [1974] and Rosen [1975]. Sharir et al.

[1978] were aware of both [Cousot and Cousot 1977] and [Allen 1974], and generalised aliasing

summaries into the “functional approach” to interprocedural data flow analysis, distinguishing it

from the “call strings approach” (i.e. 𝑘-CFA).

That is not to say that the approaches cannot be combined; inter-modular analysis led Shivers

[1991, Section 3.8.2] to implement the xproc summary mechanism. He also acknowledged the need

for accurate intra-modular summary mechanisms for scalability reasons in Section 11.3.2. We are

however doubtful that the powerset-centric AAM approach could integrate summary mechanisms;

the whole recipe rests on the fact that the set of expressions and thus evaluation contexts is finite.

Mangal et al. [2014] have shown that a summary-based analysis can be equivalent to∞-CFA for

arbitrary complete lattices and outperform 2-CFA in both precision and speed.

Cardinality Analysis. More interesting cardinality analyses involve the inference of summaries

called demand transformers [Sergey et al. 2017], such as implemented in the Demand Analysis of

the Glasgow Haskell Compiler. The inner workings of the analysis are most similar to Clairvoyant

call-by-value [Hackett and Hutton 2019], so it is a shame that the Clairvoyant instantiation leads

to partiality.
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START OF APPENDIX
A PROOFS FOR SECTION 2 (THE PROBLEMWE SOLVE)
Theorem 1 (AJ K infers absence). If AJeK𝜌e = ⟨𝜑, 𝜍⟩ and 𝜑 (x) = A, then x is absent in e.

Proof. See the proof at the end of this section. □

Definition 2 (Absence). A variable x is used in an expression e if and only if there exists a trace

(let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→∗ ...
Look(x)
↩−−−−−−→ ... that looks up the heap entry of x, i.e., it evaluates x.

Otherwise, x is absent in e.

Note that for the proofs we assume the recursive let definition

AJlet x = e1 in e2K𝜌 = AJe2K𝜌 [x↦→lfp(𝜆𝜃 . x&AJe1K𝜌 [x↦→𝜃 ] ) ] .

The partial order on AbsTy necessary for computing the least fixpoint lfp follows structurally from

A ⊏ U (i.e., product order, pointwise order).

Abbreviation 11. The syntax 𝜃 .𝜑 for an AbsTy 𝜃 = ⟨𝜑, 𝜍⟩ returns the 𝜑 component of 𝜃 . The syntax

𝜃 .𝜍 returns the 𝜍 component of 𝜃 .

Definition 12 (Abstract substitution). We call 𝜑 [x Z⇒ 𝜑 ′] ≜ 𝜑 [x ↦→ A] ⊔ (𝜑 (x) ∗ 𝜑 ′) the abstract
substitution operation on Uses and overload this notation for AbsTy, so that (⟨𝜑, 𝜍⟩) [x Z⇒ 𝜑y] ≜
⟨𝜑 [x Z⇒ 𝜑y], 𝜍⟩.

Abstract substitution is useful to give a concise description of the effect of syntactic substitution:

Lemma 13. AJ(λ̄x.e) yK𝜌 = (AJeK𝜌 [x↦→⟨[x↦→U],Rep U⟩ ]) [x Z⇒ 𝜌 (y).𝜑].

Proof. Follows by unfolding the application and lambda case and then refolding abstract substi-

tution. □

Lemma 14. Lambda-bound uses do not escape their scope. That is, when x is lambda-bound in e, it is

(AJeK𝜌 ).𝜑 (x) = A.

Proof. By induction on e. In the lambda case, any use of x is cleared to A when returning. □

Lemma 15. AJ(λ̄x.λ̄y.e) zK𝜌 = AJλ̄y.((λ̄x.e) z)K𝜌 .

Proof. AJ(λ̄x.λ̄y.e) zK𝜌
= (funy (𝜆𝜃y. AJeK𝜌 [x↦→⟨[x↦→U],Rep U⟩,y↦→𝜃y ])) [x Z⇒ 𝜌 (z).𝜑]
= funy (𝜆𝜃y . (AJeK𝜌 [x↦→⟨[x↦→U],Rep U⟩,y↦→𝜃y ]) [x Z⇒ 𝜌 (z).𝜑])
= AJλ̄y.((λ̄x.e) z)K𝜌

Unfold AJ K, Lemma 13

𝜌 (z) (y) = A by Lemma 14, x ≠ y ≠ z

Refold AJ K

□

Lemma 16. AJ(λ̄x.e) y zK𝜌 = AJ(λ̄x.e z) yK𝜌 .

Proof. AJ(λ̄x.e) y zK𝜌
= app((AJeK𝜌 [ ⟨ [x↦→U],Rep U⟩ ]) [x Z⇒ 𝜌 (y).𝜑]) (𝜌 (z))
= app(AJeK𝜌 [ ⟨ [x↦→U],Rep U⟩ ]) (𝜌 (z)) [x Z⇒ 𝜌 (y).𝜑]
= AJ(λ̄x.e z) yK𝜌

Unfold AJ K, Lemma 13

𝜌 (z) (x) = A by Lemma 14, y ≠ x ≠ z

Refold AJ K

□

Lemma 17. AJlet z = (λ̄x.e1) y in (λ̄x.e2) yK𝜌 = AJ(λ̄x.let z = e1 in e2) yK𝜌 .
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Proof. The key of this lemma is that it is equivalent to postpone the abstract substitution from

the let RHS e1 to the let body e2. This can easily be proved by induction on e2, which we omit here,

but indicate the respective step below as “hand-waving”. Note that we assume the (more general)

recursive let semantics as defined at the begin of this section.

AJlet z = (λ̄x.e1) y in (λ̄x.e2) yK𝜌
= AJ(λ̄x.e2) yK𝜌 [z↦→lfp(𝜆𝜃 . z&AJ(λ̄x.e1 ) yK𝜌 [z ↦→𝜃 ] ) ]

= (AJe2K𝜌 [x↦→⟨[x↦→U],Rep U⟩,z↦→lfp(𝜆𝜃 . z&(AJe1K𝜌 [x↦→⟨[x↦→U],Rep U⟩,z↦→𝜃 ] ) [xZ⇒𝜌 (y) .𝜑 ] ) ]) [x Z⇒ 𝜌 (y).𝜑]
= (AJe2K𝜌 [x↦→⟨[x↦→U],Rep U⟩,z↦→lfp(𝜆𝜃 . z&AJe1K𝜌 [x↦→⟨[x↦→U],Rep U⟩,z ↦→𝜃 ] ) ]) [x Z⇒ 𝜌 (y).𝜑]
= (AJlet z = e1 in e2K𝜌 [x↦→⟨[x↦→U],Rep U⟩ ]) [x Z⇒ 𝜌 (y).𝜑]
= AJ(λ̄x.let z = e1 in e2) yK𝜌

Unfold AJ K

Lemma 13

Hand-waving above

Refold AJ K

Lemma 13

□

Lemma 3 (Substitution). AJeK𝜌 [x↦→𝜌 (y) ] ⊑ AJ(λ̄x.e) yK𝜌 .

Proof. By induction on e.

• Case z: When x ≠ z, then z is bound outside the lambda and can’t possibly use x, so
𝜌 (z).𝜑 (x) = A. We have

AJzK𝜌 [x↦→𝜌 (y) ]
= 𝜌 (z)
= AJzK𝜌 [x↦→⟨[x↦→U],Rep U⟩ ]

= (AJzK𝜌 [x↦→⟨[x ↦→U],Rep U⟩ ]) [x Z⇒ 𝜌 (y).𝜑]
= AJ(λ̄x.z) yK𝜌

x ≠ z

Refold AJ K

𝜌 (z) .𝜑 (x) = A

Lemma 13

Otherwise, we have x = z, thus 𝜌 (x) = ⟨[x ↦→ U], 𝜍 = Rep U⟩, and thus

AJzK𝜌 [x↦→𝜌 (y) ]
= 𝜌 (y)
⊑ ⟨𝜌 (y).𝜑,Rep U⟩
= (⟨[x ↦→ U],Rep U⟩) [x ↦→ 𝜌 (y).𝜑]
= (AJzK𝜌 [x↦→⟨[x↦→U],Rep U⟩ ]) [x Z⇒ 𝜌 (y).𝜑]
= AJ(λ̄x.z) yK𝜌

x = z

𝜍 ⊑ Rep U

Definition of [ Z⇒ ]

Refold AJ K

Lemma 13

• Case λ̄z.e′:

AJλ̄z.e′K𝜌 [x↦→𝜌 (y) ]
= funz (𝜆𝜃z . AJe′K𝜌 [z↦→𝜃z,x↦→𝜌 (y) ])
⊑ funz (𝜆𝜃z . AJ(λ̄x.e′) yK𝜌 [z↦→𝜃z ])
= AJλ̄z.((λ̄x.e′) y)K𝜌
= AJ(λ̄x.λ̄z.e′) yK𝜌

Unfold AJ K

Induction hypothesis, monotonicity

Refold AJ K

Lemma 15
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• Case e′ z: When x = z:

AJe′ zK𝜌 [x↦→𝜌 (y) ]
= app(AJe′K𝜌 [x↦→𝜌 (y) ]) (𝜌 (y))
⊑ app(AJ(λ̄x.e′) yK𝜌 ) (𝜌 (y))
= AJ(λ̄x.e′) y yK𝜌
= AJ(λ̄x.e′ y) yK𝜌
= AJ(λ̄x.e′ x) yK𝜌
= AJ(λ̄x.e′ z) yK𝜌

Unfold AJ K

Induction hypothesis, monotonicity

Refold AJ K

Lemma 16

Compositionality in (λ̄x.e′ □) y

x = z

When x ≠ z:

AJe′ zK𝜌 [x↦→𝜌 (y) ]
= app(AJe′K𝜌 [x↦→𝜌 (y) ]) (𝜌 (z))
⊑ app(AJ(λ̄x.e′) yK𝜌 ) (𝜌 (z))
= AJ(λ̄x.e′) y zK𝜌
= AJ(λ̄x.e′ z) yK𝜌

Unfold AJ K

Induction hypothesis, monotonicity

Refold AJ K

Lemma 16

• Case let z = e1 in e2:

AJlet z = e1 in e2K𝜌 [x↦→𝜌 (y) ]
= AJe2K𝜌 [x↦→𝜌 (y),z↦→lfp(𝜆𝜃 . z&AJe1K𝜌 [x↦→𝜌 (y),z ↦→𝜃 ] ) ]

⊑ AJ(λ̄x.e2) yK𝜌 [z↦→lfp(𝜆𝜃 . z&AJ(λ̄x.e1 ) yK𝜌 [z ↦→𝜃 ] ) ]

= AJlet z = (λ̄x.e1) y in (λ̄x.e2) yK𝜌
= AJ(λ̄x.let z = e1 in e2) yK𝜌

Unfold AJ K

Induction hypothesis, monotonicity

Refold AJ K

Lemma 17

□

Whenever there exists 𝜌 such that 𝜌 (x).𝜑 ̸⊑ (AJeK𝜌 ).𝜑 (recall that 𝜃 .𝜑 selects the Uses in the

first field of the pair 𝜃 ), then also 𝜌e (x).𝜑 ̸⊑ AJeK𝜌e . The following lemma captures this intuition:

Lemma 18 (Diagonal factoring). Let 𝜌 and 𝜌Δ be two environments such that ∀x. 𝜌 (x).𝜍 = 𝜌Δ (x).𝜍 .
If 𝜌Δ .𝜑 (x) ⊑ 𝜌Δ .𝜑 (y) if and only if x = y, then every instantiation ofAJeK factors throughAJeK𝜌Δ ,

that is,

AJeK𝜌 = (AJeK𝜌Δ ) [x Z⇒ 𝜌 (x).𝜑]

Proof. By induction on e.

• Case e = y: We assert AJyK𝜌 = 𝜌 (y) = 𝜌Δ (y) [y Z⇒ 𝜌 (y).𝜑] by simple unfolding.

• Case e = e′ y:

AJe′ yK𝜌
= app(AJe′K𝜌 , 𝜌 (y))
= app((AJe′K𝜌Δ ) [x Z⇒ 𝜌 (x).𝜑], 𝜌Δ (y) [x Z⇒ 𝜌 (x).𝜑]).
= app(AJe′K𝜌Δ , 𝜌Δ (y)) [x Z⇒ 𝜌 (x).𝜑]
= (AJe′ yK𝜌Δ ) [x Z⇒ 𝜌 (x).𝜑]

Unfold AJ K

Induction hypothesis, variable case

⊔ and ∗ commute with [ Z⇒ ]

Refold AJ K
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CJ K : S→ AbsTy

CJ(e, 𝜌, 𝜇, 𝜅)K = apps𝜇 (𝜅,AJeK𝛼 (𝜇 )◦𝜌 )
𝛼 (𝜇) = lfp(𝜆�̃�. [a ↦→ x &AJe′K�̃�◦𝜌 ′ | 𝜇 (a) = (x, 𝜌 ′, e′)])

apps𝜇 (stop, 𝜃 ) = 𝜃
apps𝜇 (ap(a) · 𝜅, 𝜃 ) = apps𝜇 (𝜅, app(𝜃, 𝛼 (𝜇) (a)))

apps𝜇 (upd(a) · 𝜅, 𝜃 ) = apps𝜇 (𝜅, 𝜃 )

Fig. 14. Absence analysis extended to small-step configurations

• Case e = λ̄y.e′: Note that x ≠ y because y is not free in e.

AJλ̄y.e′K𝜌
= lamy (𝜆𝜃 . AJe′K𝜌 [y↦→𝜃 ])
= lamy (𝜆𝜃 . (AJe′K𝜌 [y↦→⟨[y↦→U],Rep U⟩ ]))
= lamy (𝜆𝜃 . (AJe′K𝜌Δ [y↦→⟨[y↦→U],Rep U⟩ ]) [x Z⇒ 𝜌 (x).𝜑, y Z⇒ [y ↦→ U]])
= lamy (𝜆𝜃 . (AJe′K𝜌Δ [y↦→⟨[y↦→U],Rep U⟩ ]) [x Z⇒ 𝜌 (x).𝜑])
= lamy (𝜆𝜃 . (AJe′K𝜌Δ [y↦→𝜃 ]) [x Z⇒ 𝜌 (x).𝜑])
= lamy (𝜆𝜃 . AJe′K𝜌Δ [y↦→𝜃 ]) [x Z⇒ 𝜌 (x).𝜑]
= (AJλ̄y.e′K𝜌Δ ) [x Z⇒ 𝜌 (x).𝜑]

Unfold AJ K

Property of lamy

Induction hypothesis

𝜃 [y Z⇒ [y ↦→ U]] = 𝜃

𝜃 [y Z⇒ [y ↦→ U]] = 𝜃

Property of lamy

Refold AJ K

• Case let y = e1 in e2: Note that x ≠ y because y is not free in e.

AJlet y = e1 in e2K𝜌
= AJe2K𝜌 [y ↦→lfp(𝜆𝜃 . y&AJe1K𝜌 [y ↦→𝜃 ] ) ]

= AJe2K𝜌 [y ↦→lfp(𝜆𝜃 . y&(AJe1K𝜌Δ [y↦→⟨[y ↦→U],𝜃 .𝜍⟩] ) [xZ⇒𝜌 (x) .𝜑,yZ⇒𝜃 .𝜑 ] ) ]

= AJe2K𝜌 [y ↦→lfp(𝜆𝜃 . y&(AJe1K𝜌Δ [y↦→𝜃 ] ) [xZ⇒𝜌 (x) .𝜑 ] ) ]

Similarly for e2, hand-waving to push out the subst as in Lemma 17

= (AJe2K𝜌Δ [y↦→lfp(𝜆𝜃 . y&AJe1K𝜌Δ [y↦→𝜃 ] ) ]) [x Z⇒ 𝜌 (x).𝜑]

= (AJlet y = e1 in e2K𝜌Δ ) [x Z⇒ 𝜌 (x).𝜑]

Unfold AJ K

Induction hypothesis

Again, backwards

Refold AJ K

□

For the purposes of the preservation proof, we will write 𝜌 with a tilde to denote that abstract

environment of type Var→ AbsTy, to disambiguate it from a concrete environment 𝜌 from the LK

machine.

In Figure 14, we give the extension of CJ K to whole machine configurations 𝜎 . Although CJ K
looks like an entirely new definition, it is actually derivative of AJ K via a context lemma à la

Moran and Sands [1999, Lemma 3.2]: The environments 𝜌 simply govern the transition from

syntax to operational representation in the heap. The bindings in the heap are to be treated as

mutually recursive let bindings, hence a fixpoint is needed. For safety properties such as absence,

a least fixpoint is appropriate. Apply frames on the stack correspond to the application case of

AJ K and invoke the summary mechanism. Update frames are ignored because our analysis is not

heap-sensitive.
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Now we can prove that CJ K is preserved/improves during reduction:

Lemma 19 (Preservation of CJ K). If 𝜎1 ↩−→ 𝜎2, then CJ𝜎1K ⊒ CJ𝜎2K.

Proof. By cases on the transition.

• Case Let1: Then e = let y = e1 in e2 and

(let y = e1 in e2, 𝜌, 𝜇, 𝜅) ↩−→ (e2, 𝜌 [y ↦→ a], 𝜇 [a ↦→ (y, 𝜌 [y ↦→ a], e1)], 𝜅) .

Abbreviating 𝜌1 ≜ 𝜌 [y ↦→ a], 𝜇1 ≜ 𝜇 [a ↦→ (y, 𝜌1, e1), we have

CJ𝜎1K

= apps𝜇 (𝜅) (AJlet y = e1 in e2K𝛼 (𝜇 )◦𝜌 )
= apps𝜇 (𝜅) (AJe2K(𝛼 (𝜇 )◦𝜌 ) [y↦→y&lfp(𝜆𝜃 . AJe1K(𝛼 (𝜇)◦𝜌 ) [y ↦→𝜃 ] ) ])
= apps𝜇1

(𝜅) (AJe2K𝛼 (𝜇1 )◦𝜌1
)

= CJ𝜎2K

Unfold CJ𝜎1K

Unfold AJlet y = e1 in e2K

Move fixpoint outwards, refold 𝛼

Refold CJ𝜎2K

• Case App1: Then (e′ y, 𝜌, 𝜇, 𝜅) ↩−→ (e′, 𝜌, 𝜇, ap(𝜌 (y)) · 𝜅).

CJ𝜎1K

= apps𝜇 (𝜅) (AJe′ yK𝛼 (𝜇 )◦𝜌 )
= apps𝜇 (𝜅) (app(AJe′K𝛼 (𝜇 )◦𝜌 , 𝛼 (𝜇) (𝜌 (y))))
= apps𝜇 (ap(𝜌 (y)) · 𝜅) (AJe′K𝛼 (𝜇 )◦𝜌 )
= CJ𝜎2K

Unfold CJ𝜎1K

Unfold AJe′ yK(𝛼 (𝜇 )◦𝜌 )

Rearrange

Refold CJ𝜎2K

• Case App2: Then (λ̄y.e′, 𝜌, 𝜇, ap(a) · 𝜅) ↩−→ (e′, 𝜌 [y ↦→ a], 𝜇, 𝜅).

CJ𝜎1K

= apps𝜇 (ap(a) · 𝜅) (AJλ̄y.e′K𝛼 (𝜇 )◦𝜌 )
= apps𝜇 (𝜅) (app(AJλ̄y.e′K𝛼 (𝜇 )◦𝜌 , 𝛼 (𝜇) (a)))
⊒ apps𝜇 (𝜅) (AJe′K(𝛼 (𝜇 )◦𝜌 ) [y↦→𝛼 (𝜇 ) (a) ])
= apps𝜇 (𝜅) (AJe′K(𝛼 (𝜇 )◦𝜌 [y↦→a] ) )
= CJ𝜎2K

Unfold CJ𝜎1K

Unfold apps

Unfold RHS of Lemma 3

Rearrange

Refold CJ𝜎2K

• Case Look: Then e = y, a ≜ 𝜌 (y), (z, 𝜌 ′, e′) ≜ 𝜇 (a) and (y, 𝜌, 𝜇, 𝜅) ↩−→ (e′, 𝜌 ′, 𝜇, upd(a) · 𝜅).

CJ𝜎1K

= apps𝜇 (𝜅) (AJyK𝛼 (𝜇 )◦𝜌 )
= apps𝜇 (𝜅) ((𝛼 (𝜇) ◦ 𝜌) (y))
= apps𝜇 (𝜅) (z &AJe′K𝛼 (𝜇 )◦𝜌 ′ )
⊒ apps𝜇 (𝜅) (AJe′K𝛼 (𝜇 )◦𝜌 ′ )
= apps𝜇 (upd(a) · 𝜅) (AJe′K𝛼 (𝜇 )◦𝜌 ′ )
= CJ𝜎2K

Unfold CJ𝜎1K

Unfold AJyK

Unfold 𝛼

Drop [z ↦→ U]
Definition of apps𝜇

Refold CJ𝜎2K

• Case Upd: Then (v, 𝜌, 𝜇 [a ↦→ (y, 𝜌 ′, e′)], upd(a) · 𝜅) ↩−→ (v, 𝜌, 𝜇 [a ↦→ (y, 𝜌, v)], 𝜅).
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This case is a bit hand-wavy and shows how heap update during by-need evaluation is

dreadfully complicated to handle, even though AJ K is heap-less and otherwise correct wrt.

by-name evaluation. The culprit is that in order to show CJ𝜎2K ⊑ CJ𝜎1K, we have to show

AJvK𝛼 (𝜇 )◦𝜌 ⊑ AJe′K𝛼 (𝜇′ )◦𝜌 ′ . (1)

Intuitively, this is somewhat clear, because 𝜇 “evaluates to” 𝜇′ and v is the value of e′, in the

sense that there exists 𝜎 ′ = (e′, 𝜌 ′, 𝜇′, 𝜅) such that 𝜎 ′ ↩−→∗ 𝜎1 ↩−→ 𝜎2.

