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Abstract—The rapid advancement of quantum computing has
increasingly highlighted its potential in the realm of machine
learning, particularly in the context of natural language process-
ing (NLP) tasks. Quantum machine learning (QML) leverages
the unique capabilities of quantum computing to offer novel
perspectives and methodologies for complex data processing
and pattern recognition challenges. This paper introduces a
novel Quantum Mixed-State Attention Network (QMSAN), which
integrates the principles of quantum computing with classical
machine learning algorithms, especially self-attention networks,
to enhance the efficiency and effectiveness in handling NLP tasks.
QMSAN model employs a quantum attention mechanism based
on mixed states, enabling efficient direct estimation of similarity
between queries and keys within the quantum domain, leading
to more effective attention weight acquisition. Additionally, we
propose an innovative quantum positional encoding scheme,
implemented through fixed quantum gates within the quantum
circuit, to enhance the model’s accuracy. Experimental validation
on various datasets demonstrates that QMSAN model outper-
forms existing quantum and classical models in text classification,
achieving significant performance improvements. QMSAN model
not only significantly reduces the number of parameters but
also exceeds classical self-attention networks in performance,
showcasing its strong capability in data representation and
information extraction. Furthermore, our study investigates the
model’s robustness in different quantum noise environments,
showing that QMSAN possesses commendable robustness to low
noise.

Index Terms—Machine learning, Quantum machine learning,
Self-attention mechanism, Quantum self-attention mechanism,
Text categorization

I. INTRODUCTION

In the past few decades, the rapid development of quantum
computing has attracted widespread attention in both the
scientific and industrial communities. As a computational
paradigm based on the principles of quantum mechanics,
quantum computing has shown potential for extraordinary
computational speed and efficiency in solving certain types
of problems compared to classical computers. The application
prospects of quantum computing are considered revolutionary,
particularly in fields such as biology [1], cryptography [2],
and communication technology [3]. With the advancement of
quantum technology, introducing the concepts and methods
of quantum computing into the field of machine learning has
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become a new direction explored by researchers. Quantum
Machine Learning (QML), as a cutting-edge field intersecting
quantum computing and machine learning [4]–[6], is attracting
widespread attention in both academia and industry. Quantum
machine learning provides new tools and methods for solving
complex data processing and pattern recognition problems
by combining the characteristics of quantum computing with
classical machine learning algorithms [7].

Among the wide range of applications of machine learn-
ing, NLP is dedicated to enabling computers to understand,
interpret, and generate human language, thereby achieving
natural and smooth communication between humans and ma-
chines. In the early 21st century, with the development of
deep learning technology, the field of NLP has experienced
revolutionary advancements. Deep learning models, especially
Convolutional Neural Networks (CNNs) [8] and Recurrent
Neural Networks (RNNs) [9], with their powerful feature
extraction and sequence modeling capabilities, have greatly
advanced the progress of NLP tasks, including but not limited
to text classification [10], [11], sentiment analysis [12], [13],
and machine translation [14], [15]. In 2017, the introduction
of the Transformer model, which incorporates self-attention
networks, significantly enhanced the ability and efficiency of
processing long sequence data [16]. Subsequently, OpenAI
launched the GPT (Generative Pre-trained Transformer) [17]
and its subsequent versions of pre-trained models, such as
GPT-4 [18], which, by pre-training on massive text data,
learned rich language knowledge and world knowledge, en-
abling the model to be directly applied to various NLP tasks
without specific task training. Through natural and smooth
conversations with humans, it demonstrated the tremendous
potential of NLP technology [19]–[21]. It can not only answer
complex questions but also write articles [21], generate code
[22], and even create poetry and music [23], greatly broaden-
ing the application range of artificial intelligence and sparking
widespread public discussion and imagination about the future
possibilities of AI. Today, NLP is at an unprecedented peak
of development, and its impact goes far beyond the scope of
scientific research, becoming one of the key technologies that
are changing the way humans live and work. However, with the
growth of model size and data volume, classical deep learning
methods face huge demands for computational resources and
challenges in energy efficiency [24]–[26].

Quantum computing provides a new direction for the field
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of Natural Language Processing. Quantum computers are
expected to achieve quantum advantage [27], [28], which can
be reflected in sample complexity or time complexity [29]. The
core characteristics of quantum computing, such as quantum
superposition and quantum entanglement, offer new possi-
bilities for representing and processing the high-dimensional
data of natural language, allowing for the representation of a
large number of words and sentences in the high-dimensional
Hilbert space [30], [31], and capturing complex relationships
and semantic information between words. Moreover, quantum
algorithms can achieve faster processing speeds than classical
algorithms in some cases [32], [33], which is significant for
accelerating the training and inference processes of NLP tasks.
Through Quantum Natural Language Processing (QNLP), re-
searchers explore the use of the unique advantages of quantum
computing to process language data and perform NLP tasks
[34], which has inspired some exploratory work.

Up to now, in 2023, Li et al. proposed a fully quantum learn-
ing model, QRNN [35], which stacks recurrent blocks in an
alternating manner to reduce the algorithm’s requirements for
the coherence time of quantum devices. In 2022, SYC Chen et
al. proposed a hybrid quantum-classical model, QLSTM [36],
which extends the classical Long Short-Term Memory (LSTM)
model to the quantum domain, replacing some classical neural
networks in the LSTM unit with Variational Quantum Circuit
(VQC) to construct a more efficient model. However, these
quantum versions of RNN and LSTM models have the same
problems as classical neural networks: they often struggle to
capture long-distance dependencies and have limited capa-
bilities in handling complex problems. In 2017, Niu et al.
proposed a more efficient, parameter-free model combining
quantum attention with LSTM based on weak measurement in
quantum mechanics [37], which has better sentence modeling
performance. However, this method mainly focuses on some
physical principles of quantum mechanics and does not involve
specific quantum circuit design.

A more effective quantum self-attention network is the
Quantum Self-Attention Neural network (QSANN) model
proposed by Baidu’s team in 2022, which uses Gaussian
projection quantum self-attention for text classification [38].
This model can explore the correlations between words in
the high-dimensional quantum feature space. However, when
processing quantum queries and keys, the model converts them
into classical data through observables to calculate similarity.
This process involves information loss and reduces the model’s
ability to leverage the advantages of quantum computing. In
2022, the Quantum Self-Attention Network (QSAN) model
proposed by Zhao et al. [39] uses Quantum Logic Similarity
(QLS) to prevent measurement from obtaining inner products
and Quantum Bit Self-Attention Score Matrix (QBSASM) to
generate a density matrix that effectively reflects the output
attention distribution, thereby enhancing the model’s infor-
mation extraction capability. In 2023, Zhao et al. proposed
the Quantum Kernel Self-Attention Network (QKSAN) model
[40], which combines the data representation advantages of
quantum kernel methods with the efficient information ex-

traction capability of self-attention mechanism, providing a
larger and more complex data representation space. Although
these two methods compute the similarity of quantum queries
and keys at the quantum level, they are limited to the pure
state level and rely on the unitary transformation of quantum
circuits, resulting in limited expressive power. Moreover, up to
now, these implemented quantum self-attention networks have
not yet introduced position information, The potential of the
models has not been fully realized.

