
On a Neural Implementation of Brenier’s Polar Factorization

Nina Vesseron 1 Marco Cuturi 2 1

Abstract

In 1991, Brenier proved a theorem that general-
izes the QR decomposition for square matrices –
factored as PSD × unitary – to any vector field
F : Rd → Rd. The theorem, known as the polar
factorization theorem, states that any field F can
be recovered as the composition of the gradient
of a convex function u with a measure-preserving
map M , namely F = ∇u ◦M . We propose a
practical implementation of this far-reaching the-
oretical result, and explore possible uses within
machine learning. The theorem is closely related
to optimal transport (OT) theory, and we borrow
from recent advances in the field of neural optimal
transport to parameterize the potential u as an in-
put convex neural network. The map M can be ei-
ther evaluated pointwise using u∗, the convex con-
jugate of u, through the identity M = ∇u∗ ◦ F ,
or learned as an auxiliary network. Because M
is, in general, not injective, we consider the ad-
ditional task of estimating the ill-posed inverse
map that can approximate the pre-image measure
M−1 using a stochastic generator. We illustrate
possible applications of Brenier’s polar factoriza-
tion to non-convex optimization problems, as well
as sampling of densities that are not log-concave.

1. Introduction
Brenier proved, through his seminal polar factorization the-
orem (1991), that any vector field can be decomposed into
two simpler elements: Given a reference measure ρ sup-
ported on Ω ⊂ Rd, For any F : Ω→ Rd, there exists a con-
vex potential u : Rd → R and a measure-preserving map
M : Ω→ Ω (i.e. on has M♯ρ = ρ), such that F = ∇u ◦M .
The polar factorization theorem states that any vector field,
no matter how irregular, can be reshuffled to match that
of the gradient of a convex potential, and that this careful
reshuffling in space is achieved by the measure-preserving

1CREST-ENSAE, IP Paris 2Apple.

nina.vesseron@ensae.fr, cuturi@apple.com.

map M . This paper aims to provide a practical approach to
recover approximations of the potential u and vector-valued
map M using exclusively samples xi ∼ ρ and their associ-
ated images F (xi). We also highlight how a reliable polar
factorization solver, coupled with an estimation of a stochas-
tic generator that mimics the measure-valued inverse map
M−1, can be used to study the gradient field of non-convex
landscapes. We consider, in particular, the case where the
field F of interest is the gradient, with respect to the param-
eters of a neural architecture, of a learning loss. Note that
the polar factorization theorem should not be confused with
the major theorem from optimal transport closely associated
with Brenier, which we recall in §2. That theorem states
that the Monge formulation of the optimal transport (OT)
problem, which seeks the push-forward map transporting a
measure onto another with the least mean displacements (as
measured with squared norms) is solved by the gradient of
a convex potential.

Existing Implementations. Shortly after (Brenier, 1991),
Benamou and Brenier (1994) proposed a numerical ap-
proach to decompose a vector field, with an explicit Eulerian
(gridded) approach. Lagrangian approaches have been pro-
posed by Gallouët and Mérigot (2018), while Mérigot and
Mirebeau (2016) use a semidiscrete OT formulation. Both
are used on low-dimensional manifolds as lower level sub-
routines to solve Euler’s equation for incompressible and
inviscid fluids (Arnold, 1966). More recently, Morel et al.
(2023) proposed to use Brenier’s insight to gradually refac-
tor a normalizing flow as the gradient of a convex map,
a.k.a a Monge (1781) map, by applying measure-preserving
maps for the Gaussian distribution. Their approach does
not, however, rely on neural OT solvers, and focuses instead
on untangling an existing flow to turn it gradually into the
gradient of a convex potential.

Contributions. We propose in this work a neural imple-
mentation of the polar factorization theorem that leverages
recent advances in neural optimal transport. More precisely,

• After introducing the polar factorization theorem, as well
as neural OT solvers, we show how the two blocks of
Brenier’s result can be recovered using input convex neu-
ral networks (ICNN) (Amos et al., 2017). We modify
the ICNN architecture originally proposed in Amos et al.

1

ar
X

iv
:2

40
3.

03
07

1v
1

 [
st

at
.M

L
]

 5
 M

ar
 2

02
4

Neural Polar Factorization

(2017) and Korotin et al. (2020), to propose quadratic
(low-rank + diagonal) positive definite layers at each layer.
Starting from an arbitrary field F , we use the modifica-
tions proposed by Amos (2023) to (Makkuva et al., 2020)
to train the Brenier convex potential uθ, that appears in
the polar factorization of F .

• We study two alternative parameterizations for the
measure-preserving map M : Either implicit, relying on
the pointwise evaluation of the convex conjugate of uθ
composed with F , or explicit, through an additional net-
work Mξ trained to map samples x from ρ to∇u∗

θ ◦F (x).
• Because M is not, in general, injective, we consider the ill-

posed problem of inverting M : we approximate a stochas-
tic map Iψ , parameterized as a generator, that can generate
inputs x such as M(x) = y for a given y. We use bridge
matching for this task (De Bortoli et al., 2023).

• We use our approach to factorize gradients of surfaces in
low dimensions and show how to use our tools to study
the critical points of a non-convex energy g. Factorizing
G := ∇g as∇uθ ◦Mξ , and estimating the stochastic map
Iψ corresponding to Mξ, our goal is to generate zeros
of∇g. The minimizer of uθ being∇u∗

θ(0) by definition
of convex duality, the points generated as Iψ(∇u∗

θ(0), z)
where z is a Gaussian noise of suitable size should, in
principle, result in points that are roots of∇g. We use the
cross-entropy loss of a small MNIST digits LeNet (LeCun
et al., 1998) classifier and show the ability to sample new
parameters with low gradient and good performance on
the recognition task.

2. Background
This section introduces neural methods that have been pro-
posed to learn Monge maps between two distributions and
recalls the polar factorization theorem in its original form.

2.1. Neural Approaches to the Monge Problem

The Monge formulation of the OT problem between two
probability measures µ and ν ∈ P(Rd) seeks a map T :
Rd → Rd that transports µ onto ν, while minimizing the
following transport cost:

W2
2 (µ, ν) := inf

T :Rd→Rd

T#µ=ν

∫
Rd

1
2∥x− T (x)∥2dµ(x) (1)

The existence of an optimal map T ⋆ is guaranteed under
fairly general conditions (Santambrogio, 2015, §1), when
e.g. µ has a density w.r.t. the Lebesgue measure. In that
case, Brenier’s most famous theorem states that the Monge
problem (1) has a unique solution, found at the gradient of
a convex function f⋆ i.e. T ⋆ = ∇f⋆. That convex function

f⋆ is itself the solution of the following dual objective:

f⋆ ∈ arg inf
f∈L1(µ)

∫
Rd

fdµ+

∫
Rd

f∗dν (2)

where the f∗ is the convex conjugate of f ,

f∗(y) := sup
x∈Rd

⟨x, y⟩ − f(x) . (3)

Note that the star symbol ∗ used for convex-conjugacy
should not be confused with the star symbol ⋆, used through-
out the paper to denote an optimal solution. The OT map
from ν to µ is also given by the inverse of ∇f⋆ when it
exists, ∇(f⋆)∗. The goal of neural OT solvers is to esti-
mate f⋆ using samples drawn from the source µ and the
target distribution ν. Makkuva et al. (2020); Korotin et al.
(2020) have proposed methods that build on input convex
neural networks (ICNN), as originally proposed by Amos
et al. (2017), to parameterize the potential f as an ICNN.
The main difficulty in these methods lies in handling the
Legendre transform in (2) of the ICNN variable. To address
this difficulty, surrogate networks can be used to replace f∗,
and we refer to Amos (2023) for the most recent proposal to
refine these implementations using amortized optimization.
Neural solvers have been used successfully in various appli-
cations, notably in single cell genomics (Bunne et al., 2023;
2022); see also (Huang et al., 2020; Cohen et al., 2021).

2.2. Polar Factorization

Given a probability distribution ρ supported on a bounded
set Ω, Brenier’s polar factorization theorem states that any
vector field F : Ω→ Rd can be written as the composition
of the gradient of a convex function ∇u : Ω → Rd with
a map M : Ω → Ω that preserves the distribution ρ (ie
M#ρ = ρ). In that decomposition, ∇u is the unique OT
map from Brenier’s theorem that transports the measure ρ on
F#ρ, since F#ρ = (∇u◦M)#ρ = ∇u#(M#ρ) = ∇u#ρ.

Theorem 2.1 (Brenier polar factorization). Let ρ be a prob-
ability measure whose support, Ω ⊆ Rd, is a bounded set
and F : Ω→ Rd a square-integrable vector field being non
degenerate i.e.

