
RulePrompt: Weakly Supervised Text Classification with
Prompting PLMs and Self-Iterative Logical Rules
Miaomiao Li

Institute of Software, Chinese
Academy of Sciences, Beijing, China
University of Chinese Academy of

Sciences, Beijing, China
limiaomiao22@mails.ucas.ac.cn

Jiaqi Zhu∗
Institute of Software, Chinese

Academy of Sciences, Beijing, China
University of Chinese Academy of

Sciences, Beijing, China
zhujq@ios.ac.cn

Yang Wang
Institute of Software, Chinese

Academy of Sciences, Beijing, China
University of Chinese Academy of

Sciences, Beijing, China
wangyang223@mails.ucas.ac.cn

Yi Yang
Institute of Software, Chinese

Academy of Sciences, Beijing, China

Yilin Li
Institute of Software, Chinese

Academy of Sciences, Beijing, China
University of Chinese Academy of

Sciences, Beijing, China

Hongan Wang
Institute of Software, Chinese

Academy of Sciences, Beijing, China
University of Chinese Academy of

Sciences, Beijing, China

ABSTRACT
Weakly supervised text classification (WSTC), also called zero-shot
or dataless text classification, has attracted increasing attention due
to its applicability in classifying a mass of texts within the dynamic
and open Web environment, since it requires only a limited set
of seed words (label names) for each category instead of labeled
data. With the help of recently popular prompting Pre-trained Lan-
guage Models (PLMs), many studies leveraged manually crafted
and/or automatically identified verbalizers to estimate the likeli-
hood of categories, but they failed to differentiate the effects of
these category-indicative words, let alone capture their correla-
tions and realize adaptive adjustments according to the unlabeled
corpus. In this paper, in order to let the PLM effectively under-
stand each category, we at first propose a novel form of rule-based
knowledge using logical expressions to characterize the meanings
of categories. Then, we develop a prompting PLM-based approach
named RulePrompt for the WSTC task, consisting of a rule min-
ing module and a rule-enhanced pseudo label generation module,
plus a self-supervised fine-tuning module to make the PLM align
with this task. Within this framework, the inaccurate pseudo labels
assigned to texts and the imprecise logical rules associated with
categories mutually enhance each other in an alternative manner.
That establishes a self-iterative closed loop of knowledge (rule)
acquisition and utilization, with seed words serving as the starting
point. Extensive experiments validate the effectiveness and robust-
ness of our approach, which markedly outperforms state-of-the-art
weakly supervised methods. What is more, our approach yields in-
terpretable category rules, proving its advantage in disambiguating
easily-confused categories.
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1 INTRODUCTION
With the rapid development of Internet, an abundance of textual
content is produced across news media and social networks. It is
significant and challenging to classify these texts into predefined
categories, especially when up-to-date labeled data are hard to ac-
cess due to the dynamic and open nature of the Web. Consequently,
there has been a growing interest in weakly supervised text classi-
fication (WSTC) [16, 23, 31, 32, 39, 40], also known as zero-shot or
dataless text classification [3, 4, 13, 14, 22–24, 29, 30, 33, 34, 36, 41],
which only requires a limited set of seed words (label names) for
each category.

Recently, the proliferation of prompting Pre-trained Language
Models (PLMs) greatly bolstered the WSTC task, but their perfor-
mances still lag behind supervised methods [32]. Since no labeled
data are available as evidence, relying solely on seed words for
grasping category meanings proves inadequate. In previous re-
searches, many approaches either provided manual verbalizers of
categories or automatically discovered them based on word embed-
ding similarity. Taking them as additional knowledge, some studies
estimated category likelihoods by tapping into the generative capa-
bility of PLMs [40, 41], and others leveraged PLM’s effective vector
representations to calculate the similarity or entailment between
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texts and categories [26, 30]. However, most of them failed to differ-
entiate the effects of these category-indicative words (abbreviated
as indicative words). Although NPPrompt [41] did calculate and
utilize the weights of them, their roles in classification remained
independent of each other and lacked adaptive adjustments for
the current corpus, so cannot accommodate ever-changing Web
environment.

However actually, the effect of each category-indicative word
varies and is worth further explorations. Certain words can de-
termine the category on its own, like the label names, while oth-
ers need to be used cooperatively to distinguish between easily-
confused categories. For example, the word “penalty” itself cannot
signify the “Sports” category, but when combined with “goal”, the
text is likely to talk about a football match. Conversely, an additional
word “company” could imply the “Business” category rather than
“Sports”. Therefore, a simplistic set of indicative words is not enough
to cover the full meanings of categories. Instead, logical operations
such as conjunction and disjunction are appropriate to capture the
correlations of these words as enriched and precipitable knowl-
edge for weakly supervised classification. Luckily, the flexibility of
prompting PLMs just offers an opportunity to apply these logical
rules in the template to achieve precise semantic representations
of categories.

It is obvious that logical rules are difficult to set manually as prior
knowledge, but they can be mined from preliminarily categorized
texts with the aid of pseudo labels generated by the PLM. Further-
more, the mined rules and pseudo labels can mutually enhance
each other in an alternative way, establishing a self-iterative closed
loop for knowledge acquisition and utilization, with seed words
as the starting point. That poses two main challenges: (1) When
inaccurate pseudo labels are available, how to identify candidate
category-indicative words using the PLM and build correlations
among them by means of logical rules to characterize each cate-
gory? (2) With imprecise logical rules, how to effectively transform
them into the PLM template for classification by handling each
logical operator discriminatively, and then update the pseudo label
assigned to each text?

To address these issues, this paper at first proposes a novel kind
of rule-based knowledge in the form of logical expressions for
category understanding in WSTC. Each category is represented
by a disjunctive normal form, where indicative words serve as
atomic propositions. Specifically, a single disjunctive term (one-
literal clause) denotes strong and self-explanatory indicative words,
while a clause of conjunctive form depicts the synergistic effect of
weak and polysemous indicative words.

Based on this, a prompting PLM-based approach for text classifi-
cation is developed, through iteratively updating both the pseudo
label of each text and the logical rule of each category. That is
realized mainly via two modules, rule mining and rule-enhanced
pseudo label generation. The former first extracts signal words from
each text by the PLM, and then regards these words as a transaction
of the relevant category decided by the current pseudo labels. For
each category, we mine frequent 1-itemsets (items) and 2-itemsets
respectively from specific subsets of transactions, and construct the
disjunctive normal form. In the latter module, the current logical
rule for each category is injected into three PLM-based models, each
providing a different perspective. Afterwards, a new pseudo label is

generated for each text via integrating the results of these models.
In addition, in each iteration, the PLM can be fine-tuned with a
self-supervised loss to better align with the task requirements.