To overcome the issues mentioned above and explore the
advantages of quantum computing in improving classical self-
attention network models for more effective attention results,
we propose a novel model, called Quantum Mixed-State
Attention Network (QMSAN) model. This model is based
on trainable quantum embeddings, quantum attention weight
coefficients based on mixed states, and non-trainable quantum
positional information embedding. To evaluate the perfor-
mance of our model, we conducted numerical experiments
with various datasets. Compared to classical self-attention
networks, our model significantly reduces the number of
parameters under the same input sequence conditions. For the
self-attention network model in the same quantum domain,
our model demonstrates superior performance, indicating that
QMSAN model has stronger data representation and infor-
mation extraction capabilities. The main contributions of this
paper are summarized as follows:

• We propose a novel quantum attention weight coefficients
calculation mechanism based on mixed states. In the
context of quantum computing, the representations of
queries and keys are not conventional pure-state qubits
but are realized through quantum mixed states. This al-
lows the model to capture richer information and intrinsic
data correlations. The similarity between queries and
keys is directly estimated at the quantum level without
degrading the quantum information of queries and keys
into classical information for processing. This calculation
process not only maintains the efficiency and parallelism
of quantum computing but also avoids the accuracy
decline caused by information loss.

• Recognizing the importance of positional information in
many NLP tasks, we propose a novel quantum positional
encoding scheme. This scheme adopts an absolute po-
sitional encoding form without the need for additional
qubits. We implement positional information encoding
by introducing additional fixed quantum gates into the
quantum circuit, which avoids the extra demand for
qubits while maintaining the efficiency and accuracy of
encoding.

• We incorporate a trainable quantum embedding model
into our model, further optimizing the implementation
framework of quantum self-attention networks by inte-
grating the originally separate fixed quantum embedding
and trainable quantum neural network (QNN) structures
into a unified trainable quantum embedding model, ex-
ploring and verifying its application potential in quan-



tum self-attention networks. Through in-depth analysis
and experimental validation of different quantum entan-
glement structures, compared to conventional separate
structures, this model can more accurately capture and
process complex relationships between data, significantly
improving the model’s performance and processing effi-
ciency. We clarify the superiority of the trainable quantum
embedding model in quantum self-attention networks.

The rest of the paper is structured as follows: First, in
Section II, we summarize the basic theory and methods.
Then, in Section III, we elaborate on our innovative QMSAN
framework and introduce its corresponding quantum circuits.
The numerical simulation setup and comparison results with
other attention models are presented in Section IV. Finally,
Section V concludes the paper.

II. PRELIMINARIES

Before delving into quantum self-attention networks, it
is necessary to understand a few fundamental concepts of
quantum mechanics, including quantum states, the superpo-
sition property of quantum states, quantum entanglement, and
observables. These concepts are the foundation of quantum
computing and are crucial for developing and understanding
quantum algorithms.

The state of a quantum system reveals the physical proper-
ties of the system, such as the position, momentum, or spin of
particles [41]. Unlike classical systems, the state of a quantum
system can be in a superposition of multiple possible states,
providing quantum computing with its unique capabilities.
In quantum mechanics, the states of quantum systems are
generally described in the form of pure states and mixed
states. A pure state is one of the most basic ways to describe
a quantum system, representing the quantum system in a
completely determined quantum state. A pure state can be
represented by a vector |ψ⟩ in Hilbert space, where |ψ⟩ is
called the quantum state. For a simple qubit system, its pure
state can be represented as follows:

|ψ⟩ = α |0⟩+ β |1⟩ (1)

where |0⟩ and |1⟩ represent the two basis states of the qubit,
while α and β are complex coefficients. The absolute squares
of these coefficients (|α|2 and |β|2) represent the probabilities
of measuring the corresponding basis states, and they satisfy
|α|2 + |β|2 = 1.

In contrast to pure states, mixed states are used to describe a
quantum system that is in a probabilistic mixture of multiple
pure states. This type of state describes a quantum system
whose state is not completely known. Mixed states are usually
represented by a density matrix ρ:

ρ =
∑
i

pi|ψi⟩⟨ψi| (2)

where |ψi⟩ are the pure states the system can be in, and pi
is the probability that the system is in state |ψi⟩, satisfying∑

i pi = 1.

Quantum systems evolve through linear and unitary evolu-
tion via quantum circuits, transforming from one initial state
to another. Mathematically, a pure state |ψ⟩ can evolve into
another pure state |ψ′⟩ through the action of a quantum gate
(or quantum circuit):

|ψ′⟩ = U |ψ⟩ (3)

The evolution of a mixed state is described by its density
matrix, where a mixed state ρ evolves into a new mixed state
ρ′ as:

ρ′ = UρU† (4)

where U is a unitary matrix representing the action of the
quantum gate or quantum circuit, satisfying UU† = U†U = I .
U† is the conjugate transpose of U , and I is the identity matrix.

In quantum computing, a quantum system can extract com-
putational results using observables at the final output stage
of a quantum computer, converting quantum information into
classical data through measurement. A projective measurement
is described by an observable M , a Hermitian operator on
the state space of the system being observed. Mathematically,
an observable M can be represented as a combination of
its eigenvalues λi and corresponding projection operators Pi,
i.e., M = ΣiλiPi. The measurement result will randomly
obtain an eigenvalue λi, and at the same time, the quantum
state |ϕ⟩ will collapse to the corresponding eigenstate with
probability p(λi) = ⟨ϕ|Pi|ϕ⟩. Therefore, the average value of
the observable M can be expressed as:

⟨M⟩ =
∑
i

λi⟨ϕ|Pi|ϕ⟩ (5)

For mixed states, the expectation value of the observable
M can be calculated using the density matrix ρ:

⟨M⟩ = tr(ρM) (6)

where tr(·) represents the trace operation. In this paper, we will
use the observable Z where Z = (+1) |0⟩⟨0| + (−1) |1⟩⟨1|,
for example, in a system of n qubits, the observable n for the
first qubit is mathematically expressed as Z1 = Z ⊗ I⊗(n−1).

III. METHOD

In QMSAN model, we first transform the classical input
data xs into quantum states |xs,q⟩, |xs,k⟩, and |xs,v⟩ through
three trainable Quantum Embeddings. This process involves
quantum feature mapping, which directly converts classical
data into quantum states. Then, we calculate the mixed-state
similarity between |xs,q⟩ and |xs,k⟩, and measure the observ-
able Z for |xs,v⟩. Afterwards, the data is fed into a classical
fully connected network to complete binary prediction tasks.
The architectural design of QMSAN model is illustrated in
Fig. 1.

In this section, we will detail the components of the Quan-
tum Mixed-State Self-Attention Network (QMSAN).
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Fig. 1. Quantum Mixed-Stae self-attention network framework.

A. Quantum Embedding

Typically, quantum machine learning methods focus on
using fixed quantum feature maps, followed by applying a
trainable, adaptable variational quantum circuit to adjust the
measurement basis. This architecture, consisting of a data
encoding circuit and a learnable Quantum Neural Network
(QNN), is widely applied in various scenarios such as quan-
tum convolutional neural networks [42], Quantum Recurrent
Neural Networks [35], strongly entangling circuit architectures
[43], and searched architectures [44], [45]. However, this
approach requires careful design of the encoding circuit, as
the fixed quantum feature map significantly impacts the algo-
rithm’s generalization performance, and most computational
resources are used for the QNN. Yet, Ref. [46]–[48] suggest
that this might not be the most efficient method.

If the data is already well-mapped in Hilbert space, then
subsequent tasks can be achieved with a shallow quantum
classifier circuit. This is similar to the ”feature extractor”
in classical machine learning [49], [50], where networks are
trainable with the core purpose of converting or encoding
input data (such as images, text, or audio) into a new feature
space. This feature space more effectively represents the key
information of the data, facilitating subsequent tasks such
as classification, regression, or clustering. Therefore, we can
focus the adaptive training of the quantum circuit on training
a trainable quantum feature map. This maps classical data into
Hilbert space. We refer to this process as quantum embedding.

