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Abstract. We classify connected 2-node excitatory-inhibitory networks under
various conditions. We assume that, as well as for connections, there are two dis-
tinct node-types, excitatory and inhibitory. In our classification we consider four
different types of excitatory-inhibitory networks: restricted, partially restricted,
unrestricted and completely unrestricted. For each type we give two different
classifications. Using results on ODE-equivalence and minimality, we classify the
ODE-classes and present a minimal representative for each ODE-class. We also
classify all the networks with valence ≤ 2. These classifications are up to renum-
bering of nodes and the interchange of ‘excitatory’ and ‘inhibitory’ on nodes and
arrows.These classifications constitute a first step towards analysing dynamics and
bifurcations of excitatory-inhibitory networks. The results have potential applica-
tions to biological network models, especially neuronal networks, gene regulatory
networks, and synthetic gene networks.

1. Introduction

In many biological networks there is a key distinction between excitatory and
inhibitory connections. These terms are common in neuroscience; in genetics the
corresponding connections are usually called activators and repressors. For simplicity
we adopt the excitatory/inhibitory terminology in this paper.

A connection from node i to node j is excitatory when activation of node i makes
node j more likely to become active. A connection is inhibitory if activation of
node i makes node j less likely to become active. The precise level of activity is
determined by the detailed dynamics of the nodes and arrows; in particular, by the
strength of the connection. Examples where this distinction is of central importance
are networks of neurons, such as the connectome of an organism (Hagmann [29],
Sporns et al. [49]) and gene regulatory networks (GRNs), Liu et al. [39].
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A mathematical framework for understanding collective dynamics on coupled net-
works, such as synchronization and synchrony-breaking or synchrony-preserving bi-
furcations, is supplied by the theory of (coupled cell) networks and corresponding
network dynamical systems or admissible ODEs, see Golubitsky et al. [50, 24, 19, 22]
and Field [15]. In this formalism, nodes and connections (‘arrows’) are assigned
‘types’, which constrain the class of admissible ODEs. For classification purposes we
distinguish excitatory nodes from inhibitory ones by assigning them different types,
but make no other assumptions. See Section 1.4. The aim of this paper is to clas-
sify 2-node networks with two different types of connection, under a variety of extra
conditions, summarized in Table 1. A companion paper [6] builds on these results
to extend the classifications to 3-node excitatory-inhibitory networks.

In neuronal networks, as a general (though not universal) rule, the type of connec-
tion is determined by its tail node. In other words, nodes (as well as connections) are
of two types, excitatory and inhibitory. Excitatory nodes output excitatory signals
and inhibitory nodes output inhibitory signals. This condition does not apply to
GRNs: a single node can have both excitatory and inhibitory outputs.

1.1. Motivation from Previous Work. Mathematical models of GRNs and re-
sults on robust synchronization, based on the existing theoretical results in the above
network formalism, have been obtained by Aguiar, Dias and Ruan [4]. A related
theory of homeostasis in network dynamics has been developed by Golubitsky et al.
[20, 21, 23, 25] and applied to GRNs by Antoneli et al. [7]. Synchrony-breaking
bifurcations for six small, basic genetic circuits are studied in Makse et al. [41].
Even when the full network is large and complex, many subnetworks have been

identified that enable specific, useful functions within that network. These subnet-
works, often called motifs, are small subnetworks with a topology that occurs with
significantly higher frequency than in randomized networks, Milo et al. [43]. Tyson
and Novák [52] have classified 2- and 3-node motifs in biochemical reaction net-
works. They analyze the dynamics of these motifs and provide evidence that they
can carry out specific functions. Singhania and Tyson [47] point out that there are
many examples of near-perfect adaptive responses in the physiology of living cells,
which corresponds to the transiently dynamics response of a system to a change in an
environmental signal and then returning near perfectly to its pre-signal state, even
in the continued presence of the signal. Using an evolutionary search procedure, [47]
addresses the underlying molecular bases of such behavior. More precisely, it exam-
ines a wide class of molecular interaction 3-node motif networks for their potential
to exhibit near-perfect adaptation.

Leifer et al. [37] and Morone et al. [44] argue that in order to be a functional
biological building block, a small subnetwork should not just occur unusually often,
but it should offer computational repertoires analogous to electronic circuits. This
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idea has been explored in synthetic biology, showing that small engineered GRNs can
perform logical computations, Dalchau et al. [11]. An example is the toggle switch,
which can be made to switch between two coexisting stable states by providing
suitable inputs [8, 18, 33, 34].

Another example occurs in Elowitz and Leibler [14], who assembled a synthetic
oscillatory network in Escherichia coli from three transcriptional repressor systems,
naming it the repressilator. They observed periodic oscillations with a period of
several hours. For simplicity, they first analyze an idealized model in which all three
repressors have the same dynamics, so the equations are symmetric under the cyclic
group Z3 of order 3. Simulations of oscillatory motion produced a discrete rotating
wave with successive 1

3 -period phase shifts. Using methods of network dynamics, this
state is typical of Z3-symmetric systems, and often occurs via symmetry-breaking
Hopf bifurcation, Golubitsky and Stewart [22]. A stochastic version in [14] produced
oscillations of different and variable amplitudes, but with approximately the same
1
3 -period phase shifts.
Several other standard synthetic genetic oscillators, whose structure is that of a

small network, are surveyed in Purcell et al. [46]. They include:
(i) The Goodwin oscillator, Goodwin [26], which comprises a single gene that

represses itself.
(ii) Amplified negative feedback oscillators have been studied by several authors,

using different mathematical models. Guantes and Poyatos [28] explain oscillation
as a saddle-node bifurcation on an invariant circle (SNIC). Conrad et al. [10] obtain
oscillations from a subcritical Hopf bifurcation. Atkinson et al. [8] also use Hopf
bifurcation.

(iii) The Fussenegger oscillator goes back to Tigges et al. [51]. It comprises two
genes, with both sense and antisense transcription occurring from one of them. This
creates a delay in the feedback loop, enhancing the ability to oscillate

(iv) The Smolen oscillator, Smolen et al. [48], comprises two genes. One promotes
its own transcription and that of the other gene, while the second represses its own
transcription and that of the first gene. Oscillations were first demonstrated mathe-
matically in Hasty et al. [30] using a simple model, and shown to arise from either a
supercritical or subcritical Hopf bifurcation.

(v) In a variable link oscillator one gene regulates itself, and also regulates a second
gene through a variable promoter. The second gene causes repression via a protease
acting on the product of the first gene. An ODE model is studied in Hasty et al. [31].
(vi) The metabolator, Fung et al. [16], is the first biological oscillator reported in

the literature using metabolites as a core component.

1.2. Motifs in Escherichia coli GRN. As further motivation, Figure 1 shows eight
3-node motifs from the gene regulatory network of Escherichia coli, an organism
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whose genetic regulatory network, compiled by RegulonDB, has been characterised
in considerable detail [17]. The main point of the figure is to illustrate the presence of
nontrivial 3-node motifs in real biological networks, but they also illustrate features
of the mathematical classification developed in this paper. We discuss each motif
briefly.

trpLEDCBA aroH

trpR

cpxR baeR

spy

(a) (b)

crp IsrR

tam

(c)

uxuR = lgoR

exuR crp

(e)
rcsB = adiY

hns gadX

(f)
gaR

galS crp crp araC

araBAD

(g) (h)

uxuR exuR

crp

(d)

Figure 1. Eight 3-node motifs realised in E. coli.

(a) Autoregulation loop involved in biosynthesis of tryptophan, regulated by trpR
[27], which represses itself, the gene aroH, and the trpLEDCBA operon, which codes
for the enzymes of the tryptophan biosynthesis pathway. From [42].

(b) Example of a SAT-Feed-Forward-Fiber network. From [37] Fig.1 E.
(c) Example of an UNSAT-Feed-Forward-Fiber network. From [37] Fig.2 F.
(d) Example of a 2-FF network showing quotient by synchrony of genes uxuR and

IgoR in a 4-node network in E.coli. From [44] Fig. 3B.
(e) Example of a 3-FF network showing quotient by synchrony of genes rcsB and

adiY in a 4-node network in E.coli. From [44] Fig. 3B.
(f) Example of a a network where a node feeds forward into one node of a toggle-

switch. From [40].
(g) In the sugar utilisation transcriptional system [24], the arabinose metabolism

[25] involves the regulation of the araBAD operon (composed of genes araB, araA,
and araD) by two transcription factors AraC and CRP expressed by genes araC and
crp, respectively. From [45].

(h) Example of a network where a node feeds forward into both nodes of a toggle-
switch. From [45].

Networks (a) and (b) have arrows (and nodes) of a single type. Networks (c),(d),(e),
and (f) are what we call REI networks in Definition 2.3 below; that is, a given node
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outputs only one type of arrow. Networks (g) and (h) are UEI networks: some node
outputs arrows of both types.

1.3. Classification. Given this degree of interest in small GRNs and their dynamics
and bifucations, it is of interest to formalize the structure of excitatory-inhibitory
(EI) networks and to investigate small examples systematically. We aim to classify
small EI networks under certain conditions. In this paper we classify 2-node EI
networks. These results are extended to the 3-node case in [6]. These classifications
can be viewed as a preparatory step towards a systematic analysis of dynamics and
bifurcations in such networks.

We work in the network formalism of [50, 24, 22], in which nodes (previously called
cells) and arrows (connections, directed edges) are partitioned into one or more types.
The dynamics of the network respects both its topology and the distinction between
different types of node or arrow. Such systems of ordinary differential equations
(ODEs) are said to be admissible for the network.
The classification of regular 3-node networks, that is, with only one node and arrow

type and where every node receives one or two arrows, can be found in [38], along
with the classification of all codimension one steady-state and Hopf bifurcations from
a synchronous equilibria in these networks.