In summary, the contributions of this paper include:
• To the best of our knowledge, this is the first attempt to differ-
entiate the effects of category-indicative words in the WSTC
task and characterize category meanings through logical
rules, thereby establishing a new paradigm for knowledge
representation in this field.

• A novel approach leveraging prompting PLMs is presented
to make the pseudo labels of texts and the logical rules of
categories enhance each other iteratively. That facilitates
a sufficient fusion of automatically generated rule-based
knowledge and unlabeled data.

• Comprehensive experiments conducted on multiple real
datasets demonstrate the effectiveness and interpretability
of our approach. It consistently outperforms state-of-the-art
weakly supervised methods, and yields intuitive logical rules
for categories to avoid confusion.

2 RELATEDWORK
2.1 Weakly Supervised Text Classification
Weakly supervised text classification (WSTC) demands minimal
seed information, such as label names or extended keywords for
each category, thereby significantly reducing the cost of text annota-
tions. At an early stage, some researchers used auxiliary knowledge
bases like Wikipedia to establish the semantic correlation between
texts and labels [3, 29]. Subsequently, topic-model based methods
emerged [4, 13, 14, 33, 34], which inferred category-aware topics
from a limited set of seed words. In the last few years, neural meth-
ods has gained prominance [22, 23, 31, 36, 39]. They trained neural
classifiers using pseudo labels of texts, often relying on generated
pseudo-texts or PLMs to detect category-indicative keywords. For
example, LOTClass [24] used label names as the only seed words,
and introduced BERT for category understanding.

In recent time, prompt-based methods [6, 10, 25] have been
extensively developed for the WSTC task. A lot of work harnessed
the strong generative capability of PLMs with instruction templates
for classification. For instance, NPPrompt [41] used initial word
embeddings by PLM to automatically construct verbalizers without
manual design or unlabeled corpus, and estimated the probability
distribution over categories through weighted sum of these words.
PIEClass [40] introduced a noise-robust method to iteratively self-
train text classifiers and update pseudo labels, employing two fine-
tuning strategies of PLMs to improve the quality of pseudo labels.
WDDC [35] utilized the generated words at the [MASK] token as
supervision signals, and proposed a latent variable model to train a
word distribution learner and a text classifier simultaneously. Other
approaches explored the vector representation power of prompting
PLMs. PESCO [30] incorporated label descriptions into predefined
prompts, formulating the WSTC task as a neural matching problem.
Meanwhile, LIME [26] used large textual entailment models trained
with external data to suggest seed words and infer text labels.

Although these methods have demonstrated inspiring perfor-
mances, a gap still exists when compared to fully supervised meth-
ods. Due to the absence of labeled data, there is a notable need to
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automatically extract and apply additional knowledge from unla-
beled data during the classification process. Existing methods just
relied on a set of category-indicative words, but have not taken the
varying effect of these words into account, which leads to imprecise
category understanding.

2.2 Logical Rules for Natural Language
Processing Tasks

Recently, there have been increasing researches on the integration
of logical rules into natural language processing tasks, aiming to
improve the interpretability of neural network models.

Hu et al. [11] proposed a teacher-student framework combining
deep neural networks with first-order logic rules, and transformed
the structured information of logic rules into the weights of neu-
ral networks. TALLOR [15] addressed the named entity tagging
problem by using a small set of seed logical rules as weak super-
vision, and further selected new accurate logical rules based on a
hand-tuned threshold. PTR [9] incorporated logic rules to encode
human prior knowledge and composed several manually designed
sub-prompts into final task-specific prompts. PRBoost [37] viewed
the top-𝑘 predictions at the [MASK] token of large-error instances
as candidate rules through the disjunction operation, and then used
human-selected ones to generate weak labels for model training.

However, most of these previous work required seed rules as ini-
tial supervision or human feedback when selecting accurate rules.
In contrast, our approach focuses on the WSTC task, and estab-
lishes self-iterative closed loop for the acquisition and utilization of
logical rules, eliminating the need for human intervention. Addition-
ally, while existing PLM-based methods primarily employed single
operator when composing decision rules, we leverage both the dis-
junction and conjunction operators to distinguish the strength and
effect of indicative words, enabling a more precise understanding
of categories.

3 PRELIMINARIES
In this section, we formulate the task of weakly supervised text
classification (WSTC), and briefly introduce prompting PLMs as
well as two roles of them as the foundation of our approach.

3.1 Problem Formulation
Given a corpus of unlabeled texts 𝐷 = {𝐷1, . . . , 𝐷𝑁 } and a set of
target categories 𝑍 = {𝑧1, . . . , 𝑧𝐾 } with a label name 𝑙 (𝑧) for each
𝑧 ∈ 𝑍 , weakly supervised text classification (WSTC) aims to assign
a category label 𝑧 (𝑑) to each text 𝑑 . Following the extremely weak
supervision setting [31], only the sole label surface name of each
class is used as supervision here, without other seed words.

3.2 Prompting PLMs for Estimating Likelihoods
Prompt-based tuning applies cloze-style tasks to tune PLMs. A
prompt is composed of a template T (·) and a set V of selected
words. We can fill each text 𝑑 into the template T (·) to obtain the
prompt input T (𝑑). For example, for the text classification task on
news, the prompt can be written as:

T (𝑑) = 𝑑 It is about [MASK] news. (1)

In vanilla prompt engineering, the verbalizer, i.e., an injective
mapping function 𝜙 : 𝑍 → V , links the category set and the set of
selected words. Then, at the masked position, we can calculate the
likelihood for each category via word probability distributions:

𝑃 (𝑧 |𝑑) = 𝑃 ( [MASK] = 𝜙 (𝑧) | T (𝑑)) . (2)

Recently, A lot of work studied for a verbalizer with richer label
words to represent the category. Typically, NPPropmt [41] con-
structs a 𝐾-nearest-neighbor verbalizer, through searching over the
whole vocabulary V for the top-𝑘 nearest words to the label name
of 𝑧 in the embedding space of the PLM, denoted asM(𝑧):

M(𝑧) = Top−𝐾0
𝑣∈V

{sim(emb(𝑣), emb(𝑙 (𝑧))}, (3)

where emb(𝑣) and emb(𝑙 (𝑧)) are the embedding vectors of word 𝑣
and label name 𝑙 (𝑧) respectively, and sim(·) means cosine similarity.