We introduce a repetitive iterative architecture for quan-
tum embedding [47], as shown in Fig. 2. In classical self-
attention networks, there are three parts: query, key, and value.
Similarly, in our quantum self-attention network, we train
three quantum embeddings. Through these embeddings, we
represent classical data xs as quantum states |xs,q⟩, |xs,k⟩,
and |xs,v⟩, where 1 ≤ s ≤ S and S represents the number of

input vectors in the data sample.
Specifically, these three mappings to |xq⟩, |xk⟩, and |xv⟩

use the same ansatz structure, implemented with different
parameters θq , θk, and θv for query, key, and value functions,
respectively. The ansatz employs single qubit and two qubit
quantum gates. First, we use the single qubit gate Rx(xi) to
encode the input data x = (x1, . . . , xN )

T into the quantum
circuit. Then, we use the Rzz(θ1) = e−iθ1σz⊗σz gate to
entangle the qubits and add Ry(θ2). To enhance the expres-
siveness of the quantum circuit, it can contain L layers of such
structure. Finally, we add the single qubit gate Rx(xi) again
in the last layer to encode the data. Thus, the entire circuit
can be represented as Uemb(x,θ), where x is the input data
and θ are the trainable parameters. Each layer consists of a
data encoding circuit block S(x) and a trainable circuit block
W (θl) controlled by the trainable parameters θl of each layer.

Uemb(x,θ, L) = S(x)

L∏
l=1

(
W (l)(θl)S(x)

)
(7)

Therefore, through three trainable quantum embeddings, we
embed the input data xs into three quantum states:

|xs,q⟩ = Uemb(xs,θq, L) |0⟩⊗n

|xs,k⟩ = Uemb(xs,θk, L) |0⟩⊗n

|xs,v⟩ = Uemb(xs,θv, L) |0⟩⊗n

(8)

B. Quantum Self-Attention Mechanism

When designing a quantum self-attention network, a
straightforward and natural way to calculate the similarity
between queries and keys is to use the inner product: αs,j =
|⟨xs,q|xj,k⟩|2. However, in quantum circuits, since only unitary
transformations are performed, the transformation between
|xs,q⟩ and |xj,k⟩ for the same number of qubits can be
considered a rotation operation, as they both reside in the
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Fig. 2. Three Quantum Embedding Ansatzes with Different Entanglement Layers.

same Hilbert space. In contrast, in classical self-attention
networks, the query vector q = xWq and the key vector
k = xWk, where x is the input vector, and Wq and Wk

are the corresponding weight matrices. Wq and Wk change
the direction and length of x. The relationship between q
and k involves rotation and scaling. Therefore, Ref. [38]
argues that this makes it difficult for |xs⟩ to simultaneously
correlate those |ψj⟩ that are far away. This direct extension
is not suitable or reasonable for working as the quantum
self-attention. Furthermore, the method proposed in the paper
involves converting the quantum states of queries and keys into
classical data through observable and then calculating their
similarity. However, this approach has a potential limitation in
that the observable Z may not fully capture all the information
of the quantum states, leading to the loss of some quantum
information.

Based on the above analysis, inspired by the Hilbert-
Schmidt distance, we proposes a quantum self-attention net-
work based on mixed states to these shortcomings. By per-
forming partial trace operations on the pure state query and
key vectors, we obtain mixed-state queries and keys. Although
this reduces their dimensions, it also introduces rotational
and scaling characteristics. Our method keeps the quantum
information at the quantum level until the final measurement
step, avoiding measurement in the intermediate process of
calculating the similarity between queries and keys. This
prevents potential information loss that may occur during the
conversion of quantum information into classical information
before calculating the similarity between quantum queries and
keys.

The Hilbert-Schmidt distance is an important distance met-

ric in quantum information theory [51]. It can be measured and
optimized with a small quantum circuit, making it significant
for near-term quantum computing [47]. Its definition is as
follows:

DHS(ρ, σ) = tr
(
(ρ− σ)2

)
(9)

Expanding the equation above results in three distinct terms:
tr(ρσ), tr(σ2), and tr(ρ2) [47]. The term tr(ρσ) quantifies the
distance between two ensembles in Hilbert space through the
overlap between clusters; a value of tr(ρσ) = 1 suggests that
the ensembles are formed from identical pure states, whereas
tr(ρσ) = 0 indicates orthogonality among all embedded data
points. User The ’purity’ terms tr(ρ2) and tr(σ2) assess the
overlap within clusters. In the quantum self-attention network,
since we are more concerned with the similarity between
queries and keys, we omit tr(σ2) and tr(ρ2), ultimately using
only tr(ρσ) as the method for calculating the similarity be-
tween queries and keys in the quantum self-attention network.

For |xq⟩ and |xk⟩, they are obtained from the initial state
|0⟩⊗n through the unitary transformation Uemb(x,θ), so |xq⟩
and |xk⟩ are both pure states. To obtain the mixed states, we
extract information from the first n/2-qubit subsystem A of the
entire n-qubit quantum system by performing a partial trace
operation on the quantum system and discarding the remaining
n/2-qubit subsystem B. Specifically, this operation transforms
the pure states |xq⟩ and |xk⟩ of the entire system into the
mixed states ρq and σk of the corresponding subsystems,
respectively:

ρq = trB(|xq⟩⟨xq|)
σk = trB(|xk⟩⟨xk|)

(10)

where trB(·) is the partial trace over system B.
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We define quantum self-attention weight coefficient between
the s-th and j-th mixed states, computed from the correspond-
ing query and key parts:

αs,j = tr(ρs,qσj,k) (11)

The above equation can be easily implemented by the SWAP
test quantum circuit [52], [53], as shown in Fig. 3, with the
proof as follows.

Suppose we have a pair of mixed states ρ and σ of n qubits,
with ρ =

∑
i pi|ei⟩⟨ei| and σ =

∑
i qi|fi⟩⟨fi| decomposed

using their respective orthogonal bases |ei⟩ and |fi⟩. If we
perform a measurement on the auxiliary qubit and obtain the
result |0⟩, the SWAP test passes, otherwise it fails. Therefore,
in this case, the probability of |ei⟩ ⊗ |fj⟩ passing the SWAP
test [54] is

p(|0⟩) = 1

2
+
|⟨ei|fj⟩|2

2
(12)

For |ei⟩⊗ |fj⟩ in the probability piqj , the probability of the
mixed state ρ⊗ σ passing the SWAP test is:

p(|0⟩) =
∑
i

∑
j
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(
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(13)
Therefore, we use the SWAP test quantum circuit to imple-

ment the calculation of quantum self-attention weight coeffi-
cients between queries and keys. This can effectively estimate
the closeness of two mixed states. If the two mixed states are
identical, ρ = σ, the test always passes with p = 1. When the
states are different, the finite probability p of passing the test
depends on the similarity tr (ρσ) between the two states; the
closer they are, the greater the probability of passing the test.
The output solution process is described in matrix form, and
the weight coefficients matrix can be represented as

A =


α̃0,0 α̃0,1 · · · α̃0,n−1

α̃1,0 α̃1,1 · · · α̃1,n−1

...
...

. . .
...

α̃n−1,0 α̃n−1,1 · · · α̃n−1,n−1

 (14)

where ˜αs,j represents the normalized quantum self-attention
coefficient:

α̃s,j =
αs,j∑S

m=1 αs,m

(15)

For the value part, we use an n-dimensional vector to
represent it, with the observable Z measured for each qubit,
resulting in a vector with the same dimension as the number
of qubits.

vs =
[
⟨Z1⟩s ⟨Z2⟩s · · · ⟨Zn⟩s

]⊤
(16)

Finally, the classical form of the output ys can be calculated
by the following formula. We adopt the structure of a residual
network to design the output to prevent the network from
degeneration:

ys = xs +A · vs (17)

C. Quantum Position Encoding

Our QMSAN, similar to classical self-attention networks,
can model the relationships among tokens in a sequence and
capture the contextual representation of a given token, with
an outstanding ability to capture long-range dependencies.
However, self-attention networks have an inherent limitation
in that they cannot capture the sequential order of the input
tokens [55]–[57]. Therefore, to enable the model to exploit the
order of tokens, we must inject some information about the
position of tokens in the sequence.
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Fig. 4. Introducing Positional Encoding in Quantum Embedding Circuits.