Alas, who guarantees that such a 𝜎 ′ actually exists? We would need to rearrange the lemma

for that and argue by step indexing (a.k.a. coinduction) over prefixes of maximal traces (to be

rigorously defined later). That is, we presume that the statement

∀𝑛. 𝜎0 ↩−→𝑛
𝜎2 =⇒ CJ𝜎2K ⊑ CJ𝜎0K

has been proved for all𝑛 < 𝑘 and proceed to prove it for𝑛 = 𝑘 . So we presume 𝜎0 ↩−→𝑘−1

𝜎1 ↩−→
𝜎2 and CJ𝜎1K ⊑ CJ𝜎0K to arrive at a similar setup as before, only with a stronger assumption

about 𝜎1. Specifically, due to the balanced stack discipline we know that 𝜎0 ↩−→𝑘−1

𝜎1 factors

over 𝜎 ′ above. We may proceed by induction over the balanced stack discipline (we will see in

Section 5.1 that this amounts to induction over the big-step derivation) of the trace 𝜎 ′ ↩−→∗ 𝜎1

to show Equation (1).

This reasoning was not specific to AJ K at all. We will show a more general result in Lemma

53.(a) that can be reused across many more analyses.

Assuming Equation (1) has been proved, we proceed

CJ𝜎1K

= apps𝜇 (upd(a) · 𝜅) (AJvK𝛼 (𝜇 )◦𝜌 )
= apps𝜇 (𝜅) (AJvK𝛼 (𝜇 )◦𝜌 )
⊒ apps𝜇 [a↦→(y,𝜌,v) ] (𝜅) (AJvK𝛼 (𝜇 [a ↦→(y,𝜌,v) ] )◦𝜌 )
= CJ𝜎2K

Unfold CJ𝜎1K

Definition of apps𝜇

Above argument that AJvK𝛼 (𝜇 )◦𝜌 ⊑ AJe′K𝛼 (𝜇′ )◦𝜌 ′

Refold CJ𝜎2K

□

We conclude with the proof for Theorem 1:

Proof. We show the contraposition, that is, if x is used in e, then 𝜑 (x) = U.
Since x is used in e, there exists a trace

(let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→ (e, 𝜌1, 𝜇1, 𝜅) ↩−→∗ (y, 𝜌 ′ [y ↦→ a], 𝜇′, 𝜅′)
Look(x)
↩−−−−−−→ ...,

where 𝜌1 ≜ 𝜌 [x ↦→ a], 𝜇1 ≜ 𝜇 [a ↦→ (x, 𝜌 [x ↦→ a], e′)]. Without loss of generality, we assume the

trace prefix ends at the first lookup at a, so 𝜇′ (a) = 𝜇1 (a) = (x, 𝜌1, e′). If that was not the case, we
could just find a smaller prefix with this property.

Let us abbreviate 𝜌 ≜ (𝛼 (𝜇1) ◦ 𝜌1). Under the above assumptions, 𝜌 (y).𝜑 (x) = U implies x = y
for all y, because 𝜇1 (a) is the only heap entry in which x occurs by our shadowing assumptions on

syntax. By unfolding CJ K and AJyK we can see that

[x ↦→ U] ⊑ 𝛼 (𝜇1) (a).𝜑 = 𝛼 (𝜇′) (a).𝜑 = AJyK𝛼 (𝜇′ )◦𝜌 ′ [y↦→a] .𝜑 ⊑ (CJ(y, 𝜌 ′ [y ↦→ a], 𝜇′, 𝜅′)K).𝜑 .

By Lemma 19, we also have

(CJ(y, 𝜌 ′ [y ↦→ a], 𝜇′, 𝜅′)K).𝜑 ⊑ (CJ(e, 𝜌1, 𝜇1, 𝜅)K).𝜑 .
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And with transitivity, we get [x ↦→ U] ⊑ (CJ(e, 𝜌1, 𝜇1, 𝜅)K).𝜑 . Since there was no other heap entry

for x and a cannot occur in𝜅 or 𝜌 due towell-addressedness, we have [x ↦→ U] ⊑ (CJ(e, 𝜌1, 𝜇1, 𝜅)K).𝜑
if and only if [x ↦→ U] ⊑ (AJeK𝜌 ).𝜑 . With Lemma 18, we can decompose

[x ↦→ U]
⊑ (AJeK𝜌 ).𝜑
= ((AJeK𝜌Δ ) [y Z⇒ 𝜌 (y).𝜑]) .𝜑
⊑ ((AJeK𝜌e ) [y Z⇒ 𝜌 (y).𝜑]).𝜑
=

⊔{𝜌 (y).𝜑 | AJeK𝜌e .𝜑 (y) = U}

Above result

𝜌Δ (x) ≜ ⟨[x ↦→ U], 𝜌 (x).𝜍⟩, Lemma 18

𝜍 ⊑ Rep U, hence 𝜌Δ ⊑ 𝜌e

Definition of [ Z⇒ ]

But since 𝜌 (y).𝜑 (x) = U implies x = y (refer to definition of 𝜌), we must have (AJeK𝜌e ).𝜑 (x) = U,
as required. □

B PROOFS FOR SECTION 5 (TOTALITY AND SEMANTIC ADEQUACY)
Theorem 4 (Strong Adequacy). Let e be a closed expression, 𝜏 ≜ SneedJeK𝜀 (𝜀) the denotational
by-need trace and init (e) ↩−→ ... the maximal lazy Krivine trace. Then

• 𝜏 preserves the observable termination properties of init (e) ↩−→ ... in the above sense.

• 𝜏 preserves the length (i.e., number of Steps) of init (e) ↩−→ ... (i.e., number of transitions).

• every ev :: Event in 𝜏 = Step ev ... corresponds to the transition rule taken in init (e) ↩−→ ....

Proof. We formally define as 𝛼 (init (e) ↩−→ ...) ≜ 𝛼S∞ (init (e) ↩−→ ..., stop), where 𝛼S∞ is defined

in Figure 15.

Then SneedJeK𝜀 (𝜀) = 𝛼 (init (e) ↩−→ ...) follows directly from Theorem 27. The preservation results

in are a consequence of Lemma 25 and theorem 28; function 𝛼Ev in Figure 15 encodes the intuition

in which LK transitions abstract into Events. □

We proceed from the bottom up, beginning with a definition of traces as mathematical sequences,

then defining maximal traces, and then relating those maximal traces via Figure 15 to SJ K .

Formally, an LK trace is a trace in (↩−→) from Figure 2, i.e., a non-empty and potentially infinite

sequence of LK states (𝜎𝑖 )𝑖∈𝑛 (where 𝑛 = {𝑚 ∈ N | 𝑚 < 𝑛} when 𝑛 ∈ N, 𝜔 = N), such that

𝜎𝑖 ↩−→ 𝜎𝑖+1 for 𝑖, (𝑖 + 1) ∈ 𝑛. The source state 𝜎0 exists for finite and infinite traces, while the target

state 𝜎𝑛 is only defined when 𝑛 ≠ 𝜔 is finite. When the control expression of a state 𝜎 (selected via

ctrl(𝜎)) is a value v, we call 𝜎 a return state and say that the continuation (selected via cont (𝜎))
drives evaluation. Otherwise, 𝜎 is an evaluation state and ctrl(𝜎) drives evaluation.

An important kind of trace is one that never leaves the evaluation context of its source state:

Definition 20 (Deep, interior and balanced traces). An LK trace (𝜎𝑖 )𝑖∈𝑛 is 𝜅-deep if every interme-

diate continuation 𝜅𝑖 ≜ cont (𝜎𝑖 ) extends 𝜅 (so 𝜅𝑖 = 𝜅 or 𝜅𝑖 = ... · 𝜅, abbreviated 𝜅𝑖 = ...𝜅).
A trace (𝜎𝑖 )𝑖∈𝑛 is called interior if it is cont (𝜎0)-deep. Furthermore, an interior trace (𝜎𝑖 )𝑖∈𝑛 is bal-
anced [Sestoft 1997] if the target state exists and is a return state with continuation cont (𝜎0).
We notate 𝜅-deep and interior traces as 𝜅 deep (𝜎𝑖 )𝑖∈𝑛 and (𝜎𝑖 )𝑖∈𝑛 inter, respectively.

Here is an example for each of the three cases. We will omit the first component of heap entries in

our examples because they bear no semantic significance apart from instrumenting Look transitions,

and it is confusing when the heap-bound expression is a variable 𝑥 , e.g., (𝑦, 𝜌, 𝑥).

Example 21. Let 𝜌 = [𝑥 ↦→ a1], 𝜇 = [a1 ↦→ ( , [], λ̄𝑦.𝑦)] and 𝜅 an arbitrary continuation. The trace

(𝑥, 𝜌, 𝜇, 𝜅) ↩−→ (λ̄𝑦.𝑦, 𝜌, 𝜇, upd(a1) · 𝜅) ↩−→ (λ̄𝑦.𝑦, 𝜌, 𝜇, 𝜅)
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is interior and balanced. Its proper prefixes are interior but not balanced. The trace suffix

(λ̄𝑦.𝑦, 𝜌, 𝜇, upd(a1) · 𝜅) ↩−→ (λ̄𝑦.𝑦, 𝜌, 𝜇, 𝜅)
is neither interior nor balanced.

As shown by Sestoft [1997], a balanced trace starting at a control expression e and ending with v
loosely corresponds to a derivation of e ⇓ v in a natural big-step semantics or a non-⊥ result in a

Scott-style denotational semantics. It is when a derivation in a natural semantics does not exist

that a small-step semantics shows finesse, in that it differentiates two different kinds of maximally

interior (or, just maximal) traces:

Definition 22 (Maximal, diverging and stuck traces). An LK trace (𝜎𝑖 )𝑖∈𝑛 is maximal if and only if

it is interior and there is no 𝜎𝑛+1 such that (𝜎𝑖 )𝑖∈𝑛+1 is interior. More formally,

(𝜎𝑖 )𝑖∈𝑛 max ≜ (𝜎𝑖 )𝑖∈𝑛 inter ∧ (∄𝜎𝑛+1. 𝜎𝑛 ↩−→ 𝜎𝑛+1 ∧ cont (𝜎𝑛+1) = ...cont (𝜎0)) .
We notate maximal traces as (𝜎𝑖 )𝑖∈𝑛 max. Infinite and interior traces are called diverging. A maximally

finite, but unbalanced trace is called stuck.

Note that usually stuckness is associated with a state of a transition system rather than a trace.

That is not possible in our framework; the following example clarifies.

Example 23 (Stuck and diverging traces). Consider the interior trace

(tt 𝑥, [𝑥 ↦→ a1], [a1 ↦→ ...], 𝜅) ↩−→ (tt, [𝑥 ↦→ a1], [a1 ↦→ ...], ap(a1) · 𝜅),
where tt is a data constructor. It is stuck, but its singleton suffix is balanced. An example for a diverging

trace, where 𝜌 = [𝑥 ↦→ a1] and 𝜇 = [a1 ↦→ ( , 𝜌, 𝑥)], is
(let 𝑥 = 𝑥 in 𝑥, [], [], 𝜅) ↩−→ (𝑥, 𝜌, 𝜇, 𝜅) ↩−→ (𝑥, 𝜌, 𝜇, upd(a1) · 𝜅) ↩−→ ...

Lemma 24 (Characterisation of maximal traces). An LK trace (𝜎𝑖 )𝑖∈𝑛 is maximal if and only if it is

balanced, diverging or stuck.

Proof. ⇒: Let (𝜎𝑖 )𝑖∈𝑛 be maximal. If 𝑛 = 𝜔 is infinite, then it is diverging due to interiority, and

if (𝜎𝑖 )𝑖∈𝑛 is stuck, the goal follows immediately. So we assume that (𝜎𝑖 )𝑖∈𝑛 is maximal, finite and

not stuck, so it must be balanced by the definition of stuckness.

⇐: Both balanced and stuck traces are maximal. A diverging trace (𝜎𝑖 )𝑖∈𝑛 is interior and infinite,

hence 𝑛 = 𝜔 . Indeed (𝜎𝑖 )𝑖∈𝜔 is maximal, because the expression 𝜎𝜔 is undefined and hence does

not exist. □

Interiority guarantees that the particular initial stack 𝜅 of a maximal trace is irrelevant to

execution, so maximal traces that differ only in the initial stack are bisimilar. This is very much

like the semantics of a called function (i.e., big-step evaluator) may not depend on the contents of

the call stack.

One class of maximal traces is of particular interest: The maximal trace starting in init (e)!
Whether it is infinite, stuck or balanced is the defining termination observable of e. If we can show

that SJeK𝜀 distinguishes these behaviors of e, we have proven it an adequate replacement for the

LK transition system.

Figure 15 shows the correctness predicate C in our endeavour to prove SJ K adequate at

D (ByNeed T). It encodes that an abstraction of every maximal LK trace can be recovered by

running SJ K starting from the abstraction of an initial state.

The family of abstraction functions (they are really representation functions, in the sense of

Section 7) makes precise the intuitive connection between the definable entities in SJ K and the

syntactic objects in the transition system.
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𝛼E (𝜇, [x ↦→ a]) = [x ↦→ Step (Lookup y) (fetch a) | 𝜇 (a) = (y, , )]
𝛼H ( [a ↦→ ( , 𝜌, e)]) = [a ↦→ memo a (SJeK𝛼E (𝜇,𝜌 ) )]

𝛼S (λ̄x.e, 𝜌, 𝜇, 𝜅) = (Fun (𝜆d → Step App2 (SJeK(𝛼E (𝜇,𝜌 ) ) [x ↦→d ])), 𝛼H (𝜇))
𝛼S (𝐾 x, 𝜌, 𝜇, 𝜅) = (Con k (map (𝛼E (𝜇, 𝜌) !) xs), 𝛼H (𝜇))

𝛼Ev (𝜎) =



Let1 when 𝜎 = (let x = in , , 𝜇, ), ax,𝑖 ̸∈ dom(𝜇)
App1 when 𝜎 = ( x, , , )
Case1 when 𝜎 = (case of , , , )
Lookup y when 𝜎 = (x, 𝜌, 𝜇, ), 𝜇 (𝜌 (x)) = (y, , )
App2 when 𝜎 = (λ̄ . , , , ap( ) · )
Case2 when 𝜎 = (𝐾 , , , sel( , ) · )
Update when 𝜎 = (v, , , upd( ) · )

𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, 𝜅) =


Step (𝛼Ev (𝜎0)) {|𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑛−1

, 𝜅) |} when 𝑛 > 0

Ret (𝛼S (𝜎0)) when ctrl(𝜎0) value ∧ cont (𝜎0) = 𝜅
Ret Stuck otherwise

C((𝜎𝑖 )𝑖∈𝑛) = (𝜎𝑖 )𝑖∈𝑛 max =⇒ ∀((e, 𝜌, 𝜇, 𝜅) = 𝜎0). 𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, 𝜅) = SneedJeK𝛼E (𝜇,𝜌 ) (𝛼H (𝜇))

Fig. 15. Correctness predicate for SJ K

We will sometimes need to disambiguate the clashing definitions from Section 4 and Section 2.

We do so by adorning semantic objects with a tilde, so �̃� ≜ 𝛼H (𝜇) :: Heap (ByNeed 𝜏) denotes a
semantic heap which in this instance is defined to be the abstraction of a syntactic heap 𝜇.

Note first that 𝛼S∞ is defined by guarded recursion over the LK trace, in the following sense:

We regard (𝜎𝑖 )𝑖∈𝑛 as a Sigma type S∞ ≜ ∃𝑛 ∈ N𝜔 . 𝑛 → S, where N𝜔 is defined by guarded

recursion as data N𝜔 = Z | S (▶N𝜔 ). Now N𝜔 contains all natural numbers (where 𝑛 is encoded

as (S ◦ pure )𝑛Z) and the transfinite limit ordinal 𝜔 = S (pure (S (pure...))). We will assume

that addition and subtraction are defined as on Peano numbers, and 𝜔 + = + 𝜔 = 𝜔 . When

(𝜎𝑖 )𝑖∈𝑛 ∈ S∞ is an LK trace and 𝑛 > 1, then (𝜎𝑖+1)𝑖∈𝑛−1
∈ ▶S∞ is the guarded tail of the trace with

an associated coinduction principle.

As such, the expression {|𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑛−1
, 𝜅) |} has type▶ (T (Value (ByNeed T),Heap (ByNeed T)))

(the ▶ in the type of (𝜎𝑖+1)𝑖∈𝑛−1
maps through 𝛼S∞ via the idiom brackets). Definitional equality =

on T (Value (ByNeed T),Heap (ByNeed T)) is defined in the obvious structural way by guarded

recursion (as it would be if it was a finite, inductive type).

The event abstraction function 𝛼Ev (𝜎) encodes how intensional information from small-step

transitions is retained as Events. Its semantics is entirely inconsequential for the adequacy result

and we imagine that this function is tweaked on an as-needed basis depending on the particular

trace property one is interested in observing. In our example, we focus on Lookup y events that

carry with them the y ::Name of the let binding that allocated the heap entry. This event corresponds
precisely to a Look(y) transition, so 𝛼Ev (𝜎) maps 𝜎 to Lookup y when 𝜎 is about to make a Look(y)
transition. In that case, the focus expression must be x and y is the first component of the heap

entry 𝜇 (𝜌 (x)). The other cases are similar.

Our first goal is to establish a few auxiliary lemmas showing what kind of properties of LK traces

are preserved by 𝛼S∞ and in which way. Let us warm up by defining a length function on traces:
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len :: T a→ N𝜔

len (Ret ) = Z
len (Step 𝜏▶) = S {|len 𝜏▶ |}

Lemma 25 (Preservation of length). Let (𝜎𝑖 )𝑖∈𝑛 be a trace. Then len (𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, cont (𝜎0))) = 𝑛.

Proof. This is quite simple to see and hence a good opportunity to familiarise ourselves with

the concept of Löb induction, the induction principle of guarded recursion. Löb induction arises

simply from applying the guarded recursive fixpoint combinator to a proposition:

löb = fix : ∀𝑃 . (▶𝑃 =⇒ 𝑃) =⇒ 𝑃

That is, we assume that our proposition holds later, e.g.

𝐼𝐻 ∈ (▶𝑃 ≜ ▶(∀𝑛 ∈ N𝜔 . ∀(𝜎𝑖 )𝑖∈𝑛 . len (𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, cont (𝜎0))) = 𝑛))

and use 𝐼𝐻 to prove 𝑃 . Let us assume 𝑛 and (𝜎𝑖 )𝑖∈𝑛 are given, define 𝜏 ≜ 𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, cont (𝜎0))
and proceed by case analysis over 𝑛:

• Case Z: Then we have either 𝜏 = Ret (𝛼S (𝜎0)) or 𝜏 = Ret Stuck, both of which map to Z
under len.

• Case S {|m|}: Then 𝜏 = Step {|𝛼∞S ((𝜎𝑖+1)𝑖∈𝑚, cont (𝜎0)) |}, where (𝜎𝑖+1)𝑖∈𝑚 ∈ ▶S∞ is the

guarded tail of the LK trace (𝜎𝑖 )𝑖∈𝑛 . Now we apply the inductive hypothesis, as follows:

(𝐼𝐻 ⊛𝑚 ⊛ (𝜎𝑖+1)𝑖∈𝑚) ∈ ▶(len (𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑚, cont (𝜎0))) =𝑚).

We use this fact and congruence to prove

𝑛 = S {|m|} = S (len (𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑚, cont (𝜎0)))) = len (𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, cont (𝜎0))).

□

Lemma 26 (Abstraction preserves termination observable). Let (𝜎𝑖 )𝑖∈𝑛 be a maximal trace. Then

𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, 𝑐𝑜𝑛𝑡 (𝜎0)) is ...
• ... ending with Ret (Fun ) or Ret (Con ) if and only if (𝜎𝑖 )𝑖∈𝑛 is balanced.
• ... infinite if and only if (𝜎𝑖 )𝑖∈𝑛 is diverging.
• ... ending with Ret Stuck if and only if (𝜎𝑖 )𝑖∈𝑛 is stuck.

Proof. The second point follows by a similar inductive argument as in Lemma 25.

In the other cases, we may assume that 𝑛 is finite. If (𝜎𝑖 )𝑖∈𝑛 is balanced, then 𝜎𝑛 is a return

state with continuation cont (𝜎0), so its control expression is a value. Then 𝛼S∞ will conclude with

Ret (𝛼S ( )), and the latter is never Ret Stuck. Conversely, if the trace ended with Ret (Fun ) or
Ret (Con ), then cont (𝜎𝑛) = cont (𝜎0) and ctrl(𝜎𝑛) is a value, so (𝜎𝑖 )𝑖∈𝑛 forms a balanced trace.

The stuck case is similar. □

The previous lemma is interesting as it allows us to apply the classifying terminology of interior

traces to a 𝜏 ::T a that is an abstraction of amaximal LK trace. For such a maximal 𝜏 we will say that

it is balanced when it ends with Ret v for a v . Stuck, stuck if ending in Ret Stuck and diverging

if infinite.

We are now ready to prove the main soundness predicate, proving that SneedJ K is an exact

abstract interpretation of the LK machine:

Theorem 27 (SneedJ K abstracts LK machine). C from Figure 15 holds. That is, whenever (𝜎𝑖 )𝑖∈𝑛 is

a maximal LK trace with source state (e, 𝜌, 𝜇, 𝜅), we have 𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, 𝜅) = SneedJeK𝛼E (𝜇,𝜌 ) (𝛼H (𝜇)).
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Proof. By Löb induction, with 𝐼𝐻 ∈ ▶𝐶 as the hypothesis.

We will say that an LK state 𝜎 is stuck if there is no applicable rule in the transition system (i.e.,

the singleton LK trace 𝜎 is maximal and stuck).

Now let (𝜎𝑖 )𝑖∈𝑛 be amaximal LK tracewith source state𝜎0 = (e, 𝜌, 𝜇, 𝜅) and let𝜏 = SneedJeK𝛼E (𝜇,𝜌 ) (𝛼H (𝜇)).
Then the goal is to show 𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, 𝜅) = 𝜏 . We do so by cases over e, abbreviating �̃� ≜ 𝛼H (𝜇)
and 𝜌 ≜ 𝛼E (𝜇, 𝜌):
• Case x: Let us assume first that 𝜎0 is stuck. Then x ̸∈ dom(𝜌) (because Look is the only

transition that could apply), so 𝜏 = Ret Stuck and the goal follows from Lemma 26.