Our classifications are modelled on that analysis. However, [38] also considers the
dynamics and bifurcations, topics for future work on EI networks. Similar classi-
fications have been carried out for regular 4-node networks by Kamei [32], 3-node
fully inhomogeneous networks [22, Section 4.4] and networks with asymmetric inputs
by Aguiar, Dias and Soares [5]. Nevertheless, the special structure of excitatory-
inhibitory networks has not previously been addressed in a systematic manner.

1.4. Remarks on Excitation and Inhibition. The general formalism of [50, 24,
22] does not assign a meaning to the terms ‘excitatory’ or ‘inhibitory’ when applied
to a specific arrow in a network diagram. It does, however, distinguish different types
of connections (arrows), which is sufficient for classification purposes. One reason
for this approach is that the formalism is designed to apply to all ODE models with
network structure, in many of which notions of excitation and inhibition are not
relevant. Another is that couplings are assumed to be determined by general nonlin-
ear functions, whereas excitation/inhibition is most natural for linear couplings, see
below.

However, the correspondence with biological notions of excitation and inhibition
appears in the general formalism when we introduce an important feature: the dy-
namics of an admissible ODE. It is then possible to define excitation/inhibition
relative to a specific solution of the ODE, such as an equilibrium or periodic orbit.
This definition usually agrees with the terms as used in standard biological models.
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In general, an admissible ODE assigns a variable xi to each node i, representing
its dynamic state, and takes the form

ẋi = fi(xi;xi1 , . . . , xim),

where i indexes the nodes and i1, . . . , im run through the tail nodes of all input arrows
to node i. Moreover, if nodes i, j have the same node-type and the same number of
input arrows of each arrow-type, we require fi = fj.

Definition 1.1. Assume for simplicity that x∗ is an equilibrium. Then the kth input
arrow to node i is:

(1.1)
excitatory at x∗ if ∂kfi|x∗ > 0,
inhibitory at x∗ if ∂kfi|x∗ < 0.

Here ∂kfi is the partial derivative of fi with respect to the kth variable, excluding
the first variable xi which represents the state of the node concerned. (We do not
write these in the more familiar form ∂fi

∂xik
because the same variable xik may appear

for different values of k, in which case that notation is ambiguous.) 3

In many common models, couplings are linear, so that

(1.2) ẋi = fi(xi) + α1xi1 + · · ·+ αmxim .

with only fi nonlinear. Models of this kind go back at least to Kuramoto [35, 36].
Here the coefficients αk are often called connection strengths or weights. Now arrow
k is excitatory (for any solution) if αk > 0, and inhibitory if αk < 0. Therefore (1.1)
is in agreement with standard terminology for such models.

These considerations do not affect the classifications in this paper, or the lists
of admissible ODEs. However, they can be vital when considering dynamics and
bifurcations.

1.5. Summary of Paper and Main Results. In this paper we define four dif-
ferent types of EI networks: REI, PEI, UEI, and CEI, see Definition 2.3. These
definitions form the basis of this paper and the companion [6]. In both papers we
classify networks of these types under various assumptions. We also derive subsidiary
classifications under the stronger relation of ODE-equivalence, where two networks
are ODE-equivalent if they have the same space of admissible ODEs. To organise
and summarise these results, Table 1 lists the main classifications obtained in this
paper, with columns for the bounds on the valence, type of network, number of net-
works in the classification, plus references to associated Figures, Theorems, and lists
of admissible ODEs. Even in the 2-node case, we find a rich variety of networks.
The 3-node case, which is more complicated, makes use of the 2-node results.

Section 2 discusses classes of excitatory-inhibitory (EI) networks from the point
of view of the general network formalism of [50, 24, 22]. In this formalism the
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network number of figure theorem admissible

type networks ODEs

REI ∞ Figure 4 (left) Proposition 3.1 (3.4)

REI (ODE) 2 Figure 5 Proposition 3.3 Table 2

REI val ≤ 2 15 Figure 6 Proposition 3.4 Table 3

2 ODE-classes Figure 5 Table 2

PEI ∞ Figure 7 Proposition 3.1 (3.4)

PEI (ODE) ∞ Figure 8 Proposition 3.7 Table 4

PEI val ≤ 2 15 Figure 6 nodes same type Proposition 3.8 Table 3
9 ODE-classes Figure 9 Table 5

UEI (ODE) ∞ Figure 11 Proposition 3.10 Table 6

UEI (ODE) val ≤ 2 4 Figure 12 Proposition 3.11 Table 7

UEI val ≤ 2 53 Figures 6 and 13 Proposition 3.12 Tables 3 and 8

4 ODE-classes Figure 12 Table 7

CEI ∞ Figure 14 Proposition 3.15 (3.9)

CEI (ODE) ∞ — Proposition 3.16 —

CEI val ≤ 2 53 Figures 6 and 13 nodes same type Proposition 3.17 Tables 3 and 8

21 ODE-classes Figures 9 and 15 Tables 5 and 9

Table 1. List of classifications of connected 2-node EI networks and
their locations. (ODE): ODE-equivalence classes. val: valence.

two arrow-types are different, but the ± nature of excitation/inhibition is defined
relative to a given dynamical state by (1.1). We distinguish excitatory nodes from
inhibitory ones, giving two distinct node-types. It is also possible to identify these
node-types subject to conditions on their output arrows. Doing so creates extra
synchrony patterns as in [37, 41, 44], but we do not discuss these patterns here.
Subsection 2.1 gives formal definitions of four types of excitatory-inhibitory networks,
‘restricted’ (REI), ‘partially restricted’ (PEI), ‘unrestricted’ (UEI), and ‘completely
unrestricted’ (CEI). Subsection 2.2 defines the class of admissible ODEs associated
with an EI network, using the Smolen oscillator as a simple example. Adjacency
matrices are also discussed. Subsection 2.3 defines balanced colourings (also called
fibration symmetries) and the associated quotient networks.

Section 3 classifies 2-node EI networks under various conditions. Corresponding
admissible ODEs are listed. Subsections 3.1-3.3 are dedicated to the classification
of connected 2-node REI networks. In Subsection 3.2, the classification is done
up to ODE-equivalence and in Subsection 3.3 for REI networks of valence ≤ 2.
Subsections 3.4-3.6 consider the classification of connected 2-node PEI networks. In
Subsection 3.5, the classification is done up to ODE-equivalence and in Subsection
3.6 is for 2-node PEI networks of valence ≤ 2. Subsections 3.7-3.9 address the
classification of connected 2-node UEI networks, where Subsection 3.8 classifies up to
ODE-equivalence and Subsection 3.9 lists the 2-node UEI networks of valence ≤ 2.
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Finally, Subsections 3.10-3.12 classify connected 2-node CEI networks, where the
classification in Subsection 3.11 is done up to ODE-equivalence and the classification
in Subsection 3.12 is of the networks of valence ≤ 2.

2. Classes of Excitatory-Inhibitory Networks

We use the network formalism of [50, 24], modified as in [22] to remove the con-
dition that arrows of the same type have heads of the same type and tails of the
same type. Instead, we separate the roles of node equivalence (formerly cell equiv-
alence) and state equivalence (a consequence of the constraints on admissible maps
and ODEs). Nodes are state-equivalent if they have the same state space in a canon-
ical manner. Intuitively, they are node equivalent if they have the same ‘internal
dynamic’. This change broadens the range of networks without affecting the main
theorems or their proofs. It is also more natural for the networks considered in this
paper.

Remarks 2.1. (i) Technically, the node-type can be considered as an arrow-type for
a distinguished ‘internal arrow’. It constrains the admissible ODEs only when two
nodes c, d of the same node-type are input equivalent. Otherwise, equal node types
have no dynamic implications.

(ii) This convention differs considerably from that of many models, where each
node or arrow contributes a specific term to the model ODE. The reasoning behind
it is explained in [22, Sections 9.5, 9.8]. A key point is that nodes can synchronize
robustly only when they have the same node type and have isomorphic input sets. If
the input sets of nodes c, d are not isomorphic, assigning them the same node-type is
redundant and does not constrain the admissible ODEs. Node-types can be redefined
to remove these redundancies.

(iii) In many areas of science, the zero state xi = 0 has a special significance.
For example, in a biochemical or gene regulatory network, the concentration of a
molecule is always ≥ 0, and a concentration of 0 implies its absence. In a neuronal
network, a voltage of 0 also has a clear physical meaning. In many applications it is
assumed that the model ODE has the form ẋ = F (x) where F (0) = 0, implying the
existence of a fully synchronized state in which x = (0, 0, . . . , 0). This state exists
even when nodes are not input isomorphic.

(iv) However, in other areas of application there is nothing special about the value
0. The general formalism therefore assigns no special significance to the zero state,
and a fully synchronized state may not exist unless the network is homogeneous.

(v) Similar remarks apply to weighted networks, and to network models of the
form (1.2).

As remarked in Section 1.4, on a formal level the distinction between excitatory
arrows and inhibitory ones reduces to having two different arrow-types AE, AI . We
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use only two arrow-types, which corresponds to a standard simplified modelling as-
sumption: all excitatory arrows are identical and all inhibitory arrows are identical.
Without this assumption the lists of networks become much larger.

Node-types pose an additional problem. In some areas of biology, notably neuro-
science, a given node cannot output both an excitatory arrow and an inhibitory one.
In effect, there are two distinct node-types NE, N I . This assumption leads to the
class of restricted EI-networks (REI).

However, this restriction is not universal; for example it often fails in GRNs.
Keeping two node-types but removing the restriction on outputs gives the class of
unrestricted EI-networks (UEI).

Remark 2.2. Other classes of EI networks are also of interest, in particular in con-
nection with a feature of network dynamics that is important in both theory and
applications: synchrony. Two nodes are synchronous if they have identical time se-
ries for some solution of the model equations. Here we mention synchrony only in
passing, but some discussion is in order because of its importance. A synchronous
state is robust if it is determined by a subspace that is invariant under all admissible
maps. Every robustly synchronous state corresponds to a balanced colouring of the
nodes, see Section 2.3. This determines a synchrony pattern whose synchrony sub-
space is flow-invariant for all admissible ODEs. In consequence, nodes with different
node-types cannot synchronise robustly.