Then, we get the unnormalized probability for each category:

𝑄 (𝑧 |𝑑) =
∑︁

𝑣∈M(𝑧 )
𝑤 (𝑣, 𝑙 (𝑧)) · Θ( [MASK] = 𝑣 | T (𝑑)), (4)

where Θ is the logit vector instead of probability for kernel smooth-
ing, and 𝑤 (𝑣, 𝑙 (𝑧)) is the weight of the word 𝑣 on the label name
𝑙 (𝑧), defined in the softmax form:

𝑤 (𝑣, 𝑙 (𝑧)) = exp(sim(emb(𝑣), emb(𝑙 (𝑧))})∑
𝑣′∈M(𝑧 ) exp(sim(emb(𝑣 ′), emb(𝑙 (𝑧))) . (5)

Besides, NPPrompt uses more than one keywords for certain
categories. The final score is calculated as follows:

𝑄 (𝑧 |𝑑) = max
𝑣∈Φ(𝑧 )

𝑄 (𝑣 |𝑑)), (6)

where Φ(𝑧) contains all keywords for category 𝑧, and 𝑄 (𝑣 |𝑑) is
computed similar to Equation 4, replacing the category 𝑧 by one of
its indicative words 𝑣 and the label name 𝑙 (𝑧) just by 𝑣 itself.

3.3 Prompting PLMs for Getting Signal Words
In addition to estimating category likelihoods, some work [35] uti-
lized prompting PLMs to generate words which can summarize
the content of the given text. That also depends on the probability
distribution overV , and can be used to get better supervision infor-
mation than the words themselves appearing in the text. Formally,
given a threshold 𝐾1, for each text 𝑑 , the top 𝐾1 words with higher
logits can be seen as signal words of 𝑑 , denoted as 𝑆𝑊 (𝑑):

𝑆𝑊 (𝑑) = Top−𝐾1
𝑣∈V

{𝑃 ( [MASK] = 𝑣 | T (𝑑))}. (7)

4 METHOD
In this section, we at first define logical rules of categories as a new
kind of knowledge. Based on this, the framework of RulePrompt is
presented followed by details of the three key modules.

4.1 Logical Rules of Categories
In this paper, we propose a novel kind of rule-based knowledge
representation for categories, as additional weak supervision infor-
mation in text classification. It takes automatically mined category-
indicative words as atomic propositions, and build their correlations
through logical expressions with disjunction and conjunction oper-
ators. Specifically, each category can be represented by a disjunctive
normal form.
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Figure 1: Framework of the Proposed Approach RulePrompt.

Definition 4.1 (Logical Rules of Categories). The meaning of each
category 𝑧 can be represented by a logical rule as follows:

𝑟 (𝑧) =
(
𝑎1 ∨ · · · ∨ 𝑎𝑆

)
∨
(
(𝑏11 ∧ 𝑏12) ∨ · · · ∨ (𝑏𝑇 1 ∧ 𝑏𝑇 2)

)
, (8)

where both 𝑎 𝑗 (1 ≤ 𝑗 ≤ 𝑆) and 𝑏 𝑗1, 𝑏 𝑗2 (1 ≤ 𝑗 ≤ 𝑇 ) are indicative
words of the category 𝑧. The rule can be divided into two sub-rules.
The first 𝑆 words are strong and can indicate the category on its
own, so they are connected directly by the disjunction operator
and compose the disjunctive sub-rule, denoted as 𝑟d (𝑧). On the
contrary, the last 2𝑇 words are comparatively weak and need to act
together to imply the category, so they are firstly paired with the
conjunction operator, and then combined by disjunction. That is
called the conjunctive sub-rule and denoted as 𝑟 c (𝑧).

Despite the relations of indicative words above are not the same
as those in classical logical rules, the ideas of conjunction and
disjunction are actually utilized here to obtain precise semantic
representations of categories in two views. Notice that a simplified
version of logical operations is adopted by restricting the conjunc-
tion on just two words. That is reasonable and empirically effective,
since the discrepancy between individual words and two-word pairs
is essential, compared to 𝑛-word sets (𝑛 > 2).

4.2 Framework
On this basis, we propose a novel prompting PLM-based approach
for theWSTC task as shown in Figure 1. At first, as the starting point
with only label names, we leverage a classical zero-shot prompting
method using PLM [41] to generate the initial pseudo labels and
the signal words of texts (blue dashed line). Then, the approach
enters the self-iteration between pseudo labels and category knowl-
edge (logical rules) through mutual enhancement (green solid line).
Meanwhile, the PLM is gradually optimized by self-supervised fine-
tuning to adaptively support themain iteration above (yellow dotted
line). To achieve the whole process, three modules are designed.

In the rule mining module, based on the current pseudo labels
with confidence scores, we cluster the unlabeled texts assigned to
each category into three sets. Then, with the signal words of each
text obtained by PLM, frequent 1-itemsets (items) and 2-itemsets of

each category are mined from the first two confident sets respec-
tively, which composes the disjunctive normal form of the logical
rule for each category.

In the rule-enhanced pseudo label generation module, we incor-
porate the current logical rules into three prompting PLM-based
classification models from different perspectives to update pseudo
labels. On the one hand, the words in the disjunctive sub-rule with
higher support is directly used to obtain a richer verbalizer in
a generation-based model. On the other hand, the whole rule is
injected into templates to derive texts for similarity-based classifi-
cation. That is realized in two views, global embedding similarity
and local word overlapping. Finally, these results are averaged to
get new pseudo labels of texts. s Moreover, in order to make the
PLM accommodate this specific task, the self-supervised fine-tuning
module is executed after each time pseudo labels are generated,
employing self-supervised loss over high-confidence texts.

4.3 Rule Mining Module
In the weakly supervised setting, only label names are not ade-
quate to reflect the meanings of categories. Thanks to the strong
generative and representation capability of prompting PLMs, it is
feasible to utilize the pseudo labels and signal words of texts to
furthermore understand categories and enrich the prior knowledge.
Since pseudo labels are imperfect, for the sake of mitigating error
propagation, the selection of texts and signal words should be re-
stricted to those with high confidence. Inspired by previous work
[2, 17, 28], we define the confidence score (for the pseudo label) of
a text as:

𝑐𝑜𝑛𝑓 (𝑑) = 𝑃 (𝑧 (1) |𝑑) − 𝑃 (𝑧 (2) |𝑑), (9)

where 𝑧 (1) and 𝑧 (2) respectively denote the first and the second
most probable label for text 𝑑 computed by the prompting PLM.
Compared to the highest probability, this difference value gives
a better indication of how confident the PLM regards the current
unique prediction.