Otherwise, 𝜎1 ≜ (e′, 𝜌1, 𝜇, upd(a) · 𝜅), 𝜎0 ↩−→ 𝜎1 via Look(y), and 𝜌 (x) = a, 𝜇 (a) = (y, 𝜌1, e′).
This matches the head of the action of 𝜌 x, which is of the form step (Lookup y) (fetch a).
To show that the tails equate, it suffices to show that they equate later.

We can infer that �̃� a = memo a (SneedJe′K𝜌 ) from the definition of 𝛼H, so

fetch a �̃� = �̃� a �̃� = SneedJe′K𝜌 (�̃�) >>= 𝜆case
(Stuck, �̃�) → Ret (Stuck, �̃�)
(val, �̃�) → Step Update (Ret (val, �̃� [a ↦→ memo a (return val)]))

Let us define 𝜏▶ ≜ {|SneedJe′K𝜌 (�̃�) |} and apply the induction hypothesis 𝐼𝐻 to the maximal

trace starting at 𝜎1. This yields an equality

𝐼𝐻 ⊛ (𝜎𝑖+1)𝑖∈𝑚 ∈ {|𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑚, upd(a) · 𝜅) = 𝜏▶ |}

When 𝜏▶ is infinite, we are done. Similarly, if 𝜏▶ ends in Ret Stuck then the continuation

of >>= will return Ret Stuck, indicating by Lemma 25 and Lemma 26 that (𝜎𝑖+1)𝑖∈𝑛−1
is stuck

and hence (𝜎𝑖 )𝑖∈𝑛 is, too.
Otherwise 𝜏▶ ends after𝑚−1 Steps with Ret (val, �̃�𝑚) and by Lemma 26 (𝜎𝑖+1)𝑖∈𝑚 is balanced;

hence cont (𝜎𝑚) = upd(a) · 𝜅 and ctrl(𝜎𝑚) is a value. So 𝜎𝑚 = (v, 𝜌𝑚, 𝜇𝑚, upd(a) · 𝜅) and the

Upd transition fires, reaching (v, 𝜌𝑚, 𝜇𝑚 [a ↦→ (y, 𝜌𝑚, v)], 𝜅) and this must be the target state

𝜎𝑛 (so 𝑚 = 𝑛 − 2), because it remains a return state and has continuation 𝜅, so (𝜎𝑖 )𝑖∈𝑛 is

balanced. Likewise, the continuation argument of >>= does a Step Update on Ret (val, �̃�𝑚),
updating the heap. By cases on v and the Domain (D (ByNeed T)) instance we can see that

Ret (val, �̃�𝑚 [a ↦→ memo a (return val)])
= Ret (val, �̃�𝑚 [a ↦→ memo a (SneedJvK𝜌𝑚 )])
= 𝛼S (𝜎𝑛)

and this equality concludes the proof.

• Case e x: The cases where 𝜏 gets stuck or diverges before finishing evaluation of e are similar

to the variable case. So let us focus on the situation when 𝜏▶ ≜ {|SneedJeK𝜌 (�̃�) |} returns and
let 𝜎𝑚 be LK state at the end of the balanced trace (𝜎𝑖+1)𝑖∈𝑚−1

through e starting in stack

ap(a) · 𝜅.
Now, either there exists a transition 𝜎𝑚 ↩−→ 𝜎𝑚+1, or it does not. When the transition exists, it

must must leave the stack ap(a) ·𝜅 due to maximality, necessarily by an App2 transition. That

in turn means that the value in ctrl(𝜎𝑚) must be a lambda λ̄y.e′, and 𝜎𝑚+1 = (e′, 𝜌𝑚 [y ↦→
𝜌 (x)], 𝜇𝑚, 𝜅).
Likewise, 𝜏▶ ends in 𝛼S (𝜎𝑚) = Ret (Fun (𝜆d → step App2 (SneedJe′K𝜌𝑚 [y ↦→d ])), �̃�𝑚)
(where �̃�𝑚 corresponds to the heap in 𝜎𝑚 in the usual way). The fun implementation of

Domain (D (ByNeed T)) applies the Fun value to the argument denotation 𝜌 x, hence

it remains to show that 𝜏▶
2
≜ SneedJe′K𝜌𝑚 [y ↦→𝜌 x ] (�̃�𝑚) is equal to 𝛼S∞ ((𝜎𝑖+𝑚+1)𝑖∈𝑘 , 𝜅) later,

where (𝜎𝑖+𝑚+1)𝑖∈𝑘 is the maximal trace starting at 𝜎𝑚+1.
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We can apply the induction hypothesis to this situation. From this and our earlier equalities,

we get 𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, 𝜅) = 𝜏 , concluding the proof of the case where there exists a transition
𝜎𝑚 ↩−→ 𝜎𝑚+1.
When 𝜎𝑚 ̸↩−→, then ctrl(𝜎𝑚) is not a lambda, otherwise App2 would apply. In this case, fun

gets to see a Stuck or Con value, for which it is Stuck as well.

• Case case e𝑠 of 𝐾 x→ e𝑟 : Similar to the application and lookup case.

• Cases λ̄x.e, 𝐾 x: The length of both traces is 𝑛 = 0 and the goal follows by simple calculation.

• Case let x = e1 in e2: Let 𝜎0 = (let x = e1 in e2, 𝜌, 𝜇, 𝜅). Then 𝜎1 = (e2, 𝜌1, 𝜇
′, 𝜅) by Let1,

where 𝜌1 = 𝜌 [x ↦→ ax,𝑖 ], 𝜇′ = 𝜇 [ax,𝑖 ↦→ (x, 𝜌1, e1)]. Since the stack does not grow, maximality

from the tail (𝜎𝑖+1)𝑖∈𝑛−1
transfers to (𝜎𝑖 )𝑖∈𝑛 . Straightforward application of the induction

hypothesis to (𝜎𝑖+1)𝑖∈𝑛−1
yields the equality for the tail (after a bit of calculation for the

updated environment and heap), which concludes the proof.

□

Theorem 27 and Lemma 26 are the key to proving the following theorem of adequacy, which

formalises the intuitive notion of adequacy from before.

(A state 𝜎 is final when ctrl(𝜎) is a value and cont (𝜎) = stop.)

Theorem 28 (Adequacy of SneedJ K ). Let 𝜏 ≜ SneedJeK𝜀 (𝜀).
• 𝜏 ends with Ret (Fun , ) or Ret (Con , ) (is balanced) iff there exists a final state 𝜎 such

that init (e) ↩−→∗ 𝜎 .
• 𝜏 ends with Ret (Stuck, ) (is stuck) iff there exists a non-final state 𝜎 such that init (e) ↩−→∗ 𝜎
and there exists no 𝜎 ′ such that 𝜎 ↩−→ 𝜎 ′.
• 𝜏 is infinite Step (Step ...) (is diverging) iff for all 𝜎 with init (e) ↩−→∗ 𝜎 there exists 𝜎 ′ with
𝜎 ↩−→ 𝜎 ′.
• The e ::Event in every Step e ... occurrence in 𝜏 corresponds in the intuitive way to the matching

small-step transition rule that was taken.

Proof. There exists a maximal trace (𝜎𝑖 )𝑖∈𝑛 starting from 𝜎0 = init (e), and by Theorem 27 we

have 𝛼S∞ ((𝜎𝑖 )𝑖∈𝑛, stop) = 𝜏 . The correctness of Events emitted follows directly from 𝛼Ev.

⇒ – If (𝜎𝑖 )𝑖∈𝑛 is balanced, its target state 𝜎𝑛 is a return state that must also have the empty

continuation, hence it is a final state.

– If (𝜎𝑖 )𝑖∈𝑛 is stuck, it is finite and maximal, but not balanced, so its target state 𝜎𝑛 cannot be

a return state; otherwise maximality implies 𝜎𝑛 has an (initial) empty continuation and the

trace would be balanced. On the other hand, the only returning transitions apply to return

states, so maximality implies there is no 𝜎 ′ such that 𝜎 ↩−→ 𝜎 ′ whatsoever.
– If (𝜎𝑖 )𝑖∈𝑛 is diverging, 𝑛 = 𝜔 and for every 𝜎 with init (e) ↩−→∗ 𝜎 there exists an 𝑖 such that

𝜎 = 𝜎𝑖 by determinism.

⇐ – If 𝜎𝑛 is a final state, it has cont (𝜎) = cont (init (e)) = [], so the trace is balanced.

– If 𝜎 is not a final state, 𝜏 ′ is not balanced. Since there is no 𝜎 ′ such that 𝜎 ↩−→∗ 𝜎 ′, it is still
maximal; hence it must be stuck.

– Suppose that 𝑛 ∈ N𝜔 was finite. Then, if for every choice of 𝜎 there exists 𝜎 ′ such that

𝜎 ↩−→ 𝜎 ′, then there must be 𝜎𝑛+1 with 𝜎𝑛 ↩−→ 𝜎𝑛+1, violating maximality of the trace. Hence

it must be infinite. It is also interior, because every stack extends the empty stack, hence it

is diverging.

□
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B.1 Total Encoding in Guarded Cubical Agda
Whereas traditional theories of coinduction require syntactic productivity checks [Coquand 1994],

imposing tiresome constraints on the form of guarded recursive functions, the appeal of guarded

type theories is that productivity is instead proven semantically, in the type system. Compared

to the alternative of sized types [Hughes et al. 1996], guarded types don’t require complicated

algebraic manipulations of size parameters; however perhaps sized types would work just as well.

Any fuel-based (or step-indexed) approach is equivalent to our use of guarded type theory, but we

find that the latter is a more direct (and thus preferable) encoding.

The fundamental innovation of guarded recursive type theory is the integration of the “later”

modality ▶ which allows to define coinductive data types with negative recursive occurrences such

as in the data constructor Fun :: ( D 𝜏 → D 𝜏) → Value 𝜏 (recall that D 𝜏 = 𝜏 ( Value 𝜏)), as first
realised by Nakano [2000]. The way that is achieved is roughly as follows: The type ▶𝑇 represents

data of type𝑇 that will become available after a finite amount of computation, such as unrolling one

layer of a fixpoint definition. It comes with a general fixpoint combinator fix : ∀𝐴. (▶𝐴→ 𝐴) → 𝐴

that can be used to define both coinductive types (via guarded recursive functions on the universe

of types [Birkedal and Mogelberg 2013]) as well as guarded recursive terms inhabiting said types.

The classic example is that of infinite streams:

𝑆𝑡𝑟 = N × ▶𝑆𝑡𝑟 𝑜𝑛𝑒𝑠 = fix(𝑟 : ▶𝑆𝑡𝑟 ). (1, 𝑟 ),

where 𝑜𝑛𝑒𝑠 : 𝑆𝑡𝑟 is the constant stream of 1. In particular, 𝑆𝑡𝑟 is the fixpoint of a locally contractive

functor 𝐹 (𝑋 ) = N × ▶𝑋 . According to Birkedal and Mogelberg [2013], any type expression in

simply typed lambda calculus defines a locally contractive functor as long as any occurrence

of 𝑋 is under a ▶. The most exciting consequence is that changing the Fun data constructor to

Fun :: (▶ (D 𝜏) → D 𝜏) → Value 𝜏 makes Value 𝜏 a well-defined coinductive data type,
30
whereas

syntactic approaches to coinduction reject any negative recursive occurrence.

As a type constructor, ▶ is an applicative functor [McBride and Paterson 2008] via functions

next : ∀𝐴. 𝐴→ ▶𝐴 ⊛ : ∀𝐴, 𝐵. ▶(𝐴→ 𝐵) → ▶𝐴→ ▶𝐵,

allowing us to apply a familiar framework of reasoning around ▶. In order not to obscure our work

with pointless symbol pushing, we will often omit the idiom brackets [McBride and Paterson 2008]

{| |} to indicate where the ▶ “effects” happen.

We will now outline the changes necessary to encode SJ K in Guarded Cubical Agda, a system

implementing Ticked Cubical Type Theory [Møgelberg and Veltri 2019], as well as the concrete

instances D (ByName T) and D (ByNeed T) from Figures 5b and 7. The full, type-checked

development is available in the Supplement.

• We need to delay in step; thus its definition in Trace changes to step :: Event→ ▶d → d.

• All Ds that will be passed to lambdas, put into the environment or stored in fields need

to have the form step (Lookup x) d for some x :: Name and a delayed d :: ▶ (D 𝜏). This is
enforced as follows:

(1) The Domain type class gains an additional predicate parameter p :: D→ Set that will be
instantiated by the semantics to a predicate that checks that the D has the required form

step (Lookup x) d for some x :: Name, d :: ▶ (D 𝜏).
(2) Then the method types of Domain use a Sigma type to encode conformance to p. For

example, the type of Fun changes to (Σ D p→ D) → D.

30
The reason why the positive occurrence of D 𝜏 does not need to be guarded is that the type of Fun can more formally be

encoded by a mixed inductive-coinductive type, e.g., Value 𝜏 = fix𝑋 . lfp𝑌 . ... | Fun (𝑋 → 𝑌 ) | ...
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data Type = Type :→: Type | TyConApp TyCon [Type] | TyVar Name | Wrong
data PolyType = PT [Name] Type; data TyCon = ...

type Constraint = (Type, Type); type Subst = Name :⇀ Type
data Cts a = Cts (StateT (Set Name, Subst) Maybe a)
emitCt :: Constraint→ Cts (); freshTyVar :: Cts Type
instantiatePolyTy :: PolyType→ Cts Type; generaliseTy :: Cts Type→ Cts PolyType
closedType :: Cts PolyType→ PolyType

instance Trace (Cts v) where step = id

instance Domain (Cts PolyType) where stuck = return (PT [ ] Wrong); ...
instance HasBind (Cts PolyType) where
bind rhs body = generaliseTy (do
rhs_ty ← freshTyVar

rhs_ty
′ ← rhs (return (PT [ ] rhs_ty)) >>= instantiatePolyTy

emitCt (rhs_ty, rhs_ty′)
return rhs_ty) >>= body ◦ return

Fig. 16. Hindley-Milner-style type analysis with Let generalisation

(3) The reason why we need to encode this fact is that the guarded recursive data type Value
has a constructor the type of which amounts to Fun :: (Name × ▶ (D 𝜏) → D 𝜏) →
Value 𝜏 , breaking the previously discussed negative recursive cycle by a ▶, and expecting

x :: Name, d :: ▶ (D 𝜏) such that the original D 𝜏 can be recovered as step (Lookup x) d.
This is in contrast to the original definition Fun :: (D 𝜏 → D 𝜏) → Value 𝜏 which

would not type-check. One can understand Fun as carrying the “closure” resulting from

defunctionalising [Reynolds 1972] a Σ D p, and that this defunctionalisation is presently

necessary in Agda to eliminate negative cycles.

• Expectedly, HasBind becomes more complicated because it encodes the fixpoint combinator.

We settled on bind :: ▶ (▶D→D) → (▶D→D) → D. We tried rolling up step (Lookup x)
in the definition of SJ K to get a simpler type bind :: (Σ D p→D) → (Σ D p→D) →D, but
then had trouble defining ByNeed heaps independently of the concrete predicate p.

• Higher-order mutable state is among the classic motivating examples for guarded recur-

sive types. As such it is no surprise that the state-passing of the mutable Heap in the im-

plementation of ByNeed requires breaking of a recursive cycle by delaying heap entries,

Heap 𝜏 = Addr :⇀ ▶ (D 𝜏).
• We need to pass around Tick binders in SJ K in a way that the type checker is satisfied; a

simple exercise. We find it remarkable how non-invasive these adjustment are!

Thus we have proven that SJ K is a total, mathematical function, and fast and loose equational

reasoning about SJ K is not only morally correct [Danielsson et al. 2006], but simply correct.

Furthermore, since evaluation order doesn’t matter in Agda and hence for SJ K , we could have

defined it in a strict language (lowering ▶a as () → a) just as well.

C PROOFS FOR SECTION 6 (STATIC ANALYSIS)
C.1 Type Analysis
To demonstrate the flexibility of our approach, we have implemented Hindley-Milner-style type

analysis including Let generalisation as an instance of our abstract denotational interpreter. The
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Table 1. Examples for type analysis.

# e closedType (SJeK𝜀)
(1) let 𝑖 = λ̄𝑥 .𝑥 in 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 ∀𝛼11 . 𝛼11 → 𝛼11

(2) λ̄𝑥 .let 𝑦 = 𝑥 in 𝑦 𝑥 wrong
(3) let 𝑖 = λ̄𝑥 .𝑥 in let 𝑜 = Some(𝑖) in 𝑜 ∀𝛼6 . option (𝛼6 → 𝛼6)
(4) let 𝑥 = 𝑥 in 𝑥 ∀𝛼1 . 𝛼1

gist is given in Figure 16; we omit large parts of the implementation and the Domain instance

for space reasons. While the full implementation can be found in the extract generated from this

document, the HasBind instance is a sufficient exemplar of the approach.

The analysis infers most general PolyTypes of the form ∀𝛼. 𝜃 for an expression, where 𝜃 ranges

over a Type that can be either a type variable TyVar 𝛼 , a function type 𝜃 1 :→:𝜃 2, or a type constructor

application TyConApp. The Wrong type is used to indicate a type error.

Key to the analysis is maintenance of a consistent set of type constraints as a unifying Substitution.
That is why the trace typeCts carries the current unifier as state, with the option of failure indicated
by Maybe when the unifier does not exist. Additionally, Cts carries a set of used Names with it to

satisfy freshness constraints in freshTyVar and instantiatePolyTy, as well as to construct a superset

of fv(𝜌) in generaliseTy.

While the operational detail offered by Trace is ignored by Cts, all the pieces fall together in the

implementation of bind, where we see yet another domain-specific fixpoint strategy: The knot is

tied by calling the iteratee rhs with a fresh unification variable type rhs_ty of the shape 𝛼1. The

result of this call in turn is instantiated to a non-PolyType rhs_ty′, perhaps turning a type-scheme

∀𝛼2 . option (𝛼2 → 𝛼2) into the shape option (𝛼3 → 𝛼3) for fresh 𝛼3. Then a constraint is emitted

to unify 𝛼1 with option (𝛼3 → 𝛼3). Ultimately, the type rhs_ty is returned and generalised to

∀𝛼3 . option (𝛼3 → 𝛼3), because 𝛼3 is not a Name in use before the call to generaliseTy, and thus it

couldn’t have possibly leaked into the range of the ambient type context. The generalised PolyType
is then used when analysing the body.

Examples. Let us again conclude with some examples in Table 1. Example (1) demonstrates repeated

instantiation and generalisation. Example (2) shows that let generalisation does not accidentally

generalise the type of y. Example (3) shows an example involving data types and the characteristic

approximation to higher-rank types, and example (4) shows that type inference for diverging

programs works as expected.

C.2 Control-flow Analysis
In our last example, we will discuss a classic benchmark of abstract higher-order interpreters:

Control-flow analysis (CFA). CFA calculates an approximation of which values an expression might

evaluate to, so as to narrow down the possible control-flow edges at application sites. The resulting

control-flow graph conservatively approximates the control-flow of the whole program and can be

used to apply classic intraprocedural analyses such as interval analysis in a higher-order setting.

To facilitate CFA, we have to revise the Domain class to pass down a label from allocation sites,

which is to serve as the syntactic proxy of the value’s control-flow node:

type Label = String
class Domain d where
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data Pow a = P (Set a); type ValueC = Pow Label
type ConCache = (Tag, [ValueC ]); data FunCache = FC (Maybe (ValueC,ValueC)) (DC → DC)
data Cache = Cache (Label :⇀ ConCache) (Label :⇀ FunCache)
data TC a = TC (State Cache a); type DC = TC ValueC; runCFA :: DC → ValueC
updFunCache :: Label→ (DC → DC) → TC (); cachedCall :: Label→ ValueC → DC

instance HasBind DC where ...; instance Trace (TC v) where step = id

instance Domain DC where
fun ℓ f = do updFunCache ℓ f ; return (P (Set.singleton ℓ))
apply dv da = dv >>= 𝜆(P ℓ) → da >>= 𝜆a→ lub <$> traverse (𝜆ℓ → cachedCall ℓ a) (Set.toList ℓ)
...

Fig. 17. 0CFA

Table 2. Examples for control-flow analysis.

# e runCFA (SJeK𝜀)
(1) let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑗 {𝜆𝑦..}
(2) let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑗 𝑗 {𝜆𝑥.., 𝜆𝑦..}
(3) let 𝜔 = λ̄𝑥 .𝑥 𝑥 in 𝜔 𝜔 {}
(4) let 𝑥 = let 𝑦 = 𝑆 (𝑥) in 𝑆 (𝑦) in 𝑥 {𝑆 (𝑦)}

con :: Label→ Tag→ [d ] → d

fun :: Name→ Label→ (d → d) → d

We omit how to forward labels appropriately in SJ K and how to adjust Domain instances.

Figure 17 gives a rough outline of how we use this extension to define a 0CFA:
31
An abstract

ValueC is the usual set of Labels standing in for a syntactic value. The trace abstraction TC maintains

as state a Cache that approximates the shape of values at a particular Label, an abstraction of the

heap. For constructor values, the shape is simply a pair of the Tag and ValueCs for the fields. For a
lambda value, the shape is its abstract control-flow transformer, of type DC → DC (populated by

updFunCache), plus a single point (v1, v2) of its graph (𝑘-CFA would have one point per contour),

serving as the transformer’s summary.

At call sites in apply, we will iterate over each function label and attempt a cachedCall. In doing

so, we look up the label’s transformer and sees if the single point is applicable for the incoming

value v, e.g., if v⊑v1, and if so return the cached result v2 straight away. Otherwise, the transformer

stored for the label is evaluated at v and the result is cached as the new summary. An allocation site

might be re-analysed multiple times with monotonically increasing environment due to fixpoint

iteration in bind. Whenever that happens, the point that has been cached for that allocation site is

cleared, because the function might have increased its result. Then re-evaluating the function at

the next cachedCall is mandatory.