In this paper we assume that there are two distinct node-types: NE (excitatory)
and N I (inhibitory). Since robustly synchronous nodes must be input-isomorphic, an
NE node cannot synchronise robustly with an N I node. This constraint reduces the
range of possible synchrony patterns. From this viewpoint, REI and UEI networks
are never homogeneous (all nodes cannot synchronize simultaneously and robustly).
For example, the Smolen network of Figure 2 cannot have a nontrivial synchrony
pattern. (In the trivial pattern, each node has a different colour. The trivial colouring
is obviously balanced.) Another term for the same idea, discovered independently in
a different context, is fibration symmetry; see Boldi and Vigna [9] and DeVille and
Lerman [12].

In contrast, the networks studied in [37, 41, 44] can have more synchrony patterns
and, in particular, a total synchrony pattern where all nodes synchronize simulta-
neously and robustly. This happens because, in effect, the two node-types NE, N I

are considered to be the same. This assumption is reasonable in neuronal networks,
where activation of a neuron either excites or inhibits another neuron. This suggests
that the difference lies in the outputs, or in how a node receiving the output responds
to that signal, but not in the internal dynamics of the neuron. With this assumption,
the Smolen network can synchronize robustly.
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In the REI case, consider the modification where the two node-types are identified
but the restriction that no node outputs arrows of both types AE, AI is retained. We
call these partially restricted EI-networks (PEI). The same modification can be done
in the UEI case, and amounts to giving all nodes the same type without arrow-type
restrictions. We call these completely unrestricted EI-networks (CEI). 3

For PEI and CEI networks all nodes have the same node-type, which implies a
change to the admissible ODEs by imposing further constraints on the component
functions, and so extra synchrony patterns can arise.

2.1. Formal Definitions. We define four classes of excitatory-inhibitory networks.

Definition 2.3. Consider the following four conditions on a network G:
(a) There are two distinct node-types, NE and N I .
(b) There are two distinct arrow-types, AE and AI .
(c) If e ∈ AE then T (e) ∈ NE.
(d) If e ∈ AI then T (e) ∈ N I ,

where T (e) indicates the tail node of arrow e.
Then:
G is a restricted excitatory-inhibitory network (REI network) if it satisfies condi-

tions (a), (b), (c) and (d).
G is an unrestricted excitatory-inhibitory network (UEI network) if it satisfies con-

ditions (a) and (b).
G is a partially restricted excitatory-inhibitory network (PEI network) if the node-

types NE and N I are identified (so (a) fails to apply) and it satisfies condition (b).
Conditions (c) and (d) fail to apply, but each node outputs only one type of arrow.

G is a completely unrestricted excitatory-inhibitory network (CEI network) if the
node-types NE and N I are identified (so (a) fails to apply) and it satisfies condition
(b). Conditions (c) and (d) fail to apply and nodes can output the two types of
arrow. 3

Remarks 2.4. (i) REI networks are, in particular, UEI networks and PEI networks
are, in particular, CEI networks.

(ii) A PEI network has only one node-type and each node outputs arrows of only
one type, but there are still two distinct arrow-types.

(ii) CEI networks employ the convention of [37, 44], in which there is one node-type
but two distinct arrow-types. Each node can output arrows of either arrow-type. This
modification seems inappropriate for neuronal networks, where excitatory neurons
have different internal dynamics from inhibitory ones and networks are REI, but it
can be appropriate for GRNs.
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Conventions. The following conventions are used throughout the paper without
further mention, except as an occasional reminder for clarity.

(a) We represent type NE nodes by white circles and type N I nodes by grey
circles. Type AE arrows are solid and type AI arrows are dashed. (Various other
conventions for excitatory/inhibitory arrows are found in the literature; this one is
chosen for convenience.)

(b) All classifications are stated up to renumbering of nodes and duality; that is,
interchange of ‘excitatory’ and ‘inhibitory’ on nodes and arrows: NE ↔ N I and
AE ↔ AI . 3

Definition 2.5. (a) Given a node i, denote the set of excitatory arrows directed to
i by IE(i) and the set of inhibitory arrows directed to i by II(i). We call IE(i) and
II(i) the excitatory and inhibitory input sets of i, respectively. The input set of i is
then I(i) = IE(i)∪ II(i). The valence (degree, in-degree) of i is the cardinality #I(i)
of I(i).
(b) Two nodes i and j are input equivalent if they have the same node-type and

there is an arrow-type preserving bijection between the corresponding input sets I(i)
and I(j); that is, when #IE(i) = #IE(j) and #II(i) = #II(j). We write i ∼I j.
The relation ∼I is an equivalence relation, which partitions the set of nodes into
disjoint input classes.
(c) A network in which all nodes are input equivalent is homogeneous. Otherwise,

it is inhomogeneous. 3

Remarks 2.6. (i) The definition of synchrony in [22, 24, 50] implies that synchronous
nodes must be input equivalent. Thus for EI networks, nodes of type NE cannot
synchronize with nodes of type N I as, by Definition 2.5 (b), nodes of different types
are not input equivalent. 3

(ii) Every REI and UEI network has two distinct node-types, NE and N I . Thus
REI and UEI networks are inhomogeneous.

(iii) Since PEI and CEI networks have nodes of the same type, there can be
homogeneous PEI and CEI networks.

A network is transitive if there is a closed arrow-path containing every node. A
non-transitive network is often said to be feedforward. This term is also used for a
stronger property: the nodes can be given a partial ordering such that the tail node
of any arrow is smaller in the ordering than its head node.

2.2. Admissible ODEs. The dynamic evolution of node variables xi is governed
by a system of ordinary differential equations, said to be admissible. The form of
admissible ODEs for EI networks can be deduced from the general definition in
[22, 24, 50], but for convenience we describe it explicitly. We assume in this paper
that all nodes have the same state space, say P = Rm for some m > 0. By definition,
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input equivalent nodes must have the same node-type. Moreover, for each node i
in a given input class, the dynamics is governed by the same smooth function, say
f : P k+1 → P , evaluated at the node i and at the node tails of the ne excitatory and
the ni inhibitory arrows targeting that node. For the special case of EI networks, we
have:

Definition 2.7. A system of ODEs is admissible for an EI network if it has the form

ẋi = fi

(
xs
i ;x

+
i1
, . . . , x+

ine
;x−

ine+1
, . . . , x−

ine+ni

)
where xs

i ∈ {xi, x
+
i , x

−
i } and the overlines indicate that the function fi is symmetric

in the overlined variables. The node variables are indexed by i. The multiset of all
tail nodes of input arrows is the union of two subsets: the multiset {i1, . . . , ine} of all
tail nodes of the excitatory input set of node i, and the multiset {ine+1, . . . , ine+ni

} of
all tail nodes of the inhibitory input set of node i. The functional notation converts
these multisets into tuples of the corresponding variables. We use the superscripts
+ and −, as a notation convention, to make the distinction between the input vari-
ables corresponding to tail nodes in the excitatory and in the inhibitory input sets,
respectively. Analogously, when there are two distinct node-types NE and N I , we
use the superscripts + and − to make the distinction between the state variable of
excitatory and inhibitory nodes. Otherwise, no subscript is used.

Moreover, if nodes i, j are in the same input class then fi = fj. 3

Remarks 2.8. (i) Multiple arrows are permitted. That is, distinct arrows in IE(i) can
have the same tail node, which is why we use multisets. The same goes for II(i).
(ii) Self-loops are also permitted. That is, a node can input an arrow to itself. In
biology this is called autoregulation. 3

If nodes i and j are input equivalent then #IE(i) = #IE(j) and #II(i) = #II(j).
Therefore, if there is an arrow in I(i) of a certain arrow-type, then there is also an
arrow in I(j) of the same type. The evolution in time of node j is defined similarly
to that of node i, using the same function f evaluated at xj and at the corresponding
node tails. The evolution of nodes in different input classes is governed by different
functions fi, one for each input class.

Example 2.9. The Smolen oscillator in Figure 2 is an REI network. Node 1 is type
NE and node 2 is type N I . There are two type AE arrows; one from 1 to itself and
the other from 1 to 2. There are two type AI arrows; one from 2 to itself and the
other from 2 to 1.

Each node has excitatory and inhibitory input sets with cardinality 1. Both nodes
are autoregulatory.
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1 2

Figure 2. Smolen oscillator.

The node-types are different so this network is inhomogeneous. It is also not Z2

symmetric. Admissible ODEs are:

(2.3)
ẋ1 = f(x+

1 ;x
+
1 ;x

−
2 )

ẋ2 = g(x−
2 ;x

+
1 ;x

−
2 )

.

Here, x+
1 , x

−
2 ∈ P where P is the node state space and f, g : P 3 → P are smooth

functions. This differs from the total phase space, which is P 2; such a difference oc-
curs when there are multiple arrows or self-loops. With suitable dynamics modelling
a GRN this network exhibits periodic oscillations, Purcell et al. [46]. 3

Remark 2.10. Considering the network in Example 2.9 with the alternative conven-
tion on node-types in PEI networks, all nodes are input equivalent, so the functions
f and g are equal. Now there is a balanced colouring (fibration symmetry) in which
x1 = x2 and the diagonal subspace ∆ = {x : x1 = x2} is flow-invariant for any
admissible ODE. Thus synchronous states can occur robustly. However, the Smolen
oscillator network remains asymmetric because there are two arrow types. 3

We can represent an n-node network by its adjacency matrix, which is the n × n
matrix A = (aij) such that aij is the number of arrows from node j to node i.
Ordinarily, this representation could lose information, because it fails to distinguish
the different arrow-types. However, conditions (c) and (d) of Definition 2.3 allow
us to deduce the arrow-types for REI networks, provided we know the node-types
of nodes i and j. The networks that are PEI, CEI, and UEI require two adjacency
matrices, one for each arrow-type; see the next example.