For quantum position encoding, using the entanglement
property of quantum systems for encoding is an effective
strategy. Ref. [58] proposes a method in which classical
positional information can be encoded onto one or more
additional qubits through quantum embedding. Subsequently,
a trainable Quantum Neural Network (QNN) circuit fully
entangles the qubits with positional information with the data
qubits, allowing the output quantum state of the entire sys-
tem to contain positional information. However, this method
requires additional quantum qubits resources. In this study, we
adopt a different approach, as shown in Fig. 4. We designed
a quantum circuit that eliminates the need for auxiliary qubits
by sacrificing circuit depth, thereby saving quantum qubits
resources. We introduce more quantum gate operations into
the quantum circuit to achieve effective encoding of positional
information.

Inspired by the Ref. [16], we introduce the sinusoidal
positional encoding into the quantum circuit. In classical



sinusoidal positional encoding, the values of the position
vector corresponding to the position at even and odd positions
are:

PEs,2i = sin(s/100002i/dmodel)

PEs,2i+1 = cos(s/100002i/dmodel)
(18)

where s is the position, i is the dimension, and the positional
encoding has the same dimension dmodel as the embedding.

We scale the positional encoding data to the range [0, 2π]:

ts =
PEs − PEmin

PEmax − PEmin
× 2π (19)

For the input data x, we scale its range to [0, π]:

x′
s =

xs − xmin

xmax − xmin
× π (20)

where xmin and xmax denote the minimum and maximum
values found across all elements in all vectors within the
input data set, and PEmin and PEmax are the minimum and
maximum values of the positional encoding data.

Different scaling treatments are applied to the positional
encoding PE(s) and the input data xs due to the characteristics
of the qubit rotation gate Rx(θ). This gate rotates the quantum
state around the X axis by an angle θ in a counterclockwise
direction, where the effective range of θ is [0, 2π], representing
a complete cycle. For the periodic PE(s), its period naturally
matches the 2π cycle of the Rx gate. Therefore, we ensure
that the values of PE(s) are transformed into the [0, 2π]
range through appropriate scaling to be consistent with the
operational cycle of the Rx gate. However, for the original
input data xs, since it does not possess periodicity, scaling
it directly to [0, 2π] might result in unintended changes in
physical properties. Specifically, the encoded quantum state
Rx(2π−x′s) = −ZRx(x

′
s)Z demonstrates a specific transfor-

mation relationship, which does not exist in the original data
xs. Therefore, this step emphasizes the specific considerations
that need to be taken when handling different types of data
in the quantum encoding process, to ensure that the physical
significance and the encoding effectiveness of the data are ap-
propriately reflected. Through this refined data processing and
encoding strategy, we are able to more effectively transform
classical information into states in a quantum circuit.

D. Loss Function

We train our model on the dataset D =
{(xm;1,xm;2, . . . ,xm;Sm

), ym}Ns
m=1 by minimizing the

loss function, where Ns represents the total number of
samples, and the label ȳm ∈ {0, 1} for each sample indicates
its category.

For each sample, Sm denotes the number of words it
contains, and each input data xm,s is an n-dimensional vector.

The feature vector for each sample is obtained by summing
and averaging the outputs ym,s, where 1 ≤ m ≤ Ns and
1 ≤ s ≤ Sm:

ym =
1

Sm

Sm∑
s=1

ym,s (21)

The output ym of each sample is input into a fully connected
layer to produce the binary prediction value ŷm for each
sample:

ŷm := σ(w⊤ · ym + b) (22)

where w and b represent the weight and bias of the fully
connected layer, respectively, and σ denotes the sigmoid
activation function.

For classification problems, there are many loss functions
to choose from, such as cross-entropy loss and mean squared
error (L2 loss). In the current work, we use the simple and
effective mean squared error as the loss function:

L (Θ,w, b;D) = 1

2Ns

Ns∑
m=1

(ŷm − ȳm)
2 (23)

where Θ represents all trainable parameters in the ansatz.

Algorithm 1 QMSAN training algorithm.
Input: Batch sizes BS. Number of words per sample

Sm. Learning rate η. Number of quantum embed-
ding Layers L. Number of qubits n. The scaled posi-
tion encodings ts. The scaled training data set D =
(x′

m;1,x
′
m;2, . . . ,x

′
m;Sm

), ym}Ns
m=1.

Θ ∼ N (0, 0.01), w ∼ N (0, 0.01), b← 0
1: repeat
2: for m from 1 to BS do
3: for s from 1 to Sm do
4: |xs,q⟩ ← Uemb(x

′
s, ts,θq, L) |0⟩⊗n

5: |xs,k⟩ ← Uemb(x
′
s, ts,θk, L) |0⟩⊗n

6: |xs,v⟩ ← Uemb(x
′
s, ts,θv, L) |0⟩⊗n

7: ρs,q ← trB(|xs,q⟩⟨xs,q|)
8: σs,k ← trB(|xs,k⟩⟨xs,k|)
9: vs ←

[
⟨Z1⟩s ⟨Z2⟩s · · · ⟨Zn⟩s

]⊤
10: ym,s ← QAttention(ρs,q, σs,k,vs)
11: end for
12: ym = 1

Sm

∑Sm

s=1 ys

13: ŷm := σ(w⊤ · ym + b)
14: end for
15: L ← 1

2Ns

∑Ns

m=1 (ŷm − ȳm)
2

16: Θ← Θ− η∇ΘL
17: w ← w − η∇wL
18: b← b− η∇bL
19: until converged
Output: Optimal parameters Θ∗,w∗,b∗

IV. NUMERICAL EXPERIMENTS
In this section, we present simulation experiments for text

classification tasks conducted on the Tensorcircuit platform
[59].These experiments aimed to evaluate our model’s effec-
tiveness in processing various types and sizes of text data, as
well as its robustness to noise perturbations. For this purpose,
we selected two types of publicly available datasets to validate
the efficacy of our model. The first type consists of simple
sentences or phrases, aiming to evaluate the model’s perfor-
mance in understanding sentence meaning and grammatical



structure. This type includes the MC and RP datasets [60]. The
second type, known as the Sentiment Labelled Sentences Data
Set [61], comprises three subsets of real-world user reviews.
It is primarily used to assess the model’s ability to analyze
sentence sentiment, including the Yelp, IMDb, and Amazon
datasets. The study first evaluated models without position
encoding information on both types of datasets. Subsequently,
an in-depth analysis was conducted on models integrated with
position encoding information on the second type of dataset.
Considering that it is impossible to completely eliminate
noise in practical noisy intermediate-scale quantum (NISQ)
devices, the model is affected by various errors. This research
simulated the impact of three types of noise: depolarizing,
phase-damping, and amplitude-damping on model results in a
simulation environment to evaluate the model’s robustness to
noise.

A. Datasets

• In the MC (meaning classification) task, there are 130
sentences (70 train + 30 development + 30 test), each
with 3 or 4 words. Half of the sentences are related to
food, and the other half to information technology (IT).
The task’s vocabulary consists of 17 words, with some
words shared between the two categories, making this
task challenging [60].

• In the RP (RELPRON) task, there are 105 noun phrase
sentences containing relative clauses (74 train + 31 test),
each with 4 words. The task’s vocabulary has 115 words,
and the selection of phrases ensures that each word
appears at least three times in the dataset. The goal is
to determine whether a noun phrase contains a subject
or object relative clause. Compared to the MC task, the
larger vocabulary and resulting word sparsity make this
task a more challenging benchmark [60].