Note that a DC transitively (through Cache) recurses into DC → DC, thus introducing vicious

cycles in negative position, rendering the encoding non-inductive. This highlights a common

challenge with instances of CFA: The obligation to prove that the analysis actually terminates on

all inputs; an obligation that we will gloss over in this work.

31
As before, the extract of this document contains the full, executable definition.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.



[git] •

Abstracting Denotational Interpreters 1:45

Examples. The first two examples of Table 2 demonstrate a precise and an imprecise result, respec-

tively. The latter is due to the fact that both i and j flow into x. Examples (3) and (4) show that the

HasBind instance guarantees termination for diverging programs and cyclic data.

D PROOFS FOR SECTION 7 (GENERIC BY-NAME AND BY-NEED SOUNDNESS)
Theorem 6 (Sound By-need Interpretation). Let D̂ be a domain with instances for Trace,Domain,
HasBind and Lat, and let abstract be the abstraction function described above. If the abstraction laws

in Figure 13 hold, then SD̂J K is an abstract interpreter that is sound wrt. abstract, that is,

abstract (SneedJeK𝜀) ⊑ SD̂JeK𝜀 .

Proof. The definition of abstract is in terms of the Galois connection nameNeed from Figure 18.

Let 𝛼 be the abstraction function from nameNeed; then we define

abstract d = 𝛼 {d 𝜀}
I.e., we simply run d in the initial empty heap. Do note that abstract does not work for open

expressions because of this.

When we inline abstract, the goal is simply Theorem 56 for the special case where environment

and heap are empty. □

Abbreviation 29 (Field access). ⟨𝜑 ′, v′⟩ ◦ 𝜑 ≜ 𝜑 ′, ⟨𝜑 ′, v′⟩ ◦ v = v
′
.

For concise notation, we define the following abstract substitution operation:

Definition 30 (Abstract substitution). We call 𝜑 [x Z⇒ 𝜑 ′] ≜ 𝜑 [x ↦→ U0] + (𝜑 ! x) ∗ 𝜑 ′ the abstract
substitution operation on Uses and overload this notation for TU, so that ⟨𝜑, v⟩[x Z⇒ 𝜑 ′] ≜ ⟨𝜑 [x Z⇒
𝜑 ′], v⟩.

Lemma 31. SJLam x e ‘App‘ yK𝜌 = (SJeK𝜌 [x ↦→⟨[x ↦→U1 ],Rep U𝜔 ⟩ ]) [x Z⇒ (𝜌 ! y) .𝜑].

The proof below needs to appeal to a couple of congruence lemmas about abstract substitution,

the proofs of which would be tedious and hard to follow, hence they are omitted. These are very

similar to lemmas we have proven for absence analysis (cf. Lemma 15).

Lemma 32. SusageJLam y (Lam x e ‘App‘ z)K𝜌 = SusageJLam x (Lam y e) ‘App‘ zK𝜌 .

Lemma 33. SusageJLam x e ‘App‘ y ‘App‘ zK𝜌 = SusageJLam x (e ‘App‘ z) ‘App‘ yK𝜌 .

Lemma 34. SusageJCase (Lam x e ‘App‘ y) (alts (Lam x 𝑒𝑟 ‘App‘ y))K𝜌 [x ↦→𝜌 ! y ]
= SusageJLam x (Case e (alts 𝑒𝑟 )) ‘App‘ yK𝜌 .

Lemma35. SusageJLet z (Lam x e1 ‘App‘ y) (Lam x e2 ‘App‘ y)K𝜌 = SusageJLam x (Let z e1 e2) ‘App‘ yK𝜌 .

Now we can finally prove the substitution lemma:

Lemma 7 (Substitution). SusageJeK𝜌 [x ↦→𝜌 ! y ] ⊑ SusageJLam x e ‘App‘ yK𝜌 .

Proof. We need to assume that x is absent in the range of 𝜌 . This is a “freshness assumption”

relating to the identify of x that in practice is always respected by SusageJ K .

Now we proceed by induction on e and only consider non-stuck cases.

• Case Var z: When x ≠ z, we have

SusageJzK𝜌 [x ↦→𝜌 ! y ]
= H x ≠ z I
𝜌 ! z
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= H Refold SusageJ K I
SusageJzK𝜌 [x ↦→prx x ]

= H ((𝜌 ! z).𝜑) ! x = U0 I
(SusageJzK𝜌 [x ↦→prx x ]) [x Z⇒ (𝜌 ! y).𝜑]

= H Definition of SusageJ K I
SusageJLam x (Var z) ‘App‘ yK𝜌

Otherwise, we have x = z.

SusageJzK𝜌 [x ↦→𝜌 ! y ]
= H x = y, unfold I
𝜌 ! y

⊑ H v ⊑ (Rep U𝜔 ) I
⟨(𝜌 ! y).𝜑,Rep U𝜔 ⟩

= H Definition of abstract substitution I
(prx x) [x Z⇒ (𝜌 ! y).𝜑]

= H Refold SusageJ K I
(SusageJzK𝜌 [x ↦→prx x ]) [x Z⇒ (𝜌 ! y).𝜑]

= H Definition of SusageJ K I
SusageJLam x (Var z) ‘App‘ yK𝜌

• Case Lam z e:

SusageJLam z eK𝜌 [x ↦→𝜌 ! y ]
= H Unfold SusageJ K I
fun z (𝜆d → step App2 $ SusageJeK𝜌 [x ↦→𝜌 ! y ] [z ↦→d ])

= H Rearrange, x ≠ z I
fun z (𝜆d → step App2 $ SusageJeK𝜌 [z ↦→d ] [x ↦→𝜌 ! y ])
⊑ H Induction hypothesis, x ≠ z I
fun z (𝜆d → step App2 $ SusageJLam x e ‘App‘ yK𝜌 [z ↦→d ])

= H Refold SusageJ K I
SusageJLam z (Lam x e ‘App‘ y)K𝜌

= H x ≠ z, Lemma 32 I
SusageJLam x (Lam z e) ‘App‘ yK𝜌

• Case App e z: Consider first the case x = z. This case is exemplary of the tedious calculation

required to bring the substitution outside. We abbreviate prx x ≜ ⟨[x ↦→ U1],Rep U𝜔 ⟩.

SusageJApp e zK𝜌 [x ↦→𝜌 ! y ]
= H Unfold SusageJ K , x = z I
apply (SusageJeK𝜌 [x ↦→𝜌 ! y ]) (𝜌 ! y)
⊑ H Induction hypothesis I
apply (SusageJLam x e ‘App‘ yK𝜌 ) (𝜌 ! y)

= H Unfold apply, SusageJ K I
let ⟨𝜑, v⟩ = (SusageJeK𝜌 [x ↦→prx x ]) [x Z⇒ (𝜌 ! y).𝜑] in
case peel v of (u, v2) → ⟨𝜑 + u ∗ ((𝜌 ! y).𝜑), v2⟩

= H Unfold [ Z⇒ ] I
let ⟨𝜑, v⟩ = SusageJeK𝜌 [x ↦→prx x ] in
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case peel v of (u, v2) → ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ ((𝜌 ! y).𝜑) + u ∗ ((𝜌 ! y).𝜑), v2⟩
= H Refold [ Z⇒ ] I

let ⟨𝜑, v⟩ = SusageJeK𝜌 [x ↦→prx x ] in
case peel v of (u, v2) → ⟨𝜑 + u ∗ ((prx x).𝜑), v2⟩[x Z⇒ (𝜌 ! y).𝜑]

= HMove out [ Z⇒ ], refold apply I
(apply (SusageJeK𝜌 [x ↦→prx x ]) (prx x)) [x Z⇒ (𝜌 ! y).𝜑]

= H Refold SusageJ K I
SusageJLam x (App e z) ‘App‘ yK𝜌

When x ≠ z:

SusageJApp e zK𝜌 [x ↦→𝜌 ! y ]
= H Unfold SusageJ K , x ≠ z I
apply (SusageJeK𝜌 [x ↦→𝜌 ! y ]) (𝜌 ! z)
⊑ H Induction hypothesis I
apply (SusageJLam x e ‘App‘ yK𝜌 ) (𝜌 ! z)

= H Refold SusageJ K I
SusageJLam x e ‘App‘ y ‘App‘ zK𝜌

= H Lemma 33 I
SusageJLam x (e ‘App‘ z) ‘App‘ yK𝜌

• CaseConApp k xs: Let us concentrate on the case of a unary constructor application xs = [z ];
the multi arity case is not much different.

SusageJConApp k [z ]K𝜌 [x ↦→𝜌 ! y ]
= H Unfold SusageJ K I
foldl apply ⟨𝜀,Rep U𝜔 ⟩ [𝜌 [x ↦→ 𝜌 ! y] ! z ]
⊑ H Similar to Var case I
foldl apply ⟨𝜀,Rep U𝜔 ⟩ [ (𝜌 [x ↦→ prx x] ! z) [x Z⇒ (𝜌 ! y) .𝜑] ]

= H x dead in ⟨𝜀,Rep U𝜔 ⟩, push out substitution I
(foldl apply ⟨𝜀,Rep U𝜔 ⟩ [𝜌 [x ↦→ prx x] ! z ]) [x Z⇒ (𝜌 ! y).𝜑]

= H Refold SusageJ K I
SusageJLam x (ConApp k [z ]) ‘App‘ yK𝜌

• Case Case e alts: We concentrate on the single alternative 𝑒𝑟 , single field binder z case.

SusageJCase e [k ↦→ [z ], 𝑒𝑟 ]K𝜌 [x ↦→𝜌 ! y ]
= H Unfold SusageJ K , step Case2 = id I
select (SusageJeK𝜌 [x ↦→𝜌 ! y ]) [k ↦→ 𝜆[d ] → SusageJ𝑒𝑟 K𝜌 [x ↦→𝜌 ! y ] [z ↦→d ]]

= H Unfold select I
SusageJeK𝜌 [x ↦→𝜌 ! y ] >> SusageJ𝑒𝑟 K𝜌 [x ↦→𝜌 ! y ] [z ↦→⟨𝜀,Rep U𝜔 ⟩ ]
⊑ H Induction hypothesis I
SusageJLam x e ‘App‘ yK𝜌 >> SusageJLam x 𝑒𝑟 ‘App‘ yK𝜌 [z ↦→⟨𝜀,Rep U𝜔 ⟩ ]

= H Refold select, SusageJ K I
SusageJCase (Lam x e ‘App‘ y) altsK𝜌 [x ↦→𝜌 ! y ]

= H Refold select, SusageJ K I
SusageJCase (Lam x e ‘App‘ y) [k ↦→ [z ], Lam x 𝑒𝑟 ‘App‘ y]K𝜌 [x ↦→𝜌 ! y ]
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= H Lemma 34 I
SusageJLam x (Case e [k ↦→ [z ], 𝑒𝑟 ]) ‘App‘ yK𝜌

• Case Let:

SusageJLet z e1 e2K𝜌 [x ↦→𝜌 ! y ]
= H Unfold SusageJ K I
bind (𝜆d1 → SusageJe1K𝜌 [x ↦→𝜌 ! y ] [z ↦→step (Lookup z) d1 ])

(𝜆d1 → step Let1 (SusageJe2K𝜌 [x ↦→𝜌 ! y ] [z ↦→step (Lookup z) d1 ]))
= H Induction hypothesis; note that x is absent in 𝜌 and thus the fixpoint I
bind (𝜆d1 → SusageJLam x e1 ‘App‘ yKz[step (Lookup z) d1 ↦→ ])

(𝜆d1 → step Let1 (SusageJLam x e2 ‘App‘ yKz[step (Lookup z) d1 ↦→ ]))
= H Refold SusageJ K I
SusageJLet z (Lam x e1 ‘App‘ y) (Lam x e1 ‘App‘ y)K𝜌

= H Lemma 35 I
SusageJLam x (Let z e1 e2) ‘App‘ yK𝜌

□

Lemma 8 (Denotational absence). Variable x is used in e if and only if there exists a by-need

evaluation context E and expression e
′
such that the traceSneedJE[Let x e

′
e]K𝜀 (𝜀) contains a Lookup x

event. (Otherwise, x is absent in e.)

Proof. Since x is used in e, there exists a trace

(let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→∗ ...
Look(x)
↩−−−−−−→ ...

We proceed as follows:

(let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→∗ ...
Look(x)
↩−−−−−−→ ... (1)

⇐⇒ init (E[let x = e′ in e]) ↩−→∗ ...
Look(x)
↩−−−−−−→ ... (2)

⇐⇒ 𝛼S∞ (init (E[let x = e′ in e]) ↩−→∗, []) = ...Step (Lookup x)... (3)

⇐⇒ SneedJE[Let x e
′
e]K𝜀 (𝜀) = ...Step (Lookup x)... (4)

E ≜ trans(□, 𝜌, 𝜇, 𝜅)

Apply 𝛼S∞ (Figure 15)

Theorem 4

Note that the trace we start with is not necessarily an maximal trace, so step (1) finds a prefix that

makes the trace maximal. We do so by reconstructing the syntactic evaluation context E with trans

(cf. Lemma 36) such that

init (E[let x = e′ in e]) ↩−→∗ (let x = e′ in e, 𝜌, 𝜇, 𝜅)
Then the trace above is contained in the maximal trace starting in init (E[let x = e′ in e]) and it

contains at least one Look(x) transition.
The next two steps apply adequacy of SneedJ K ( ) to the trace, making the shift from LK trace

to denotational interpreter. □

Lemma 9 (SusageJ K abstracts SneedJ K ). Let e be a closed expression and abstract the abstraction

function above. Then abstract (SneedJeK𝜀) ⊑ SusageJeK𝜀 .

Proof. By Theorem 6, it suffices to show the abstraction laws in Figure 13.

• Mono: Always immediate, since ⊔ and + are the only functions matching on U, and these

are monotonic.

• Unwind-Stuck, Intro-Stuck: Trivial, since stuck = ⊥.
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• Step-App, Step-Sel, Step-Inc, Update: Follows by unfolding step, apply, select and associa-

tivity of +.
• Beta-App: Follows from Lemma 7; see Equation (1).

• Beta-Sel: Follows by unfolding select and con and applying a lemma very similar to Lemma 7

multiple times.

• Bind-ByName: kleeneFix approximates the least fixpoint lfp since the iteratee rhs is monotone.

We have said elsewhere that we omit a widening operator for rhs that guarantees that

kleeneFix terminates.

□

Theorem 10 (SusageJ K infers absence). Let 𝜌𝑒 ≜ [y ↦→ ⟨[y ↦→ U1],Rep U𝜔 ⟩] be the initial
environment with an entry for every free variable y of an expression e. If SusageJeK𝜌𝑒 = ⟨𝜑, v⟩ and
𝜑 !? x = U0, then x is absent in e.

Proof. We show the contraposition, that is, if x is used in e, then 𝜑 !? x ≠ U0.

By Lemma 8, there exists E, e
′
such that

SneedJE[Let x e
′
e]K𝜀 (𝜀) = ... Step (Lookup x) ... .

This is the big picture of how we prove 𝜑 !? x ≠ U0 from this fact:

SneedJE[Let x e
′
e]K𝜀 (𝜀) = ...Step (Lookup x) ... (5)

=⇒ (𝛼 {SneedJE[Let x e
′
e]K𝜀 (𝜀)}) .𝜑 ⊒ [x ↦→ U1] (6)

=⇒ (SusageJE[Let x e
′
e]K𝜀).𝜑 ⊒ [x ↦→ U1] (7)

=⇒ U𝜔 ∗ (SusageJeK𝜌𝑒 ).𝜑 = U𝜔 ∗ 𝜑 ⊒ [x ↦→ U1] (8)

=⇒ 𝜑 !? x ≠ U0 (9)

Usage instrumentation

Lemma 9

Lemma 38

U𝜔 ∗ U0 = U0 ⊏ U1

Step (5) instruments the trace by applying the usage abstraction function 𝛼 ⇌ ≜ nameNeed.

This function will replace every Step constructor with the step implementation of TU; The Lookup x

event on the right-hand side implies that its image under 𝛼 is at least [x ↦→ U1].
Step (6) applies the central soundness Lemma 9 that is the main topic of this section, abstracting

the dynamic trace property in terms of the static semantics.

Finally, step (7) applies Lemma 38, which proves that absence information doesn’t change when

an expression is put in an arbitrary evaluation context. The final step is just algebra. □

In the proof for Theorem 10 we exploit that usage analysis is somewhat invariant under wrapping

of by-need evaluation contexts, roughly U𝜔 ∗ SusageJeK𝜌𝑒 = SusageJE[e]K𝜀 . To prove that, we first

need to define what the by-need evaluation contexts of our language are.

Moran and Sands [1999, Lemma 4.1] describe a principled way to derive the call-by-need eval-

uation contexts E from machine contexts (□, 𝜇, 𝜅) of the Sestoft Mark I machine; a variant of

Figure 2 that uses syntactic substitution of variables instead of delayed substitution and addresses,

so 𝜇 ∈ Var ⇀ Exp and no closures are needed.

We follow their approach, but inline applicative contexts,
32
thus defining the by-need evaluation

contexts with hole □ for our language as

E ∈ EC ::= □ | E x | case E of 𝐾 x→ e | let x = e in E | let x = E in E[x]

32
The result is that of Ariola et al. [1995, Figure 3] in A-normal form and extended with data types.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.



[git] •

1:50 Sebastian Graf, Simon Peyton Jones, and Sven Keidel

The correspondence to Mark I machine contexts (□, 𝜇, 𝜅) is encoded by the following translation

function trans that translates from mark I machine contexts (□, 𝜇, 𝜅) to evaluation contexts E.

trans : EC × H × K→ EC
trans(E, [x ↦→ e], 𝜅) = let x = e in trans(E, [], 𝜅)
trans(E, [], ap(x) · 𝜅) = trans(E x, [], 𝜅)
trans(E, [], sel(𝐾 x→ e) · 𝜅) = trans(case E of 𝐾 x→ e, [], 𝜅)
trans(E, [], upd(x) · 𝜅) = let x = E in trans(□, [], 𝜅) [x]
trans(E, [], stop) = E

Certainly the most interesting case is that of upd frames, encoding by-need memoisation. This

translation function has the following property:

Lemma 36 (Translation, without proof). init (trans(□, 𝜇, 𝜅) [e]) ↩−→∗ (e, 𝜇, 𝜅), and all transitions in
this trace are search transitions (App1, Case1, Let1, Look).

In other words: every machine configuration 𝜎 corresponds to an evaluation context E and

a focus expression e such that there exists a trace init (E[e]) ↩−→∗ 𝜎 consisting purely of search

transitions, which is equivalent to all states in the trace except possibly the last being evaluation

states.

We encode evaluation contexts in Haskell as follows, overloading hole filling notation [ ]:

data ECtxt = Hole | Apply ECtxt Name | Select ECtxt Alts
| ExtendHeap Name Expr ECtxt | UpdateHeap Name ECtxt Expr

[ ] :: ECtxt→ Expr→ Expr
Hole[e] = e

(Apply E x) [e] = App E[e] x
(Select E alts) [e] = Case E[e] alts
(ExtendHeap x e1 E) [e2] = Let x e1 E[e2]
(UpdateHeap x E e1) [e2] = Let x E[e1] e2

Lemma 37 (Used variables are free). If x does not occur in e and in 𝜌 (that is, ∀y. (𝜌 ! y).𝜑 !?x = U0),

then (SusageJeK𝜌 ).𝜑 !? x = U0.

Proof. By induction on e. □

Lemma 38 (Context closure). Let e be an expression and E be a by-need evaluation context in which

x does not occur. Then (SusageJE[e]K𝜌𝐸 ).𝜑 ?! x ⊑U𝜔 ∗ ((SusageJeK𝜌𝑒 ) .𝜑 !? x), where 𝜌𝐸 and 𝜌𝑒 are the

initial environments that map free variables z to their proxy ⟨[z ↦→ U1],Rep U𝜔 ⟩.

Proof. We will sometimes need that if y does not occur free in e1, we have By induction on the

size of E and cases on E:

• Case Hole:

(SusageJHole[e]K𝜌𝐸 ).𝜑 !? x

= H Definition of [ ] I
(SusageJeK𝜌𝐸 ).𝜑 !? x

⊑ H 𝜌𝑒 = 𝜌𝐸 I
U𝜔 ∗ (SusageJeK𝜌𝐸 ).𝜑 !? x

By reflexivity.
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• Case Apply E y: Since y occurs in E, it must be different to x.

(SusageJ(Apply E y) [e]K𝜌𝐸 ).𝜑 !? x

= H Definition of [ ] I
(SusageJApp E[e] yK𝜌𝐸 ).𝜑 !? x

= H Definition of SusageJ K I
(apply (SusageJE[e]K𝜌𝐸 ) (𝜌𝐸 !? y)).𝜑 !? x

= H Definition of apply I
let ⟨𝜑, v⟩ = SusageJE[e]K𝜌𝐸 in
case peel v of (u, v2) → (⟨𝜑 + u ∗ ((𝜌𝐸 !? y) .𝜑), v2⟩.𝜑 !? x)

= H Unfold ⟨𝜑, v⟩.𝜑 = 𝜑 , x absent in 𝜌𝐸 !? y I
let ⟨𝜑, v⟩ = SusageJE[e]K𝜌𝐸 in
case peel v of (u, v2) → 𝜑 !? x

= H Refold ⟨𝜑, v⟩.𝜑 = 𝜑 I
(SusageJE[e]K𝜌𝐸 ).𝜑 !? x

⊑ H Induction hypothesis I
U𝜔 ∗ (SusageJeK𝜌𝑒 ).𝜑 !? x

• Case Select E alts: Since x does not occur in alts, it is absent in alts as well by Lemma 37.

(Recall that select analyses alts with ⟨𝜀,Rep U𝜔 ⟩ as field proxies.)