Example 2.11. The adjacency matrix of the Smolen network in Figure 2 is[
1 1
1 1

]
.

For some purposes, such as ODE-equivalence, we must distinguish node- and arrow-
types and equip each with its own adjacency matrix. Here there are four:

Node-type NE:

[
1 0
0 0

]
; Node-type N I :

[
0 0
0 1

]
;

Arrow-type AE:

[
1 0
1 0

]
; Arrow-type AI :

[
0 1
0 1

]
.
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Alternatively, if we assume the Smolen network to be a PEI network (just one node-
type), then there are three adjacency matrices:

Node-type NE = N I :

[
1 0
0 1

]
;

Arrow-type AE:

[
1 0
1 0

]
; Arrow-type AI :

[
0 1
0 1

]
.

3

Remark 2.12. (i) Different networks sometimes have the same set of admissible ODEs,
for any choice of node state spaces, when their nodes are identified by a suitable
bijection that preserves node state spaces. Such networks are ODE-equivalent, [13,
22, 24].

(ii) By Dias and Stewart [13, Theorem 7.1, Corollary 7.9], two networks with the
same number of nodes are ODE-equivalent if and only if, for a suitable identification
of nodes, they have the same vector spaces of linear admissible maps when node
state spaces are R. Equivalently, the adjacency matrices of all node- and arrow-
types span the same space. Trivially, this remains true when restricting to the set of
EI networks.

(iii) Following Aguiar and Dias [2, 3], given an ODE-class of EI networks, we
can distinguish a subclass containing the EI networks in the ODE-class that have a
minimal number of arrows. This is a minimal subclass. As an example, it is proved
in [2] that the ODE-class of every homogeneous regular n-node network with only
one arrow-type contains a unique minimal network. In general, the minimal class of
an ODE-class need not be a singleton.

(iv) For REI networks, we saw that the node-types determine the arrow-types and
the adjacency matrices naturally decompose into four blocks. The linear condition
in (ii) preserves this decomposition, so two REI networks are ODE-equivalent if
and only if these components are separately ODE-equivalent. Moreover, note that
an ODE-class for an REI network always contains UEI networks that are not REI
networks. Nevertheless, the methods of [2, 3] can easily be adapted to prove that
there is an ODE-equivalence that preserves the REI structure for minimal subclasses.
The corresponding issue for UEI networks is not true. For example, consider the 2-
node UEI-network with arrow-type adjacency matrices

Arrow-type AE: A3 =

[
0 0
1 0

]
; Arrow-type AI : A4 =

[
0 1
1 0

]
.
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1 2

Figure 3. The minimal 2-node network ODE-equivalent to the
Smolen oscillator in Figure 2.

Now observe that A4 − A3 =

[
0 1
0 0

]
. Thus, the UEI-network is ODE-equivalent

to the minimal REI-network with arrow-types adjacency matrices

[
0 0
1 0

]
and[

0 1
0 0

]
. 3

Example 2.13. In Sections 3.3 and 3.9, we determine the ODE-classes for the 2-
node REI and UEI networks, respectively, with valence up to 2. As the ODE-classes
for REI networks also contain UEI networks that are not REI networks, we have, as
mentioned in Remark 3.14, that two of the ODE-classes for UEI networks coincide
with the two ODE-classes for REI networks. The other two ODE-classes for UEI
networks contain only UEI networks that are not REI networks. However, if we
consider only the minimal ODE-classes, then for the REI case the classes contain
only REI networks. For the UEI case, two of the classes contain only REI networks
and the other two only UEI networks that are not REI networks. 3

Example 2.14. The REI network in Figure 3 is ODE-equivalent to the REI Smolen
network in Figure 2 and it is minimal. Moreover, the admissible ODE (2.3) deter-
mines an arbitrary dynamical system in (x1, x2). 3

2.3. Balanced Colourings and Quotient Networks. We specialise [50, Defini-
tion 6.4] to EI networks:

Definition 2.15. Consider an n-node EI network. Let ▷◁ be an equivalence relation
on the set NE∪N I of nodes, refining input equivalence. If i ▷◁ j then either i, j ∈ NE

or i, j ∈ N I . The relation ▷◁ is balanced if, for every two nodes i, j such that i ▷◁ j,
there are arrow-type preserving bijections βE : IE(i) → IE(j) and βI : II(i) → II(j)
such that if e ∈ IE(i) then T (e) ▷◁ T

(
βE(e)

)
and if e ∈ II(i) then T (e) ▷◁ T

(
βI(e)

)
.

3

Definition 2.16. Let G be an EI network in which all node state spaces are P , and
let ▷◁ be a balanced equivalence relation on the set of nodes. Then the polydiagonal
(subspace) ∆▷◁ ⊆ P n consists of all x = (x1, . . . , xn) such that i ▷◁ j implies that
xi = xj. The space ∆▷◁ is also called a synchrony subspace. 3
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By [22, Proposition 10.20 ] or [50, Theorem 6.5], a colouring ▷◁ is balanced if and
only if ∆▷◁ is invariant under the flow of every linear network admissible ODE. This
condition holds for any choice of node state spaces. Equivalently, ▷◁ is balanced if
and only if ∆▷◁ is invariant under all adjacency matrices.

More generally, a vector subspace is a balanced polydiagonal, a synchrony sub-
space, if and only if it is invariant under any admissible ODE (including nonlinear
ones): see [22, Theorem 10.21 ]. Synchrony subspaces therefore play a crucial role in
the dynamics of admissible ODEs. See for example [1].

Following [24, Section 5], given an EI network G and a balanced equivalence re-
lation ▷◁ with k classes, we can define the quotient network of G by ▷◁. This is the
k-node network whose nodes correspond to the ▷◁-equivalence classes, and whose ar-
rows are the projections of those of G, preserving arrow-type. It is variously denoted
by G/▷◁, G▷◁, or G▷◁.
Trivially, we have:

Proposition 2.17. For any EI network G having a balanced equivalence relation ▷◁
with k classes, the quotient of G by ▷◁ is a k-node EI network. Moreover, the quotient
of G/▷◁ is an REI (resp. UEI, CEI) network if and only if the network G is REI
(resp. UEI, CEI). 3

Proof. Let G be an EI network having a balanced equivalence relation ▷◁ with k
classes. By definition, ▷◁ refines the input equivalence relation which refines that of
node equivalence. Thus, the quotient G/▷◁ is a REI (resp. UEI) network if and only
if the network G is REI (resp. UEI). Trivially, a quotient of a CEI network is a CEI
network. □

Remark 2.18. In the case of a PEI network, the quotient network is always a CEI
network, but it might not be a PEI network. In a PEI network, if two nodes of the
same colour output arrows of different type (one outputs excitatory arrows and the
other inhibitory arrows) then in the quotient there is a node that outputs arrows of
the two types, that is, the quotient is a CEI network. As an example, if G is the
Smolen oscillator in Figure 2 and we assume that the two nodes have the same type,
that is, G is a PEI network, then the equivalence relation ▷◁= {{1, 2}} is balanced
and G/▷◁ is a CEI network. In fact, G/▷◁ is the one-node network with two arrows
(of different type) to itself and the synchrony space ∆▷◁ = {x : x1 = x2} corresponds
to the the diagonal subspace. Recall Example 2.9 and Remark 2.10. 3

Remark 2.19. By [22, Theorem 10.28] or [24, Theorem 5.2], every admissible ODE
for G restricted to ∆▷◁ can be identified with an admissible ODE for the quotient
G/▷◁. Moreover, every admissible ODE for the quotient G/▷◁ can be identified with
the restriction to ∆▷◁ of an admissible ODE for G. 3



EXCITATORY-INHIBITORY NETWORKS 17

1 2

β
α

γ
δ 1 2

β

γ

Figure 4. Two 2-node ODE-equivalent REI networks. Node 1 is
excitatory, node 2 is inhibitory; the nonnegative integer arrow multi-
plicities are α, β, γ, δ. The network is connected when one of β or γ is
nonzero.

3. Classification of Connected 2-node Excitatory-Inhibitory
Networks

With these preliminaries out of the way, we now classify EI networks with two
nodes. It is enough to classify connected networks, since components of a discon-
nected network have fewer nodes and the 1-node case is trivial.

We repeat Convention (b) in Section 2.1: all classifications are stated up to duality
(interchange of the E and I types) and renumbering of nodes. We also consider
ODE-equivalence. Based on this classification, we then list all the connected 2-node
EI networks with valence at most 2 for any node. This condition eliminates most
multiple arrows, which are uncommon (though possible) in real biological networks.

3.1. Connected 2-node REI Networks. We consider first 2-node REI networks.
By duality, we assume that node 1 is excitatory and node 2 is inhibitory.

Proposition 3.1. A 2-node connected REI network is the network of Figure 4 (left)
for some choice of nonnegative integer arrow multiplicities α, β, γ, δ, where one of β
or γ is nonzero. This network has admissible ODEs

(3.4)

ẋ1 = f(x+
1 ;x

+
1 , . . . , x

+
1︸ ︷︷ ︸

α

;x−
2 , . . . , x

−
2︸ ︷︷ ︸

γ

),

ẋ2 = g(x−
2 ;x

+
1 , . . . , x

+
1︸ ︷︷ ︸

β

;x−
2 , . . . , x

−
2︸ ︷︷ ︸

δ

).

Here x+
1 , x

−
2 ∈ Rk, so the total state space is R2k, and f and g are smooth functions

invariant under permutation of the variables under each overline.
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To simplify notation, temporarily omit the ± superscripts, and define

(3.5)

p = (x1, x1, . . . , x1︸ ︷︷ ︸
α

, x2, . . . , x2︸ ︷︷ ︸
γ

); q = (x2, x1, . . . , x1︸ ︷︷ ︸
β

, x2, . . . , x2︸ ︷︷ ︸
δ

);

a1 =
∂f
∂x1

|p ; b1 =
∂f
∂x2

|p ; c1 =
∂f

∂xα+2
|p ;

d1 =
∂g
∂x1

|q ; e1 =
∂g
∂x2

|q ; f1 =
∂g

∂xβ+2
|q .