∫
Rd ∥F∥2dρ <∞ and ρ(F−1(A)) = 0 on

Lebesgue negligible subsets A of Rd. Then, there exists a
convex function u : Ω→ R and a map M : Ω→ Ω that is
measure preserving, i.e. M#ρ = ρ, such that:

F = ∇u ◦M . (4)

Both M and ∇u are unique.

3. Neural Polar Factorization (NPF)
We describe our method to compute the approximate
polar factorization of a field F , using i.i.d samples
(x1, . . . , xn) ∼ ρ and their evaluations (F (xi))i. We

2

Neural Polar Factorization

first estimate the convex potential u in the decomposition
F = ∇u ◦M using an ICNN uθ as an OT Brenier (1991)
potential using an improved ICNN architecture. Next, we
show that the measure-preserving map M can be defined
implicitly for any x, by evaluating the convex conjugate of
uθ on F (x): This requires a call to a convex optimization
routine at each evaluation. Thanks to our ICNN’s strong con-
vexity, the transform (3) is well-posed. To underline the link
of that approach to estimate M using uθ, we use the notation
Mθ(x). Alternatively, we also propose to learn an amor-
tized model for M , by learning a network Mξ trained on a
regression task using paired data samples {(xi,Mθ(xi))}.

3.1. (Low-Rank + Diagonal) Quadratic Layers in ICNNs

ICNNs provide a neural network parameterization of con-
vex functions. We propose a modification of the original
architecture presented in (Amos et al., 2017). Our approach
is inspired by the Gaussian initialization outlined in (Bunne
et al., 2023) and the low-rank quadratic layers presented in
(Korotin et al., 2020). The original ICNN was designed to
re-inject the input vector x, transformed by an affine map, at
every layer, as can be seen in (Amos et al., 2017, Equation
2, y → x). Korotin et al., §B.2 proposed instead to modify
x with multiple low-rank quadratic positive definite (PSD)
forms. The PSD constraint ensures convexity of each entry,
while the low-rank choice ensures a reasonable number of
parameters. We propose quadratic PSD forms that incorpo-
rate a positive diagonal plus low-rank matrices (Saunderson
et al., 2012; Liutkus and Yoshii, 2017):

QA,δ(x) := ∥δ ◦ x∥2 + ∥Ax∥2 = xT
(
diag(δ) +ATA

)
x .

The network has L+1 layers for L ≥ 1; we have highlighted
in blue the new PSD (diagonal + low-rank) terms:

z0 = σ0

(
[QAi

0,δ
i
0
(x)]i +B0x+ c0

)
,

zℓ+1 = σℓ

(
Wℓzℓ + [QAi

ℓ,δ
i
ℓ
(x)]i +Bℓx+ cℓ

)
,

zL+1 = σL
(
wL

T zℓ +QAL,δL(x) + bTLx+ cL
)
∈ R

uθ(x) = zL+1

(5)
In all layers above, the index i spans 1, . . . , q, where q is
the size of the state vectors zℓ ∈ Rq . This augmented ICNN
is parameterized with the following family of parameters,

θ =
(
W1:L−1 ∈ (Rq×q+)L, wL ∈ Rq+,(
δi0:L−1 ∈ (Rd+)L, Ai0:L−1 ∈ (Rr×d)L

)
i=1...q

,

δL ∈ Rd+, AL ∈ Rr×d,
B0:L−1 ∈ (Rq×d)L, bL ∈ Rd,
c0:L−1 ∈ (Rq)L, cL ∈ R

)
.

(6)

The activation functions σℓ are convex, non-decreasing non-
linear and all parameters in red in addition to all diagonal
vectors δ must be non-negative to ensure convexity.

3.2. Estimating the Convex Potential u

Starting from the existence result outlined in (4), we recover,
by applying the push-foward map F on ρ, that

F♯ρ = (∇u ◦M)♯ρ = ∇u♯(M♯ρ) = ∇u♯ρ .

Since u is a convex function, it optimally transports ρ on
∇u#ρ in the Monge sense. Therefore, the defining feature
of u is that ∇u is the Monge map from ρ to F♯ρ. We
use Amos’ solver (2023) to estimate the potential u that
pushes ρ onto F#ρ, from the empirical measures ρn :=
1
n

∑n
i=1 δxi

and F#ρn = 1
n

∑n
i=1 δF (xi). Using this solver

consists of parameterizing the convex function u as an ICNN
uθ following §3.1 and parameterizing ∇u∗ directly by an
auxiliary vector-valued network Vϕ. The auxiliary network
Vϕ is learned by minimizing the objective:

Lconvex-dual(ϕ) =
1

n

n∑
i=1

∥Vϕ(F (xi))−∇u∗
θ(F (xi))∥2

One can show, using Danskin’s envelope theorem (1966),
that ∇u∗

θ(y) is the maximizer of the convex conjugate (3)
problem for u at y,

∇u∗
θ(y) = arg sup

x
⟨x, y⟩ − uθ(x)

Because uθ is strictly convex, we compute the optimal
solution solving u∗(F (x)) with a conjugate solver, e.g.
gradient ascent, (L)BFGS (Liu and Nocedal, 1989) or
ADAM (Kingma and Ba, 2014). We call a conjugate solver
CS any algorithm that, for a given pair (u, y), outputs an
approximation of ∇u∗(y). This results in the loss:

Lconvex-dual(ϕ) =
1

n

n∑
i=1

∥Vϕ(F (xi))− CS(uθ, F (xi))∥2

(7)
In practice, the latter is initialized with the predictions of
Vϕ, which considerably reduces the number of iterations
required for the solver to converge when Vϕ starts making
correct predictions. The parameters of the network uθ are
then updated alternatively, by taking steps along the gradi-
ents of the original dual objective of Makkuva et al. (2020):

LMonge(θ) =
1

n

n∑
i=1

uθ(xi) + ⟨Vϕ(F (xi)), F (xi)⟩

− uθ(Vϕ(F (xi)))

(8)

3.3. Estimating the Measure-Preserving Map M

In the polar decomposition of F , ∇u is tasked with trans-
porting ρ on F#ρ, the measure-preserving map M ensures
then that F = ∇u ◦M . To express M as a function of F

3

Neural Polar Factorization

and u, one simply has to apply the inverse of ∇u on both
sides. When u is strictly convex, we simply rely on the
identity∇u∗ ◦ ∇u = Id to obtain:

M = ∇u∗ ◦ F (9)

Evaluating M using a Conjugate Solver. Given a con-
jugate solver CS and the estimate uθ for the ground truth
potential u, we can inject them in (9) to get an estimation
CS(uθ, F (x)) of M(x) for a given x. Since this estimation
depends on θ, we define that approximation as Mθ(x),

Mθ(x) := CS(uθ, F (x)) , (10)

with a slight abuse of notation, since θ should not be under-
stood as a parameter parameterizing M , but instead defining
it implicitly through uθ and CS.

Neural Estimation for M . While Mθ does indeed pro-
vide an estimate of M , it may be convenient to parameterize
the measure-preserving map of interest as a neural network
Mξ, defined with an independent set of parameters ξ. Bor-
rowing a page from amortized optimization (Amos et al.,
2023), Mξ can be used to initialize the conjugate solver used
to estimate Mθ or even replace it when Mξ is sufficiently
accurate. Furthermore, the parameterization of M by Mξ is
sometimes necessary when, e.g., F is only given on a few
samples, and one wishes to evaluate M at any point. The
neural map Mξ is then trained to minimize the following
mean-squared error:

Lpreserving(ξ) =
1

n

n∑
i=1

∥Mξ(xi)−CS(uθ, F (xi))∥2 . (11)

Note that while the loss in (11) resembles (7), the network
Vϕ takes the transported point F (xi) as an input, whereas
Mξ is only given xi.

Evaluating The Measure Preservation of M . In both
cases, Mθ, as evaluated with a conjugate solver, or its in-
dependently evaluated neural counterpart Mξ should be
measure-preserving. Indeed, we will use (as in Figure 1,
bottom center plots) any departure from the identity

M#ρ = (∇u∗ ◦ F)#ρ = (∇u∗)#(F#ρ) = ρ ,

as a way to assess the quality of our factorization.