(SusageJ(Select E alts) [e]K𝜌𝐸 ).𝜑 !? x

= H Definition of [ ] I
(SusageJCase E[e] altsK𝜌𝐸 ).𝜑 !? x

= H Definition of SusageJ K I
(select (SusageJE[e]K𝜌𝐸 ) (cont ◁ alts)) .𝜑 !? x

= H Definition of select I
(SusageJE[e]K𝜌𝐸 >> lub (...alts...)) .𝜑 !? x

= H x absent in lub (...alts...) I
(SusageJE[e]K𝜌𝐸 ).𝜑 !? x

⊑ H Induction hypothesis I
U𝜔 ∗ (SusageJeK𝜌𝑒 ).𝜑 !? x

• Case ExtendHeap y e1 E: Since x does not occur in e1, and the initial environment is absent

in x as well, we have (SusageJe1K𝜌𝐸 ).𝜑 !? x = U0 by Lemma 37.

(SusageJ(ExtendHeap y e1 E) [e]K𝜌𝐸 ).𝜑 !? x

= H Definition of [ ] I
(SusageJLet y e1 E[e]K𝜌𝐸 ).𝜑 !? x

= H Definition of SusageJ K I
(SusageJE[e]K𝜌𝐸 [y ↦→step (Lookup y) (kleeneFix (𝜆d→SusageJe1K𝜌𝐸 [y ↦→step (Lookup y) d ] ) ) ]).𝜑 !? x

⊑ H Abstract substitution; Lemma 7 I
(SusageJE[e]K𝜌𝐸 [y ↦→⟨[y ↦→U1 ],Rep U𝜔 ⟩ ]) [y Z⇒ step

(Lookup y) (kleeneFix (𝜆d → SusageJe1K𝜌𝐸 [y ↦→step (Lookup y) d ]))] .𝜑 !? x

= H Unfold [ Z⇒ ], ⟨𝜑, v⟩.𝜑 = 𝜑 I
let ⟨𝜑, ⟩ = SusageJE[e]K𝜌𝐸 [y ↦→⟨[y ↦→U1 ],Rep U𝜔 ⟩ ] in
let ⟨𝜑2, ⟩ = step (Lookup y) (kleeneFix (𝜆d → SusageJe1K𝜌𝐸 [y ↦→step (Lookup y) d ])) in
(𝜑 [y ↦→ U0] + (𝜑 !? y) ∗ 𝜑2) !? x
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= H x absent in 𝜑2, see above I
let ⟨𝜑, ⟩ = SusageJE[e]K𝜌𝐸 [y ↦→⟨[y ↦→U1 ],Rep U𝜔 ⟩ ] in
𝜑 !? x

⊑ H Induction hypothesis I
U𝜔 ∗ (SusageJeK𝜌𝑒 ).𝜑 !? x

• Case UpdateHeap y E e1: Since x does not occur in e1, and the initial environment is absent

in x as well, we have (SusageJe1K𝜌𝐸 [y ↦→⟨[y ↦→U1 ],Rep U𝜔 ⟩ ]).𝜑 !? x = U0 by Lemma 37.

(SusageJ(UpdateHeap y E e1) [e]K𝜌𝐸 ).𝜑 !? x

= H Definition of [ ] I
(SusageJLet y E[e] e1K𝜌𝐸 ).𝜑 !? x

= H Definition of SusageJ K I
(SusageJe1K𝜌𝐸 [y ↦→step (Lookup y) (kleeneFix (𝜆d→SusageJE[e]K𝜌𝐸 [y ↦→step (Lookup y) d ] ) ) ]).𝜑 !? x

⊑ H Abstract substitution; Lemma 7 I
(SusageJe1K𝜌𝐸 [y ↦→⟨[y ↦→U1 ],Rep U𝜔 ⟩ ]) [y Z⇒ step

(Lookup y) (kleeneFix (𝜆d → SusageJE[e]K𝜌𝐸 [y ↦→step (Lookup y) d ]))] .𝜑 !? x

= H Unfold [ Z⇒ ], ⟨𝜑, v⟩.𝜑 = 𝜑 I
let ⟨𝜑, ⟩ = SusageJe1K𝜌𝐸 [y ↦→⟨[y ↦→U1 ],Rep U𝜔 ⟩ ] in
let ⟨𝜑2, ⟩ = step (Lookup y) (kleeneFix (𝜆d → SusageJE[e]K𝜌𝐸 [y ↦→step (Lookup y) d ])) in
(𝜑 [y ↦→ U0] + (𝜑 !? y) ∗ 𝜑2) !? x

= H 𝜑 !? y ⊑ U𝜔 , x absent in 𝜑 , see above I
let ⟨𝜑2, ⟩ = step (Lookup y) (kleeneFix (𝜆d → SusageJE[e]K𝜌𝐸 [y ↦→step (Lookup y) d ])) in
U𝜔 ∗ 𝜑2 !? x

= H Refold ⟨𝜑, v⟩.𝜑 I
U𝜔 ∗ (step (Lookup y) (kleeneFix (𝜆d → SusageJE[e]K𝜌𝐸 [y ↦→step (Lookup y) d ]))) .𝜑 !? x

= H x ≠ y I
U𝜔 ∗ (kleeneFix (𝜆d → SusageJE[e]K𝜌𝐸 [y ↦→d ])).𝜑 !? x

= H Argument below I
U𝜔 ∗ (SusageJE[e]K𝜌𝐸 [y ↦→⟨[y ↦→U1 ],Rep U𝜔 ⟩ ]).𝜑 !? x

⊑ H Induction hypothesis, U𝜔 ∗ U𝜔 = U𝜔 I
U𝜔 ∗ (SusageJeK𝜌𝑒 ).𝜑 !? x

The rationale for removing the kleeneFix is that under the assumption that x is absent in d

(such as is the case for d ≜ ⟨[y ↦→ U1],Rep U𝜔 ⟩), then it is also absent in E[e] 𝜌𝐸 [y ↦→ d]
per Lemma 37. Otherwise, we go to U𝜔 anyway.

UpdateHeap is why it is necessary to multiply with U𝜔 above; in the context let 𝑥 = □ in 𝑥 𝑥 ,
a variable 𝑦 put in the hole would really be evaluated twice under call-by-name (where

let 𝑥 = □ in 𝑥 𝑥 is not an evaluation context).

This unfortunately means that the used-once results do not generalise to arbitrary by-need

evaluation contexts and it would be unsound to elide update frames for 𝑦 based on the

inferred use of 𝑦 in let 𝑦 = ... in e; for e ≜ 𝑦 we would infer that 𝑦 is used at most once, but

that is wrong in context let 𝑥 = □ in 𝑥 𝑥 .

□
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D.1 Abstract Interpretation and Denotational Interpreters
So far, we have seen how to use the abstraction Theorem 6, but its proof merely points to its

generalisation for open terms, Theorem 56. Proving this theorem correct is the goal of this subsection

and the following, where we approach the problem from the bottom up.

We begin by describing how we intend to apply abstract interpretation to our denotational

interpreter, considering open expressions as well, which necessitate abstraction of environments.

Given a “concrete” (but perhaps undecidable, infinite or coinductive) semantics and a more

“abstract” (but perhaps decidable, finite and inductive) semantics, when does the latter soundly

approximate properties of the former? This question is a prominent one in program analysis, and

Abstract Interpretation Cousot [2021] provides a generic framework to formalise this question.

Sound approximation is encoded by a Galois connection (D,⩽) −−−→←−−−𝛼
𝛾

(D̂, ⊑) between concrete

and abstract semantic domains D and D̂ equipped with a partial order. An element d̂ ∈ D̂ soundly

approximates d ∈ D iff d ⩽ 𝛾 d̂, iff 𝛼 d ⊑ d̂. This theory bears semantic significance when (D,⩽) is
instantiated to the complete lattice of trace properties (℘(T), ⊆), whereT is the set of program traces.

Then the collecting semantics relative to a concrete, trace-generating semantics STJ K , defined as

SCJeK𝜌 ≜ {STJeK𝜌 }, provides the strongest trace property that a given program (e, 𝜌) satisfies. In
this setting, we extend the original Galois connection to the signature of STJeK parametrically,

33

to

((Name :⇀ ℘(T)) → ℘(T), ¤⊆) −−−−−−−−−−−−−→←−−−−−−−−−−−−−
𝜆f→𝛼◦f ◦(𝛾◁)

𝜆f̂→𝛾◦f̂ ◦(𝛼◁)
((Name :⇀ D̂) → D̂, ¤⊑),

and state soundness of the abstract semantics SD̂J K as

SCJeK𝜌 ⊆ 𝛾 (SD̂JeK𝛼◁{ }◁𝜌 ) ⇐⇒ 𝛼 {STJeK𝜌 } ⊑ SD̂JeK𝛼◁{ }◁𝜌 .

The statement should be read as “The concrete semantics implies the abstract semantics up to

concretisation” Cousot [2021, p. 26]. It looks a bit different to what we exemplified in Theorem 6 for

the following reasons: (1)STJ K andSD̂J K are in fact different type class instantiations of the same

denotational interpreter SJ K from Section 4, thus both functions share a lot of common structure.

(2) The Galois connections byName and nameNeed defined below are completely determined by

type class instances, even for infinite traces. (3) It turns out that we need to syntactically restrict

the kind of D that occurs in an environment 𝜌 due to the full abstraction problem [Plotkin 1977], so

that the Galois connection byName looks a bit different. (4) By-need semantics is stateful whereas

analyses such as usage analysis are rarely so; this again leads to a slightly different use of the final

Galois connection nameNeed as exemplified in Theorem 6.

D.2 Guarded Fixpoints, Safety Properties and Safety Extension of a Galois Connection
We like to describe a semantic trace property as a “fold”, in terms of a Trace instance. For example,

we collect a trace into a Uses in Section 6.1 and Lemma 9. Of course such a fold (an inductive

elimination procedure) has no meaning when the trace is infinite! Yet it is always clear what we

mean: when the trace is infinite, we consider the meaning of the fold as the limit (i.e., least fixpoint)

of its finite prefixes. In this subsection, we discuss when and why this meaning is correct.

Suppose for a second that we were only interested in the trace component of our semantic domain,

thus effectively restricting ourselves to T ≜ T (), and that we were to approximate properties 𝑃 ∈
℘(T) about such traces by a Galois connection (℘(T), ⊆) −−−→←−−−𝛼

𝛾

(D̂, ⊑). Alas, although the abstraction

33
“Parametrically” in the sense of Backhouse and Backhouse [2004], i.e., the structural properties of a Galois connection

follow as a free theorem.
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function 𝛼 is well-defined as a mathematical function, it most certainly is not computable at infinite

inputs (in T∞), for example at fix (Step (Lookup x)) = Step (Lookup x) (Step (Lookup x)...)!
Computing with such an 𝛼 is of course inacceptable for a static analysis. Usually this is re-

solved by approximating the fixpoint by the least fixpoint of the abstracted iteratee, e.g., lfp (𝛼 ◦
Step (Lookup x) ◦ 𝛾). It is however not the case that this yields a sound approximation of in-

finite traces for arbitrary trace properties. A classic counterexample is the property 𝑃 ≜ {𝜏 |
𝜏 terminates}; if 𝑃 is restricted to finite traces T∗, the analysis that constantly says “terminates” is

correct; however this result doesn’t carry over “to the limit”, when 𝜏 may also range over infinite

traces in T∞. Hence it is impossible to soundly approximate 𝑃 with a least fixpoint in the abstract.

Rather than making the common assumption that infinite traces are soundly approximated by ⊥
(such as in strictness analysis [Mycroft 1980; Wadler and Hughes 1987]), thus effectively assuming

that all executions are finite, our framework assumes that the properties of interest are safety

properties [Lamport 1977]:

Definition 39 (Safety property). A trace property 𝑃 ⊆ T is a safety property iff, whenever 𝜏1 ∈ T∞

violates 𝑃 (so 𝜏1 ̸∈ 𝑃 ), then there exists some proper prefix 𝜏2 ∈ T∗ (written 𝜏2 ⋖ 𝜏1) such that 𝜏2 ̸∈ 𝑃 .

Note that both well-typedness (“𝜏 does not go wrong”) and usage cardinality abstract safety

properties. Conveniently, guarded recursive predicates (on traces) always describe safety prop-

erties [Birkedal and Bizjak 2023; Spies et al. 2021]. The contraposition of the above definition

is

∀𝜏1 ∈ T∞. (∀𝜏2 ∈ T∗ . 𝜏2 ⋖ 𝜏1 =⇒ 𝜏2 ∈ 𝑃) =⇒ 𝜏1 ∈ 𝑃,
and we can exploit safety to extend a finitary Galois connection to infinite inputs:

Lemma 40 (Safety extension). Let D̂ be a domain with instances for Trace and Lat, (℘(T∗), ⊆) −−−→←−−−𝛼
𝛾

(D̂, ⊑) a Galois connection and 𝑃 ∈ ℘(T) a safety property. Then any domain element d̂ that soundly

approximates 𝑃 via 𝛾 on finite traces soundly approximates 𝑃 on infinite traces as well:

∀d̂ . 𝑃 ∩ T∗ ⊆ 𝛾 (d̂) =⇒ 𝑃 ∩ T∞ ⊆ 𝛾∞ (d̂),

where the extension (℘(T∗), ⊆) −−−−→←−−−−
𝛼∞

𝛾∞

(D̂, ⊑) of −−−→←−−−𝛼
𝛾

is defined by the following abstraction function:

𝛼∞ (𝑃) ≜ 𝛼 ({𝜏2 | ∃𝜏1 ∈ 𝑃 . 𝜏2 ⋖ 𝜏1})

Proof. First note that 𝛼∞ uniquely determines the Galois connection by the representation

function [Nielson et al. 1999, Section 4.3]

𝛽∞ (𝜏1) ≜ 𝛼 (
⋃{𝜏2 | 𝜏2 ⋖ 𝜏1}).

Now let 𝜏 ∈ 𝑃 ∩ T∞. The goal is to show that 𝜏 ∈ 𝛾∞ (d̂), which we rewrite as follows:

𝜏 ∈ 𝛾∞ d̂

⇐⇒ H Galois I
𝛽∞ 𝜏 ⊑ d̂

⇐⇒ H Definition of 𝛽∞ I
𝛼

⋃{𝜏2 | 𝜏2 ⋖ 𝜏1} ⊑ d̂
⇐⇒ H Galois I⋃{𝜏2 | 𝜏2 ⋖ 𝜏1} ⊆ 𝛾 d̂

⇐⇒ H Definition of Union I
∀𝜏2. 𝜏2 ⋖ 𝜏 =⇒ 𝜏2 ∈ 𝛾 d̂
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On the other hand, 𝑃 is a safety property and 𝜏 ∈ 𝑃 , so for any prefix 𝜏2 of 𝜏 we have 𝜏2 ∈ 𝑃 ∩ T∗.
Hence the goal follows by assumption that 𝑃 ∩ T∗ ⊆ 𝛾 (d̂). □

From now on, we tacitly assume that all trace properties of interest are safety properties, and

that any Galois connection defined in Haskell has been extended to infinite traces via Lemma 40.

Any such Galois connection can be used to approximate guarded fixpoints via least fixpoints:

Lemma 41 (Guarded fixpoint abstraction for safety extensions). Let D̂ be a domain with instances

for Trace and Lat, and let (℘(T), ⊆) −−−→←−−−𝛼
𝛾

(D̂, ⊑) a Galois connection extended to infinite traces via

Lemma 40. Then, for any guarded iteratee f :: ▶T→ T,

𝛼 ({fix f }) ⊑ lfp (𝛼 ◦ f ∗ ◦ 𝛾),

where lfp f̂ denotes the least fixpoint of f̂ and f
∗

:: ℘(▶T) → ℘(T) is the lifting of f to powersets.

Proof. We should note that the proposition is sloppy in the treatment of ▶ and should rather

have been

𝛼 ({fix f }) ⊑ lfp (𝛼 ◦ f ◦ next∗ ◦ 𝛾),
where next :: ▶T→ T. Since we have proven totality in Section 5.2, the utility of being explicit in

next is rather low (much more so since a pen and paper proof is not type checked) and we will

admit ourselves this kind of sloppiness from now on.

Let us assume that 𝜏 = fix f is finite and proceed by Löb induction.

𝛼 {fix f } ⊑ lfp (𝛼 ◦ f ∗ ◦ 𝛾)
= H fix f = f (fix f ) I
𝛼 {f (fix f )}

= H Commute f and { } I
𝛼 (f ∗ {fix f })
⊑ H id ⊑ 𝛾 ◦ 𝛼 I
𝛼 (f ∗ (𝛾 (𝛼 {fix f })))
⊑ H Induction hypothesis I
𝛼 (f ∗ (𝛾 (lfp (𝛼 ◦ f ∗ ◦ 𝛾))))
⊑ H lfp f̂ = f̂ (lfp f̂ ) I
lfp (𝛼 ◦ f ∗ ◦ 𝛾)

When 𝜏 is infinite, the result follows by Lemma 40 and the fact that all properties of interest are

safety properties. □

D.3 Abstract By-name Soundness, in Detail
We will now see how the by-name abstraction laws in Figure 13 induce an abstract interpretation

of by-name evaluation. The corresponding proofs are somewhat simpler than for by-need because

no heap update is involved.

As we are getting closer to the point where we reason about idealised, total Haskell code, it is

important to nail down how Galois connections are represented in Haskell, and how we construct

them. Following Nielson et al. [1999, Section 4.3], every representation function 𝛽 :: a→ b into a

partial order (b, ⊑) yields a Galois connection between Powersets of a and (b, ⊑):
data GC a b = (a→ b) ⇌ (b→ a)
repr :: Lat b⇒ (a→ b) → GC (Pow a) b
repr 𝛽 = 𝛼 ⇌ 𝛾 where 𝛼 (P as) = ⊔{𝛽 a | a← as};𝛾 b = P {a | 𝛽 a ⊑ b}
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While the𝛾 exists as a mathematical function, it is in general impossible to compute even for finitary

inputs. Every domain D̂ with instances (Trace D̂,Domain D̂, Lat D̂) induces a trace abstraction via

the following representation function, writing f
∗
to map f over Pow34

type (d ⊢naD ) = d -- exact meaning defined below

trace :: (Trace d̂,Domain d̂, Lat d̂)
⇒ GC (Pow (D r)) d̂ → GC (Pow (D r ⊢naD )) (d̂ ⊢naD ) → GC (Pow (T (Value r))) d̂

trace (𝛼T ⇌ 𝛾T) (𝛼E ⇌ 𝛾E) = repr 𝛽 where
𝛽 (Ret Stuck) = stuck

𝛽 (Ret (Fun f )) = fun (𝛼T ◦ f ∗ ◦ 𝛾E)
𝛽 (Ret (Con k ds)) = con k (map (𝛼E ◦ { }) ds)
𝛽 (Step e d̂) = step e (𝛽 d̂)

Note how trace expects two Galois connections: The first one is applicable in the “recursive case”

and the second one applies to (the powerset over)D (ByName T) ⊢naD , a subtype ofD (ByName T).
Every d :: (ByName T ⊢naD ) is of the form Step (Lookup x) (SJeK𝜌 ) for some x, e, 𝜌 , characterising

domain elements that end up in an environment or are passed around as arguments or in fields. We

have seen a similar characterisation in the Agda encoding of Section 5.1. The distinction between

𝛼T and 𝛼E will be important for proving that evaluation preserves trace abstraction (comparable to

Lemma 19 for a big-step-style semantics), a necessary auxiliary lemma for Theorem 44.

We utilise the trace combinator to define byName abstraction as its (guarded) fixpoint:

env :: (Trace d̂,Domain d̂, Lat d̂) ⇒ GC (Pow (D (ByName T) ⊢naD )) (d̂ ⊢naD )
env = repr 𝛽 where 𝛽 (Step (Lookup x) (SJeK𝜌 )) = step (Lookup x) (SJeK𝛽◁𝜌 )
byName :: (Trace d̂,Domain d̂, Lat d̂) ⇒ GC (Pow (D (ByName T))) d̂
byName = (𝛼T ◦ unByName

∗) ⇌ (ByName∗ ◦ 𝛾T) where 𝛼T ⇌ 𝛾T = trace byName env

There is a need to clear up the domain and range of env. Since its domain is sets of elements from

D (ByName T) ⊢naD , its range d ⊢naD is the (possibly infinite) join over abstracted elements that

look like step (Lookup x) (SJeK𝛽◁𝜌 ) for some “closure” x, e, 𝜌 . Although we have “sworn off”

operational semantics for abstraction, we defunctionalise environments into syntax to structure

the vast semantic domain in this way, thus working around the full abstraction problem [Plotkin

1977]. More formally,

Definition 42 (Syntactic by-name environments). Let D̂ be a domain satisfying Trace, Domain and

Lat. We write D̂ ⊢naD d (resp. D̂ ⊢naE 𝜌) to say that the denotation d (resp. environment 𝜌) is syntactic,

which we define by mutual guarded recursion as

• D̂ ⊢naD d iff there exists a set Clo of syntactic closures such that

d =
⊔{step (Lookup x) (SJeK𝜌1

:: D̂) | (x, e, 𝜌1) ∈ Clo ∧ ▶ (D̂ ⊢naE 𝜌1)}, and
• D̂ ⊢naE 𝜌 iff for all x, D̂ ⊢naD (𝜌 ! x).

For the remainder of this subsection, we assume a refined definition of Domain and HasBind
that expects D̂ ⊢naD (denoting the set of d̂ :: D̂ such that D̂ ⊢naD d̂) where we pass around denotations

that end up in an environment. It is then easy to see that SJeK𝜌 preserves D̂ ⊢naE in recursive

invocations, and trace does so as well.

34
Recall that fun actually takes x :: Name as the first argument as a cheap De Bruijn level. Every call to fun would need to

chose a fresh x. We omit the bookkeeping here; an alternative would be to require the implementation of usage analysis/DU
to track their own De Bruijn levels.
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Lemma 43 (By-name evaluation preserves trace abstraction). Let D̂ be a domain with instances for

Trace, Domain, HasBind and Lat, satisfying the soundness properties Step-App, Step-Sel, Beta-App,
Beta-Sel, Bind-ByName in Figure 13.