• The Sentiment Labelled Sentences dataset comprises re-
views from three websites: Amazon, IMDb, and Yelp,
with each website providing 1000 sentences labeled with
sentiments. The sentences in this dataset have an average
length of 10.2 words, with the shortest sentence being 1
word and the longest being 30 words. The IMDb dataset
contains movie reviews from the imdb.com website, with
an average sentence length of 14.4 words. The shortest
sentence in this dataset is 1 word, and the longest is
71 words. The Yelp dataset consists of restaurant re-
views, with an average sentence length of 10.9 words,
a minimum of 1 word, and a maximum of 32 words.
In all datasets, reviews with scores of 4 and 5 are
considered positive, while those with scores of 1 and
2 are considered negative. In each subset, positive and
negative sentiment reviews each account for 50%. The
datasets randomly select 80% of the data as the training
set and the remaining 20% as the test set.

B. Experiment Settings

To fairly compare our experimental results with those in
Ref. [38], we set the number of qubits for the input of quantum

TABLE I
EXPERIMENTAL CONFIGURATION. ‘LR’ DENOTES LEARNING RATE.

Data set n L
LR-NP LR-P

NN-NP CB-NP AA-NP NN-P CB-P AA-P

MC 2 1 0.005 0.006 0.009 / / /
RP 4 2 0.002 0.05 0.01 / / /

IMDb 4 1 0.008 0.008 0.01 0.008 0.008 0.008
Yelp 4 1 0.007 0.007 0.03 0.03 0.03 0.01

Amazon 4 1 0.08 0.009 0.09 0.02 0.01 0.02

embeddings to be the same as theirs. Specifically, we used
n = 2 qubits for the MC task and n = 4 qubits for the
other tasks. The detailed hyperparameter settings are shown
in Table I.

To explore the potential advantages of our qubit topol-
ogy in QMSAN, we compared three distinct entanglement
schemes within the quantum embeddings module: nearest-
neighbor (NN) ansatz, circuit-block (CB) ansatz [62], and
all-to-all (AA) ansatz [63], as shown in Fig. 2. The NN
ansatz involves a linear arrangement of two-qubit operations
within a sequence of qubits, providing a balance between
entanglement strength and circuit complexity. The CB ansatz
is characterized by a looped arrangement of qubits, suitable for
efficient closed-circuit operations. In contrast, the AA ansatz
is based on a fully connected network of qubits, allowing for
direct interactions between any pair of qubits and resulting in
enhanced entanglement potential.

For clarity, we denote the QMSAN variants with these
entanglement schemes as QMSAN-NN, QMSAN-CB, and
QMSAN-AA, respectively. Additionally, we introduce suffixes
to indicate the presence or absence of our novel quantum
position encoding: ’-P’ for models with quantum position
encoding and ’-NP’ for models without it. For example,
QMSAN-NN-P denotes QMSAN model with NN ansatz and
position encoding, while QMSAN-NN-NP denotes the variant
without position encoding.

Furthermore, we propose a variant called QMSAN-D2pi,
where the input data is scaled to the range [0, 2π]. This
variant serves as a comparison model to assess the impact
of different scaling approaches on the performance of our
quantum embeddings. Similarly, we propose the Quantum
Pure-State Attention Network (QPSAN) to compare different
computational methods for quantum queries and keys. QP-
SAN employs a distinct method for computing the similarity
between quantum queries and keys by utilizing the inner
product of pure states. Apart from this, QPSAN and QMSAN
maintain identical structures. To facilitate comparisons, we
adopt the same naming convention for QPSAN and QMSAN-
D2pi variants, such as QPSAN-NN-P and QMSAN-D2pi-NN-
P.

Assuming the quantum embeddings ansatz has n qubits and
L layers, the AA ansatz has 3n((n− 1)/2 + n)L parameters,
while both the NN and CB ansatzes have 6nL parameters. The
ansatzes for queries, keys, and values have the same depth.



Notably, the AA ansatz has an increased total number of two-
qubit gates compared to the NN and CB ansatzes, providing
it with stronger entanglement capabilities.

All ansatzes parameters Θ and the weights w of the
classical part of the network are initialized from a normal
distribution with mean 0 and variance 0.1. The bias b of the
classical network is initialized to 0. For the value ansatz, we
measure the expectation value under the Pauli-Z observable.
For the attention matrix, we measure the probability of the
output state |0⟩ under the Pauli-Z observable. Through these
measurements, we convert quantum data into classical data
that can be utilized by subsequent classical networks. In our
work, we use the Tensorcircuit framework [59] for simulating
quantum circuits and the Tensorflow [64] framework for pa-
rameter optimization, with the optimizer Adam [65]. The batch
size is 64, and training stops when convergence is reached or
after a fixed number of epochs. In the MC and RP tasks,
we repeat each experiment 9 times with different parameter
initializations. For the Sentiment Labelled Sentences Data Set
task, we use cross-validation for the experiments.

C. Experiments with Non-Positional Models

In this experiment, we conduct numerical experiments with
two model architectures: Non-Positional Models and Posi-
tional Models. This allows us to deeply analyze the perfor-
mance differences between models and explore how posi-
tional information enhances the model’s understanding and
processing of data. The experimental design aims to compare
with representative models in classical networks and quantum
networks. For the MC and RP datasets, we compare our
experimental results with a classical quantum model based on
syntactic analysis [60] and further with QSANN. Meanwhile,
for three public sentiment analysis datasets (Yelp, IMDb, and
Amazon), our models will be compared and analyzed with
classical self-attention neural networks (CSANN) [38] and
QSANN models. Through these comparative experiments, we
aim to comprehensively evaluate the performance and potential
of quantum self-attention networks across different models and
datasets.

a) MC dataset: We first conducted experiments on mod-
els without positional information, and the results are detailed
in Table II. On the MC dataset, the QMSAN-NP series models,
regardless of the entanglement structure used, can perfectly
distinguish sentences related to food and information technol-
ogy, significantly outperforming the quantum model based on
syntactic analysis mentioned in reference [60]. Since the task
of the MC dataset is relatively simple, different entanglement
structures can effectively capture the semantic information of
sentences in this case. Notably, in terms of the number of
parameters, QMSAN-NP series models use fewer parameters
compared to the QSANN and classical deep learning model
DisCoCat, yet achieve the same performance level, indicating
the potential application value of QMSAN-NP series models
in resource-limited environments.

b) RP dataset: For the RP dataset, we evaluate the
model’s performance in processing more complex data. The

experimental results Table II show different degrees of per-
formance on different variants of the QMSAN-NP series
models, with the QMSAN-AA-NP model performing the best
with a test accuracy of 77.42%. The experimental results
of the other two entanglement structures are reduced, which
may be because the fully connected structure provides more
abundant information entanglement, helping the model better
capture complex relationships in sentences. The experimental
results of different series models of QMSAN-NP all surpass
the 72.30% test accuracy of the quantum machine learning
model QSANN based on syntactic analysis and significantly
outperform the 67.74% of the QSANN model. Although the
complexity of the RP dataset is significantly higher than that
of the MC dataset, our model can still effectively parse and
infer complex relationships in the dataset, further confirm-
ing the great potential of quantum self-attention networks
in enhancing the model’s understanding ability. Specifically,
our QMSAN-NN-NP and QMSAN-CB-NP maintain a lower
number of parameters and computational cost while improving
performance, indicating the potential of QMSAN models in
handling natural language processing tasks with certain com-
plexity.