Then the linearization of (3.4) at (x1, x2) is the 2k × 2k matrix

(3.6)

[
a1 + αb1 γc1

βe1 d1 + δf1

]
.

Proof. Since node 1 is excitatory the tail of any type AE arrow is node 1, and since
node 2 is inhibitory the tail of any type AI arrow is node 2. Thus the adjacency
matrices are

(3.7)

Node-type NE: A1 =

[
1 0
0 0

]
; Node-type N I : A2 =

[
0 0
0 1

]
;

Arrow-type AE: A3 =

[
α 0
β 0

]
; Arrow-type AI : A4 =

[
0 γ
0 δ

]
;

where at least β or γ is nonzero to obtain a connected network. These conditions
correspond to the network in Figure 4 (left).

Concerning the linearization of equations (3.4) at (x1, x2) and the notation in (3.5),
symmetry of f and g implies that

b1 =
∂f
∂x2

|p = ∂f
∂x3

|p = · · · = ∂f
∂xα+1

|p , c1 =
∂f

∂xα+2
|p = ∂f

∂xα+3
|p = · · · = ∂f

∂xα+γ+1
|p ,

e1 =
∂g
∂x2

|q = ∂g
∂x3

|q = · · · = ∂g
∂xβ+1

|q , f1 =
∂g

∂xβ+2
|q = ∂g

∂xβ+3
|q = · · · = ∂g

∂xβ+δ+1
|q .

From this we obtain (3.6). □

Remark 3.2. The 2-node REI network in Figure 4 (left) for α = β = γ = δ = 1 is
the Smolen network in Figure 2. 3

3.2. Connected 2-node REI Networks: ODE-classes. We now deduce the clas-
sification of connected 2-node REI networks up to ODE-equivalence.

Proposition 3.3. There are exactly two ODE-classes of connected 2-node REI net-
works, with representatives NH1 and NH2 pictured in Figure 5. The associated ad-
missible ODEs are stated in Table 2.
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NH1
1 2

NH2
1 2

Figure 5. The two ODE-classes of connected 2-node REI networks.
Table 2 states the corresponding admissible ODEs. The network NH2
is the minimal network ODE-equivalent to the Smolen network of Fig-
ure 2.

NH1
ẋ1 = f(x+

1 )

ẋ2 = g(x−
2 ;x+

1 )
NH2

ẋ1 = f(x+
1 ;x−

2 )

ẋ2 = g(x−
2 ;x+

1 )

Table 2. Admissible ODEs for the networks in Figure 5.

Proof. We recall that our classifications are stated up to duality and numbering of
the nodes. Any connected 2-node REI network is of the form presented in Figure 4
(left), where α, β, γ, δ are nonnegative integers representing arrow multiplicities. The
adjacency matrices are stated in (3.7), where at least β or γ is nonzero to guarantee
connectedness. Trivially,

⟨A1, A2, A3, A4⟩ =
〈
A1, A2,

[
0 0
β 0

]
,

[
0 γ
0 0

]〉
,

where angle brackets denote the real subspace spanned by their contents. Therefore
the network in Figure 4 (left) is ODE-equivalent to the network in Figure 4 (right).
If γ = 0, so β ̸= 0, then

⟨A1, A2, A3, A4⟩ =
〈
⟨A1, A2,

[
0 0
1 0

]〉
giving network NH1 in Figure 5. (The case β = 0 and γ ̸= 0 is dual.) If both β and
γ are nonzero then

⟨A1, A2, A3, A4⟩ =
〈
A1, A2,

[
0 0
1 0

]
,

[
0 1
0 0

]〉
giving network NH2 in Figure 5. □

3.3. Connected 2-node REI Networks with valence up to 2. Recall that the
valence of a node is the number of input arrows to that node. Using the classification
in the previous section, we now list all connected 2-node EI networks where all nodes
have valence ≤ 2. In what follows, a bound on the valence such as ≤ 2 means that
the valence of each node satisfies that bound.
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Proposition 3.4. There are 15 connected 2-node REI networks with valence ≤ 2.
Of these, 9 are in the ODE-class of NH1 in Figure 5, and 6 are in the ODE-class of
NH2 in Figure 5. See Figure 6 and Table 3.

Proof. By Proposition 3.3 a connected 2-node REI network with valence ≤ 2 is
ODE-equivalent either to NH1 or to NH2. Each of NH1 and NH2 is a minimal
representative of its ODE-class. Network NH1 has only one arrow, which is excitatory
and sent by excitatory node 1 to node 2. In an ODE-equivalent network, node 1 can
send two excitatory arrows to node 2. Also, up to ODE-equivalence, node 1 can have
no autoregulation or one or two autoregulation excitatory arrows, and node 2 can
have no autoregulation or one autoregulation inhibitory arrow. Considering all the
combinations, with valence up to 2, we find 9 networks that are ODE-equivalent to
NH1, namely networks (a)-(i) in Figure 6. NH2 has one excitatory arrow, which is
sent by the excitatory node 1 to node 2, and one inhibitory arrow, which is sent by
the inhibitory node 2 to node 1. Up to ODE-equivalence, node 1 can receive one
more inhibitory arrow from node 2 or one autoregulation excitatory arrow. Also,
up to ODE-equivalence, node 2 can receive one more excitatory arrow from node
1 or one autoregulation inhibitory arrow. Considering all the combinations, up to
duality, we find 6 networks that are ODE-equivalent to NH2, namely networks (j)-(o)
in Figure 6. Table 3 lists their admissible ODEs. □

(a)
1 2

(b)
1 2

(c)
1 2

(d)
1 2

(e)
1 2

(f)
1 2

(g)
1 2

(h)
1 2

(i)
1 2

(j)
1 2

(k)
1 2

(l)
1 2

(m)
1 2

(n)
1 2

(o)
1 2

Figure 6. Connected 2-node REI networks with input valence ≤ 2.
Networks (a)-(i) are in the ODE-class of network NH1 in Figure 5 and
networks (j)-(o) are in the ODE-class of network NH2 in Figure 5.

Remarks 3.5. (i) The networks of the ODE-class of NH1 are feedforward; the net-
works of the ODE-class of NH2 are transitive.
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(a)
ẋ1 = f(x+

1 )

ẋ2 = g(x−
2 ;x+

1 )
(b)

ẋ1 = f(x+
1 )

ẋ2 = g(x−
2 ;x+

1 , x+
1 )

(c)
ẋ1 = f(x+

1 )

ẋ2 = g(x−
2 ;x+

1 ;x−
2 )

(d)
ẋ1 = f(x+

1 ;x+
1 )

ẋ2 = g(x−
2 ;x+

1 )
(e)

ẋ1 = f(x+
1 ;x+

1 , x+
1 )

ẋ2 = g(x−
2 ;x+

1 )
(f)

ẋ1 = f(x+
1 ;x+

1 );

ẋ2 = g(x−
2 ;x+

1 , x+
1 )

(g)
ẋ1 = f(x+

1 ;x+
1 )

ẋ2 = g(x−
2 ;x+

1 ;x−
2 )

(h)
ẋ1 = f(x+

1 ;x+
1 , x+

1 )

ẋ2 = g(x−
2 ;x+

1 , x+
1 )

(i)
ẋ1 = f(x+

1 ;x+
1 , x+

1 )

ẋ2 = g(x−
2 ;x+

1 ;x−
2 )

(j)
ẋ1 = f(x+

1 ;x−
2 )

ẋ2 = g(x−
2 ;x+

1 )
(k)

ẋ1 = f(x+
1 ;x+

1 ;x−
2 )

ẋ2 = g(x−
2 ;x+

1 )
(l)

ẋ1 = f(x+
1 ;x−

2 , x−
2 )

ẋ2 = g(x−
2 ;x+

1 )

(m)
ẋ1 = f(x+

1 ;x+
1 ;x−

2 )

ẋ2 = g(x−
2 ;x+

1 , x+
1 )

(n)
ẋ1 = f(x+

1 ;x+
1 ;x−

2 )

ẋ2 = g(x−
2 ;x+

1 ;x−
2 )

(o)
ẋ1 = f(x+

1 ;x−
2 , x−

2 )

ẋ2 = g(x−
2 ;x+

1 , x+
1 )

Table 3. Admissible ODEs for the networks in Figure 6. Since all
networks are inhomogeneous, the admissible ODEs are determined by
two functions f and g.

1 2

β
α

γ
δ

Figure 7. A 2-node PEI network. The nonnegative integer arrow
multiplicities are α, β, γ, δ. The network is connected when one of β
or γ is nonzero.

(ii) The Smolen network, which is network (n) of Figure 6, belongs to the ODE-
class of NH2. There are no Z2-symmetric networks in this classification.
(iii) For any choice of node state spaces, the space of admissible maps for the

network of NH1 is strictly contained in the space of admissible maps for the network
NH2. 3

3.4. Connected 2-node PEI Networks. A 2-node PEI network is the network on
the left of Figure 4, considering the two nodes to be of the same type, for a suitable
choice of nonnegative integer arrow multiplicities α, β, γ, δ. See Figure 7.
There is an analogous result to Proposition 3.1 for REI networks, with the same

proof.
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Proposition 3.6. A 2-node connected PEI network is the network of Figure 7, for
some choice of nonnegative integer arrow multiplicities α, β, γ, δ, where one of β
or γ is nonzero. All the statements of Proposition 3.1 hold, with the additional
condition that the two nodes have the same node-type. When the multiplicities satisfy
α = β, γ = δ then the network is homogeneous and (3.4) holds with f = g.