IfSnameJeK𝜌1
= Step ev (SnameJvK𝜌2

) in the concrete, then step ev (SJvK𝛼E◁{ }◁𝜌2
)⊑SJeK𝛼E◁{ }◁𝜌1

in the abstract, where 𝛼E ⇌ 𝛾E = env.

Proof. By Löb induction and cases on e, using the representation function 𝛽E ≜ 𝛼E ◦ { }.
• Case Var x: By assumption, we know that SnameJxK𝜌1

= Step (Lookup y) (SnameJe′K𝜌3
) =

Step ev (SnameJvK𝜌2
) for some y, e

′
, 𝜌3, so that ev = Lookup y : ev1 for some ev1 by deter-

minism.

step ev (SJvK𝛽E◁𝜌2
)

= H ev = Lookup y : ev1 I
step (Lookup y) (step ev1 (SJvK𝛽E◁𝜌2

))
⊑ H Induction hypothesis at ev1, 𝜌3 as above I
step (Lookup y) (SJe′K𝛽E◁𝜌3

)
= H Refold 𝛽E, 𝜌3 ! x I
𝛽E (𝜌1 ! x)

= H Refold SJxK𝛽E◁𝜌1
I

SJxK𝛽E◁𝜌1

• Case Lam, ConApp: By reflexivity of ⊑.
• CaseApp e x: ThenSnameJeK𝜌1

= Step ev1 (SnameJLam y bodyK𝜌3
),SnameJbodyK𝜌3 [y ↦→𝜌1 ! x ] =

Step ev2 (SnameJvK𝜌2
).

step ev (SJvK𝛽E◁𝜌2
)

= H ev = [App1 ] ++ ev1 ++ [App2 ] ++ ev2, IH at ev2 I
step App1 (step ev1 (step App2 (SJbodyK(𝛽E◁𝜌3 ) [y ↦→𝛽E◁𝜌1 ! x ])))
⊑ H Assumption Beta-App I
step App1 (step ev1 (apply (SJLam y bodyK𝛽E◁𝜌3

) (𝛽E ◁ 𝜌1 ! x)))
⊑ H Assumption Step-App I
step App1 (apply (step ev1 (SJLam y bodyK𝛽E◁𝜌3

)) (𝛽E ◁ 𝜌1 ! x))
⊑ H Induction hypothesis at ev1 I
step App1 (apply (SJeK𝛽E◁𝜌1

) (𝛽E ◁ 𝜌1 ! x))
= H Refold SJApp e xK𝛽E◁𝜌1

I
SJApp e xK𝛽E◁𝜌1

• CaseCase e alts: ThenSnameJeK𝜌1
= Step ev1 (SnameJConApp k ysK𝜌3

),SnameJ𝑒𝑟 K𝜌1 [xs ↦→map (𝜌3 !) ys] =

Step ev2 (SnameJvK𝜌2
), where alts ! k = (xs, 𝑒𝑟 ) is the matching RHS.

step ev (SJvK𝛽E◁𝜌2
)

⊑ H ev = [Case1 ] ++ ev1 ++ [Case2 ] ++ ev2, IH at ev2 I
step Case1 (step ev1 (step Case2 (SJ𝑒𝑟 K𝛽E◁𝜌1 [xs ↦→map (𝜌3 !) ys])))
⊑ H Assumption Beta-Sel I
step Case1 (step ev1 (select (SJConApp k ysK𝛽E◁𝜌3

) (cont ◁ alts)))
⊑ H Assumption Step-Sel I
step Case1 (select (step ev1 (SJConApp k ysK𝛽E◁𝜌3

)) (cont ◁ alts))
⊑ H Induction hypothesis at ev1 I
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step Case1 (select (SJeK𝛽E◁𝜌1
) (cont ◁ alts))

= H Refold SJCase e altsK𝛽E◁𝜌1
I

SJCase e altsK𝛽E◁𝜌1

• Case Let x e1 e2: We make good use of Lemma 41 below:

step ev (SJvK𝛽E◁𝜌2
)

= H ev = Let1 : ev1 I
step Let1 (step ev1 (SJvK𝛽E◁𝜌2

))
⊑ H Induction hypothesis at ev1 I
step Let1 (SJe2K(𝛽E◁𝜌1 ) [x ↦→𝛽E (Step (Lookup x ) (fix (𝜆d1→SnameJe1K𝜌

1
[x ↦→Step (Lookup x) d

1
] ) ) ) ])

= H Partially roll fix I
step Let1 (SJe2K(𝛽E◁𝜌1 ) [x ↦→𝛽E (fix (𝜆d1→Step (Lookup x ) (SnameJe1K𝜌

1
[x ↦→d

1
] ) ) ) ])

⊑ H Lemma 41 I
step Let1 (SJe2K(𝛽E◁𝜌1 ) [x ↦→lfp (𝜆d̂1→step (Lookup x ) (SJe1K(𝛽E◁𝜌1

) [x ↦→𝛼E (𝛾E d̂
1
) ] ) ) ]
)

⊑ H 𝛼E ◦ 𝛾E ⊑ id I
step Let1 (SJe2K(𝛽E◁𝜌1 ) [x ↦→lfp (𝜆d̂1→step (Lookup x ) (SJe1K(𝛽E◁𝜌1

) [x ↦→d̂
1
] ) ) ]
)

= H Partially unroll lfp I
step Let1 (SJe2K(𝛽E◁𝜌1 ) [x ↦→step (Lookup x ) (lfp (𝜆d̂1→SJe1K(𝛽E◁𝜌1

) [x ↦→step (Lookup x) d̂
1
] ) ) ]
)

⊑ H Assumption Bind-ByName I
bind (𝜆d̂1 → SJe1K( (𝛽E◁𝜌1 ) ) [x ↦→step (Lookup x ) d̂1 ])

(𝜆d̂1 → step Let1 (SJe2K( (𝛽E◁𝜌1 ) ) [x ↦→step (Lookup x ) d̂1 ]))
= H Refold SJLet x e1 e2K𝛽E◁𝜌1

I
SJLet x e1 e2K𝛽E◁𝜌1

□

We can now prove the by-name abstraction theorem:

Theorem 44 (Sound By-name Interpretation). Let D̂ be a domain with instances for Trace, Domain,
HasBind and Lat, and let 𝛼T ⇌ 𝛾T ≜ byName, 𝛼E ⇌ 𝛾E ≜ env. If the by-name abstraction laws in

Figure 13 hold, then SJ K instantiates to an abstract interpreter that is sound wrt. 𝛾E → 𝛼T, that is,

𝛼T ({SnameJeK𝜌 } :: Pow (D (ByName T))) ⊑ SD̂JeK𝛼E◁{ }◁𝜌 .

Proof. We first restate the goal in terms of the representation functions 𝛽T ≜ 𝛼T ◦ { } and
𝛽E ≜ 𝛼E ◦ { }:

∀𝜌. 𝛽T (SnameJeK𝜌 ) ⊑ (SD̂JeK𝛽E◁𝜌 ).
We will prove this goal by Löb induction and cases on e.

• Case Var x: The stuck case follows by unfolding 𝛼T. Otherwise,

𝛽T (𝜌 ! x)
= H Pow (D (ByName T)) ⊢naE { } ◁ 𝜌 , Unfold 𝛽T I
step (Lookup y) (𝛽T (SnameJe′K𝜌 ′ ))
⊑ H Induction hypothesis I
step (Lookup y) (SJe′K𝛽E◁𝜌 ′ )

= H Refold 𝛽E I
𝛽E (𝜌 ! x)
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• Case Lam x body:

𝛽T (SnameJLam x bodyK𝜌 )
= H Unfold SJ K , 𝛽T I
fun (𝜆d̂ → ⊔{step App2 (𝛽T (SnameJbodyK𝜌 [x ↦→d ])) | 𝛽E d ⊑ d̂})
⊑ H Induction hypothesis I
fun (𝜆d̂ → ⊔{step App2 (SJbodyK𝛽E◁𝜌 [x ↦→d ]) | 𝛽E d ⊑ d̂})
⊑ H Least upper bound / 𝛼E ◦ 𝛾E ⊑ id I
fun (𝜆d̂ → step App2 (SJbodyK( (𝛽E◁𝜌 ) ) [x ↦→d̂ ]))

= H Refold SJ K I
SJLam x bodyK𝛽E◁𝜌

• Case ConApp k ds:

𝛽T (SnameJConApp k xsK𝜌 )
= H Unfold SJ K , 𝛽T I
con k (map ((𝛽E ◁ 𝜌) !) xs)

= H Refold SJ K I
SJLam x bodyK𝛽E◁𝜌

• Case App e x: The stuck case follows by unfolding 𝛽T.

Our proof obligation can be simplified as follows

𝛽T (SnameJApp e xK𝜌 )
= H Unfold SJ K , 𝛽T I
step App1 (𝛽T (apply (SnameJeK𝜌 ) (𝜌 ! x)))

= H Unfold apply I
step App1 (𝛽T (SnameJeK𝜌 >>= 𝜆case Fun f → f (𝜌 ! x); → stuck))
⊑ H By cases, see below I
step App1 (apply (SJeK𝛽E◁𝜌 ) ((𝛽E ◁ 𝜌) ! x))

= H Refold SJ K I
SJApp e xK𝛽E◁𝜌

When SnameJeK𝜌 diverges, we have

= H SnameJeK𝜌 diverges, unfold 𝛽T I
step ev1 (step ev2 (...))
⊑ H Assumption Step-App I
apply (step ev1 (step ev2 (...))) ((𝛽E ◁ 𝜌) ! x)

= H Refold 𝛽T, SnameJeK𝜌 I
apply (𝛽T (SnameJeK𝜌 )) ((𝛽E ◁ 𝜌) ! x)
⊑ H Induction hypothesis I
apply (SJeK𝛽E◁𝜌 ) ((𝛽E ◁ 𝜌) ! x)

Otherwise, SnameJeK𝜌 must produce a value v. If v = Stuck or v = Con k ds, we set d ≜ stuck

(resp. d ≜ con k (map 𝛽E ds)) and have

𝛽T (SnameJeK𝜌 >>= 𝜆case Fun f → f (𝜌 ! x); → stuck)
= H SnameJeK𝜌 = Step ev (return v), unfold 𝛽T I
step ev (𝛽T (return v >>= 𝜆case Fun f → f (𝜌 ! x); → stuck))
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= H v not Fun, unfold 𝛽T I
step ev stuck

⊑ H Assumptions Unwind-Stuck, Intro-Stuck where d ≜ stuck or d ≜ con k (map 𝛽T ds) I
step ev (apply d a)
⊑ H Assumption Step-App I
apply (step ev d) ((𝛽E ◁ 𝜌) ! x)

= H Refold 𝛽T, SnameJeK𝜌 I
apply (𝛽T (SnameJeK𝜌 )) ((𝛽E ◁ 𝜌) ! x)
⊑ H Induction hypothesis I
apply (SJeK𝛽E◁𝜌 ) ((𝛽E ◁ 𝜌) ! x)

In the final case, we have v = Fun f , whichmust be the result of some callSnameJLam y bodyK𝜌1
;

hence f ≜ 𝜆d → Step App2 (SnameJbodyK𝜌1 [y ↦→d ]).

𝛽T (SnameJeK𝜌 >>= 𝜆case Fun f → f (𝜌 ! x); → stuck)
= H SnameJeK𝜌 = Step ev (return v), unfold 𝛽T I
step ev (𝛽T (return v >>= 𝜆case Fun f → f (𝜌 ! x); → stuck))

= H v = Fun f , with f as above; unfold 𝛽T I
step ev (step App2 (𝛽T (SnameJbodyK𝜌1 [y ↦→𝜌 ! x ])))
⊑ H Induction hypothesis I
step ev (step App2 (SJbodyK𝛽E◁𝜌1 [y ↦→𝜌 ! x ]))

= H Rearrange I
step ev (step App2 (SJbodyK(𝛽E◁𝜌1 ) [y ↦→(𝛽E◁𝜌 ) ! x ]))
⊑ H Assumption Beta-App I
step ev (apply (SJLam y bodyK𝛽E◁𝜌1

) ((𝛽E ◁ 𝜌) ! x))
⊑ H Assumption Step-App I
apply (step ev (SJLam y bodyK𝛽E◁𝜌1

)) ((𝛽E ◁ 𝜌) ! x)
⊑ H Lemma 43 applied to ev I
apply (SJeK𝛽E◁𝜌 ) ((𝛽E ◁ 𝜌) ! x)

• Case Case e alts: The stuck case follows by unfolding 𝛽T. When SnameJeK𝜌 diverges or does
not evaluate to SnameJConApp k ysK𝜌1

, the reasoning is similar to App e x, but in a select

context. So assume that SnameJeK𝜌 = Step ev (SnameJConApp k ysK𝜌1
) and that there exists

((cont ◁ alts) ! k) ds = Step Case2 (SnameJ𝑒𝑟 K𝜌 [xs ↦→ds]).

𝛽T (SnameJCase e altsK𝜌 )
= H Unfold SJ K , 𝛽T I
step Case1 (𝛽T (select (SnameJeK𝜌 ) (cont ◁ alts))

= H Unfold select I
step Case1 (𝛽T (SnameJeK𝜌 >>= 𝜆case Con k ds | k ∈ dom alts→ ((cont ◁ alts) ! k) ds))

= H SnameJeK𝜌 = Step ev (SnameJConApp k ysK𝜌1
), unfold 𝛽T I

step Case1 (step ev (𝛽T (SnameJConApp k ysK𝜌1
) >>= 𝜆case Con k ds | k ∈ dom (cont ◁ alts) → ((cont ◁ alts) ! k) ds))

= H Simplify return (Con k ds) >>= f = f (Con k ds), (cont ◁ alts) ! k as above I
step Case1 (step ev (𝛽T (Step Case2 (SnameJ𝑒𝑟 K𝜌 [xs ↦→map (𝜌1 !) ys]))))

= H Unfold 𝛽T I
step Case1 (step ev (step Case2 (𝛽T (SnameJ𝑒𝑟 K𝜌 [xs ↦→map (𝜌1 !) ys]))))
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⊑ H Induction hypothesis I
step Case1 (step ev (step Case2 (SJ𝑒𝑟 K(𝛽E◁𝜌 ) [xs ↦→map ( (𝛽E◁𝜌1 ) !) ys])))

= H Refold cont I
step Case1 (cont (alts ! k) (map ((𝛽E ◁ 𝜌1) !) xs))
⊑ H Assumption Beta-Sel I
step Case1 (step ev (select (SJConApp k ysK𝛽E◁𝜌1

) (cont ◁ alts)))
⊑ H Assumption Step-Sel I
step Case1 (select (step ev (SJConApp k ysK𝛽E◁𝜌1

)) (cont ◁ alts))
⊑ H Lemma 43 applied to ev I
step Case1 (select (SJeK𝛽E◁𝜌 ) (cont ◁ alts))

= H Refold SJ K I
SJCase e altsK𝛽E◁𝜌

• Case Let x e1 e2:

𝛽T (SnameJLet x e1 e2K𝜌 )
= H Unfold SJ K I
𝛽T (bind (𝜆d1 → SnameJe1K𝜌 [x ↦→Step (Lookup x ) d1 ])

(𝜆d1 → Step Let1 (SnameJe2K𝜌 [x ↦→Step (Lookup x ) d1 ])))
= H Unfold bind, 𝛽T I
step Let1 (𝛽T (SnameJe2K𝜌 [x ↦→Step (Lookup x ) (fix (𝜆d1→SnameJe1K𝜌 [x ↦→Step (Lookup x) d

1
] ) ) ]))

⊑ H Induction hypothesis I
step Let1 (SJe2K(𝛽E◁𝜌 ) [x ↦→𝛽E (Step (Lookup x ) (fix (𝜆d1→SnameJe1K𝜌 [x ↦→Step (Lookup x) d

1
] ) ) ) ])

And from hereon, the proof is identical to the Let case of Lemma 43:

⊑ H By Lemma 41, as in the proof for Lemma 43 I
step Let1 (SJe2K(𝛽E◁𝜌 ) [x ↦→step (Lookup x ) (lfp (𝜆d̂1→SJe1K(𝛽E◁𝜌 ) [x ↦→step (Lookup x) d̂

1
] ) ) ]
)

⊑ H Assumption Bind-ByName, with �̂� = 𝛽E ◁ 𝜌 I
bind (𝜆d1 → SJe1K(𝛽E◁𝜌 ) [x ↦→step (Lookup x ) d1 ])

(𝜆d1 → step Let1 (SJe2K(𝛽E◁𝜌 ) [x ↦→step (Lookup x ) d1 ]))
= H Refold SJLet x e1 e2K𝛽E◁𝜌 I
SJLet x e1 e2K𝛽E◁𝜌

□

We can now show a generalisation to open expressions of the by-name version of Lemma 9:

Lemma 45 (SusageJ K abstracts SnameJ K , open). Usage analysis SusageJ K is sound wrt. SnameJ K ,

that is,

𝛼T {SnameJeK𝜌 } ⊑ (SusageJeK𝛼E◁{ }◁𝜌 :: DU) where 𝛼T ⇌ = byName;𝛼E ⇌ = env.

Proof. By Theorem 44, it suffices to show the abstraction laws in Figure 13 as done in the proof

for Lemma 9. □

The following example shows why we need syntactic premises in Figure 13. It defines a monotone,

but non-syntactic f :: DU → DU for which f a ̸⊑ apply (fun x f ) a. So if we did not have the

syntactic premises, we would not be able to prove usage analysis correct.

Example 46. Let z ≠ x ≠ y. The monotone function f defined as follows
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freezeHeap :: (Trace d̂,Domain d̂, Lat d̂) ⇒ ⊢neH → GC (⊢neD ) (d̂ ⊢
na
D )

freezeHeap 𝜇 = repr 𝛽 where 𝛽 (Step (Lookup x) (fetch a)) | memo a (SneedJeK𝜌 ) ← 𝜇 ! a

= step (Lookup x) (SJeK𝛽◁𝜌 )
nameNeed :: (Trace d̂,Domain d̂, Lat d̂) ⇒ GC (Pow (T (Value (ByNeed T), ⊢neH ))) d̂
nameNeed = repr 𝛽 where
𝛽 (Step e d) = step e (𝛽 d)
𝛽 (Ret (Stuck, 𝜇)) = stuck

𝛽 (Ret (Fun f , 𝜇)) = fun (𝜆d̂ → ⊔{𝛽 (f d 𝜇) | d ∈ 𝛾E d̂}) where ⇌ 𝛾E = freezeHeap 𝜇

𝛽 (Ret (Con k ds, 𝜇)) = con k (map (𝛼E ◦ { }) ds) where 𝛼E ⇌ = freezeHeap 𝜇

Fig. 18. Galois connection for sound by-name and by-need abstraction

f :: DU → DU

f ⟨𝜑, ⟩ = if 𝜑 !? y ⊑ U0 then ⟨𝜀,Rep U𝜔 ⟩ else ⟨[z ↦→ U1],Rep U𝜔 ⟩

violates f a ⊑ apply (fun x f ) a. To see that, let a ≜ ⟨[y ↦→ U1],Rep U𝜔 ⟩ :: DU and consider

f a = ⟨[z ↦→ U1],Rep U𝜔 ⟩ ̸⊑ ⟨𝜀,Rep U𝜔 ⟩ = apply (fun x f ) a.

D.4 Abstract By-need Soundness, in Detail
Now that we have gained some familiarity with the proof framework while proving Theorem 44

correct, we will tackle the proof for Theorem 56, which is applicable for analyses that are sound both

wrt. to by-name as well as by-need, such as usage analysis or perhaps type analysis in Appendix C.1

(we have however not proven it so).

A sound by-name analysis must only satisfy the two additional abstraction laws Step-Inc and

Update in Figure 13 to yield sound results for by-need as well. These laws make intuitive sense,

because Update events cannot be observed in a by-name trace and hence must be ignored. Other

than Update steps, by-need evaluation makes fewer steps than by-name evaluation, so Step-Inc

asserts that dropping steps never invalidates the result.

In order to formalise this intuition, we must find a Galois connection that does so, starting with

its domain. Although in Section 4.3 we considered a d :: D (ByNeed T) as an atomic denotation,

such a denotation actually only makes sense when it travels together with an environment 𝜌 that

ties free variables to their addresses in the heap that d expects.

For our purposes, the key is that a by-need environment 𝜌 and a heap 𝜇 can be “frozen” into

a corresponding by-name environment. This operation forms a Galois connection freezeHeap in

Figure 18, where ⊢neD serves a similar purpose as d̂ ⊢naD from Definition 42, restricting environment

entries to the syntactic by-need form Step (Lookup x) (fetch a) and heap entries in ⊢neH to

memo a (SJeK𝜌 ).

Definition 47 (Syntactic by-need heaps and environments, address domain). We write ⊢neE 𝜌 (resp.

⊢neH 𝜇) to say that the by-need environment 𝜌 :: Name :⇀ Pow (D (ByNeed T)) (resp. by-need heap
𝜇) is syntactic, defined by mutual guarded recursion as

• ⊢neD d iff there exists a set Clo of syntactic closures such that

d =
⋃{Step (Lookup x) (fetch a) | (x, a) ∈ Clo}.

• ⊢neE 𝜌 iff for all x, ⊢neD 𝜌 ! x.

• adom d ≜ {a | Step (Lookup y) (fetch a) ∈ d}
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𝜇1 ⇝ 𝜇2

⇝-Refl

⊢neH 𝜇

𝜇 ⇝ 𝜇

⇝-Trans

𝜇1 ⇝ 𝜇2 𝜇2 ⇝ 𝜇3

𝜇1 ⇝ 𝜇3

⇝-Ext

a ̸∈ dom 𝜇 adom 𝜌 ⊆ dom 𝜇 ∪ {a}
𝜇 ⇝ 𝜇 [a ↦→ memo a (SneedJeK𝜌 )]

⇝-Memo

𝜇1 ! a = memo a (SneedJeK𝜌1
) ▶ (SneedJeK𝜌1

(𝜇1) = Step ev (SneedJvK𝜌2
(𝜇2)))

𝜇1 ⇝ 𝜇2 [a ↦→ memo a (SneedJvK𝜌2
)]

Fig. 19. Heap progression relation

• adom 𝜌 ≜
⋃{adom (𝜌 ! x) | x ∈ dom 𝜌}.