3.4. Sampling according to the pre-image measure M−1
θ

Measure-preserving maps M are not invertible in gen-
eral (Ryff, 1970), a well-known example in 1D being the
doubling map defined as M(x) = 2x mod 1 that preserves
the Lebesgue measure rescaled to the interval [0, 1]. This
non-invertibility is of particular interest in the optimiza-
tion and sampling applications we propose. For a given y,

our goal will therefore be to generate inputs x such that
Mθ(x) = y. To this end, we learn a generative process to
sample according to the posterior density

πθ(x|y) =
1y=Mθ(x)ρ(x)∫

x
1y=Mθ(x)ρ(x)dx

. (12)

We rely on the augmented bridge matching procedure pre-
sented in De Bortoli et al. (2023) to learn the drift of the
stochastic differential equation (SDE) formulated in (13)
so that, on input X0 = y, the generated samples X1 be
distributed according to πθ(x|y) (12).

dXt = (Xψ(X0, Xt)−Xt)/(1− t)dt+ σdBt (13)

De Bortoli et al.’s approach refines the bridge matching pro-
cedures that have been recently used to solve inverse prob-
lems (Somnath et al., 2023; Liu et al., 2023; Chung et al.,
2024), by augmenting the learnable part of the drift Xψ with
the initial point X0 of the SDE. This slight adjustment al-
lows to correctly recover the coupling measure (Mθ, Id)#ρ
from the paired samples {(xi, F (xi))}ni=1 when Xψ is pa-
rameterized using a multilayer perceptron trained according
to Algorithm 1.

Algorithm 1 Training of Xψ

1: uθ ←− Trained ICNN s.t. ∇uθ#ρ ≈ F#ρ
2: Initialize Xψ

3: while not converged do
4: Draw a sample (xi, F (xi))
5: Compute yi = CS(uθ, F (xi))
6: Sample t ∼ U([0, 1])
7: Sample zi ∼ N (0, Id)
8: xt := (1− t)yi + txi + σ(t(1− t))1/2zi
9: Lψ ← 1

n∥Xψ(yi, xt)− xi∥2
10: Update Xψ using∇Lψ
11: end while

The optimized network Xψ is then plugged in (13)
that we solve with Heun’s method as implemented in
diffrax (Kidger, 2021) using S discretization steps.
Given a sample y from Mθ#ρ, solving the SDE (13) us-
ing X0 = y allows to generate an output X1 distributed
according to the posterior density (12). To alleviate the no-
tations, we call Iψ the generative process such that Iψ(y, z)
is the output X1 returned by the differential equation solver
associated to (13) on the input X0 = y when the injected
gaussian noise z has been drawn from N (0, Id)

⊗S

Iψ(y, z) = SDE(Xψ, y, z), y ∈ Rd, z ∈ Rd×S .

To generate several inputs x from πθ(x|y), one only needs
to inject different noises z ∼ N (0, Id)

⊗S in Iψ(y, ·), i.e.

Iψ(y, ·)#N (0, Id)
⊗S ≈ πθ(·|y).

4

Neural Polar Factorization

4. NPF to Study Non-Convex Potentials g
In this section, we focus on the polar factorisation of the
gradient field ∇g, where g is a non-convex function of
interest. We show how computing the NPF of ∇g together
with the inverse map Iψ can be used to explore the space of
critical points of g.

4.1. On using the Inverse Map Iψ of ∇g
NPF on G = ∇g. Let g : Rd → R be a function of
interest supported on a bounded set Ω ⊂ Rd. Assuming that
∇g : Rd → Rd meets the requirements of (4), Brenier’s
polar factorization states the existence of a convex function
u and a measure-preserving M that preserves the rescaled
Lebesgue measure on Ω, LΩ such that:

∇g = ∇u ◦M.

For a given vector v, the points in Ω whose gradient with
respect to g is equal to v are all transported by M on the
same point∇u∗(v) i.e.

M ({x ∈ Ω : ∇g(x) = v}) = {∇u∗(v)} .

In particular, the critical points of g are all mapped by M
onto the minimizer of the function u, which is∇u∗(0).

On Extracting the Critical Points of g. When the NPF
of∇g is learned, resulting in uθ,Mξ and Iψ , composing Iψ
with ∇uθ∗ provides an inversion process for ∇g. Gener-
ating an input point xv whose gradient is v can in fact be
done by first sampling z ∼ N (0, Id)

⊗N and successively
applying ∇uθ∗ and Iψ to v:

xv = Iψ(∇u∗
θ(v), z), where z ∼ N (0, Id)

⊗S .

As a special case, sampling the critical points of g is done by
taking v = 0 in the above procedure with different noises z.
Note, however, that this convexification requires estimating
the polar factorization of∇g as well as the inverse map Iψ
over the entire space Ω, which is computationally expensive.
To optimize the g function, we propose instead to combine
this method with the Langevin Monte Carlo (LMC) algo-
rithm to correctly estimate the polar factorization of ∇g
around the minimums of g.

4.2. A LMC Method Assisted by NPF.

LMC algorithm Given a smooth log-concave density

π(x) =
e−g(x)∫

x∈Rd e−g(x)dx
, (14)

with g : Rd −→ R, the Langevin Monte Carlo algorithm
can sample from π by starting from x(0) to iterate

x(k+1) = x(k) − γ∇g(x(k)) +
√
2γz(k), z(k) ∼ N (0, Id).

When g is non-convex, the LMC algorithm lacks guaran-
tees (Roberts and Tweedie, 1996; Cheng and Bartlett, 2018;
Dalalyan and Karagulyan, 2019). In particular, when g has
multiple local minima, the generated samples are highly cor-
related as the particles originating from the LMC algorithm
often get stuck in some basins. For this reason, the LMC
algorithm has been combined with methods enabling global
jumps between modes (Pompe et al., 2020; Gabrié et al.,
2022) to sample multi-modal distributions.

Sampling with Known Polar Factorization for∇g. In
this paragraph, we assume that the polar factorization
(∇u,M) and stochastic inverse map M−1 of∇g are known.
To sample the modes of π(x) ∝ e−g(x) when g is non-
convex, one can run the LMC algorithm on the convex func-
tion u and sample back using an inverse generator M−1:

y(k) = M(x(k))

y(k+1) = y(k) − γ∇u(y(k)) +
√
2γz(k)

x(k+1) = M−1(y(k+1), z(k+
1
2)).

The LMC step on u allows to move along a new descent
direction or exploration direction to reach yk+1 while M−1

randomly generates a point x(k+1) ∈ Ω whose gradient for
g is∇u(yk+1). This way, the neighborhoods of g’s critical
points are uniformly sampled, and a particle does not get
stuck in one minimum as M−1 permits global moves be-
tween all the basins. Because it is difficult to differentiate
a minimum from a saddle point or a maximum when sam-
pling critical points using the polar factorization of∇u, this
procedure should be combined with Langevin steps on g to
escape non-minimum critical points. The following para-
graph details the sampling algorithm and complements it by
showing how the polar factorization of∇u can be learned
while sampling.

Unknown Polar Factorization for ∇g When the polar
factorization is unknown, we propose an algorithm that
learns the polar factorization of ∇g as well as the inverse
map Iψ using the generated particle trajectories. The al-
gorithm alternates between N Langevin steps on g and N
Langevin steps on uθ, while Mθ and Iψ allow to transition
between the two spaces. Algorithm 2 details the steps of the
procedure. The notation LMC (uθ, γ, y

(k)
i , N) means that

N LMC steps are performed on the function uθ with a time
step of γ starting from the point y(k)i .

5

Neural Polar Factorization

Algorithm 2 LMC-NPF
1: Initialize uθ and Iψ

2: Initialize the particles {x(0)
i }1≤i≤n

3: k ← 0
4: while k < kmax do
5: if k mod N = 0 then
6: y

(k)
i = Mθ(x

(k)
i)

7: y
(k+1)
i = LMC (uθ, γ, y

(k)
i , N)

8: x
(k+1)
i = Iψ(y

(k+1)
i , z) with z ∼ N (0, Id)

⊗S

9: else
10: x

(k+1)
i = x

(k)
i − γ∇g(x(k)

i) +
√
2γz

(k)
i

11: end if
12: Update uθ, Iψ with {(x(k)

i ,∇g(x(k)
i))}1≤i≤n

13: k ← k + 1
14: end while

The main insight of the proposed sampling algorithm is that
LMC steps permit the exploration of the space locally, while
NPF provides and stores a more global viewpoint, that is
able to propose moves to potentially worthy areas.

5. Experiments
5.1. Accuracy Metrics

Assess NPF’s Accuracy. When a field G is only available
through samples, the following three criteria, evaluated on
unseen samples (or test set) {(xj , G(xj))}1≤j≤m, are used
to assess whether the estimated polar factorization is correct.

• To measure that the distributions ∇uθ#ρ and G#ρ are
close, we compute the Sinkhorn divergence Sε (Ram-
das et al., 2017; Genevay et al., 2018; Peyré et al.,
2019) between the two point clouds (G(xj))1≤j≤m and
(∇uθ(xj))1≤j≤m. To quantify the scale of that mea-
surement, we compare it with the distance between two
batches of fixed size drawn from (G(xj))1≤j≤m. We
also visualize this proximity by embedding the two point
clouds using the TSNE algorithm (Van der Maaten and
Hinton, 2008) and superimpose them.