3.5. Connected 2-node PEI Networks: ODE-classes. The classification of PEI
networks into ODE-classes is different from that of REI networks since a 2-node PEI
network, see Figure 7, has three network adjacency matrices:

(3.8)

Node-type NE = N I : Id2 =

[
1 0
0 1

]
;

Arrow-type AE: A3 =

[
α 0
β 0

]
; Arrow-type AI : A4 =

[
0 γ
0 δ

]
;

where at least β or γ is nonzero to obtain a connected network. Therefore there are
infinitely many distinct ODE-classes for 2-node PEI networks:

NH1
1 2

NH2
1 2

NH3
1 2

NHαβ00

1 2
β

α

α, β ≥ 1 are coprime integers
(α, β) ̸= (1, 1)

H1
1 2

NHαβ10

1 2
β

α

α, β ≥ 1 are coprime integers

NHαβγδ

1 2
β

γ
α δ α, β ≥ 1 are coprime integers

γ, δ ≥ 1 are coprime integers

(α, β, γ, δ) ̸= (1, 1, 1, 1)

H2
1 2

Figure 8. Network representatives, of the ODE-classes of connected
2-node PEI networks, up to duality.

Proposition 3.7. There is an infinity of ODE-classes of connected 2-node PEI net-
works, with representatives in Figure 8 and associated admissible ODEs in Table 4.

Proof. Given an ODE-class of 2-node PEI networks, consider a network in that class
and the corresponding adjacency matrices Id2, A3 and A4 as in (3.8). Since the
network is connected, we have that at least one of β, γ is nonzero. The proof divides
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NH1
ẋ1 = f(x1)

ẋ2 = g(x2;x
+
1 )

NH2
ẋ1 = f(x1)

ẋ2 = g(x2;x
+
1 , x−

2 )

NH3
ẋ1 = f(x1;x

−
2 )

ẋ2 = g(x2;x
+
1 )

NHαβ00

ẋ1 = f(x1;x
+
1 , . . . , x+

1︸ ︷︷ ︸
α

)

ẋ2 = g(x2;x
+
1 , . . . , x+

1︸ ︷︷ ︸
β

)

NHαβ10

ẋ1 = f(x1;x
+
1 , . . . , x+

1︸ ︷︷ ︸
α

, x−
2 )

ẋ2 = g(x2;x
+
1 , . . . , x+

1︸ ︷︷ ︸
β

)
NHαβγδ

ẋ1 = f(x1;x
+
1 , . . . , x+

1︸ ︷︷ ︸
α

;x−
2 , . . . , x−

2︸ ︷︷ ︸
γ

)

ẋ2 = g(x2;x
+
1 , . . . , x+

1︸ ︷︷ ︸
β

;x−
2 , . . . , x−

2︸ ︷︷ ︸
δ

)

H1
ẋ1 = f(x1;x

+
1 );

ẋ2 = f(x2;x
+
1 )

H2
ẋ1 = f(x1;x

+
1 , x−

2 );

ẋ2 = f(x2;x
+
1 , x−

2 )

Table 4. Admissible ODEs for the networks in Figure 8.

into four cases according to how many of the integers α, β, γ, δ are zero.
(i) If all four integers are positive, then the matrices Id2, A3 and A4 are linearly
independent. Moreover, the matrices of the minimal network of that ODE-class are
those obtained from A3, multiplied by 1/gcd(α, β), and A4, multiplied by 1/gcd(γ, δ).
We obtain the ODE-classes of inhomogeneous networks NHαβγδ in Figure 8, which
are parametrized by the positive integers α, β, γ, δ, where α, β are coprime, γ, δ are
coprime, and (α, β, γ, δ) ̸= (1, 1, 1, 1). If (α, β, γ, δ) = (1, 1, 1, 1) then we obtain the
homogeneous network ODE-class H2 of Figure 8.
(ii) If exactly one of the integers α, β, γ, δ is zero, then, up to duality, either γ = 0
or δ = 0. In the first case,〈

Id2,

[
α 0
β 0

]
,

[
0 0
0 δ

]
⟩ =

〈
Id2,

[
0 0
1 0

]
,

[
0 0
0 1

]〉
and every such network is ODE-equivalent to network NH2 in Figure 8. In the second
case, 〈

Id2,

[
α 0
β 0

]
,

[
0 γ
0 0

]
⟩ =

〈
Id2,

[
α 0
β 0

]
,

[
0 1
0 0

]〉
.

Now we obtain the ODE-classes NHαβ10 in Figure 8, which are parametrized by the
positive integers α, β, where α, β are coprime.
(iii) Suppose that exactly two of the integers α, β, γ, δ are zero. Up to duality, either
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γ = δ = 0, or γ = α = 0, or δ = α = 0. If γ = δ = 0 and (α, β) ̸= (1, 1) we
obtain the ODE-classes NHαβ00 in Figure 8, which are parametrized by the positive
integers α, β where α, β are coprime. If γ = δ = 0 and (α, β) = (1, 1), we obtain the
ODE-class containing the homogeneous network H1 in Figure 8. If γ = α = 0, then
since 〈

Id2,

[
0 0
β 0

]
,

[
0 0
0 δ

]〉
=

〈
Id2,

[
0 0
1 0

]
,

[
0 0
0 1

]〉
,

we have networks in the ODE-class of network NH2 in Figure 8.
Similarly, if δ = α = 0, then since〈

Id2,

[
0 0
β 0

]
,

[
0 γ
0 0

]〉
=

〈
Id2,

[
0 0
1 0

]
,

[
0 1
0 0

]〉
,

we have networks at the ODE-class of network NH3 in Figure 8.
(iv) Suppose that exactly three of the integers α, β, γ, δ are zero. Up to duality, we
can consider only the cases where δ = γ = 0 and α = 0, since the networks are
connected. Now 〈

Id2,

[
0 0
β 0

]〉
=

〈
Id2,

[
0 0
1 0

]〉
,

so we have networks in the ODE-class of network NH1 in Figure 8. □

3.6. Connected 2-node PEI Networks with valence up to 2.

Proposition 3.8. The set of 2-node connected PEI networks with node input valence
up to 2 contains 15 networks, which correspond to the networks in Figure 6 but
assuming the nodes to be of the same type. This set is partitioned into 9 ODE-classes:
7 classes formed by inhomogeneous networks and 2 by homogeneous networks, see
Figure 9 and Table 5.

Proof. Trivially, the 2-node connected PEI networks with node input valence up to
2 can be obtained from the 2-node connected REI networks with node input valence
up to 2 (see Figure 6) by considering the nodes to have the same type. The main
result of Dias and Stewart [13] on ODE-equivalence implies that there are 9 ODE-
classes of PEI networks: a class containing networks (a) and (b), a class containing
networks (d) and (h), a class containing networks (j), (l) and (o), a class containing
networks (c), (g) and (i). Each of the remaining five networks represents a different
ODE-class. See Figure 9 for minimal ODE-class representatives. Table 5 lists the
admissible maps for the networks in Figure 9. □
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NH1
1 2

NH2
1 2

NH3
1 2

NH4
1 2

NH5
1 2

NH6
1 2

NH7
1 2

H1
1 2

H2
1 2

Figure 9. There are 9 ODE-classes of 2-node connected PEI net-
works with input valence up to two: 7 inhomogeneous classes and 2
homogeneous classes. Table 5 lists the corresponding admissible maps.

NH1
ẋ1 = f(x1);

ẋ2 = g(x2;x
+
1 )

NH2
ẋ1 = f(x1);

ẋ2 = g(x2;x
+
1 , x−

2 )
NH3

ẋ1 = f(x1;x
−
2 );

ẋ2 = g(x2;x
+
1 )

NH4
ẋ1 = f(x1;x

+
1 , x+

1 );

ẋ2 = g(x2;x
+
1 )

NH5
ẋ1 = f(x1;x

+
1 , x−

2 );

ẋ2 = g(x2;x
+
1 )

NH6
ẋ1 = f(x1;x

+
1 );

ẋ2 = g(x2;x
+
1 , x+

1 )

NH7
ẋ1 = f(x1;x

+
1 , x−

2 );

ẋ2 = g(x2;x
+
1 , x+

1 )
H1

ẋ1 = f(x1;x
+
1 );

ẋ2 = f(x2;x
+
1 )

H2
ẋ1 = f(x1;x

+
1 , x−

2 );

ẋ2 = f(x2;x
+
1 , x−

2 )

Table 5. Admissible maps for the networks in Figure 9.

1 2

β1

α1

β2

α2 1 2

γ1
δ1

γ2
δ2

Figure 10. A 2-node UEI network has two 2-node subnetworks.

3.7. Connected 2-node UEI Networks. We now consider 2-node UEI networks.
Here, node 1 is excitatory and node 2 is inhibitory. To classify these we split the
network into two subnetworks, each containing both nodes. One subnetwork retains
only the excitatory arrows, the other retains only the inhibitory ones. We classify
each subnetwork separately and reassemble them.