However, for each category 𝑧, the numbers of texts appropriate
to extract strong words and weak words are hard to determine, so



RulePrompt: Weakly Supervised Text Classification with Prompting PLMs and Self-Iterative Logical Rules WWW ’24, May 13–17, 2024, Singapore, Singapore

𝑫𝒛
𝟏

𝑫𝒛
𝟐

𝑫𝒛
𝟑

Disjunctive Sub-Rule

𝑫𝒛
𝟏 1-itemsets

𝒂𝟏⋁…⋁ 𝒂𝑺

Conjunctive Sub-Rule

(𝒃𝟏𝟏⋀𝒃𝟏𝟐)⋁…⋁ (𝒃𝑻𝟏⋀𝒃𝑻𝟐)

𝑫𝒛
𝟐

Logical Rules

2-itemsets

logits

logits

Rule 

Mining

K-means 

Clustering

Figure 2: Rule Mining Module.

we adaptively cluster the texts assigned to 𝑧 into three sets via K-
means, based on the confidence scores. These texts with excellent,
good and poor quality, are denoted as 𝐷1

𝑧 , 𝐷2
𝑧 and 𝐷3

𝑧 respectively.
For the signal words of texts, the set 𝑆𝑊 (𝑑) computed by Equa-

tion 7 needs to be further filtered to guarantee their competence as
indicative words. To this end, we utilize the whole corpus to pur-
sue the speciality of signal words for the text, which we think can
better imply the assigned category as well. The new unnormalized
probability can be calculated as:

𝑃 ′ ( [MASK] = 𝑣 | T (𝑑)) = 𝑃 ( [MASK] = 𝑣 | T (𝑑))
1
𝑁

∑︁
𝑑 ′∈𝐷

𝑃 ( [MASK] = 𝑣 | T (𝑑′))
. (10)

Then, we select the top 𝐾2 signal words with higher logits as the
strong signal words, denoted as 𝑆𝑆𝑊 (𝑑):

𝑆𝑆𝑊 (𝑑) = Top−𝐾2
𝑣∈V

{𝑃 ′ ( [MASK] = 𝑣 | T (𝑑))}. (11)

Next, we use frequent pattern mining [1, 8, 27] to obtain rep-
resentative rules of categories. For 𝐷1

𝑧 and 𝐷2
𝑧 , we treat each text

as a transaction and each strong signal word of it as an item of
the transaction. We at first pay attention to the most confident set
𝐷1
𝑧 to mine frequent 1-itemsets (items) with a predefined support

threshold ℎ1, which compose the disjunctive sub-rule of 𝑧, as each
of them alone is enough to indicate a category. The support of a
word 𝑎 in 𝐷1

𝑧 is calculated as:

𝑠𝑢𝑝 (𝑎, 𝐷1
𝑧 ) =

∑
𝑑∈𝐷1

𝑧
𝐼1 (𝑎, 𝑑)

|𝐷1
𝑧 |

, (12)

where 𝐼1 (𝑎, 𝑑) is an indicator function expressing whether 𝑎 is in
the transaction of 𝑑 , i.e.,

𝐼1 (𝑎, 𝑑) =
{1, 𝑎 ∈ 𝑆𝑆𝑊 (𝑑),
0, 𝑎 ∉ 𝑆𝑆𝑊 (𝑑). (13)

In addition, for the set 𝐷2
𝑧 with moderate confidence scores,

we mine 2-itemsets given another threshold ℎ2 to construct the
conjunctive sub-rule. Although these words cannot represent a
category individually, their co-occurrence in the set of strong signal
words should also be captured. The support of a 2-itemset𝑏 = 𝑏1∧𝑏2
is calculated as:

𝑠𝑢𝑝 (𝑏, 𝐷2
𝑧 ) =

∑
𝑑∈𝐷2

𝑧
𝐼2 (𝑏, 𝑑)

|𝐷2
𝑧 |

, (14)

where 𝐼2 (𝑏, 𝑑) is another indicator function expressing whether
both 𝑏1 and 𝑏2 are in the transaction of 𝑑 , i.e.,

𝐼2 (𝑏, 𝑑) =
{1, 𝑏1 ∈ 𝑆𝑆𝑊 (𝑑) ∧ 𝑏2 ∈ 𝑆𝑆𝑊 (𝑑),
0, 𝑏1 ∉ 𝑆𝑆𝑊 (𝑑) ∨ 𝑏2 ∉ 𝑆𝑆𝑊 (𝑑). (15)

Besides, we need to exclude those pairs containing words also
appearing in the frequent 1-itemsets of 𝐷2

𝑧′ for any other category
𝑧′, which would bring confusion.

4.4 Rule-Enhanced Pseudo Label Generation
Module

In this subsection, we present the reversed direction of the itera-
tion, i.e., how to inject the mined logical rules of categories into
the pseudo labels generation process. Considering the diverse capa-
bilities of PLMs and the distinct roles that logical rules play within
them, three units from different perspectives are designed to com-
pute the probability of each text belonging to each category. Final
results are obtained by averaging the outputs from the three units.

4.4.1 Verbalizer-based Category Estimation Unit. Since label names
are too limited to characterize categories, the indicative words in
our logical rules can be naturally used to expand the verbalizers in
classical zero-shot prompting models (Equation 2). In view of the
strictness of verbalizers, for each category, we only use the words in
the first half of the disjunctive sub-rule according to their support
values. The expanded set is written as Φ′ (𝑧) = {𝑙 (𝑧), 𝑎1, 𝑎2, . . . , 𝑎 𝑆

2
},

which acts similarly with the manually crafted set of keywords in
Equation 6. Besides, inspired by NPPrompt [41], the top-𝐾0 closest
words to each of them are also used to complement the verbalizer
(Equation 3). In this way, for a keyword 𝑣 ∈ Φ′ (𝑧), we can get the
probability 𝑄 (𝑣 |𝑑) and then take the maximum value among all
keywords as the aggregated probability𝑄 (𝑧 |𝑑) similar to Equation 6,
as all of these words can imply the category independently.

Noticing that 𝑄 is an unnormalized probability, we use the soft-
max function to transform the value between 0 and 1, to get the
normalized probability 𝑃1 (𝑧 |𝑑) from the first perspective:

𝑃1 (𝑧 |𝑑) =
exp(𝑄 (𝑧 |𝑑))∑

𝑧′∈𝑍 exp(𝑄 (𝑧′ |𝑑)) . (16)

4.4.2 Embedding-based Similarity Matching Unit. To conduct a
similarity-based matching between a text and a category through
prompting PLM, an intuitive idea is to put the logical rule of each
category into the [MASK] token of the template in Equation 1 to
form a complete sentence [30, 37]. However, the expressions of
conjunction and disjunction are not like natural language texts,
which would affect the semantic understanding of the PLM. Hence,
we handle each indicative word separately instead and combine
them in different ways for disjunction and conjunction.