• The second criterion assesses whether Mξ is measure-
preserving. Similarly, this is numerically estimated
by computing the Sinkhorn divergence between the
empirical measures associated with (xj)1≤j≤m and
(Mξ(xj))1≤j≤m, and visualized with a TSNE embedding.

• Finally, we evaluate the L2 distance between G and∇uθ◦
Mξ using the test set. Note that when Mθ is used (rather
than Mξ), that criterion is not useful since it only assesses
the quality of the conjugate solver.

Assess the Generative Inverse Map Iψ. Given y, we
should be able to sample among the antecedents of y by Mθ

using the multivalued map Iψ. To quantify that, we esti-

mate the average distance between the probability associated
to the density πθ(x|y) (12) and Iψ(y, ·)#N (0, Id)

⊗S from
samples. Given the finite test set {(xj ,Mθ(xj))}1≤j≤m,
it is unlikely to find a multitude of points with the same
image. For this reason, we approximate M−1

θ (Mθ(xk)), by
constructing the set

Bα(xk) = {xj : ∥Mθ(xj)−Mθ(xk)∥2 ≤ α}

and choose α such that the cardinal of Bα(xk) is 100. We
then compute the sinkhorn divergence between the predic-
tions of Iψ on Mθ(Bαk

(xk)) and Bαk
(xk) and average it

over all the xk. We compare the obtained value with the
distance of two batches of fixed size drawn independently
from the (xj)1≤j≤m. We also evaluate the fact that the
stochastic map Iψ ◦ ∇u∗

θ approximates G−1 by computing
the quantity, using MC samples for z,

1

m

m∑
j=1

Ez∼N (0,Id)⊗S∥G ◦ Iψ(∇u∗
θ(G(xj)), z)−G(xj)∥2

(15)
We also study the quantity where the cosine similarity re-
places the norm in (15).

5.2. NPF of Topographical Data

Dataset. We use the Python package elevation to get
the elevation of three regions of the world: Chamonix, Lon-
don, and Cyprus. We estimate the gradients associated with
the elevation in these regions with finite-differences, and ob-
tain three datasets composed of (latitude, longitude) points
paired with their gradients. We learn the polar factorization
(∇uθ,Mξ) of the underlying gradient field as well as the
inverse map Iψ . Because in these examples, G is only given
through samples, we parameterized the measure-preserving
map using a neural network Mξ. To assess the quality of
our method NPF, we used a 85% training / 15% test split.
More details can be found in the appendix.

Chamonix
Sε(∇uθ#ρn, G#ρn) 0.27
Sε(G#ρn, G#ρ

′
n) 1.55

Sε(Mξ#ρn, ρn) 0.0029
Sε(ρn, ρ′n) 0.0034
Ex∼ρn [∥G(x)−∇uθ ◦Mξ(x)∥2] 0.96
Ex,z [Sε((Iψ(Mθ(Bα(x)), z),Bα(x))] 0.048
Sε(ρ64, ρ

′
64) 0.077

Sε(ρ128, ρ′128) 0.039

Table 1. Polar factorization and Inverse multivalued map metrics
for learning the gradient of the elevation in Chamonix area. For
these metrics, ρn and ρ′n are two empirical measures created from
n = 1024 samples drawn independently from the test set. The ε
parameter is set equal to 0.1 which is the default parameter.

6

Neural Polar Factorization

Polar Factorization Results. Table 1 shows that the esti-
mated NPF is accurate: the Sinkhorn divergence between
the predicted distribution ∇uθ#ρn and the target distri-
bution G#ρn is lower than the divergence between two
batches of size 1024 taken from the target. Similarly, the
Sinkhorn divergence between ρn and its image by Mξ is
lower than that between two batches of size 1024 drawn
from the source. The reconstruction of G is also quite satis-
factory as corroborated visually (Figure 1).

Inverse Map Results. The data from Table 1 in-
dicates that Iψ generates the antecedents of the
images by Mθ accurately: the estimated quantity
Ex,z [Sε((Iψ(Mθ(Bα(x)), z),Bα(x))] is comparable to the
distance between two batches drawn from the source dis-
tribution whose size lies between 64 and 128. To vi-
sualize these performances, we transported the samples
(G(xj))1≤j≤m, that store gradients of the elevation, using
Iψ ◦ ∇u∗

θ that should estimate the inverse generative map
G−1. We expect very high gradients to be sent to points
where the elevation varies rapidly, such as the sides of moun-
tains in the Chamonix example. To visualize where a gradi-
ent was sent, we plot a point at this localization and color it
according to the norm of the gradient from which it origi-
nates. We compare the image generated by this process with
the one obtained by coloring directly the points (xj)1≤j≤m
using their associated gradients. In the three cases (Cha-
monix, London, Cyprus), the two images are quite similar
(Figure 2), showing the quality of our reconstruction.

5.3. Learn an NN Optimization Landscape using NPF

In this experiment, we consider a minimal neural architec-
ture capable of classifying MNIST digits. Inspired by the
LeNet architecture (LeCun et al., 1998), we use two convo-
lutional layers, each followed by a Relu and a max pooling
operation. A classification layer leads to an output layer
of 10 neurons, followed by a softmax. The loss function
is the cross entropy, computed with MNIST train dataset
minibatches of size 128, and the vector field under study
is the gradient of that loss for the d = 222 parameters of
the neural network. The loss landscape of a non-linear neu-
ral network being very chaotic (Li et al., 2018), we do not
expect to learn the polar factorization of the associated gra-
dient field perfectly over the all optimization space Ω. The
optimization space we are considering is Ω = [−1, 1]222.

Polar Factorization and Inverse Map Results. Accord-
ing to Table 2, we see that, overall, NPF manages to learn
that vector field, but it lacks, as expected, accuracy in some
parts of the space. This is, e.g., revealed visually using
the TSNE plot from Figure 3. Similarly, Iψ can be used to
invert Mθ according to Table 3 and the histogram associated
with the cosine similarity on Figure 3 confirms that we can

n = 1024 n = 2048
Sε(∇uθ#ρn, G#ρn) 107.5± 8.2 93.5± 5.3
Sε(G#ρn, G#ρ

′
n) 110.3± 8.7 87.4± 4.2

Table 2. Polar factorization metrics for learning the gradient of the
MNIST classifier loss function.

Ek,z [Sε((Iψ(Mθ(Bα(xk)), z),Bα(xk))] 106.2±0.5
Sε(ρ64, ρ′64) 111.0±0.6
Sε(ρ128, ρ′128) 105.7±0.4
Ey∼G#ρn,z∥G ◦ Iψ(∇u∗

θ(y), z)− y∥2 14.2±13.0
Ey∼G#ρn,zcosine(G ◦ Iψ(∇u∗

θ(y), z), y) 0.83±0.18

Table 3. Inverse multivalued map metrics for learning the gradient
of the MNIST classifier loss function.

choose a certain gradient v and use Iψ ◦ ∇u∗
θ to generate

classifier weights whose gradient is approximately v. In
particular, Iψ allows the generation of correct critical points
(Figure 12), which, however, have a low accuracy. This may
be due to the fact that the gradient of good minimums varies
greatly with the stochasticity of the loss function visible
on Figure 13 and Figure 15, compared with the gradient
of critical points with an accuracy of 10%, which is the
performance of a classifier with random weights.

5.4. Learning NPF using Gradient Flow of Particles

In §5.3, we requested that NPF learn the entire gradient
field. This of course limits the ability, given a certain budget
of samples, to provide a good approximation of critical
points through the inverse generative map. This is likely
due to our uniform sampling procedure, which is unlikely to
reveal interesting critical points. In this experiment, we train
NPF using gradient descent trajectories to focus on those
areas. To do this, we initialize 1024 particles randomly and
have them follow a gradient flow. We use these trajectories’
samples to learn NPF.

Polar Factorization Results. The gradients associated
with particles in good accuracy basins vary greatly with loss
stochasticity (see Figure 13). However, we can see that NPF
is faithful in those areas: the Sinkhorn divergence between
the distribution generated by ∇uθ and the target is of the
same order as that between two batches of size 1024.

Inverse Map Results. As for Iψ , the gradients of the gen-
erated weights do have a norm close to 0, and the cosine
similarity distribution reveals that the direction of the gradi-
ents is globally learned but stochasticity prevents us from
performing better. Moreover, we can see in Figure 14 that
the critical weights generated contain valid minima.