• ⊢neH 𝜇 iff for all a, there is a set Clo of syntactic closures such that

𝜇 ! a =
⋃{memo a (SneedJeK𝜌 ) | ▶ ((e, 𝜌) ∈ Clo ∧ ⊢neE 𝜌 ∧ adom 𝜌 ⊆ dom 𝜇)}.

We refer to adom d (resp. adom 𝜌) as the address domain of d (resp. 𝜌).

We assume that all concrete environmentsName :⇀D (ByNeed T) and heapsHeap (ByNeed T)
satisfy ⊢neE resp. ⊢neH . It is easy to see that syntacticness is preserved by SneedJ K ( ) whenever the
environment or heap is extended, assuming that Domain and HasBind are adjusted accordingly.

The environment abstraction 𝛼E 𝜇 ⇌ = freezeHeap 𝜇 improves the more “evaluated” 𝜇 is. E.g.,

when 𝜇1 progresses into 𝜇2 during evaluation, written 𝜇1 ⇝ 𝜇2, it is 𝛼E 𝜇2 d ⊑ 𝛼E 𝜇1 d for all d. The

heap progression relation is formally defined (on syntactic heaps ⊢neH ) in Figure 19, and we will

now work toward a proof for the approximation statement about 𝛼E in Lemma 54.

Transitivity and reflexivity of (⇝) are definitional by rules⇝-Refl and⇝-Trans; antisymmetry

is not so simple to show for a lack of full abstraction.

Corollary 48. (⇝) is a preorder.

The remaining two rules express how a heap can be modified during by-need evaluation: Eval-

uation of a Let extends the heap via⇝-Ext and evaluation of a Var will memoise the evaluated

heap entry, progressing it along⇝-Memo.

Lemma 49 (Evaluation progresses the heap). If SneedJeK𝜌1
(𝜇1) = Step ev (SneedJvK𝜌2

(𝜇2)), then
𝜇1 ⇝ 𝜇2.

Proof. By Löb induction and cases on e. Since there is no approximation yet, all occurring

closure sets in ⊢neE are singletons.

• Case Var x: Let ev1 ≜ tail (init (ev)).
(𝜌1 ! x) 𝜇1

= H ⊢neE 𝜌1, some y, a I
Step (Lookup y) (fetch a 𝜇1)

= H Unfold fetch I
Step (Lookup y) ((𝜇1 ! a) 𝜇1)

= H ⊢neH 𝜇, some e, 𝜌3 I
Step (Lookup y) (memo a (SneedJeK𝜌3

(𝜇1)))
= H Unfold memo I
Step (Lookup y) (SneedJeK𝜌3

(𝜇1) >>= upd)
= H SneedJeK𝜌3

(𝜇1) = Step ev1 (SneedJvK𝜌2
(𝜇3)) for some 𝜇3, unfold >>=, upd I
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Step (Lookup y) (Step ev1 (SneedJvK𝜌2
(𝜇3) >>= 𝜆v 𝜇3 →

Step Update (Ret (v, 𝜇3 [a ↦→ memo a (return v)]))))
Now let sv ::Value (ByNeed T) be the semantic value such that SneedJvK𝜌2

(𝜇3) = Ret (sv, 𝜇3).

= H SneedJvK𝜌2
(𝜇3) = Ret (sv, 𝜇3) I

Step (Lookup y) (Step ev1 (Step Update (Ret (sv, 𝜇3 [a ↦→ memo a (return sv)]))))
= H Refold SneedJvK𝜌2

( ), ev = [Lookup y ] ++ ev1 ++ [Update] I
Step ev (SneedJvK𝜌2

(𝜇3 [a ↦→ memo a (SneedJvK𝜌2
)]))

= H Determinism of SneedJ K ( ), assumption I
Step ev (SneedJvK𝜌2

(𝜇2))
We have

𝜇1 ! a = memo a (SneedJeK𝜌3
) (10)

▶ (SneedJeK𝜌3
(𝜇1) = Step ev1 (SneedJvK𝜌2

(𝜇3))) (11)

𝜇2 = 𝜇3 [a ↦→ memo a (SneedJvK𝜌2
)] (12)

We can apply rule ⇝-Memo to Equation (10) and Equation (11) to get 𝜇1 ⇝ 𝜇3 [a ↦→
memo a (SneedJvK𝜌2

)], and rewriting along Equation (12) proves the goal.

• Case Lam x body, ConApp k xs: Then 𝜇1 = 𝜇2 and the goal follows by⇝-Refl.

• Case App e1 x: Let us assume that SneedJe1K𝜌1
(𝜇1) = Step ev1 (SneedJLam y e2K𝜌3

(𝜇3))
and SneedJe2K𝜌3 [y ↦→𝜌 ! x ] (𝜇3) = Step ev2 (SneedJvK𝜌2

(𝜇2)), so that 𝜇1 ⇝ 𝜇3, 𝜇3 ⇝ 𝜇2 by the

induction hypothesis. The goal follows by⇝-Trans, because ev = [App1 ]++ev1++[App2 ]++ev2.

• Case Case e1 alts: Similar to App e1 x.

• Case Let x e1 e2:

SneedJLet x e1 e2K𝜌1
(𝜇1)

= H Unfold SneedJ K ( ) I
bind (𝜆d1 → SneedJe1K𝜌1 [x ↦→step (Lookup x ) d1 ] ( ))

(𝜆d1 → step Let1 (SneedJe2K𝜌1 [x ↦→step (Lookup x ) d1 ] ( )))
𝜇1

= H Unfold bind, a ≜ nextFree 𝜇 with a ∉ dom 𝜇 I
step Let1 (SneedJe2K𝜌1 [x ↦→step (Lookup x ) (fetch a) ] (
𝜇1 [a ↦→ memo a (SneedJe1K𝜌1 [x ↦→step (Lookup x ) (fetch a) ])]))

At this point, we can apply the induction hypothesis toSneedJe2K𝜌1 [x ↦→step (Lookup x ) (fetch a) ] ( )
to conclude that 𝜇1 [a ↦→ memo a (SneedJe1K𝜌1 [x ↦→step (Lookup x ) (fetch a) ])] ⇝ 𝜇2.

On the other hand, we have 𝜇1 ⇝ 𝜇1 [a ↦→ memo a (SneedJe1K𝜌1 [x ↦→step (Lookup x ) (fetch a) ])] by
rule⇝-Ext (note that a ̸∈ dom 𝜇), so the goal follows by⇝-Trans.

□

Lemma 49 exposes nested structure in⇝-Memo. For example, if 𝜇1 ⇝ 𝜇2 [a ↦→ memo a (SneedJvK𝜌2
)]

is the result of applying rule ⇝-Memo, then we obtain a proof that the memoised expression

SneedJeK𝜌1
𝜇1 = Step ev (SneedJvK𝜌2

𝜇2), and this evaluation in turn implies that 𝜇1 ⇝ 𝜇2.

Heap progression is useful to state a number of semantic properties, for example the “update

once” property of memoisation and that a heap binding is semantically irrelevant when it is never

updated:

Lemma50 (Update once). If 𝜇1 ⇝ 𝜇2 and 𝜇1 ! a = memo a (SneedJvK𝜌 ), then 𝜇2 ! a = memo a (SneedJvK𝜌 ).
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Proof. Simple proof by induction on 𝜇1 ⇝ 𝜇2. The only case updating a heap entry is⇝-Memo,

and there we can see that 𝜇2 ! a = memo (SneedJvK𝜌 ) because evaluating v in 𝜇1 does not make a

step. □

Lemma 51 (No update implies semantic irrelevance). IfSneedJeK𝜌1
(𝜇1) = Step ev (SneedJvK𝜌2

(𝜇2))
and 𝜇1 ! a = 𝜇2 ! a = memo a (SneedJe1K𝜌3

), e1 not a value, then

∀d . SneedJeK𝜌1
(𝜇1 [a ↦→ d]) = Step ev (SneedJvK𝜌2

(𝜇2 [a ↦→ d]))
as well.

Proof. By Löb induction and cases on e.

• Case Var x: It is SneedJxK𝜌1
(𝜇1) = Step (Lookup y) (memo a1 (SneedJe1K𝜌3

(𝜇1))) for the
suitable a1,y. Furthermore, it must be a ≠ a1, because otherwise,memo awould have updated

a with SneedJvK𝜌2
. Then we also have

SneedJxK𝜌1
(𝜇1 [a ↦→ d]) = Step (Lookup y) (memo a1 (SneedJe1K𝜌3

(𝜇1 [a ↦→ d]))) .
The goal follows from applying the induction hypothesis and realising that 𝜇2 ! a1 has been

updated consistently with memo a1 (SneedJvK𝜌2
).

• Case Lam x e, ConApp k xs: Easy to see for 𝜇1 = 𝜇2.

• Case App e x: We can apply the induction hypothesis twice, to both of

SneedJeK𝜌1
(𝜇1) = step ev1 (SneedJLam y bodyK𝜌3

(𝜇3))
SneedJbodyK𝜌3 [y ↦→𝜌1 ! x ] (𝜇3) = step ev2 (SneedJvK𝜌2

(𝜇2))
to show the goal.

• Case Case e alts: Similar to App.
• Case Let x e1 e2: We have SneedJLet x e1 e2K𝜌1

(𝜇1) = step Let1 (SneedJe2K𝜌 ′
1

(𝜇′
1
)), where

𝜌 ′
1
≜ 𝜌1 [x ↦→ step (Lookup x) (fetch a1)], a1 ≜ nextFree 𝜇1, 𝜇

′
1
≜ 𝜇1 [a1 ↦→ memo a1 (SneedJe1K𝜌 ′

1

)].
We have a ≠ a1 by a property of nextFree, and applying the induction hypothesis yields

step Let1 (SneedJe2K𝜌 ′
1

(𝜇′
1
[a ↦→ d])) = Step ev (SneedJvK𝜌2

(𝜇2)) as required.
□

Now we move on to proving auxiliary lemmas about freezeHeap.

Lemma 52 (Heap extension preserves frozen entries). Let 𝛼E 𝜇 ⇌ 𝛾E 𝜇 = freezeHeap 𝜇. If

adom d ⊆ dom 𝜇 and a ̸∈ dom 𝜇, then 𝛼E 𝜇 d = 𝛼E 𝜇 [a ↦→ d2] d.

Proof. By Löb induction. Since ⊢neD d, we have d =
⋃{step (Lookup y) (fetch a1)} and a1 ∈

dom 𝜇. Let memo a1 (SneedJeK𝜌 ) ≜ 𝜇 ! a1 = 𝜇 [a ↦→ d2] ! a. Then adom 𝜌 ⊆ dom 𝜇 due to ⊢neH 𝜇 and

the goal follows by the induction hypothesis:

𝛼E 𝜇 d =
⊔
{step (Lookup y) (SJeK𝛼E 𝜇◁𝜌 )}

=
⊔
{step (Lookup y) (SJeK𝛼E 𝜇 [a ↦→d2 ]◁𝜌 )} = 𝛼E 𝜇 [a ↦→ d2] d

□

An by-name analysis that is sound wrt. by-need must improve when an expression reduces to a

value, which in particular will happen after the heap update during memoisation.

The following pair of lemmas corresponds to the Upd step of the preservation Lemma 19 where

we (and Sergey et al. [2017]) resorted to hand-waving. Its proof is suprisingly tricky, but it will pay

off; in a moment, we will hand-wave no more!
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Lemma 53 (Preservation of heap update). Let D̂ be a domain with instances for Trace, Domain,
HasBind and Lat, satisfying the abstraction laws Beta-App, Beta-Sel, Bind-ByName and Step-Inc

from Figure 13. Furthermore, let 𝛼E 𝜇 ⇌ 𝛾E 𝜇 = freezeHeap 𝜇 for all 𝜇 and 𝛽E 𝜇 ≜ 𝛼E 𝜇 ◦ { } the
representation function.

(a) If SneedJeK𝜌1
(𝜇1) = Step ev (SneedJvK𝜌2

(𝜇2)) and 𝜇1 ! a = memo a (SneedJeK𝜌1
),

then SJvK𝛽E 𝜇2 [a ↦→memo a (SneedJvK𝜌
2
) ]◁𝜌2

⊑ SJeK𝛽E 𝜇2◁𝜌1
.

(b) If SneedJeK𝜌1
(𝜇1) = Step ev (SneedJvK𝜌2

(𝜇2)) and 𝜇2 ⇝ 𝜇3, then SJvK𝛽E 𝜇3◁𝜌2
⊑SJeK𝛽E 𝜇3◁𝜌1

.

Proof. By Löb induction, we assume that both properties hold later.

• 53.(a):We assume thatSneedJeK𝜌1
(𝜇1) = Step ev (SneedJvK𝜌2

(𝜇2)) and 𝜇1 ! a = memo a (SneedJeK𝜌1
)

to show SJvK𝛽E 𝜇2 [a ↦→memo a (SneedJvK𝜌
2
) ]◁𝜌2

⊑ SJeK𝛽E 𝜇2◁𝜌1
.

We can use the IH 53.(a) to prove that 𝛽E 𝜇2 [a ↦→ memo a (SneedJvK𝜌2
)] d ⊑ 𝛽E 𝜇2 d for all

d such that adom d ⊆ adom 𝜇2. This is simple to see unless d = Step (Lookup y) (fetch a),
in which case we have:

𝛽E 𝜇2 [a ↦→ memo a (SneedJvK𝜌2
)] (Step (Lookup y) (fetch a))

= H Unfold 𝛽E I
step (Lookup y) (SJvK𝛽E 𝜇2 [a ↦→memo a (SneedJvK𝜌

2
) ]◁𝜌2
)

⊑ H IH 53.(a) I
step (Lookup y) (SJeK𝛽E 𝜇2◁𝜌1

)
= H Refold 𝛽E I
𝛽E 𝜇2 (step (Lookup y) (fetch a))

This is enough to show the goal:

SJvK𝛽E 𝜇2 [a ↦→memo a (SneedJvK𝜌
2
) ]◁𝜌2

⊑ H 𝛽E 𝜇2 [a ↦→ memo a (SneedJvK𝜌2
)] ⊑ 𝛽E 𝜇2 I

SJvK𝛽E 𝜇2◁𝜌2

⊑ H IH 53.(b) applied to SneedJeK𝜌1
(𝜇1) = Step ev (SneedJvK𝜌2

(𝜇2)) I
SJeK𝛽E 𝜇2◁𝜌1

• 53.(b)SneedJeK𝜌1
(𝜇1) = Step ev (SneedJvK𝜌2

(𝜇2)) ∧ 𝜇2 ⇝ 𝜇3 =⇒ SJvK𝛽E 𝜇3◁𝜌2
⊑SJeK𝛽E 𝜇3◁𝜌1

:

By Löb induction and cases on e.

– Case Var x: Let a be the address such that 𝜌1 ! x = Step (Lookup y) (fetch a). Note that
𝜇1 ! a = memo a , so the result has been memoised in 𝜇2, and by Lemma 50 in 𝜇3 as well.

Hence the entry in 𝜇3 must be of the form 𝜇3 ! a = memo a (SneedJvK𝜌2
).

SJvK𝛽E 𝜇3◁𝜌2

⊑ H Assumption Step-Inc I
step (Lookup y) (SJvK𝛽E 𝜇3◁𝜌2

)
= H Refold 𝛽E for the appropriate y I
(𝛽E 𝜇3 ◁ 𝜌1) ! x

= H Refold SJ K I
SJxK𝛽E 𝜇3◁𝜌1

– Case Lam x body, ConApp k xs: Follows by reflexivity.

– Case App e x: Then SneedJeK𝜌1
(𝜇1) = Step ev1 (SneedJLam y bodyK𝜌3

(𝜇4))
andSneedJbodyK𝜌3 [y ↦→𝜌1 ! x ] (𝜇4) = Step ev2 (SneedJvK𝜌2

(𝜇2)). Note that 𝜇4 ⇝ 𝜇2 by Lemma 49,

hence 𝜇4 ⇝ 𝜇3 by⇝-Trans.
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SJvK𝛽E 𝜇3◁𝜌2

⊑ H IH 53.(b) at body and 𝜇2 ⇝ 𝜇3 I
SJbodyK𝛽E 𝜇3◁𝜌3 [y ↦→𝜌1 ! x ]
⊑ H Assumption Step-Inc I
step App2 (SJbodyK𝛽E 𝜇3◁𝜌3 [y ↦→𝜌1 ! x ])
⊑ H Assumption Beta-App, refold Lam case I
apply (SJLam y bodyK𝛽E 𝜇3◁𝜌3

) (𝛽E 𝜇3 (𝜌1 ! x))
⊑ H IH 53.(b) at e and 𝜇4 ⇝ 𝜇3 I
apply (SJeK𝛽E 𝜇3◁𝜌1

) (𝛽E 𝜇3 (𝜌1 ! x))
⊑ H Assumption Step-Inc I
step App1 (apply (SJeK𝛽E 𝜇3◁𝜌1

) (𝛽E 𝜇3 (𝜌1 ! x)))
= H Refold SJApp e xK𝛽E 𝜇3◁𝜌1

I
SJApp e xK𝛽E 𝜇3◁𝜌1

– Case Case e alts: Similar to App.
– Case Let x e1 e2: Then SneedJLet x e1 e2K𝜌1

(𝜇1) = Step Let1 (SneedJe2K𝜌4
(𝜇4)), where a ≜

nextFree 𝜇1, 𝜌4 ≜ 𝜌1 [x ↦→ Step (Lookup x) (fetch a)], 𝜇4 ≜ 𝜇1 [a ↦→ memo a (SneedJe1K𝜌4
)].

Observe that 𝜇4 ⇝ 𝜇2 ⇝ 𝜇3.

The first first half of the proof is simple enough:

SJvK𝛽E 𝜇3◁𝜌2

⊑ H IH 53.(b) at e2 and 𝜇2 ⇝ 𝜇3 I
SJe2K𝛽E 𝜇3◁𝜌4

⊑ H Assumption Step-Inc I
step Let1 (SJe2K𝛽E 𝜇3◁𝜌4

)
= H Unfold 𝜌4 I
step Let1 (SJe2K(𝛽E 𝜇3◁𝜌1 ) [x ↦→𝛽E 𝜇3 (𝜌4 ! x ) ])

We proceed by case analysis on whether 𝜇4 ! a = 𝜇3 ! a.

If that is the case, we get

= H Unfold 𝛽E 𝜇3 (𝜌4 ! x), 𝜇3 ! a = 𝜇4 ! a I
step Let1 (SJe2K(𝛽E 𝜇3◁𝜌1 ) [x ↦→lfp (𝜆d̂1→step (Lookup x ) (SJe1K(𝛽E 𝜇

3
◁𝜌

1
) [x ↦→d̂

1
] ) ) ]
)

⊑ H Assumption Bind-ByName I
bind (𝜆d̂1 → SJe1K( (𝛽E 𝜇3◁𝜌1 ) ) [x ↦→step (Lookup x ) d̂1 ])

(𝜆d̂1 → step Let1 (SJe2K( (𝛽E 𝜇3◁𝜌1 ) ) [x ↦→step (Lookup x ) d̂1 ]))
= H Refold SJ K I
SJLet x e1 e2K𝛽E 𝜇3◁𝜌1

Otherwise, we have 𝜇3 ! a ≠ 𝜇4 ! a, implying that 𝜇4 ⇝ 𝜇3 contains an application of

⇝-Memo updating 𝜇3 ! a.

By rule inversion, 𝜇3 ! a is the result of updating it to the form memo a (SneedJv1K𝜌3
),

where SneedJe1K𝜌4
(𝜇′

4
) = Step ev1 (SneedJv1K𝜌3

(𝜇′
3
)) such that 𝜇4 ⇝ 𝜇′

4
⇝ 𝜇′

3
[a ↦→

memo a (SneedJv1K𝜌3
)] ⇝ 𝜇3 and 𝜇4 ! a = 𝜇′

4
! a = 𝜇′

3
! a ≠ 𝜇3 ! a. (NB: if there are multiple

such occurrences of⇝-Memo in 𝜇4 ⇝ 𝜇3, this must be the first one, because afterwards it

is 𝜇4 ! a ≠ 𝜇′
4

! a.)
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It is not useful to apply the IH 53.(a) to this situation directly, because 𝜇′
3
⇝ 𝜇3 does not hold.

However, note that⇝-Memo contains proof that evaluation of SneedJe1K𝜌4
(𝜇′

4
) succeeded,

and it must have done so without looking at 𝜇′
4

! a (because that would have led to an

infinite loop). Furthermore, e1 cannot be a value; otherwise, 𝜇4 ! a = 𝜇3 ! a, a contradiction.

Since e1 is not a value and 𝜇
′
4

! a = 𝜇′
3

! a, we can apply Lemma 51 to get the useful reduction

SneedJe1K𝜌4
(𝜇′

4
[a ↦→ memo a (SneedJv1K𝜌3

)])
=Step ev1 (SneedJv1K𝜌3

(𝜇′
3
[a ↦→ memo a (SneedJv1K𝜌3

)])) .
This reduction is so useful becausewe know something about 𝜇′

3
[a ↦→ memo a (SneedJv1K𝜌3

)];
namely that 𝜇′

3
[a ↦→ memo a (SneedJv1K𝜌3

)] ⇝ 𝜇3. This allows us to apply the induction

hypothesis 53.(a) to the reduction, which yields

SJv1K𝛽E 𝜇3◁𝜌3
⊑ SJe1K𝛽E 𝜇3◁𝜌4

We this identity below:

= H Unfold 𝛽E 𝜇3 (𝜌4 ! x), 𝜇3 ! a = memo a (SneedJv1K𝜌3
) I

step Let1 (SJe2K(𝛽E 𝜇3◁𝜌1 ) [x ↦→lfp (𝜆d̂1→step (Lookup x ) (SJv1K(𝛽E 𝜇
3
◁𝜌

3
) [x ↦→d̂

1
] ) ) ]
)

⊑ H SJv1K𝛽E 𝜇3◁𝜌3
⊑ SJe1K𝛽E 𝜇3◁𝜌4

, unfold 𝛽E 𝜇3 (𝜌4 ! x) I
step Let1 (SJe2K(𝛽E 𝜇3◁𝜌1 ) [x ↦→lfp (𝜆d̂1→step (Lookup x ) (SJe1K(𝛽E 𝜇

3
◁𝜌

1
) [x ↦→d̂

1
] ) ) ]
)

⊑ H ... as above ... I
SJLet x e1 e2K𝛽E 𝜇3◁𝜌1

□

With that, we can finally prove that heap progression preserves environment abstraction:

Lemma 54 (Heap progression preserves abstraction). Let D̂ be a domain with instances for Trace,
Domain, HasBind and Lat, satisfying the abstraction laws Beta-App, Beta-Sel, Bind-ByName and

Step-Inc in Figure 13. Furthermore, let 𝛼E 𝜇 ⇌ 𝛾E 𝜇 = freezeHeap 𝜇 for all 𝜇.