For the disjunctive sub-rule, we directly calculate embedding-
based similarity between a text 𝑑 and a category 𝑧 as weighted sum
of the similarity between 𝑑 and each word 𝑎 in the sub-rule of 𝑧:

𝐸𝑆d (𝑑, 𝑧) =
∑
𝑎∈𝑟 d (𝑧 ) 𝑠𝑢𝑝 (𝑎, 𝐷1

𝑧 ) · sim(𝑓 (𝑑), 𝑔(𝑎))
𝑆

, (17)

where 𝑠𝑢𝑝 (𝑎, 𝐷1
𝑧 ) is the support of word𝑎 in𝐷1

𝑧 , 𝑓 (𝑑) is the sentence
embedding of text 𝑑 , and 𝑔(𝑎) = 𝑓 (T ′ (𝑎)) is the embedding of the
template after removing “𝑑” and replacing [MASK] with 𝑎.
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While for the conjunctive sub-rule, besides that the outer dis-
junction operations can be handled in the same way, the similarity
between 𝑑 and each 2-itemset 𝑏 = 𝑏1 ∧ 𝑏2 is computed through the
weighted composition of vectors instead of similarity scores:

𝐸𝑆c (𝑑, 𝑧) =
∑
𝑏∈𝑟 c (𝑧 ) 𝑠𝑢𝑝 (𝑏, 𝐷2

𝑧 ) · sim(𝑓 (𝑑), 𝑔′ (𝑏))
𝑇

, (18)

where 𝑠𝑢𝑝 (𝑏, 𝐷2
𝑧 ) is the support value of the 2-itemset 𝑏 in 𝐷2

𝑧 , and
the embedding variant 𝑔′ (𝑏) can be computed as the weighted sum
of the embedding vectors of two conjunctive terms of 𝑏, utilizing
the 1-itemset support of them in 𝐷2

𝑧 :

𝑔′ (𝑏) =
𝑠𝑢𝑝 (𝑏1, 𝐷2

𝑧 )
𝑠𝑢𝑝 (𝑏1, 𝐷2

𝑧 ) + 𝑠𝑢𝑝 (𝑏2, 𝐷2
𝑧 )

· 𝑓 (T ′ (𝑏1))

+
𝑠𝑢𝑝 (𝑏2, 𝐷2

𝑧 )
𝑠𝑢𝑝 (𝑏1, 𝐷2

𝑧 ) + 𝑠𝑢𝑝 (𝑏2, 𝐷2
𝑧 )

· 𝑓 (T ′ (𝑏2)). (19)

At last, the embedding-based similarity 𝐸𝑆 (𝑑, 𝑧) between 𝑑 and 𝑧
is defined as the maximum value for the two sub-rules, and regarded
as the probability 𝑃2 (𝑧 |𝑑) from the second perspective:

𝑃2 (𝑧 |𝑑) = 𝐸𝑆 (𝑑, 𝑧) = max(𝐸𝑆d (𝑑, 𝑧), 𝐸𝑆c (𝑑, 𝑧)) . (20)

4.4.3 Word Overlapping-based Similarity Matching Unit. Following
the idea of PRBoost [37], besides embedding-based similarity match-
ing in a global view, we also examine the word overlapping-based
similarity in a local view, leveraging PLMs’ capability of generating
signal words from texts once again. In this way, the rule is no longer
inserted into the [MASK] token, but occupies the position of the in-
put text in the template as an independent sentence. Consequently,
the word-level rule needs to be transformed to a coherent sentence
with the help of text connectors. Considering the typical human
speech patterns, we use the word “and” instead of “or” to connect
indicative words within a rule, regardless of the actual logical oper-
ator. Here, the logical relations are reflected by different operations
of transformations for the disjunctive and conjunctive sub-rules.

As to the disjunctive sub-rule, the overlapping of strong signal
words is computed as:

𝑂𝑆d (𝑑, 𝑧) = 𝑆𝑆𝑊 (𝑑) ∩ 𝑆𝑆𝑊 (T (𝐴𝑛𝑑 (𝑟d (𝑧))))
𝐾2

, (21)

where 𝐴𝑛𝑑 (·) is a transformation function from a logical rule to
a sentence, which connects the indicative words of the rule with
“and”, i.e., 𝐴𝑛𝑑 (𝑟d (𝑧)) = “𝑎1 and 𝑎2 and . . . and 𝑎𝑆 ”.

For the conjunctive sub-rule, as the involved indicative words
are weaker, the matching process should be more strict. Hence,
we divide the sub-rule into two parts alternately, construct the
sentences separately, and take the maximum of the similarity scores:

𝑂𝑆c (𝑑, 𝑧) = max
(𝑆𝑆𝑊 (𝑑) ∩ 𝑆𝑆𝑊 (T (𝐴𝑛𝑑 (𝑟 c1 (𝑧)))

𝐾2
,

𝑆𝑆𝑊 (𝑑) ∩ 𝑆𝑆𝑊 (T (𝐴𝑛𝑑 (𝑟 c2 (𝑧)))
𝐾2

)
, (22)

where 𝑟 c1 (𝑧) = {𝑏11, 𝑏12, 𝑏31, 𝑏32, . . .} and 𝑟 c2 (𝑧) = {𝑏21, 𝑏22, 𝑏41, 𝑏42,
. . .}.

Finally, the similarity of word overlapping between a text 𝑑 and
a category 𝑧 is defined as the sum over both sub-rules. The corre-
sponding probability from the third perspective is then obtained

Algorithm 1 RulePrompt
Input: An unlabeled text corpus 𝐷 ; a set of categories 𝑍 with label

names; a pre-trained language model (PLM)𝑀 .
Output: The category label 𝑧 (𝑑) of each text 𝑑 ∈ 𝐷 .
1: Obtain initial pseudo labels 𝑧 (0) (𝑑) via probability distribution
𝑃 (𝑧 |𝑑) for each text 𝑑 ∈ 𝐷 utilizing NPPrompt with Equation 4;

2: for 𝑖 = 1 to 𝐼𝑡𝑒𝑟 do
3: Obtain the confidence score of each text with Equation 9;
4: Obtain strong signal words 𝑆𝑆𝑊 (𝑑) for each text 𝑑 ∈ 𝐷

through the PLM𝑀 with Equation 11;
5: for all category 𝑧 ∈ 𝑍 do ⊲ Rule Mining
6: cluster the texts assigned to 𝑧 into 𝐷1