7

Neural Polar Factorization

g ∥G∥22 ρn G#ρn

∇uθ#ρn Mθ#ρn Mξ#ρn (∇uθ ∘ Mξ)#ρn

Figure 1. The g function under study is the elevation in the Chamonix area (France). The figures show the respective action of the vector
fields involved in the polar factorization of ∇g on a sample measure ρn. We observe that ∇uθ#ρn ≈ G#ρn. Both implicit and explicit
measure-preserving maps Mθ (10) as well as the explicit network Mξ trained with the loss (11) permutes the points of the distribution,
ensuring that G ≈ ∇uθ ◦Mξ while (Mξ)#ρn ≈ (Mθ)#ρn ≈ ρn.

Figure 2. Iψ’s ability to replace gradients in the original Ω space
for the example of Chamonix region’s elevation gradient. The
figure on the right is generated by returning the gradients ∇g#ρn
to their initial position in the image via Iψ ◦ ∇u∗

θ . This posi-
tion is then colored according to the initial gradient norm (before
transport). We can compare the result with the image on the left,
generated by sampling uniformly in Ω space and colored according
to the norm of their gradient.

<latexit sha1_base64="R25ezd3l6ArvFIhRZb4yTFiNI7k=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVdIuqsuiCLqRin1BLZKk0zY0LyaTYiku/AG3+mfiH+hfeGecglpEJyQ5c+49Z+be68S+lwjLes0YC4tLyyvZ1dza+sbmVn57p5lEKXdZw438iLcdO2G+F7KG8ITP2jFnduD4rOWMTmW8NWY88aKwLiYx6wb2IPT6nmsLSdWvL89u8wWraKllzoOSBgXoVYvyL7hBDxFcpAjAEEIQ9mEjoaeDEizExHUxJY4T8lSc4R450qaUxSjDJnZE3wHtOpoNaS89E6V26RSfXk5KEwekiSiPE5anmSqeKmfJ/uY9VZ7ybhP6O9orIFZgSOxfulnmf3WyFoE+jlUNHtUUK0ZW52qXVHVF3tz8UpUgh5g4iXsU54RdpZz12VSaRNUue2ur+JvKlKzcuzo3xbu8JQ249HOc86BZLpYqxcpVuVA90aPOYg/7OKR5HqGKc9TQIO8hHvGEZ+PCiIyxcfeZamS0ZhfflvHwAa4ikGY=</latexit>

TSNE

G#ρn ∇uθ#ρn

0 1
Cosine

0.0

0.1

0.2

Fr
eq

ue
nc

y

Figure 3. Performance of the NPF and the inverse map Iψ on
the §5.3 MNIST classifier experiment where the loss gradient
is learned over the entire space Ω. The TSNE allows to visualize
in 2D the overlap of the predicted distribution ∇uθ#ρn with the
target distribution G#ρn while the cosine similarity, mentioned in
§5.1, shows that Iψ permits to accurately generate weights associ-
ated with a given gradient.

8

Neural Polar Factorization

5.5. LMC-NPF on MNIST-XE

We use LMC-NPF (Algorithm 2) to sample the loss of the
MNIST classifier considered in §5.3. Our sampling algo-
rithm is preceded by a warm-up containing particle descents
to explore good minima before sampling as detailed in the
supplementary files.

Sampling Algorithm Results. Following the warm-up,
the TSNE (Figure 5) as well as Figure 4 show that our
sampling algorithm proposes high-accuracy weights that
are completely different from the minima found during
the warm-up period. Since LMC-NPF alternates between
Langevin steps on g and Langevin steps on uθ, we demon-
strate that these minima had indeed been discovered through
the use of NPF by running an LMC algorithm initialized
with the final warm-up particles. The latter was parame-
terized the same way as the one used in LMC-NPF, with
the same number of iterations. We observe that the LMC
algorithm samples around the warm-up particles but does
not detach itself from them. This confirms that the use of
PFNet in the sampling procedure permits the discovery of
new local minima.

6. Conclusion
Brenier’s polar factorization is arguably one of the most
far-reaching results discovered in analysis in the last cen-
tury, underpinning the better known Brenier theorem on the
existence of solutions to the Monge (1781) problem. We
proposed in this work the first implementation, to the best
of our knowledge, of that factorization that is applicable to
higher-dimensional settings. To do so, we have used the
recently proposed machinery of neural optimal transport
solvers. Beyond simply exploiting this result, we have also
proposed to estimate a multivalued map that approximates
the inverse of the measure-preserving map component in
the polar factorization. We have shown that such an inverse
map can be of potential use to sample the optimization land-

0 100
Norm

0.0

0.5

Fr
eq

ue
nc

y

Input

Generated

0 50
Accuracy

0.0

0.5

1.0

Fr
eq

ue
nc

y

Input

Generated

Figure 4. Characteristics of the points sampled using LMC-NPF
for the §5.5 MNIST classifier experiment. In gray the classifier
weights have been drawn uniformly in the Ω optimization space,
while in purple the weights have been sampled using Algorithm 2.
Generated samples are critical points which are good minima, as
shown by the accuracy statistics.

<latexit sha1_base64="R25ezd3l6ArvFIhRZb4yTFiNI7k=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVdIuqsuiCLqRin1BLZKk0zY0LyaTYiku/AG3+mfiH+hfeGecglpEJyQ5c+49Z+be68S+lwjLes0YC4tLyyvZ1dza+sbmVn57p5lEKXdZw438iLcdO2G+F7KG8ITP2jFnduD4rOWMTmW8NWY88aKwLiYx6wb2IPT6nmsLSdWvL89u8wWraKllzoOSBgXoVYvyL7hBDxFcpAjAEEIQ9mEjoaeDEizExHUxJY4T8lSc4R450qaUxSjDJnZE3wHtOpoNaS89E6V26RSfXk5KEwekiSiPE5anmSqeKmfJ/uY9VZ7ybhP6O9orIFZgSOxfulnmf3WyFoE+jlUNHtUUK0ZW52qXVHVF3tz8UpUgh5g4iXsU54RdpZz12VSaRNUue2ur+JvKlKzcuzo3xbu8JQ249HOc86BZLpYqxcpVuVA90aPOYg/7OKR5HqGKc9TQIO8hHvGEZ+PCiIyxcfeZamS0ZhfflvHwAa4ikGY=</latexit>

TSNE

LMC

MLMC

End chains GDEnd chains GD

LMC-NPF

LMC

TSNE

Figure 5. Results of LMC-NPF applied to the MNIST classifier
loss function. The TSNE is used to represent the final particles
resulting from descent trajectories during the Warm-up period (in
red), the particles sampled by the LMC algorithm (in grey), and
the particles sampled by LMC-NPF (in purple).

scape of non-convex potentials. An interesting direction for
perfecting the sampling algorithm would be to reweight the
samples according to their probability, in the same vein as
SMC samplers (Del Moral et al., 2006). This would require
knowledge of the probability distribution generated by the
generative model Iψ , which is not possible with the current
methodology.

References
Brandon Amos. On amortizing convex conjugates for opti-

mal transport. In The Eleventh International Conference
on Learning Representations, 2023.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex
neural networks. In International Conference on Machine
Learning, pages 146–155. PMLR, 2017.

Brandon Amos et al. Tutorial on amortized optimization.
Foundations and Trends® in Machine Learning, 16(5):
592–732, 2023.

Vladimir Arnold. Sur la géométrie différentielle des
groupes de lie de dimension infinie et ses applications
à l’hydrodynamique des fluides parfaits. In Annales de
l’institut Fourier, volume 16, pages 319–361, 1966.

9

Neural Polar Factorization

JD Benamou and Y Brenier. A domain decomposition
method for the polar factorization of vector fields. Con-
temporary Mathematics, 157:231–231, 1994.

Yann Brenier. Polar factorization and monotone rearrange-
ment of vector-valued functions. Communications on
pure and applied mathematics, 44(4):375–417, 1991.

Charlotte Bunne, Andreas Krause, and Marco Cuturi. Super-
vised training of conditional monge maps. Advances in
Neural Information Processing Systems, 35:6859–6872,
2022.

Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sara-
bia Del Castillo, Mitch Levesque, Kjong-Van Lehmann,
Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch.
Learning single-cell perturbation responses using neural
optimal transport. Nature Methods, 20(11):1759–1768,
2023.

Xiang Cheng and Peter Bartlett. Convergence of langevin
mcmc in kl-divergence. In Algorithmic Learning Theory,
pages 186–211. PMLR, 2018.

Hyungjin Chung, Jeongsol Kim, and Jong Chul Ye. Di-
rect diffusion bridge using data consistency for inverse
problems. Advances in Neural Information Processing
Systems, 36, 2024.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponen-
tial linear units (elus). arXiv preprint arXiv:1511.07289,
2015.

Samuel Cohen, Brandon Amos, and Yaron Lipman. Rieman-
nian convex potential maps. In International Conference
on Machine Learning, pages 2028–2038. PMLR, 2021.