If 𝜇1 ⇝ 𝜇2 and adom d ⊆ dom 𝜇1, then 𝛼E 𝜇2 d ⊑ 𝛼E 𝜇1 d.

Proof. By Löb induction. Let us assume that 𝜇1 ⇝ 𝜇2 and adom d ⊆dom 𝜇1. Since ⊢neD d, we have

d =
⋃{Step (Lookup y) (fetch a)}. Similar to Theorem 44, it suffices to show the goal for a single

d = Step (Lookup y) (fetch a) for some y, a and the representation function 𝛽E 𝜇 ≜ 𝛼E 𝜇 ◁ { }.
Furthermore, let us abbreviate memo a (SneedJ𝑒𝑖K𝜌𝑖 ) ≜ 𝜇𝑖 ! a. The goal is to show

step (Lookup y) (SJe2K𝛽E 𝜇2◁𝜌2
) ⊑ step (Lookup y) (SJe1K𝛽E 𝜇1◁𝜌1

),
Monotonicity allows us to drop the step (Lookup x) context

▶ (SJe2K𝛽E 𝜇2◁𝜌2
⊑ SJe1K𝛽E 𝜇1◁𝜌1

).
Now we proceed by induction on 𝜇1 ⇝ 𝜇2, which we only use to prove correct the reflexive and

transitive closure in⇝-Refl and⇝-Trans. By contrast, the⇝-Memo and⇝-Ext cases make use

of the Löb induction hypothesis, which is freely applicable under the ambient ▶.

• Case⇝-Refl: Then 𝜇1 = 𝜇2 and hence 𝛼E 𝜇1 = 𝛼E 𝜇2.

• Case⇝-Trans: Apply the induction hypothesis to the sub-derivations and apply transitivity

of ⊑.

• Case⇝-Ext

a1 ̸∈ dom 𝜇1 adom 𝜌 ⊆ dom 𝜇1 ∪ {a1}
𝜇 ⇝ 𝜇1 [a1 ↦→ memo a1 (SneedJeK𝜌 )]

:

We get to refine 𝜇2 = 𝜇1 [a1 ↦→ memo a1 (SneedJeK𝜌 )]. Since a ∈ dom 𝜇1, we have a1 ≠ a and
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thus 𝜇1 ! a = 𝜇2 ! a, thus e1 = e2, 𝜌1 = 𝜌2. The goal can be simplified to ▶ (SJe1K𝛽E 𝜇2◁𝜌1
⊑

SJe1K𝛽E 𝜇1◁𝜌1
). We can apply the induction hypothesis to get ▶ (𝛽E 𝜇2 ⊑ 𝛽E 𝜇1), and the goal

follows by monotonicity.

• Case⇝-Memo

𝜇1 ! a1 = memo a1 (SneedJeK𝜌3
) ▶ (SneedJeK𝜌3

(𝜇1) = Step ev (SneedJvK𝜌2
(𝜇3)))

𝜇1 ⇝ 𝜇3 [a1 ↦→ memo a1 (SneedJvK𝜌2
)]

:

We get to refine 𝜇2 = 𝜇3 [a1 ↦→ memo a1 (SneedJvK𝜌2
)]. When a1 ≠ a, we have 𝜇1 ! a = 𝜇2 ! a

and the goal follows as in the⇝-Ext case. Otherwise, a = a1, e1 = e, 𝜌3 = 𝜌1, e2 = v.

We can use Lemma 53.(a) to prove that 𝛽E 𝜇2 d⊑𝛽E 𝜇3 d for all d such that adom d ⊆adom 𝜇2.

This is simple to see unless d = Step (Lookup y) (fetch a), in which case we have:

𝛽E 𝜇2 (Step (Lookup y) (fetch a))
= H Unfold 𝛽E I
step (Lookup y) (SJvK𝛽E 𝜇2◁𝜌2

)
⊑ H Lemma 53.(a) I
step (Lookup y) (SJeK𝛽E 𝜇3◁𝜌1

)
= H Refold 𝛽E I
𝛽E 𝜇3 (step (Lookup y) (fetch a))

We can finally show the goal 𝛽E 𝜇2 d ⊑ 𝛽E 𝜇1 d for all d such that adom d ⊆ dom 𝜇1:

𝛽E 𝜇2 d

⊑ H 𝛽E 𝜇2 ⊑ 𝛽E 𝜇3 I
𝛽E 𝜇3 d

⊑ H Löb induction hypothesis at 𝜇1 ⇝ 𝜇3 by Lemma 49 I
𝛽E 𝜇1 d

□

Lemma 55 (By-need evaluation preserves by-name trace abstraction). Let D̂ be a domain with

instances for Trace, Domain, HasBind and Lat, satisfying the abstraction laws Step-App, Step-Sel,

Beta-App, Beta-Sel, Bind-ByName, Step-Inc and Update in Figure 13. Furthermore, let 𝛼E 𝜇 ⇌
𝛾E 𝜇 = freezeHeap 𝜇 for all 𝜇.

If SneedJeK𝜌1
(𝜇1) = Step ev (SneedJvK𝜌2

(𝜇2)), then step ev (SJvK𝛼E 𝜇2◁{ }◁𝜌2
) ⊑SJeK𝛼E 𝜇1◁{ }◁𝜌1

.

Proof. By Löb induction and cases on e, using the representation function 𝛽E ≜ 𝛼E ◦ { }.
• Case Var x: By assumption, we know that

SneedJxK𝜌1
(𝜇1) = Step (Lookup y) (memo a (SneedJe1K𝜌3

(𝜇1))) = Step ev (SneedJvK𝜌2
(𝜇2))

for some y, a, e1, 𝜌3, such that 𝜌1 = step (Lookup y) (fetch a), 𝜇1 ! a = memo a (SneedJe1K𝜌3
)

and ev = [Lookup y ] ++ ev1 ++ [Update] for some ev1 by determinism.

The step below that uses Item 53.(b) does so at e1 and 𝜇2 ⇝ 𝜇2 to get SJvK𝛽E 𝜇2◁𝜌2
⊑

SJe1K𝛽E 𝜇2◁𝜌3
, in order to prove that (𝛽E 𝜇2 ◁ 𝜌2) ⊑ (𝛽E 𝜇2 [a ↦→ memo a (SneedJe1K𝜌3

)] ◁ 𝜌2).
step ev (SJvK𝛽E 𝜇2◁𝜌2

)
= H ev = [Lookup y ] ++ ev1 ++ [Update] I
step (Lookup y) (step ev1 (step Update (SJvK𝛽E 𝜇2◁𝜌2

)))
= H Assumption Update I
step (Lookup y) (step ev1 (SJvK𝛽E 𝜇2◁𝜌2

))
⊑ H Item 53.(b) at e1 implies (𝛽E 𝜇2 ◁ 𝜌2) ⊑ (𝛽E 𝜇2 [a ↦→ memo a (SneedJe1K𝜌3

)] ◁ 𝜌2) I
step (Lookup y) (step ev1 (SJvK𝛽E 𝜇2 [a ↦→memo a (SneedJe1K𝜌

3
) ]◁𝜌2
))
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⊑ H Lemma 55 I
step (Lookup y) (SJe1K𝛽E 𝜇1◁𝜌3

)
= H Refold 𝛽E, 𝜌3 ! x I
𝛽E (𝜌1 ! x)

= H Refold SJxK𝛽E 𝜇1◁𝜌1
I

SJxK𝛽E 𝜇1◁𝜌1

• Case Let x e1 e2: We can make one step to see

SneedJLet x e1 e2K𝜌1
(𝜇1) = Step Let1 (SneedJe2K𝜌3

(𝜇3)) = Step Let1 (Step ev1 (SneedJvK𝜌2
(𝜇2))),

where 𝜌3 ≜ 𝜌1 [x ↦→ step (Lookup x) (fetch a)], a ≜ nextFree 𝜇1, 𝜇3 ≜ 𝜇1 [a ↦→
memo a (SneedJe1K𝜌3

)].
Then (𝛽E 𝜇3 ◁ 𝜌3) ! y = (𝛽E 𝜇1 ◁ 𝜌1) ! y whenever x ≠ y by Lemma 52, and (𝛽E 𝜇3 ◁ 𝜌3) ! x =

step (Lookup x) (SJe1K𝛽E 𝜇3◁𝜌3
).

We prove the goal, thus

step ev (SJvK𝛽E 𝜇2◁𝜌2
)

= H ev = Let1 : ev1 I
step Let1 (step ev1 (SJvK𝛽E 𝜇2◁𝜌2

))
⊑ H Induction hypothesis at ev1 I
step Let1 (SJe2K𝛽E 𝜇3◁𝜌3

)
= H Rearrange 𝛽E 𝜇3 by above reasoning I
step Let1 (SJe2K(𝛽E 𝜇1◁𝜌1 ) [x ↦→𝛽E 𝜇3 (𝜌3 ! x ) ] 𝜇3)

= H Expose fixpoint, rewriting 𝛽E 𝜇3 ◁ 𝜌3 to (𝛽E 𝜇1 ◁ 𝜌1) [x ↦→ 𝛽E 𝜇3 (𝜌3 ! x)] I
step Let1 (SJe2K(𝛽E 𝜇1◁𝜌1 ) [x ↦→lfp (𝜆d̂1→step (Lookup x ) (SJe1K(𝛽E 𝜇

1
◁𝜌

1
) [x ↦→d̂

1
] ) ) ]
)

= H Partially unroll lfp I
step Let1 (SJe2K(𝛽E 𝜇1◁𝜌1 ) [x ↦→step (Lookup x ) (lfp (𝜆d̂1→SJe1K(𝛽E 𝜇

1
◁𝜌

1
) [x ↦→step (Lookup x) d̂

1
] ) ) ]
)

⊑ H Assumption Bind-ByName I
bind (𝜆d̂1 → SJe1K( (𝛽E 𝜇1◁𝜌1 ) ) [x ↦→step (Lookup x ) d̂1 ])

(𝜆d̂1 → step Let1 (SJe2K( (𝛽E 𝜇1◁𝜌1 ) ) [x ↦→step (Lookup x ) d̂1 ]))
= H Refold SJLet x e1 e2K𝛽E 𝜇1◁𝜌1

I
SJLet x e1 e2K𝛽E 𝜇1◁𝜌1

• Case Lam, ConApp: By reflexivity.

• Case App e x: Very similar to Lemma 43, since the heap is never updated or extended. There

is one exception: We must apply Lemma 54 to argument denotations.

We haveSneedJeK𝜌1
(𝜇1) = Step ev1 (SneedJLam y bodyK𝜌3

(𝜇3)) andSneedJbodyK𝜌3 [y ↦→𝜌1 ! x ] (𝜇3) =
Step ev2 (SneedJvK𝜌2

(𝜇2)). We have 𝜇1 ⇝ 𝜇3 by Lemma 49.

step App1 (Step ev1 (step App2 (Step ev2 (SJvK𝛽E 𝜇2◁𝜌2
))))

= H Induction hypothesis at ev2 I
step App1 (step ev1 (step App2 (SJbodyK𝛽E 𝜇3◁𝜌3 [y ↦→𝜌1 ! x ])))
⊑ H Assumption Beta-App, refold Lam case I
step App1 (step ev1 (apply (SJLam y bodyK𝛽E 𝜇3◁𝜌3

) ((𝛽E 𝜇3 ◁ 𝜌1) ! x)))
⊑ H Assumption Step-App I
step App1 (apply (step ev1 (SJLam y bodyK𝛽E 𝜇3◁𝜌3

)) ((𝛽E 𝜇3 ◁ 𝜌1) ! x))
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⊑ H Induction hypothesis at ev1 I
step App1 (apply (SJeK𝛽E 𝜇1◁𝜌1

) ((𝛽E 𝜇3 ◁ 𝜌1) ! x))
⊑ H Lemma 54 I
step App1 (apply (SJeK𝛽E 𝜇1◁𝜌1

) ((𝛽E 𝜇1 ◁ 𝜌1) ! x))
= H Refold SJ K I
SJApp e xK𝛽E 𝜇1◁𝜌1

• Case Case e alts: The same as in Lemma 43.

We haveSneedJeK𝜌1
(𝜇1) = Step ev1 (SneedJConApp k ysK𝜌3

(𝜇3)),SneedJ𝑒𝑟 K𝜌1 [xs ↦→map (𝜌3 !) ys] (𝜇3) =
Step ev2 (SneedJvK𝜌2

(𝜇2)), where alts ! k = (xs, 𝑒𝑟 ) is the matching RHS.

step ev (SJvK𝛽E◁𝜌2
m2)

⊑ H ev = [Case1 ] ++ ev1 ++ [Case2 ] ++ ev2, IH at ev2 I
step Case1 (step ev1 (step Case2 (SJ𝑒𝑟 K𝛽E 𝜇3◁𝜌1 [xs ↦→map (𝜌3 !) ys])))
⊑ H Assumption Beta-Sel I
step Case1 (step ev1 (select (SJConApp k ysK𝛽E 𝜇3◁𝜌3

) (cont ◁ alts)))
⊑ H Assumption Step-Sel I
step Case1 (select (step ev1 (SJConApp k ysK𝛽E 𝜇3◁𝜌3

)) (cont ◁ alts))
⊑ H Induction hypothesis at ev1 I
step Case1 (select (SJeK𝛽E 𝜇1◁𝜌1

) (cont ◁ alts))
= H Refold SJCase e altsK𝛽E 𝜇1◁𝜌1

I
SJCase e altsK𝛽E 𝜇1◁𝜌1

□

Using freezeHeap, we can give a Galois connection expressing correctness of a by-name analysis

wrt. by-need semantics:

Theorem 56 (Sound By-need Interpretation). Let D̂ be a domain with instances for Trace, Domain,
HasBind and Lat, and let 𝛼T ⇌ 𝛾T = nameNeed, as well as 𝛼E 𝜇 ⇌ 𝛾E 𝜇 = freezeHeap 𝜇 from

Figure 18. If the abstraction laws in Figure 13 hold, thenSJ K instantiates at D̂ to an abstract interpreter

that is sound wrt. 𝛾E → 𝛼T, that is,

𝛼T {SneedJeK𝜌 (𝜇)} ⊑ (SD̂JeK𝛼E 𝜇◁{ }◁𝜌 )

Proof. As in Theorem 44, we simplify our proof obligation to the single-trace case:

∀𝜌. 𝛽T (SneedJeK𝜌 (𝜇)) ⊑ (SD̂JeK𝛽E 𝜇◁𝜌 ),

where 𝛽T ≜ 𝛼T ◦ { } and 𝛽E 𝜇 ≜ 𝛼E 𝜇 ◦ { } are the representation functions corresponding to 𝛼T

and 𝛼E. We proceed by Löb induction.

Whenever SneedJeK𝜌 (𝜇) = Step ev (SneedJvK𝜌2
(𝜇2)) yields a balanced trace and makes at least

one step, we can reuse the proof for Lemma 55 as follows:

𝛽T (SneedJeK𝜌 (𝜇))
= H SneedJeK𝜌 (𝜇) = Step ev (SneedJvK𝜌2

(𝜇2)), unfold 𝛽T I
step ev (𝛽T (SneedJvK𝜌2

(𝜇2)))
⊑ H Induction hypothesis (needs non-empty ev) I
step ev (SJvK𝛽E 𝜇2◁𝜌2

)
⊑ H Lemma 55 I
SJeK𝛽E 𝜇◁𝜌
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Thus, without loss of generality, we may assume that if e is not a value, then either the trace

diverges or is stuck. We proceed by cases over e.

• Case Var x: The stuck case follows by unfolding 𝛽T.

𝛽T ((𝜌 ! x) 𝜇)
= H ⊢neE 𝜌 , Unfold 𝛽T I
step (Lookup y) (𝛽T (fetch a 𝜇))

= H ⊢neH 𝜇 I
step (Lookup y) (𝛽T (memo a (SneedJe1K𝜌1

(𝜇))))
By assumption, memo a (SneedJe1K𝜌1

(𝜇)) diverges or gets stuck and the result is equivalent

to SneedJe1K𝜌1
(𝜇).

= H Diverging or stuck I
step (Lookup y) (𝛽T (SneedJe1K𝜌2

(𝜇)))
⊑ H Induction hypothesis I
step (Lookup y) (SJe1K𝛽E 𝜇◁𝜌1

)
= H Refold 𝛽E I
𝛽E 𝜇 (𝜌 ! x)

• Case Lam x body:

𝛽T (SneedJLam x bodyK𝜌 (𝜇))
= H Unfold SneedJ K ( ), 𝛽T I
fun (𝜆d̂ → ⊔{step App2 (𝛽T (SneedJbodyK𝜌 [x ↦→d ] (𝜇))) | 𝛽E 𝜇 d ⊑ d̂})
⊑ H Induction hypothesis I
fun (𝜆d̂ → ⊔{step App2 (SJbodyK𝛽E 𝜇◁𝜌 [x ↦→d ]) | 𝛽E 𝜇 d ⊑ d̂})
⊑ H Least upper bound / 𝛼E ◦ 𝛾E ⊑ id I
fun (𝜆d̂ → step App2 (SJbodyK( (𝛽E 𝜇◁𝜌 ) ) [x ↦→d̂ ]))

= H Refold SJ K I
SJLam x bodyK𝛽E 𝜇◁𝜌

• Case ConApp k xs:

𝛽T (SneedJConApp k xsK𝜌 (𝜇))
= H Unfold SneedJ K ( ), 𝛽T I
con k (map ((𝛽E 𝜇 ◁ 𝜌) !) xs)

= H Refold SJ K I
SJLam x bodyK𝛽E 𝜇◁𝜌

• Case App e x, Case e alts: The same steps as in Theorem 44.

• Case Let x e1 e2: We can make one step to see

SneedJLet x e1 e2K𝜌 (𝜇) = Step Let1 (SneedJe2K𝜌1
(𝜇1)),

where 𝜌1 ≜ 𝜌 [x ↦→ step (Lookup x) (fetch a)], a ≜ nextFree 𝜇, 𝜇1 ≜ 𝜇 [a ↦→ memo a (SneedJe1K𝜌1
)].

Then (𝛽E 𝜇1 ◁ 𝜌1) ! y = (𝛽E 𝜇 ◁ 𝜌) ! y whenever x ≠ y by Lemma 52, and (𝛽E 𝜇1 ◁ 𝜌1) ! x =

step (Lookup x) (SJe1K𝛽E 𝜇1◁𝜌1
).

𝛽T (SneedJLet x e1 e2K𝜌 (𝜇))
= H Unfold SneedJ K ( ) I
𝛽T (bind (𝜆d1 → SneedJe1K𝜌1

) (𝜆d1 → Step Let1 (SneedJe2K𝜌1
)) 𝜇)
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= H Unfold bind, a ∉ dom 𝜇, unfold 𝛽T I
step Let1 (𝛽T (SneedJe2K𝜌1

(𝜇1)))
⊑ H Induction hypothesis, unfolding 𝜌1 I
step Let1 (SJe2K(𝛽E 𝜇1◁𝜌 ) [x ↦→𝛽E 𝜇1 (𝜌1 ! x ) ])

= H Expose fixpoint, rewriting 𝛽E 𝜇1 (𝜌1 ! x) to (𝛽E 𝜇 ◁ 𝜌) [x ↦→ 𝛽E 𝜇1 (𝜌1 ! x)] using Lemma 52 I
step Let1 (SJe2K(𝛽E 𝜇◁𝜌 ) [x ↦→lfp (𝜆d̂1→step (Lookup x ) (SJe1K(𝛽E 𝜇◁𝜌 ) [x ↦→d̂

1
] ) ) ]
)

= H Partially unroll fixpoint I
step Let1 (SJe2K(𝛽E 𝜇◁𝜌 ) [x ↦→step (Lookup x ) (lfp (𝜆d̂1→SJe1K(𝛽E 𝜇◁𝜌 ) [x ↦→step (Lookup x) d̂

1
] ) ) ]
)

⊑ H Assumption Bind-ByName, with �̂� = 𝛽E 𝜇 ◁ 𝜌 I
bind (𝜆d1 → SJe1K(𝛽E 𝜇◁𝜌 ) [x ↦→step (Lookup x ) d1 ])

(𝜆d1 → step Let1 (SJe2K(𝛽E 𝜇◁𝜌 ) [x ↦→step (Lookup x ) d1 ]))
= H Refold SJLet x e1 e2K𝛽E 𝜇◁𝜌 I
SJLet x e1 e2K𝛽E 𝜇◁𝜌

□

We can apply this by-need abstraction theorem to usage analysis on open expressions, just as

before:

Lemma57 (SusageJ K abstractsSneedJ K ( ), open). Usage analysisSusageJ K is soundwrt.SneedJ K ( ),
that is,

𝛼T {SneedJeK𝜌 (𝜇)} ⊑ SusageJeK𝛼E◁{ }◁𝜌 where 𝛼T ⇌ = nameNeed;𝛼E 𝜇 ⇌ = freezeHeap 𝜇

Proof. By Theorem 56, it suffices to show the abstraction laws in Figure 13 as done in the proof

for Lemma 9. □
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