Concurrently, we conducted a comparative analysis of the
experimental outcomes for QMSAN-NP and QPSAN-NP on
this dataset. The QMSAN-NP series models’ performance on
the RP dataset is superior to that of the QPSAN-NP series
models, with QMSAN-AA-NP model achieving the highest
test accuracy of 77.42%, 3.23% higher than the highest test
accuracy of 74.19% of the QPSAN-NP series models. The
specific results are shown in Table II.This indicates that QM-
SAN model can more accurately capture the similarity features
between queries and keys using the mixed state approach,
especially in processing complex semantic relationships. This
validates our theoretical analysis in Section III-B.

c) Sentiment Labelled Sentences Data Set: This part of
the research focuses on the Sentiment Labelled Sentences Data
Set, covering more complex and diverse sentiment analysis
tasks. The Sentiment Labelled Sentences Data Set, which
includes three subsets: Yelp, IMDb, and Amazon, covers
different review categories, each with its unique language
usage and emotional expression, increasing the difficulty and
complexity of sentiment analysis and providing a broader and
more challenging testing platform for our QMSAN-NP series
models. The experimental results are detailed in Table III.

Compared to classical model CSANN, the QMSAN-NP
series models’ methods have achieved comprehensive im-
provements in accuracy, with the maximum being 4.45% on
IMDB for QMSAN-NN-NP. Compared to the quantum model
QSANN, the accuracy has significantly improved on most
datasets, with the maximum increase of 3.84% on the IMDb
dataset and 2.47% on the Amazon dataset. The accuracy on
the Yelp dataset is also similar, indicating that QMSAN-
NP series models, by using mixed-state quantum attention
calculation and trainable embedded quantum modules, can
more effectively capture the intrinsic features and complex
relationships of data, providing a richer data representation



TABLE II
TEST ACCURACY OF OUR PROPOSED METHODS COMPARED TO DISCOCAT AND CSANN ON MC AND RP TASK.

Method MC RP

#Paras TrainAcc(%) TestAcc(%) #Paras TrainAcc(%) TestAcc(%)

DisCoCat [60] 40 83.10 79.80 168 90.60 72.30
QSANN [38] 25 100.00 100.00 109 95.35 67.74

QPSAN-NN-NP 15 100.00 100.00 53 95.95 70.97
QPSAN-CB-NP 15 100.00 100.00 53 95.95 70.97
QPSAN-AA-NP 18 100.00 100.00 137 95.95 74.19
QMSAN-NN-NP 15 100.00 100.00 53 95.95 74.19
QMSAN-CB-NP 15 100.00 100.00 53 95.95 74.19
QMSAN-AA-NP 18 100.00100.00100.00 100.00100.00100.00 137 97.3097.3097.30 77.4277.4277.42

TABLE III
TEST ACCURACY OF OUR PROPOSED METHODS COMPARED TO CSANN AND THE NAIVE METHOD ON YELP, IMDB, AND AMAZON DATA SETS.

Method Yelp IMDb Amazon

#Paras TrainAcc(%) TestAcc(%) #Paras TrainAcc(%) TestAcc(%) #Paras TrainAcc(%) TestAcc(%)

CSANN [38] 785 / 83.11± 0.89 785 / 79.67± 0.83 785 / 83.22± 1.28
QSANN [38] 49 / 84.79± 1.29 49 / 80.28± 1.78 61 / 84.25± 1.75

QMSAN-NN-NP 29 99.53± 0.22 84.14± 2.27 29 99.48± 0.37 84.12± 2.31 29 99.80± 0.10 86.72± 2.38
QMSAN-CB-NP 29 99.58± 0.23 84.40± 1.98 29 99.45± 0.24 83.74± 2.01 29 99.83± 0.17 86.61± 1.71
QMSAN-AA-NP 71 99.65± 0.18 84.73± 2.34 71 99.50± 0.40 83.76± 3.04 71 99.75± 0.18 86.56± 1.90
QMSAN-NN-P 29 99.45± 0.32 84.85± 1.33 29 99.18± 0.41 84.77± 3.12 29 99.87± 0.94 87.41± 1.16
QMSAN-CB-P 29 99.80± 0.20 84.82± 1.21 29 99.18± 0.41 84.82± 2.9684.82± 2.9684.82± 2.96 29 99.90± 0.93 87.43± 1.16
QMSAN-AA-P 71 99.55± 0.26 84.96± 3.3484.96± 3.3484.96± 3.34 71 99.33± 0.36 84.29± 2.32 71 99.91± 0.50 87.48± 1.0287.48± 1.0287.48± 1.02

for complex sentiment analysis tasks, thereby improving the
model’s representational ability. It can effectively adapt to
sentiment classification tasks in different domains and data
distributions, not only significantly improving performance
in most datasets but also maintaining stable performance in
different application scenarios, demonstrating better general-
ization ability.

For the number of parameters, QMSAN-NN-NP and
QMSAN-CB-NP have 29 parameters, significantly fewer than
CSANN’s 785 and QSANN’s 49, yet they show noticeable
performance improvements on most datasets. Being able to
capture sufficient information with fewer parameters is very
beneficial for reducing computational resources and improving
efficiency. This indicates that our model has a clear advan-
tage in capturing emotional features in textual data. Among
the three QMSAN-NP series models, QMSAN-AA-NP has
slightly more parameters and stronger quantum entanglement
capabilities, but it only has a slightly higher test accuracy
on the Yelp dataset compared to the other two models.
This suggests that these more complex different datasets may
require different entanglement methods.

D. Experiments with Positional Models

To further enhance model performance, this section of the
experiment focuses on analyzing the impact of positional
information on QMSAN model. Considering the importance
of positional information in text sequence processing, we
adopted the use of fixed quantum gates to encode positional
information. Since the average number of words per sentence
in the MC and RP datasets is relatively small, the impact

of positional information on model performance may not be
significant. Therefore, we chose to evaluate the performance
of the QMSAN series models with introduced positional
information on the Yelp, IMDb, and Amazon data subsets to
more accurately measure the impact of positional information.
Experiments show that the QMSAN-P series models with
fixed positional information have comprehensively improved
performance compared to models without positional infor-
mation. The experimental results are detailed in Table III,
with the maximum increase in test accuracy of 0.71% on the
Yelp dataset, 1.08% on the IMDb dataset, and 0.92% on the
Amazon dataset.

The above experimental results show that our method can
effectively encode positional information in text sequences,
comprehensively improving the accuracy of QMSAN model
in different sentiment analysis tasks. By using fixed quantum
gates with positional information, the model is provided with
key information about the relative positions of words in the
text, enhancing the understanding of the entire text structure.
The advantage of this method is that it provides a fixed and
efficient way for quantum models to incorporate positional
information. We do not need to increase additional qubits
resources and do not need to add trainable parameters, which
can save computational resources and time during training.
Moreover, since a stable and consistent way is adopted to
represent the positional information of words, this helps the
model to generalize better to unseen data.

At the same time, we compared the experiments of the
QMSAN-D2pi-P series models, which scale the input data
to [0, 2π]. The results, as shown in Fig. 5, indicate that



TABLE IV
TEST ACCURACY OF QMSAN-P SERIES MODELS ON YELP, IMDB, AND AMAZON DATA SETS WITH DIFFERENT NOISE MODELS.