𝑧 , 𝐷
2
𝑧 , 𝐷

3
𝑧 based on

their confidence scores;
7: Mine 1-itemsets from 𝐷1

𝑧 with Equation 12;
8: Mine 2-itemsets from 𝐷2

𝑧 with Equation 14;
9: Compose logical rule 𝑟 (𝑖 ) (𝑧) according to Definition 4.1;
10: end for
11: for all text 𝑑 ∈ 𝐷 do ⊲ Pseudo Label Generation
12: Obtain new pseudo label 𝑧 (𝑖 ) (𝑑) via probability distri-

bution 𝑃 (𝑧 |𝑑) with Equation 25;
13: end for
14: Fine-tune the PLM𝑀 with Equation 27; ⊲ Fine-Tuning
15: end for
16: return 𝑧 (𝐼𝑡𝑒𝑟 ) (𝑑);

through the softmax function:

𝑂𝑆 (𝑑, 𝑧) = 𝑂𝑆d (𝑑, 𝑧) +𝑂𝑆c (𝑑, 𝑧), (23)

𝑃3 (𝑧 |𝑑) =
exp(𝑂𝑆 (𝑑, 𝑧))∑

𝑧′∈𝑍 exp(𝑂𝑆 (𝑑, 𝑧′)) . (24)

To get a final predictive probability, the three scores from differ-
ent perspectives are averaged together to supplement each other:

𝑃 (𝑧 |𝑑) = (𝑃1 (𝑧 |𝑑) + 𝑃2 (𝑧 |𝑑) + 𝑃3 (𝑧 |𝑑))/3. (25)

Based on this, the pseudo label of a text in the 𝑖-th iteration can be
assigned to the category with the maximum probability:

𝑧 (𝑖 ) (𝑑) = argmax
𝑧

(𝑃 (𝑧 |𝑑)). (26)

4.5 Self-Supervised Fine-Tuning Module
Although prompting PLMs are strong enough to assist producing
classification results in various manners, they are not specially de-
signed for the WSTC task. Therefore, we introduce self-supervised
fine-tuning into the closed loop, which uses the PLM’s current
prediction 𝑃1 (𝑑, 𝑧) in Equation 16 to refine the PLM itself, gradu-
ally enabling it to adapt to the specific task. Concretely, we adopt
self-supervised entropy [20] as the loss function to sharpen the
probability distribution of category assignments generated by the
PLM. That can maximize the potential of PLM and mitigate the
accumulation and propagation of errors during the model training
process. Given the inaccuracy of pseudo labels, we just select a ma-
jority of texts (denoted as 𝐷′) with tolerable predictive probability
for fine-tuning. Formally, the loss is defined as follows:

𝐿 =
∑︁

𝑑∈𝐷 ′⊂𝐷

∑︁
𝑧∈𝑍

−𝑃1 (𝑧 |𝑑) log 𝑃1 (𝑧 |𝑑). (27)
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Table 1: Dataset Statistics.

Dataset #Texts #Categories Classification Type Imbalance

AGNews 120000 4 News Topics 1.0
20News 17871 5 News Topics 2.02
NYT 31997 9 News Topics 27.09
IMDB 25000 2 Review Sentiment 1.0

The fine-tuning is conducted after each main iteration updates
the pseudo labels of texts, so when the rule mining module is exe-
cuted in the next iteration, new signal words derived by the fine-
tuned PLM can be used. The pseudo-codes of the overall approach
is shown in Algorithm 1, and the computational complexity is ana-
lyzed in Appendix A.

5 EXPERIMENTS
In this section, we first introduce datasets, baselines and experimen-
tal settings in the experiments. Then, overall results are presented
to demonstrate the effectiveness and robustness of the proposed
approach. Finally, we investigate the importance of key compo-
nents by ablation study. Due to the page limit, the case study for
interpretability analysis is put in Appendix C, and the choices of
hyperparameters will be discussed in Appendix D.

The experiments were performed on NVIDIA A40 GPUs, and
implemented based on an open-source toolkit OpenPrompt [5]. The
dataset links and codes are available on the GitHub1.

5.1 Experimental Setup
5.1.1 Datasets. Weuse four popular datasets from various domains
for evaluation. The statistics of them are shown in Table 1.

• AGNews [38] is a news article dataset from AG’s corpus.
• 20News2 [12] is a collection of newsgroup documents.
• NYT [38] contains news articles written and published by
New York Times, covering abundant news topics.

• IMDB [21] is for sentiment classification of movie reviews.

5.1.2 Baselines. We compare our approach with the following
weakly supervised methods. The first two are seed-driven methods,
which require at least three keywords for each category as input,
and others belong to emerging PLM-based methods.

• WeSTClass [23] generates pseudo labels based on word
embeddings and obtains the final classifier via self-training.

• ConWea [22] acquires pseudo labels based on the contextu-
alized representations of keywords, and trains a text classifier
to further expand the keyword sets.

• LOTClass [24] utilizes the pre-trained BERT to find indica-
tive keywords, which are directly used for category under-
standing and feature representation learning.

• XClass [31] expands indicative words for category-oriented
representations, and generates pseudo labels to fine-tune a
text classifier via clustering.

• ClassKG [36] builds a keyword graph with co-occurrence
relations, and gets pseudo labels through a self-trained sub-
graph annotator, used to update keywords iteratively.

1https://github.com/MiaomiaoLi2/RulePrompt
2http://qwone.com/∼jason/20Newsgroups/

• NPPrompt [41] constructs verbalizers based on initial word
embeddings by PLM, and estimates the probability distribu-
tion over categories via weighted sum of these words.

• PIEClass [40] utilizes zero-shot prompting to generate pseudo
labels and improves the quality of them through two fine-
tuning strategies of PLMs.

Besides, we also inspect a fully supervised method, which uses
the BERT classifier with fine-tuning based on the labels in the train-
ing set. It can be regarded as an upper-bound for WSTC methods.

5.1.3 Experimental Settings. We use the standard label name of
each category for each dataset as input. As prompt-based methods
are relatively robust with PLMs [32], we follow previous work
[30, 41] to choose RoBERTa-large [18] as our PLM. The number of
full iterations 𝐼𝑡𝑒𝑟 is unified to 3 across all datasets. To save space,
we detail other settings and hyperparameters in Appendix B.

As usual, we use Micro-F1 and Macro-F1 as the evaluation met-
rics. The results of baselines are quoted from [37] with missing
values marked as “-”. Since NPPrompt uses more than one keyword
on some datasets in its original setting, we re-run its codes provided
by authors3 using only the label names for fair comparison.