Arnak S Dalalyan and Avetik Karagulyan. User-friendly
guarantees for the langevin monte carlo with inaccurate
gradient. Stochastic Processes and their Applications,
129(12):5278–5311, 2019.

John M Danskin. The theory of max-min, with applications.
SIAM Journal on Applied Mathematics, 14(4):641–664,
1966.

Valentin De Bortoli, Guan-Horng Liu, Tianrong Chen, Evan-
gelos A Theodorou, and Weilie Nie. Augmented bridge
matching. arXiv preprint arXiv:2311.06978, 2023.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequen-
tial monte carlo samplers. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 68(3):411–436,
2006.

Marylou Gabrié, Grant M Rotskoff, and Eric Vanden-
Eijnden. Adaptive monte carlo augmented with normal-
izing flows. Proceedings of the National Academy of
Sciences, 119(10), 2022.

Thomas O Gallouët and Quentin Mérigot. A lagrangian
scheme à la brenier for the incompressible euler equations.
Foundations of Computational Mathematics, 18(4):835–
865, 2018.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning
generative models with sinkhorn divergences. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 1608–1617. PMLR, 2018.

Chin-Wei Huang, Ricky TQ Chen, Christos Tsirigotis, and
Aaron Courville. Convex potential flows: Universal prob-
ability distributions with optimal transport and convex
optimization. In International Conference on Learning
Representations, 2020.

Patrick Kidger. On Neural Differential Equations. PhD
thesis, University of Oxford, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alexander Korotin, Vage Egiazarian, Arip Asadulaev,
Alexander Safin, and Evgeny Burnaev. Wasserstein-2
generative networks. In International Conference on
Learning Representations, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. Visualizing the loss landscape of neural
nets. Advances in neural information processing systems,
31, 2018.

Dong C Liu and Jorge Nocedal. On the limited memory
bfgs method for large scale optimization. Mathematical
programming, 45(1-3):503–528, 1989.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evange-
los A Theodorou, Weili Nie, and Anima Anandkumar.
I2sb: Image-to-image schrödinger bridge. arXiv preprint
arXiv:2302.05872, 2023.

Antoine Liutkus and Kazuyoshi Yoshii. A diagonal plus
low-rank covariance model for computationally efficient
source separation. In 2017 IEEE 27th International Work-
shop on Machine Learning for Signal Processing (MLSP),
pages 1–6. IEEE, 2017.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and
Jason Lee. Optimal transport mapping via input convex
neural networks. In International Conference on Machine
Learning, pages 6672–6681. PMLR, 2020.

10

Neural Polar Factorization

Quentin Mérigot and Jean-Marie Mirebeau. Mini-
mal geodesics along volume-preserving maps, through
semidiscrete optimal transport. SIAM Journal on Numer-
ical Analysis, 54(6):3465–3492, 2016.

Gaspard Monge. Mémoire sur la théorie des déblais et des
remblais. Histoire de l’Académie Royale des Sciences,
pages 666–704, 1781.

Guillaume Morel, Lucas Drumetz, Simon Benaı̈chouche,
Nicolas Courty, and François Rousseau. Turning nor-
malizing flows into monge maps with geodesic gaussian
preserving flows. Transactions on Machine Learning
Research, 2023.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal
transport: With applications to data science. Founda-
tions and Trends® in Machine Learning, 11(5-6):355–
607, 2019.

Emilia Pompe, Chris Holmes, and Krzysztof Łatuszyński.
A framework for adaptive mcmc targeting multimodal
distributions. The Annals of Statistics, 48(5):2930 – 2952,
2020.

Aaditya Ramdas, Nicolás Garcı́a Trillos, and Marco Cuturi.
On wasserstein two-sample testing and related families
of nonparametric tests. Entropy, 19(2):47, 2017.

Gareth O. Roberts and Richard L. Tweedie. Exponential
convergence of Langevin distributions and their discrete
approximations. Bernoulli, 2(4):341 – 363, 1996.

John V Ryff. Measure preserving transformations and re-
arrangements. Journal of Mathematical Analysis and
Applications, 31(2):449–458, 1970.

Filippo Santambrogio. Optimal transport for applied mathe-
maticians. Birkäuser, NY, 55(58-63):94, 2015.

J. Saunderson, V. Chandrasekaran, P. A. Parrilo, and A. S.
Willsky. Diagonal and low-rank matrix decompositions,
correlation matrices, and ellipsoid fitting. SIAM Journal
on Matrix Analysis and Applications, 33(4):1395–1416,
2012.

Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh,
Maria Rodriguez Martinez, Andreas Krause, and Char-
lotte Bunne. Aligned diffusion schrödinger bridges. In
The 39th Conference on Uncertainty in Artificial Intelli-
gence, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008.

11

Neural Polar Factorization

A. Computation of the convex conjugate
Given a function convex function u, and a point y, the objective Ju(x, y) = ⟨y, x⟩ − u(x) is concave with respect to x and
u∗(y) = supx Ju(x, y) can be computed using optimization algorithms like gradient ascent, (L)BFGS or Adam. As for
∇u∗(y), taking the gradient for y necessitates differentiate through a supremum. In our case, u is strictly convex a.e. and
the supremum becomes a maximum :

u∗(y) = max
x

Ju(x, y)

Danskin’s envelope theorem (1966) allows to differentiate through this maximum and to write:

∇yu∗(y) = ∇ymax
x

Ju(x, y)

= (∇yJu(x, y))(x∗(y))

where x∗(y) is the optimal x that maximizes Ju(x, y). Because∇yJu(x, y) = x, we get that

∇yu∗(y) = x∗(y)

B. Preconditionned LMC

x(k+1) = x(k) − γ∇f(x(k)) +
√
2γz(k), z(k) ∼ N (0, Id)

By replacing ∇f with its polar factorization, the procedure becomes:

x(k+1) = x(k) − γ∇u ◦M(x(k)) +
√

2γz(k)

By studying y(k) = M(x(k)), one can see that the LMC procedure implies doing a preconditioned LMC algorithm on the
convex function u.

y(k+1) = M(x(k+1))

= M
(
x(k) − γ∇u(y(k)) +

√
2γz(k)

)
= M(x(k)) + JM (x(k))

[
−γ∇u(y(k)) +

√
2γz(k)

]
+ ◦(∥ε∥)
= y(k) − γJM (x(k))∇u(y(k)) +

√
2γJM (x(k))z(k)

+ ◦(∥ε∥)

with ε = −γ∇u(y(k)) +√2γz(k). One can note that the preconditioned matrix H = JM (x(k)) is not necessarily positive
definite.

C. Augmented Bridge Matching
Given a coupling Π0,1 and random variables (X0, X1), the Augmented bridge matching algorithm (De Bortoli et al., 2023)
aims at learning a stochastic dynamic mapping between X0 and X1 that preserves the coupling Π0,1.

In the probability space of path measures P(C([0, 1],Rd)), let M denotes the path measures associated to the SDE
dXt = vt(Xt)dt+σtdBt, the functions σ and v being locally Lipschitz. Given a path measure Q ∈M, the diffusion bridge
of Q which is the distribution of Q conditioned on both endpoint is denoted by Q|0,1. The set of path measures considered
to bridge P(X0) and P(X1) according to the coupling Π0,1 is Π0,1Q|0,1 =

∫
Rd×Rd Q|0,1(.|x0, x1)Π0,1(dx0, dx1). In

De Bortoli et al. (2023), the authors showed that under mild conditions, Π0,1Q|0,1 was associated to the following SDE:

dXt = {bt(Xt) + σ2
t ut}dt+ σtdBt, X0 ∼ µ

with ut = EP1|0,t

[
∇ logQ1|t(X1|Xt)|X0, Xt

]
where Q1|t and P1|0,t are respectively the conditional distribution of Q at

time 1 given the state at time t and the conditional distribution of P at time 1 given the coupling state at time 0 and t.

12

Neural Polar Factorization

This SDE gives a way to sample from Π0,1 by first sampling X0 ∼ µ and then discretize the SDE to get X1. Because ut is
intractable, it is approximated by a neural network uθt learned to minimize the regression loss:∫ 1

0

λtE[∥uθt (X0, Xt)−∇ logQ1|t(X1|Xt)∥2]dP(X0, Xt, X1)

A particular case of diffusion bridge is the Brownian bridge Q|0,1 for which v = 0 and σt = σ which is the one usually used
in practice.

D. Topography experiments
D.1. Creation of the dataset

We used the Python package elevation to get the elevation of three different regions of the globe: Chamonix, London,
and Cyprus. Given the latitudes and longitudes of the desired area, elevation returns a grid of the area with the elevation
value at each grid point. For the Chamonix example, we obtained 323932 points (x, y) ∈ R2 and their corresponding
elevation. We dequantized the elevations by adding a uniform noise on [0,1] to them before using a Gaussian filter to make
the gradients smoother. To do this, we used the function gaussian filter from the scipy library. We then numerically
estimate the gradients associated with the elevation and obtain a dataset of 323932 points in R2 and the associated gradients
in R2 for the example of Chamonix. We obtained data for the Cyprus and London regions in the same way.