Noise Model Yelp IMDb Amazon

NN-P CB-P AA-P NN-P CB-P AA-P NN-P CB-P AA-P

DP(0.01) 84.55±1.79 84.51±1.38 84.77±1.81 84.10±3.14 84.27±2.16 83.89±3.64 86.97±1.66 86.98±1.53 86.40±1.16
DP(0.1) 84.49±1.59 84.13±2.27 84.11±2.35 84.30±1.81 84.03±2.07 83.58±1.58 87.02±0.71 86.87±1.21 87.23±1.40
DP(0.2) 83.97±1.74 83.76±3.66 84.22±2.34 83.29±3.04 83.80±1.63 83.83±2.66 86.17±1.53 86.05±1.97 86.33±1.50

AD(0.01) 84.53±2.28 83.99±0.97 84.63±1.39 84.01±3.02 84.17±3.12 83.77±2.42 86.42±1.02 87.34±1.17 87.21±1.81
AD(0.1) 84.05±2.30 84.15±2.01 84.54±1.87 84.09±2.59 83.98±3.89 83.69±1.69 86.30±0.51 87.29±0.81 86.99±2.25
AD(0.2) 83.87±1.40 83.67±1.71 84.20±1.86 83.95±2.54 84.07±2.70 83.91±1.71 86.33±2.29 86.23±1.63 87.30±1.72
PD(0.01) 84.11±2.56 84.60±1.83 83.90±1.53 84.02±2.79 84.02±2.79 84.05±2.43 87.02±0.95 86.78±0.75 87.05±1.05
PD(0.1) 84.35±2.73 84.22±2.82 83.42±1.32 84.22±2.73 83.93±2.08 83.94±3.22 86.37±1.96 86.32±1.96 86.86±2.25
PD(0.2) 84.33±1.44 84.46±1.24 83.85±1.33 83.66±2.58 84.11±2.99 83.71±4.06 86.91±2.15 86.83±1.69 86.89±2.36
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Fig. 5. Test accuracy of different forms of data scaling methods.

the test accuracy of the QMSAN-D2pi-P series models is
comprehensively lower than that of the QMSAN-P series
models, and even lower than the performance of QMSAN-
NP without positional information on some datasets. This also
validates the theoretical analysis in Section III-C.

E. Noise robustness

In the practical application of quantum computing, the
impact of quantum noise is a significant factor, as NISQ
is sensitive to the environment and susceptible to noise
interference. To evaluate the robustness of our QMSAN-P
series models in a quantum noise environment, we conducted
a series of experiments using the Tensorcircuit simulation
software. We considered not only common noise channels such
as depolarizing noise, amplitude damping noise, and phase
damping noise but also explored the impact of different Ansatz
structures on noise resistance.

Depolarizing channel (DP) causes a qubit to depolarize
with probability p. For a single qubit, it is replaced by the
completely mixed state I/2, and remains unchanged with
probability 1-p. The depolarizing channel can be represented
as the following density matrix mapping:

εDP(ρ) = (1− p)ρ+ p

3
(XρX + Y ρY + ZρZ) (24)

where ρ is the original density matrix, and X , Y , Z are Pauli
matrices.

Amplitude damping (AD) describes the process of a quan-
tum system losing energy, while phase damping (PD) describes
the process of a quantum system losing phase information
without losing energy. The noise mapping for a single qubit’s
density matrix can be uniformly expressed as:

εAD/PD(ρ) = E0ρE
†
0 + E1ρE

†
1 (25)

where for amplitude damping, E0 = |0⟩⟨0| +
√
1− p|1⟩⟨1|

and E1 =
√
p|0⟩⟨1|, and for phase damping, E0 = |0⟩⟨0| +√

1− p|1⟩⟨1| and E1 =
√
p|1⟩⟨1|. E0 and E1 represent Kraus

operators, and p represents the noise level.
We added these single-qubit noise channels to the embed-

ding layer circuit for noise addition. At noise levels of 0.01,
0.1, and 0.2, the experimental results are shown in Table IV.
The performance of the QMSAN-P series models showed a
slight decline, with the maximum accuracy drop of 1.54% on
the Yelp dataset under the PD(0.1) noise model. The maximum
accuracy drop on the IMDb dataset was 1.48% under the
DP(0.2) noise model, and the maximum accuracy drop on the
Amazon dataset was 1.38% under the DP(0.2) noise model.
The decrease in test accuracy caused by noise did not exceed
1.6%, indicating that the QMSAN series models can maintain
high performance stability in a low-level quantum noise envi-
ronment, showing good robustness to common quantum noise,
and validating the feasibility of running QMSAN models in a
real quantum computing environment.

V. CONCLUSION

This paper proposes a novel Quantum Multi-head Self-
Attention Network (QMSAN) model, combining the character-
istics of quantum computing with the advantages of classical
self-attention networks to enhance the processing capabilities
and efficiency of NLP tasks. Our model operates on queries
and keys under mixed states through quantum gate operations
and directly generates similarity scalars through measurement.
Compared to conventional pure state unitary transformations,
our method expands the expressive power of the quantum
system through mixed state operations, enabling the model
to capture the similarity between queries and keys more
comprehensively and finely. We also introduced a trainable
quantum embedding module that maps classical data to quan-
tum states, achieving more efficient data representation and



processing. Additionally, we proposed a novel quantum posi-
tional encoding scheme, which encodes positional information
by introducing additional fixed quantum gates in the quantum
circuit, improving the accuracy of encoding without increasing
additional qubits resources.

The experimental results on various datasets verify the
effectiveness of QMSAN. Compared to classical self-attention
networks, our model not only significantly reduces the number
of parameters under the same input sequence conditions but
also demonstrates superior performance, proving its better
learning ability. We anticipate that future work will further
explore the potential of quantum machine learning models,
realizing a fully quantum self-attention network model, and
fully utilizing the unique advantages of quantum computing.
It serves as a scalable module, facilitating the construction
of quantum versions of the Transformer architecture, thereby
bringing unprecedented computational power and efficiency to
machine learning.
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[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[9] Jeffrey L Elman. Finding structure in time. Cognitive science,
14(2):179–211, 1990.

[10] Yoon Kim. Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882, 2014.

[11] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional
neural networks for text classification. In Proceedings of the AAAI
conference on artificial intelligence, volume 29, 2015.

[12] Yan Cheng, Leibo Yao, Guoxiong Xiang, Guanghe Zhang, Tianwei
Tang, and Linhui Zhong. Text sentiment orientation analysis based on
multi-channel cnn and bidirectional gru with attention mechanism. IEEE
Access, 8:134964–134975, 2020.

[13] Abdalraouf Hassan and Ausif Mahmood. Convolutional recurrent deep
learning model for sentence classification. Ieee Access, 6:13949–13957,
2018.

[14] Shujie Liu, Nan Yang, Mu Li, and Ming Zhou. A recursive recurrent
neural network for statistical machine translation. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1491–1500, 2014.

[15] Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, and
Tie-Yan Liu. Layer-wise coordination between encoder and decoder for
neural machine translation. Advances in Neural Information Processing
Systems, 31, 2018.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[17] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
Improving language understanding by generative pre-training. 2018.

[18] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[19] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and
Xuanjing Huang. Pre-trained models for natural language processing: A
survey. Science China Technological Sciences, 63(10):1872–1897, 2020.

[20] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan
Liu, Juanzi Li, and Jian Tang. Kepler: A unified model for knowledge
embedding and pre-trained language representation. Transactions of the
Association for Computational Linguistics, 9:176–194, 2021.

[21] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh,
Thien Huu Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan
Roth. Recent advances in natural language processing via large pre-
trained language models: A survey. ACM Computing Surveys, 56(2):1–
40, 2023.

[22] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based
pre-trained language model for code completion. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, pages 473–485, 2020.

[23] Abid Haleem, Mohd Javaid, and Ravi Pratap Singh. An era of chatgpt
as a significant futuristic support tool: A study on features, abilities, and
challenges. BenchCouncil transactions on benchmarks, standards and
evaluations, 2(4):100089, 2022.

[24] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo,
Jiezhong Qiu, Yuan Yao, Ao Zhang, Liang Zhang, et al. Pre-trained
models: Past, present and future. AI Open, 2:225–250, 2021.