5.2 Overall Results
The overall results of RulePrompt, its variant without fine-tuning,
and baseline methods are shown in Table 2.

It is evident that our model consistently outperforms baselines
for all datasets, and almost catch up with the supervised methods on
IMDB. That certifies the role of logical rules of categories in assisting
prompting PLMs to understand the topics of texts, compared with
independent category-indicative words. In addition, the advantage
over PIEClass highlights the importance of themutual enhancement
of pseudo labels and logical rules, as they are both imperfect at
the starting point. Although RulePrompt exhibits a slight gap with
PIEClass on the Macro-F1 metrics in the imbalanced NYT dataset,
which is probably caused by the amplification of categories with
small samples, our approach is more stable across all datasets.

What is more, RulePrompt significantly enhances classification
accuracy on the 20News dataset, where some categories are not com-
pletely disjoint and some label assignments are even inconsistent
with general knowledge. For example, as discussed in prior work
[35], this dataset combines “science” and “encryption” into one cat-
egory, while placing “computer” in a separate class. However intu-
itively, “encryption” is supposed to fall into the domain of “science”,
where “computer” is considered as another subset. That suggests
our approach can effectively fuse the general knowledge embodied
in the prompting PLMs and the special characteristics of the target
dataset, through expressive logical rules and self-supervised fine-
tuning, making it more suitable for classifying texts in challenging
tasks with overlapping and counter-intuitive categories.

Besides, the promotion over the variant without fine-tuning
indicates that when there are sufficient evidences available for
each category, even if unlabeled, it is still feasible to refine the
PLM to accommodate the specific task and dataset, with the help
of self-iterative logical knowledge of categories. However for the

3https://github.com/XuandongZhao/NPPrompt
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Table 2: Overall Results on Four Datasets by Two Metrics. The Best Scores of Weakly Supervised Methods are Marked in Bold.

Method AGNews 20News NYT IMDB
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

WeSTClass 0.823 0.821 0.713 0.699 0.683 0.570 0.774 -
ConWea 0.746 0.742 0.757 0.733 0.817 0.715 - -
LOTClass 0.869 0.868 0.738 0.725 0.671 0.436 0.865 -
XClass 0.857 0.857 0.786 0.778 0.790 0.686 - -
ClassKG 0.881 0.881 0.811 0.820 0.721 0.658 0.888 0.888
NPPrompt 0.692 0.628 0.663 0.660 0.768 0.591 0.941 0.941

PIEClass (RoBERTa+RoBERTa) 0.895 0.895 0.755 0.760 0.760 0.694 0.906 0.906
PIEClass (ELECTRA+ELECTRA) 0.884 0.884 0.816 0.817 0.832 0.763 0.931 0.931

RulePrompt without Fine-Tuning 0.843 0.838 0.706 0.700 0.821 0.690 0.943 0.943
RulePrompt 0.897 0.896 0.831 0.829 0.833 0.716 0.943 0.943

Fully Supervised 0.940 0.940 0.965 0.964 0.943 0.899 0.945 -

Table 3: Results of Ablation Study for One Iteration. The Best Scores are Marked in Bold.

Method AGNews 20News NYT IMDB
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

RulePrompt-1 (−Conj) 0.853 0.850 0.702 0.694 0.823 0.709 0.938 0.938
RulePrompt-1 (−𝐷𝑧 ) 0.497 0.414 0.637 0.613 0.749 0.650 0.933 0.933

RulePrompt-1 (−𝑈 1) 0.760 0.759 0.647 0.639 0.583 0.530 0.913 0.913
RulePrompt-1 (−𝑈 2) 0.853 0.850 0.695 0.683 0.818 0.698 0.937 0.937
RulePrompt-1 (−𝑈 3) 0.852 0.849 0.700 0.691 0.822 0.708 0.935 0.935

RulePrompt-1 0.854 0.851 0.705 0.699 0.825 0.712 0.941 0.941

relatively simple and small IMDB dataset, adopting a fixed PLM can
also achieve comparable performances.

5.3 Ablation Study
The ablation results for the two main modules are shown in Table
3. In order to make the role of each component more prominent,
the experiments were carried out in the first iteration (denoted as
RulePrompt-1), i.e., without self-supervised fine-tuning.
In terms of rule mining. The variants include removing the con-
junctive sub-rule (−Conj), and mining rules from all texts without
clustering-based set division (−𝐷𝑧 ). At first, the lack of conjunction
part will lower the performance. That confirms the discrepancy
among indicative words on characterizing category meanings, and
the combined effect of relatively weaker words cannot be neglected.
Besides, when the rules are mined from the whole corpus, the accu-
racy is distinctly declined. That can be attributed to the inaccurate
pseudo labels which contaminate the mining object. Therefore, the
confidence scores for the predicted labels are vital to help choose
appropriate texts to search for rules in an adaptive way.
In terms of rule-enhanced pseudo label generation. The vari-
ants contain the methods without either of the three units respec-
tively. For all cases, the full approach performs the best. That reflects
different capabilities of the PLM as well as the different manners of
logical rules enhancing the PLM. Since it is hard to decide which is
the best one for a specific task beforehand, averaging the predictive
results of them to supplement each other is a good choice, especially
in the weakly supervised setting.

6 CONCLUSION
Addressing the limitations of relying solely on seed words (label
names) for supervision in weakly supervised text classification task,
this paper explores a kind of novel knowledge representation to
characterize category meanings, which facilitates the effective inte-
gration of knowledge and unlabeled corpus. The proposed logical
rules for categories can be automatically mined based on the pseudo
labels of texts and iteratively self-optimized through mutual en-
hancement with them. Thanks to the enriched symbolic knowledge,
the potential of prompting PLMs are further exploited in terms
of generative capability and semantic representations, which is
realized by incorporating the PLM into the rule-based iteration pro-
cess. With this framework, RulePrompt exceeds the SOTA weakly
supervised methods, and the logical rules we extract are intuitive
and provide valuable guidance by disambiguating easily-confused
categories.

For future work, we will strengthen the expressiveness of the
category rules, such as adding the negation operator to better avoid
category confusions. Additionally, more effective iteration strate-
gies are also worth studying, and the manner of iteratively updating
pseudo labels and logical rules can be applied in other prompting
PLM-based scenarios.
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A COMPUTATIONAL COMPLEXITY
On the basis of Algorithm 1, we reckon the computational com-
plexity of RulePrompt, assuming 𝑁 is the number of texts to be
classified. At first, the initial pseudo labels of texts can be obtained
in 𝑂 (𝑁 ) (line 1). Then, inside each iteration, the confidence scores
and the strong signal words of these texts are got in 𝑂 (𝑁 ) (lines
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Table 4: Label Names and Templates for RulePrompt.