D.2. London and Cyprus results

<latexit sha1_base64="c3a2tFB4zesxAsTcuJ2Eo7+FeIs=">AAACynicjVHLSsNAFD2Nr1pfVZeKBIvgqiQuqsuiGxcuWrAPaEtJ0mkbzIvJRCjFnX6AW/2R/on4B4o/4Z1pCmoRnZDkzLnn3Jl7rx15biwM4zWjLSwuLa9kV3Nr6xubW/ntnXocJtxhNSf0Qt60rZh5bsBqwhUea0acWb7tsYZ9cyHjjVvGYzcMrsUoYh3fGgRu33UsQVSjzYdhN8h18wWjaKilzwMzBYXy/qT68XAwqYT5F7TRQwgHCXwwBBCEPViI6WnBhIGIuA7GxHFCrooz3CFH3oRUjBQWsTf0HdCulbIB7WXOWLkdOsWjl5NTxxF5QtJxwvI0XcUTlVmyv+Ueq5zybiP622kun1iBIbF/+WbK//pkLQJ9nKkaXKopUoyszkmzJKor8ub6l6oEZYiIk7hHcU7YUc5Zn3XliVXtsreWir8ppWTl3km1Cd7lLWnA5s9xzoP6SdEsFUtVmvQ5piuLPRzimOZ5ijIuUUFNVfmIJzxrVxrXRtp4KtUyqWcX35Z2/wk3wZVv</latexit>⇢n
<latexit sha1_base64="OjjtLGaF0cZcfwa/nak8zcXJ9C4=">AAAC0XicjVHLSsNAFD2Nr9r6qLp0E6yCq5K6qC6LgrisaB/QaknSaQ3mxWRSKKUgbv0Bt/oR/oAfIf6BfoCuvTNNwQeiE5KcOfeeM3PvtULXiYRhPKe0qemZ2bn0fCa7sLi0nFtZrUVBzG1WtQM34A3LjJjr+KwqHOGyRsiZ6Vkuq1uXBzJe7zMeOYF/KgYhO/PMnu90HdsURJ0ftoet/Ehv8Yug7WfaubxRMNTSf4JiAvLlzbeHx372vRLkntBCBwFsxPDA4EMQdmEioqeJIgyExJ1hSBwn5Kg4wwgZ0saUxSjDJPaSvj3aNRPWp730jJTaplNcejkpdWyRJqA8Tliepqt4rJwl+5v3UHnKuw3obyVeHrECF8T+pZtk/lcnaxHoYk/V4FBNoWJkdXbiEquuyJvrn6oS5BASJ3GH4pywrZSTPutKE6naZW9NFX9RmZKVezvJjfEqb0kDLn4f509Q2ykUS4XSMU16H+OVxjo2sE3z3EUZR6igSt4ct7jDvXaiDbQr7XqcqqUSzRq+LO3mAwLnmI8=</latexit>

F#⇢n
<latexit sha1_base64="go8CTm3a+wB3MYe5dVV0Vh+gZpk=">AAAC43icjVHLSsNAFD2N7/qquhQkWAVXJXVRXYpuXCpYW2hKmaRTG0yTMJkUSunOnTtx6w+4VfwBP0L8A/0AXXtnmoIPRCckOXPuOWfmzjiR78XSsp4zxtj4xOTU9Ex2dm5+YTG3tHwah4lwedkN/VBUHRZz3wt4WXrS59VIcNZxfF5xzg9UvdLlIvbC4ET2Il7vsLPAa3kuk0Q1cmt2wByfmUnDlm0umdkfNPp2fmDaoh02SJC3CpYe5k9QTEF+b+Pt4bE7+34U5p5go4kQLhJ0wBFAEvbBENNTQxEWIuLq6BMnCHm6zjFAlrwJqTgpGLHn9D2jWS1lA5qrzFi7XVrFp1eQ08QmeULSCcJqNVPXE52s2N+y+zpT7a1HfyfN6hAr0Sb2L99I+V+f6kWihV3dg0c9RZpR3blpSqJPRe3c/NSVpISIOIWbVBeEXe0cnbOpPbHuXZ0t0/UXrVSsmrupNsGr2iVdcPH7df4Ep9uFYqlQOqab3sdwTGMV69ii+9zBHg5xhDJlX+AWd7g3uHFpXBnXQ6mRST0r+DKMmw/9VJ/o</latexit>ru✓#⇢n

<latexit sha1_base64="E6xaG29fcOnuDpiwJIN2K2lJjL4=">AAAC33icjVHLSsNAFD3Gd+sj6k43wSq4KqmL6lJ040ZQsFawpUzSaRtMkzCZFEopuHMnbv0Bt7ryB/wI8Q/0A3TtnWkEtYhOSHLm3HvOzL3XiXwvlrb9PGKMjo1PTE5NZ7Izs3Pz5sLiSRwmwuUlN/RDceqwmPtewEvSkz4/jQRnbcfnZed8T8XLHS5iLwyOZTfi1TZrBl7Dc5kkqmYuH9R6FdnikvWtXp9wrm9VRCusBZmambPztl7WMCikILez9vbw2Mm+H4bmEyqoI4SLBG1wBJCEfTDE9JyhABsRcVX0iBOEPB3n6CND2oSyOGUwYs/p26TdWcoGtFeesVa7dIpPryClhXXShJQnCKvTLB1PtLNif/PuaU91ty79ndSrTaxEi9i/dJ+Z/9WpWiQa2NY1eFRTpBlVnZu6JLor6ubWl6okOUTEKVynuCDsauVnny2tiXXtqrdMx190pmLV3k1zE7yqW9KACz/HOQxONvOFYr54RJPexWBNYQWr2KB5bmEH+zhEibwvcIs73BvMuDSujOtBqjGSapbwbRk3H2N2niA=</latexit>

M✓#⇢n

Figure 6. Respective actions of the learned vector fields associated with the polar factorization of the elevation gradient in the London
area.

Figure 7. Iψ’s ability to replace gradients in the original Ω space for the example of London region’s elevation gradient.

13

Neural Polar Factorization

<latexit sha1_base64="c3a2tFB4zesxAsTcuJ2Eo7+FeIs=">AAACynicjVHLSsNAFD2Nr1pfVZeKBIvgqiQuqsuiGxcuWrAPaEtJ0mkbzIvJRCjFnX6AW/2R/on4B4o/4Z1pCmoRnZDkzLnn3Jl7rx15biwM4zWjLSwuLa9kV3Nr6xubW/ntnXocJtxhNSf0Qt60rZh5bsBqwhUea0acWb7tsYZ9cyHjjVvGYzcMrsUoYh3fGgRu33UsQVSjzYdhN8h18wWjaKilzwMzBYXy/qT68XAwqYT5F7TRQwgHCXwwBBCEPViI6WnBhIGIuA7GxHFCrooz3CFH3oRUjBQWsTf0HdCulbIB7WXOWLkdOsWjl5NTxxF5QtJxwvI0XcUTlVmyv+Ueq5zybiP622kun1iBIbF/+WbK//pkLQJ9nKkaXKopUoyszkmzJKor8ub6l6oEZYiIk7hHcU7YUc5Zn3XliVXtsreWir8ppWTl3km1Cd7lLWnA5s9xzoP6SdEsFUtVmvQ5piuLPRzimOZ5ijIuUUFNVfmIJzxrVxrXRtp4KtUyqWcX35Z2/wk3wZVv</latexit>⇢n
<latexit sha1_base64="OjjtLGaF0cZcfwa/nak8zcXJ9C4=">AAAC0XicjVHLSsNAFD2Nr9r6qLp0E6yCq5K6qC6LgrisaB/QaknSaQ3mxWRSKKUgbv0Bt/oR/oAfIf6BfoCuvTNNwQeiE5KcOfeeM3PvtULXiYRhPKe0qemZ2bn0fCa7sLi0nFtZrUVBzG1WtQM34A3LjJjr+KwqHOGyRsiZ6Vkuq1uXBzJe7zMeOYF/KgYhO/PMnu90HdsURJ0ftoet/Ehv8Yug7WfaubxRMNTSf4JiAvLlzbeHx372vRLkntBCBwFsxPDA4EMQdmEioqeJIgyExJ1hSBwn5Kg4wwgZ0saUxSjDJPaSvj3aNRPWp730jJTaplNcejkpdWyRJqA8Tliepqt4rJwl+5v3UHnKuw3obyVeHrECF8T+pZtk/lcnaxHoYk/V4FBNoWJkdXbiEquuyJvrn6oS5BASJ3GH4pywrZSTPutKE6naZW9NFX9RmZKVezvJjfEqb0kDLn4f509Q2ykUS4XSMU16H+OVxjo2sE3z3EUZR6igSt4ct7jDvXaiDbQr7XqcqqUSzRq+LO3mAwLnmI8=</latexit>