[25] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A
survey on model compression for large language models. arXiv preprint
arXiv:2308.07633, 2023.

[26] Shiqiang Zhu, Ting Yu, Tao Xu, Hongyang Chen, Schahram Dustdar,
Sylvain Gigan, Deniz Gunduz, Ekram Hossain, Yaochu Jin, Feng Lin,
et al. Intelligent computing: the latest advances, challenges, and future.
Intelligent Computing, 2:0006, 2023.

[27] Man-Hong Yung. Quantum supremacy: some fundamental concepts.
National Science Review, 6(1):22–23, 2019.

[28] Aram W Harrow and Ashley Montanaro. Quantum computational
supremacy. Nature, 549(7671):203–209, 2017.

[29] M Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and
Patrick J Coles. Challenges and opportunities in quantum machine
learning. Nature Computational Science, 2(9):567–576, 2022.

[30] Maria Schuld and Nathan Killoran. Is quantum advantage the right goal
for quantum machine learning? Prx Quantum, 3(3):030101, 2022.

[31] Maria Schuld. Supervised quantum machine learning models are kernel
methods. arXiv preprint arXiv:2101.11020, 2021.

[32] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous
and robust quantum speed-up in supervised machine learning. Nature
Physics, 17(9):1013–1017, 2021.

[33] Andrew J Daley, Immanuel Bloch, Christian Kokail, Stuart Flannigan,
Natalie Pearson, Matthias Troyer, and Peter Zoller. Practical quantum
advantage in quantum simulation. Nature, 607(7920):667–676, 2022.

[34] Mina Abbaszade, Vahid Salari, Seyed Shahin Mousavi, Mariam
Zomorodi, and Xujuan Zhou. Application of quantum natural language
processing for language translation. IEEE Access, 9:130434–130448,
2021.

[35] Yanan Li, Zhimin Wang, Rongbing Han, Shangshang Shi, Jiaxin Li,
Ruimin Shang, Haiyong Zheng, Guoqiang Zhong, and Yongjian Gu.
Quantum recurrent neural networks for sequential learning. arXiv
preprint arXiv:2302.03244, 2023.

[36] Samuel Yen-Chi Chen, Shinjae Yoo, and Yao-Lung L Fang. Quantum
long short-term memory. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8622–8626. IEEE, 2022.

[37] LSTM Bi-Directional. Mechanism for sentence modeling. In Neural
Information Processing: 24th International Conference, ICONIP 2017,
Guangzhou, China, November 14-18, 2017, Proceedings, Part II, volume
10635, page 178. Springer, 2017.

[38] Guangxi Li, Xuanqiang Zhao, and Xin Wang. Quantum self-attention
neural networks for text classification. arXiv preprint arXiv:2205.05625,
2022.



[39] Ren-xin Zhao, Jinjing Shi, Shichao Zhang, and Xuelong Li. Qsan: A
near-term achievable quantum self-attention network. arXiv preprint
arXiv:2207.07563, 2022.

[40] Ren-Xin Zhao, Jinjing Shi, and Xuelong Li. Qksan: A quantum kernel
self-attention network. arXiv preprint arXiv:2308.13422, 2023.

[41] Michael A Nielsen and Isaac L Chuang. Quantum computation and
quantum information. Cambridge university press, 2010.

[42] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional
neural networks. Nature Physics, 15(12):1273–1278, 2019.

[43] Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe.
Circuit-centric quantum classifiers. Physical Review A, 101(3):032308,
2020.

[44] Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masarczyk,
Eleanor Scerri, and Vedran Dunjko. Reinforcement learning for op-
timization of variational quantum circuit architectures. Advances in
Neural Information Processing Systems, 34:18182–18194, 2021.

[45] Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. Structure
optimization for parameterized quantum circuits. Quantum, 5:391, 2021.

[46] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of
data encoding on the expressive power of variational quantum-machine-
learning models. Physical Review A, 103(3):032430, 2021.

[47] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Kil-
loran. Quantum embeddings for machine learning. arXiv preprint
arXiv:2001.03622, 2020.

[48] Guangxi Li, Ruilin Ye, Xuanqiang Zhao, and Xin Wang. Concentration
of data encoding in parameterized quantum circuits. Advances in Neural
Information Processing Systems, 35:19456–19469, 2022.

[49] Ajay Shrestha and Ausif Mahmood. Review of deep learning algorithms
and architectures. IEEE access, 7:53040–53065, 2019.

[50] Yushi Chen, Hanlu Jiang, Chunyang Li, Xiuping Jia, and Pedram
Ghamisi. Deep feature extraction and classification of hyperspectral
images based on convolutional neural networks. IEEE transactions on
geoscience and remote sensing, 54(10):6232–6251, 2016.

[51] Patrick J Coles, M Cerezo, and Lukasz Cincio. Strong bound between
trace distance and hilbert-schmidt distance for low-rank states. Physical
Review A, 100(2):022103, 2019.

[52] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. Swap test and
hong-ou-mandel effect are equivalent. Physical Review A, 87(5):052330,
2013.

[53] Hirotada Kobayashi, Keiji Matsumoto, and Tomoyuki Yamakami. Quan-
tum merlin-arthur proof systems: Are multiple merlins more helpful to
arthur? In Algorithms and Computation: 14th International Symposium,
ISAAC 2003, Kyoto, Japan, December 15-17, 2003. Proceedings 14,
pages 189–198. Springer, 2003.

[54] Murphy Yuezhen Niu, Alexander Zlokapa, Michael Broughton, Sergio
Boixo, Masoud Mohseni, Vadim Smelyanskyi, and Hartmut Neven.
Entangling quantum generative adversarial networks. Physical Review
Letters, 128(22):220505, 2022.

[55] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and Hongyang
Chao. Rethinking and improving relative position encoding for vision
transformer. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10033–10041, 2021.

[56] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and
Yunfeng Liu. Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

[57] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank
Reddi, and Sanjiv Kumar. Are transformers universal approximators
of sequence-to-sequence functions? In International Conference on
Learning Representations, 2019.

[58] Chuangtao Chen and Qinglin Zhao. Quantum generative diffusion
model. arXiv preprint arXiv:2401.07039, 2024.

[59] Shi-Xin Zhang, Jonathan Allcock, Zhou-Quan Wan, Shuo Liu, Jiace Sun,
Hao Yu, Xing-Han Yang, Jiezhong Qiu, Zhaofeng Ye, Yu-Qin Chen,
et al. Tensorcircuit: a quantum software framework for the nisq era.
Quantum, 7:912, 2023.

[60] Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri
Kartsaklis, and Bob Coecke. Qnlp in practice: Running compositional
models of meaning on a quantum computer. Journal of Artificial
Intelligence Research, 76:1305–1342, 2023.

[61] Dimitrios Kotzias. Sentiment Labelled Sentences. UCI Machine
Learning Repository, 2015. DOI: https://doi.org/10.24432/C57604.

[62] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility
and entangling capability of parameterized quantum circuits for hy-

brid quantum-classical algorithms. Advanced Quantum Technologies,
2(12):1900070, 2019.

[63] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente
Leyton-Ortega, Yunseong Nam, and Alejandro Perdomo-Ortiz. A
generative modeling approach for benchmarking and training shallow
quantum circuits. npj Quantum Information, 5(1):45, 2019.

[64] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. {TensorFlow}: a system for {Large-Scale} machine
learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

[65] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.


	Introduction
	PRELIMINARIES
	METHOD
	Quantum Embedding
	Quantum Self-Attention Mechanism
	Quantum Position Encoding
	Loss Function

	NUMERICAL EXPERIMENTS
	Datasets
	Experiment Settings
	Experiments with Non-Positional Models
	Experiments with Positional Models
	Noise robustness

	CONCLUSION
	References