Dataset Label Names Template

AGNews politics, sports, business, technology A [MASK] news: 𝑑
20News computer, sports, science, politics, religion A [MASK] news: 𝑑
NYT business, politics, sports, health, education, estate, arts, science, technology Topic: [MASK] 𝑑
IMDB good, bad 𝑑 In summary, the film was [MASK].
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Figure 3: Results with Varied Hyperparameters.

3-4), and for each category, the clustering process also takes 𝑂 (𝑁 )
(line 6). For the frequent itemset mining, since the number of items
(words) is up to𝑂 (𝑁 ·𝐾2), with the classical Apriori algorithm, the
frequent 1-itemsets and 2-itemsets can be obtained in𝑂 ((𝑁 ·𝐾2)2)
(line 7) and 𝑂 ((𝑁 · 𝐾2)3) (line 8) respectively, and we do not need
to mine long patterns. The updated pseudo labels are computed
in 𝑂 (𝑁 ) (line 12) and the fine-tuning process takes 𝑂 (𝑁 ) with
bounded text sizes. As the number threshold 𝐾2 of top strong signal
words, the number of categories 𝐾 and the iteration number 𝐼𝑡𝑒𝑟
are all constants, the overall computational complexity can be esti-
mated as 𝑂 (𝑁 3). Therefore, the proposed approach RulePrompt is
scalable for larger datasets. Moreover, since the size of the sub-rules
is fixed in our approach (𝑆 = 𝑇 = 10), more complex rules would
not bring greater computational complexity.

B DETAILED EXPERIMENTAL SETTINGS
For a fair comparison, we use the same label names of categories for
each dataset as used and reported previously. Meanwhile, based on
the characteristics of these datasets, we employ suitable templates
according to the previous work, and list them as well as label names
in Table 4.

With regard to getting signal words and strong signal words
of texts, we set 𝐾1 = 100 and 𝐾2 = 20. In the process of frequent
pattern mining, we set support thresholds ℎ1 = ℎ2 = 0.05 for the
imbalanced NYT, and 0.1 for the other three datasets. As only top
1-itemsets and 2-itemsets can enter the rule, these thresholds are
insensitive and can thus be a low value. The maximum numbers of
terms in the disjunctive sub-rule and conjunctions in the conjunc-
tive sub-rule are both 𝑆 = 𝑇 = 10. For the more complicated 20News,
we only use the word with the highest support value in the disjunc-
tive sub-rule instead of the first half, tomeet the stricter requirement
for verbalizers. In the embedding-based similarity matching unit,
we choose Roberta-SimCSE [7] as the sentence encoder to realize
the function 𝑓 (.).

As for the self-supervised fine-tuning process, we train 7 epochs
in each iteration, except for 20News which needs more training to
understand categories, so the number of epochs is set as 30. The
learning rate is 1e-8 for AGNews and 20News, while 1e-9 and 1e-10
for NYT and IMDB respectively. The maximum sequence length is
specified to 150 for AGNews and NYT, but 500 for 20News and IMDB.
We use AdamW [19] as the optimizer. Besides, the proportion of
texts used for fine-tuning (𝐷′) is set to 90% for the imbalanced NYT,
and 85% for the other three datasets.

C CASE STUDY
To analyze the interpretability of logical rules derived by RulePrompt,
we observe that for the “Arts” category in the NYT dataset, “art”, “mu-
seums”, “galleries”, “artwork” and “cultural” are mined as 1-itemsets
to constitute the disjunctive sub-rule. While, “ballet ∧ dancing” and
“dancers ∧ theater” are identified as 2-itemsets. These paired words
can indeed complement each other and form the conjunctive sub-
rule. These rules align with common intuitions and significantly
contribute to a more comprehensive representation of respective
categories. Moreover, the word “architecture” is found within the
rules associated with two different categories: “Estate” and “Arts”.
It is paired with “residential” and “apartments” for the former, but
“museum” and “cultural” for the latter. That exemplifies the ability
of our approach to disambiguate easily-confused categories with
polysemous words.

Furthermore, although the initial predictions may be incorrect,
it is still beneficial for the subsequent rule mining process. Through
the clustering of texts based on the pseudo labels with confidence
scores, we can find appropriate strong signal words as well as their
patterns to compose the rules for characterizing category meanings.
During several iterations, the rules and the predictions will be opti-
mized in the manner of mutual enhancement. Taking the “Business”
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category in the AGNews dataset for example, “x ∧ bloomberg” is ini-
tially mined as one of the 2-itemsets within one iteration, which is
not very meaningful, but after three iterations, two new 2-itemsets
“economic ∧ company” and “corporate ∧ econom” are mined replac-
ing the previous one, which are more informative and consistent
with the category.

D HYPERPARAMETER ANALYSIS
In this section, we pay attention to the key hyperparameters in
our approach, such as the iteration number, the sub-rule size, and
the number of top strong signal words, to certify the robustness of
RulePrompt.

D.1 Number of Iterations
We vary the number of full iterations 𝐼𝑡𝑒𝑟 from 1 to 5 for all datasets,
and Figure 3(a) shows the respective Micro-F1 values. It can be
seen that the performance shows a trend of first rising and then
stabilizing after about three iterations. That is consistent across
all datasets, and thus verifies our approach is insensitive on this
setting as long as at least three iterations are fulfilled.

D.2 Size of Sub-Rules
Wemake the maximum number of terms in the disjunctive sub-rule
(𝑆) and the maximum number of conjunctions in the conjunctive
sub-rule (𝑇 ) equal to each other, and vary them together between 5
and 20 with the step size 5. The results in Figure 3(b) show a trend
of first rising and then declining, with an optimal value of 10, which
is nearly consistent for all datasets.

An exception appears for the complicated dataset 20News, where
the accuracy always decreases mildly along with the increase of
sub-rule sizes. This is mainly because some categories in 20News
are largely overlapping, and the stricter rules are thereby required
to distinguish them.

D.3 Number of Strong Signal Words
We change the number threshold 𝐾2 of top strong signal words
between 10 and 30 with the step size 5. The performances are shown
in Figure 3(c). Again, an almost optimal value 20 is reached for all
datasets with a similar trend as the size of sub-rules.

Note that another threshold 𝐾1 is used to determine a larger
candidate signal word set, so does not directly affect the results and
behaves insensitive obviously.
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