Proposition 3.9. A connected 2-node UEI network splits into the two subnetworks
in Figure 10, for suitable nonnegative integer arrow multiplicities αi, βi, γi, δi, where
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i = 1, 2 and at least one of the β1, β2, γ1, γ2 is nonzero. The admissible ODEs are:

(3.9)

ẋ1 = f(x+
1 ;x

+
1 , . . . , x

+
1︸ ︷︷ ︸

α1

, x+
2 , . . . , x

+
2︸ ︷︷ ︸

β2

, x−
1 , . . . , x

−
1︸ ︷︷ ︸

δ1

, x−
2 , . . . , x

−
2︸ ︷︷ ︸

γ2

)

ẋ2 = g(x−
2 ;x

+
1 , . . . , x

+
1︸ ︷︷ ︸

β1

, x+
2 , . . . , x

+
2︸ ︷︷ ︸

α2

, x−
1 , . . . , x

−
1︸ ︷︷ ︸

γ1

, x−
2 , . . . , x

−
2︸ ︷︷ ︸

δ2

)

Here x+
1 , x

−
2 ∈ Rk, so the total state space is R2k, and f and g are smooth functions

invariant under permutation of the variables under each overline.
To simplify notation, temporarily omit the ± superscripts, and define

(3.10)

p = (x1, x1, . . . , x1︸ ︷︷ ︸
α1

, x2, . . . , x2︸ ︷︷ ︸
β2

, x1, . . . , x1︸ ︷︷ ︸
δ1

, x2, . . . , x2︸ ︷︷ ︸
γ2

)

q = (x2, x1, . . . , x1︸ ︷︷ ︸
β1

, x2, . . . , x2︸ ︷︷ ︸
α2

, x1, . . . , x1︸ ︷︷ ︸
γ1

, x2, . . . , x2︸ ︷︷ ︸
δ2

)

a = ∂f
∂x1

|p b1 =
∂f
∂x2

|p b2 =
∂f

∂x2+α1
|p

c1 =
∂f

∂x2+α1+β2
|p c2 =

∂f
∂x2+α1+β2+δ1

|p
d = ∂g

∂x1
|q e1 =

∂g
∂x2

|q e2 =
∂g

∂x2+β1
|q

f1 =
∂g

∂x2+β1+α2
|q f2 =

∂g
∂x2+β1+α2+γ1

|q

the linearization of (3.4) at (x1, x2) is the 2k × 2k matrix

(3.11)

[
a+ α1b1 + δ1c1 β2b2 + γ2c2
β1e1 + γ1f1 d+ α2e2 + δ2f2

]
.

Proof. For a UEI network there is no restriction on the tail node-type for AE arrows
and AI arrows. The adjacency matrices are therefore

(3.12)

Node-type NE: A1 =

[
1 0
0 0

]
; Node-type N I : A2 =

[
0 0
0 1

]
;

Arrow-type AE: A3 =

[
α1 β2

β1 α2

]
; Arrow-type AI : A4 =

[
δ1 γ2
γ1 δ2

]
;

where at least one of the βi or γi is nonzero to guarantee connectedness. The network
is the union of two 2-node subnetworks, one containing the arrows of type AE and
the other of type AI , which correspond to the networks in Figure 10.
Concerning the linearization of equations (3.9) at (x1, x2), the symmetries of the

functions f and g imply (3.11). □
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3.8. Connected 2-node UEI Networks: ODE-classes.

Proposition 3.10. There is an infinity of ODE-classes of connected 2-node UEI
networks, with representatives in Figure 11 and associated admissible ODEs in Ta-
ble 6.

NH1
1 2

NH2
1 2

NHβ1β2

1 2
β1

β2

β1, β2 ≥ 1 are coprime integers

Figure 11. Network representatives, of the ODE-classes of connected
2-node UEI networks, up to duality. The representatives NH1 and NH2
are REI networks.

NH1
ẋ1 = f(x+

1 )

ẋ2 = g(x−
2 ;x+

1 )
NH2

ẋ1 = f(x+
1 ;x−

2 )

ẋ2 = g(x−
2 ;x+

1 )

NHβ1β2

ẋ1 = f(x+
1 ;x+

2 , . . . , x+
2︸ ︷︷ ︸

β2

)

ẋ2 = g(x−
2 ;x+

1 , . . . , x+
1︸ ︷︷ ︸

β1

)

Table 6. Admissible ODEs for the networks in Figure 11.

Proof. Clearly

⟨A1, A2, A3, A4⟩ =
〈
A1, A2,

[
0 β2

β1 0

]
,

[
0 γ2
γ1 0

]〉
,

where the Ai are given by (3.12).
(i) If β2 = 0 and β1 ̸= 0 (duality deals with the case β2 ̸= 0 and β1 = 0) then

⟨A1, A2, A3, A4⟩ =
〈
A1, A2,

[
0 0
1 0

]
,

[
0 γ2
0 0

]〉
.

(i.a) If γ2 = 0 then

⟨A1, A2, A3, A4⟩ =
〈
A1, A2,

[
0 0
1 0

]〉
,
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which corresponds to network NH1 in Figure 11.
(i.b) If γ2 ̸= 0 we get network NH2 in Figure 11 with adjacency matrices

A1, A2,

[
0 0
1 0

]
,

[
0 1
0 0

]
.

The linear space 〈
A1, A2,

[
0 0
1 0

]
,

[
0 1
0 0

]〉
is 4-dimensional; that is, it coincides with the linear space of all 2× 2-matrices with
real entries.
(ii) If both β1, β2 are nonzero, we distinguish two cases:
(ii.a) When γ1 = γ2 = 0 we obtain networks with adjacency matrices

A1, A2,

[
0 β2

β1 0

]
.

In particular, we obtain the networks NH3 (if β1 = β2 = 1) and NH4 (if β1 = 2, β2 =
1) pictured in Figure 12. There is an infinite number of ODE-equivalence classes,
with representatives the networks for each arrow-type adjacency matrix[

0 β2

β1 0

]
where β1, β2 ≥ 1 are coprime, yielding the network NHβ1β2.
(ii.b) If at least one of the γ1 or γ2 is nonzero, either ⟨A1, A2, A3, A4⟩ = ⟨A1, A2, A3⟩,
leading to one of the previous cases, or dim⟨A1, A2, A3, A4⟩ = 4, and we have a
network ODE-equivalent to NH2. This was obtained previously, since

⟨A1, A2, A3, A4⟩ =

〈
A1, A2,

[
0 0
1 0

]
,

[
0 1
0 0

]〉
.

(iii) In the final case when β1 = β2 = 0 we obtain the dual cases of the networks in
(ii.a). □

3.9. Connected 2-node UEI Networks with valence up to 2. Using the results
in the previous section, we list all the connected 2-node UEI networks with valence
≤ 2.

Proposition 3.10 implies:

Proposition 3.11. There are 4 ODE-classes of connected 2-node UEI networks with
valence ≤ 2. Representatives are in Figure 12, and associated admissible ODEs are
listed in Table 7.
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NH1
1 2

NH2
1 2

NH3
1 2

NH4
1 2

Figure 12. Minimal network representatives of the 4 ODE-classes
of connected 2-node UEI networks with input valence ≤ 2. The repre-
sentatives NH1 and NH2 are REI networks.

Proof. Consider the ODE-classes of the connected 2-node UEI networks given by
Proposition 3.10, with representatives in Figure 11. These representatives are mini-
mal, in the sense of having a minimum number of arrows. Thus it is enough to check
which of these ODE-classes has a minimal representative with valence ≤ 2.
Clearly NH1 and NH2 in Figure 11 are representatives of two of the ODE-classes

of connected 2-node UEI networks with valence ≤ 2.
There are only two ODE-class representatives obtained from NHβ1β2 in Figure 11,

one with β1 = β2 = 1 and the other with β1 = 2, β2 = 1. These are networks NH3
and NH4 in Figure 12. □

NH1
ẋ1 = f(x+

1 )

ẋ2 = g(x−
2 ;x+

1 )
NH2

ẋ1 = f(x+
1 ;x−

2 )

ẋ2 = g(x−
2 ;x+

1 )

NH3
ẋ1 = f(x+

1 ;x+
2 )

ẋ2 = g(x−
2 ;x+

1 )
NH4

ẋ1 = f(x+
1 ;x+

2 )

ẋ2 = g(x−
2 ;x+

1 , x+
1 )

Table 7. Admissible ODEs for the networks in Figure 12.

Proposition 3.12. There are 53 connected 2-node UEI networks with valence ≤ 2:
the 15 REI networks in Figure 6, given by Proposition 3.4, and the 38 networks in
Figure 13. Considering the 4 ODE-classes in Figure 12, the ODE-class NH1 contains
9 of the UEI networks in Figure 6 and the ODE-class NH2 contains the other 6. The
partition of 38 UEI networks in Figure 13 into 4 ODE-classes is stated in Table 8.

Proof. By Definition 2.3, REI networks are UEI networks. Thus, we start by consid-
ering the 15 connected 2-node UEI networks with valence ≤ 2 in Figure 6, given by
Proposition 3.4. Next, from those 15 networks we get the remaining UEI networks
with valence ≤ 2, up to renumbering of nodes and duality. We maintain the assump-
tion that node 1 is excitatory and node 2 is inhibitory, but since we work with UEI
networks we remove the node-type restriction on outputs. The result is Figure 13.
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(b.1)
1 2

(c)
1 2

(d.1)
1 2

(e.1)
1 2

(e.2)
1 2

(f.1)
1 2

(f.2)
1 2

(g)
1 2

(g.1)
1 2

(g.2)
1 2

(h.1)
1 2

(h.2)
1 2

(h.3)
1 2

(h.4)
1 2

(i)
1 2

(i.1)
1 2

(i.2)
1 2

(i.3)
1 2

(i.4)
1 2

(j)
1 2

(k)
1 2

(k.1)
1 2

(k.2)
1 2

(l)
1 2

(l.1)
1 2

(m)
1 2

(m.1)
1 2

(m.3)
1 2

(m.4)
1 2

(m.5)
1 2

(n)
1 2

(n.1)
1 2

(n.2)
1 2

(n.3)
1 2

(n.4)
1 2

(o)
1 2

(o.1)
1 2

(o.3)
1 2

Figure 13. 38 connected 2-node UEI networks with input valence
≤ 2. This set is partitioned into 4 ODE-classes as in Table 8. Repre-
sentatives of the ODE-classes are in Figure 12.



EXCITATORY-INHIBITORY NETWORKS 31

1 2

β1

α1

β2

α2 1 2

γ1
δ1

γ2
δ2

Figure 14. A 2-node CEI network has two 2-node subnetworks.

Representatives of the minimal ODE-classes of the 53 networks are in Figure 12.
By Proposition 3.4, the set of 15 networks in Figure 6 is partitioned into the ODE-
classes NH1 and NH2. By the results of [13], the set of 38 networks in Figure 13 is
partitioned into the 4 ODE-classes according to Table 8. Table 7 states the corre-
sponding admissible ODEs. □

NH1 (b.1)− (i.4) NH2 (k.1), (l.1), (m.3)− (m.5),
(n.2)− (n.3), (o.1)

NH3 (j)− (k), (k.2), NH4 (l), (m)− (m.1)
(n)− (n.1), (n.4), (o), (o.3)

Table 8. Partition of the connected 2-node UEI networks with va-
lence ≤ 2, listed in Figure 13, into the four network ODE-classes in
Figure 12.

Corollary 3.13. Only one ODE class of connected 2-node UEI networks of valence
≤ 2 has a minimal representative with two types of arrow, namely NH2. This is also
an REI network.

Remarks 3.14. (i) There are 2 ODE-classes of connected 2-node UEI networks of
valence ≤ 2 which coincide with the 2 ODE-classes of connected 2-node REI networks
of valence ≤ 2.

(ii) There are 2 ODE-classes of connected 2-node UEI networks of valence ≤ 2
which are not REI. Moreover, they have representatives with only one arrow-type.

3

3.10. Connected 2-node CEI Networks. A 2-node connected CEI network is the
union of two subnetworks as in Figure 10, but considering the two nodes to be of
the same type. The arrow multiplicities are nonnegative integers αi, βi, γi, δi, where
i = 1, 2 and at least one of the β1, β2, γ1, γ2 is nonzero, see Figure 14.
There is an analogous result to Proposition 3.9 for UEI networks with the same

proof.

Proposition 3.15. A 2-node connected CEI network is the network of Figure 14,
for some choice of nonnegative integer arrow multiplicities αi, βi, γi, δi, where i = 1, 2
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and at least one of the β1, β2, γ1, γ2 is nonzero. All the statements of Proposition 3.9
hold, with the additional condition that the two nodes have the same node-type. When
the multiplicities satisfy α1 + β2 = α2 + β1 and δ1 + γ2 = γ1 + δ2, then the network
is homogeneous and (3.9) holds with f = g.

3.11. Connected 2-node CEI Networks: ODE-classes. For a 2-node CEI net-
work there is no restriction on the tail node-type for AE arrows and AI arrows, and
the two nodes have the same type. The adjacency matrices are therefore

Node-type NE = N I : Id2;

Arrow-type AE: A3 =

[
α1 β2

β1 α2

]
; Arrow-type AI : A4 =

[
δ1 γ2
γ1 δ2

]
;

where at least one of the βi or γi is nonzero to guarantee connectedness.
Following Definition 4.2 in [2], given a network G and the corresponding ODE-

class [G], we denote by m[G] the minimal number of edges for the networks in [G].
Following Definition 5.10 in [2], given a matrix M = [mij]1≤i,j≤n ∈ Mnn(R), let
l(M) =

∑n
i=1

∑n
j=1mij. [2, Proposition 5.11] implies:

Proposition 3.16. There is an infinity of ODE-classes of connected 2-node CEI
networks. Moreover, given a 2-node CEI network G with arrow adjacency matrices
A3 and A4, let

m = dim⟨Id2, A3, A4⟩ − 1 .

Then a minimal EI network ODE-equivalent to G has arrow adjacency matrices
M1,M2 such that:

(i) {Id2,M1,M2} is a basis of the real vector space ⟨Id2, A3, A4⟩.
(ii)

∑m
k=1 l(Mk) = m[G].

3.12. Connected 2-node CEI Networks with valence up to 2.

Proposition 3.17. The set of 2-node connected CEI networks with node input va-
lence up to two contains 53 networks, which correspond to the 15 UEI networks
in Figure 6 and the 38 UEI networks in Figure 13, given by Proposition 3.12, but
assuming the nodes to be of the same type.

Moreover, it is partitioned into 21 ODE-classes. The 15 CEI networks in Fig-
ure 6 are PEI networks and are partitioned into 9 ODE-classes: 7 classes formed
by inhomogeneous networks and 2 by homogeneous networks, see Figure 9. The
38 CEI networks in Figure 13 are partitioned into 15 ODE-classes, 3 of them PEI
ODE-classes: 11 classes formed by inhomogeneous networks and 4 by homogeneous
networks, see Figure 15. The corresponding admissible maps appear in Table 9.

Proof. Trivially, the 2-node connected CEI networks with node input valence up to
2 can be obtained from the 2-node connected UEI networks with node input valence
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up to 2, see Figures 6 and 13, by considering the nodes to have the same type.
The 15 CEI networks in Figure 6 are PEI networks. By Proposition 3.8, they are
partitioned into 9 ODE-classes: 7 classes formed by inhomogeneous networks and 2
by homogeneous networks, see Figure 9.

By the result in [13] on networks ODE-equivalence, the 38 CEI networks in Fig-
ure 13 are partioned into 15 ODE-classes of CEI networks, where 3 of them are PEI
ODE-classes: one class containing the networks (b.1), (g), (g.2), one class with net-
works (d.1), (e.2), (f.1), (f.2), (h.1), (h.2), (i.1), (i.3), (e.1), (h.3), one class with net-
works (g.1), (i.2), one class with networks (h.4), (i), (i.4), one class with networks
(j), (n), (n.4), (o), (o.3), one class with networks (k.1), (m.3), (m.4), one with net-
works (l.1), (n.2), (o.1), and one with (k.2), (n.1). Each of the remaining networks,
(c), (k), (l), (m), (m.1), (m.5), (n.3), represents a different ODE-class. See Figure 15
for minimal ODE-class representatives and Table 9 for the admissible maps. □

NH1
1 2

NH2
1 2

NH3
1 2

NH5
1 2

NH8
1 2

NH9
1 2

NH10
1 2

NH11
1 2

NH12
1 2

NH14
1 2

NH17
1 2

H1
1 2

H2
1 2

H3
1 2

H4
1 2

Figure 15. Minimal representatives of the 15 ODE-classes of the
38 2-node connected CEI networks with input valence up to two in
Figure 13 (assuming the nodes to be of the same type): 11 inhomoge-
neous and 4 homogeneous. See Table 9 for the corresponding admissi-
ble maps. Representatives NH1, H1, and NH12 are PEI networks.

4. Conclusions

This work is motivated by the importance of biological networks in science. Com-
monly, in these networks, a distinction is made on the type of connections (excitatory
and inhibitory) and on the type of nodes (activator and repressor). We make a gen-
eral study of 2-node excitatory inhibitory networks (EI) with two types of connections
and some more conditions. More precisely, we formalize the structure of EI networks
as a preparation of a systematic analysis of dynamics and bifurcations in such net-
works. Moreover, our results are extended to the 3-node case in [6]. We consider the
network formalism where nodes and connections are partitioned into several types
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NH1
ẋ1 = f(x1)

ẋ2 = g(x2;x
+
1 )

NH2
ẋ1 = f(x1)

ẋ2 = g(x2;x
+
1 , x+

2 )
NH3

ẋ1 = f(x1;x
−
1 )

ẋ2 = g(x2;x
+
1 )

NH5
ẋ1 = f(x1;x

−
1 )

ẋ2 = g(x2;x
+
1 , x+

2 )
NH8

ẋ1 = f(x1;x
+
1 , x+

2 )

ẋ2 = g(x2;x
+
1 )

NH9
ẋ1 = f(x1;x

+
1 , x+

2 )

ẋ2 = g(x2;x
−
1 )

NH10
ẋ1 = f(x1;x

−
1 , x+

2 )

ẋ2 = g(x2;x
+
1 )

NH11
ẋ1 = f(x1;x

+
2 , x+

2 )

ẋ2 = g(x2;x
+
1 )

NH12
ẋ1 = f(x1;x

−
2 )

ẋ2 = g(x2;x
+
1 )

NH14
ẋ1 = f(x1;x

−
1 , x+

2 )

ẋ2 = g(x2;x
+
1 , x+

1 )
NH17

ẋ1 = f(x1;x
+
1 , x+

2 )

ẋ2 = g(x2;x
−
1 , x−

2 )
H1

ẋ1 = f(x1, x
+
1 )

ẋ2 = f(x2;x
+
1 )

H2
ẋ1 = f(x1, x

+
2 )

ẋ2 = f(x2;x
+
1 )

H3
ẋ1 = f(x1;x

+
1 , x+

2 )

ẋ2 = f(x2;x
+
1 , x+

1 )
H4

ẋ1 = f(x1;x
−
1 , x+

2 )

ẋ2 = f(x2;x
+
1 , x−

1 )

Table 9. Admissible maps for the networks in Figure 15.

and where the dynamics of the networks respects these and the network topology.
In this paper we classify four classes of 2-node EI networks – REI, UEI, PEI, CEI –
all with two types of connections (excitatory and inhibitory): for the REI network
class, a node cannot output both types of connections whereas for the UEI class
a node can output both; moreover, for both REI and UEI networks, there are two
node-types (activators and repressors); when all nodes are assumed to be of the same
type, then we have the PEI and CEI network classes: if a node cannot output both
types of connections the network is PEI, otherwise, the network is CEI. The number
of networks of every such network class is not finite. Trivially, restricting the network
valence, then each of the four classes has a finite number of networks.

Remarkably, considering the classification up to ODE-equivalence, we obtain that
there are only 2 ODE-classes of REI networks while for the other three network
classes, there are infinite number of ODE-classes.

Restricting to networks of valency ≤ 2 then the four network classes are formed
by finite number of networks. We obtain that the classification of CEI (resp. PEI)
networks is derived from the classification of the UEI (resp. REI) networks by
assuming the two nodes are of the same type, however, for CEI (resp. PEI) networks
there are 21 (resp. 9) ODE-classes and for the UEI (resp. REI) networks there are
only 4 (resp. 2) ODE-classes.
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