F#⇢n
<latexit sha1_base64="go8CTm3a+wB3MYe5dVV0Vh+gZpk=">AAAC43icjVHLSsNAFD2N7/qquhQkWAVXJXVRXYpuXCpYW2hKmaRTG0yTMJkUSunOnTtx6w+4VfwBP0L8A/0AXXtnmoIPRCckOXPuOWfmzjiR78XSsp4zxtj4xOTU9Ex2dm5+YTG3tHwah4lwedkN/VBUHRZz3wt4WXrS59VIcNZxfF5xzg9UvdLlIvbC4ET2Il7vsLPAa3kuk0Q1cmt2wByfmUnDlm0umdkfNPp2fmDaoh02SJC3CpYe5k9QTEF+b+Pt4bE7+34U5p5go4kQLhJ0wBFAEvbBENNTQxEWIuLq6BMnCHm6zjFAlrwJqTgpGLHn9D2jWS1lA5qrzFi7XVrFp1eQ08QmeULSCcJqNVPXE52s2N+y+zpT7a1HfyfN6hAr0Sb2L99I+V+f6kWihV3dg0c9RZpR3blpSqJPRe3c/NSVpISIOIWbVBeEXe0cnbOpPbHuXZ0t0/UXrVSsmrupNsGr2iVdcPH7df4Ep9uFYqlQOqab3sdwTGMV69ii+9zBHg5xhDJlX+AWd7g3uHFpXBnXQ6mRST0r+DKMmw/9VJ/o</latexit>ru✓#⇢n

<latexit sha1_base64="E6xaG29fcOnuDpiwJIN2K2lJjL4=">AAAC33icjVHLSsNAFD3Gd+sj6k43wSq4KqmL6lJ040ZQsFawpUzSaRtMkzCZFEopuHMnbv0Bt7ryB/wI8Q/0A3TtnWkEtYhOSHLm3HvOzL3XiXwvlrb9PGKMjo1PTE5NZ7Izs3Pz5sLiSRwmwuUlN/RDceqwmPtewEvSkz4/jQRnbcfnZed8T8XLHS5iLwyOZTfi1TZrBl7Dc5kkqmYuH9R6FdnikvWtXp9wrm9VRCusBZmambPztl7WMCikILez9vbw2Mm+H4bmEyqoI4SLBG1wBJCEfTDE9JyhABsRcVX0iBOEPB3n6CND2oSyOGUwYs/p26TdWcoGtFeesVa7dIpPryClhXXShJQnCKvTLB1PtLNif/PuaU91ty79ndSrTaxEi9i/dJ+Z/9WpWiQa2NY1eFRTpBlVnZu6JLor6ubWl6okOUTEKVynuCDsauVnny2tiXXtqrdMx190pmLV3k1zE7yqW9KACz/HOQxONvOFYr54RJPexWBNYQWr2KB5bmEH+zhEibwvcIs73BvMuDSujOtBqjGSapbwbRk3H2N2niA=</latexit>

M✓#⇢n

Figure 8. Respective actions of the learned vector fields associated with the polar factorization of the elevation gradient in the Cyprus
neighborhood.

Figure 9. Iψ’s ability to replace gradients in the original Ω space for the example of Cyprus region’s elevation gradient.

Chamonix London Chypre
Wε(∇uθ#ρn, F#ρn) 0.27 0.11 0.020
Wε(∇F#ρn, F#ρ

′
n) 1.55 0.33 0.036

Ek,z [Sε((Iψ(Mθ(Bα(xk)), z),Bα(xk))] 0.048 0.23 0.041

Figure 10. NPF and Iψ performances for the topography experiments.

E. LeNet classifier Experiments
E.1. LeNet classifier architecture

The LeNet classifier architecture used for the experiments is composed of two convolutive layers followed by a relu activation
function and a max pooling; it ends with a dense layer as described in Figure 11. The optimization space that we consider is
Ω = [−1, 1]222.

E.2. Complementary graphs for the MNIST classifier experiments

14

Neural Polar Factorization

Convolution
(features: 1, kernel size: 5× 5, padding: ”VALID”)

Max-Pooling
(window: 2× 2, strides: 2× 2)

Convolution
(features: 1, kernel size: 5× 5, padding: ”VALID”)

Max-Pooling
(window: 2× 2, strides: 2× 2)

Flatten layer

Dense
(output size: 10)

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Figure 11. Le Net classifier architecture used in experiments.

0 100
Norm

0.0

0.5

Fr
eq

ue
nc

y

Input

Generated

0 50 100
Loss

0.0

0.5

Fr
eq

ue
nc

y

Input

Generated

10 20
Accuracy

0.0

0.1

0.2

Fr
eq

ue
nc

y

Input

Generated

Figure 12. Characteristics of the generated critical points for the §5.3 MNIST classifier experiment. In gray the classifier weights have
been drawn uniformly in the Ω optimization space, while in purple the weights have been drawn using Iψ(∇u∗

θ(0), z).

0 5 10
Distance

0.0

0.2

Fr
eq

ue
nc

y

0 1
Cosine

0.00

0.05

0.10

Fr
eq

ue
nc

y

0.10 0.15 0.20
Stochasticity

0.00

0.05

0.10

Fr
eq

ue
nc

y

Figure 13. Performances of Iψ for the §5.4 MNIST classifier experiment and stochasticity of the MNIST loss. The distance and cosine
plots demonstrate the ability of Iψ to correctly generate weights with a fixed gradient. For the stochasticity plot, the classifier weights are
fixed to the weights obtained after gradient descent and different minibatches of MNIST images are used to compute the gradient of the
loss function. The stochasticity plot shows the distribution of the sinkhorn divergence between two gradient batches computed from the
same weights.

15

Neural Polar Factorization

0 100
Norm

0.00

0.25

0.50

Fr
eq

ue
nc

y

Input

Generated

0 50 100
Loss

0.0

0.2

0.4

Fr
eq

ue
nc

y

Input

Generated

0 50
Accuracy

0.0

0.2

Fr
eq

ue
nc

y

Input

Generated

Figure 14. Characteristics of the generated critical points for the §5.4 MNIST classifier experiment. In gray the classifier weights have
been drawn uniformly in the Ω optimization space, while in purple the weights have been drawn using Iψ(∇u∗

θ(0), z).

0 10
Distance

0.0

0.5

Fr
eq

ue
nc

y

0 1
Cosine

0.000

0.025

0.050

Fr
eq

ue
nc

y

0.1 0.2
Stochasticity

0.00

0.05

Fr
eq

ue
nc

y

Figure 15. Performances of Iψ for the §5.5 sampling MNIST classifier experiment. The distance and cosine plots demonstrate the ability
of Iψ to correctly generate weights with a fixed gradient. For the stochasticity plot, the classifier weights are fixed to the final sampled
particles and different minibatches of MNIST images are used to compute the gradient of the loss function. The stochasticity plot shows
the distribution of the sinkhorn divergence between two gradient batches computed from the same weights.

0 100
Norm

0.0

0.5

Fr
eq

ue
nc

y

Input

Generated

0 50 100
Loss

0.0

0.5

1.0

Fr
eq

ue
nc

y

Input

Generated

0 50
Accuracy

0.0

0.5

1.0

Fr
eq

ue
nc

y

Input

Generated

Figure 16. Characteristics of the points sampled using Algorithm 2 for the §5.5 MNIST classifier experiment. In gray the classifier weights
have been drawn uniformly in the Ω optimization space, while in purple the weights have been sampled using Algorithm 2. The generated
samples are critical points which are good minima, as shown by the accuracy statistics.

16

Neural Polar Factorization

F. Hyperparameters
F.1. Parameterize uθ

In all experiments, the convex function u is parameterized using an ICNN uθ whose architecture is detailed in §3.1. The
rank of the quadratic term QA,δ(x) is always taken equal to 1, which means that A is a row matrix. We noted that it was
necessary to choose smooth activation functions in u’s parameterization to avoid convergence problems with the
conjugate solvers, that occur especially in high dimension. This is why we have favored the use of ELU (Clevert et al.,
2015) activations in the u parameterization rather than Relu activations.

F.2. Computation of u∗
θ

The use of a conjugate solver is necessary to compute the loss functions of Vϕ, Mξ, Iψ and to estimate Mθ. In all cases,
the objective is to estimate the gradient of uθ’s conjugate at a given point y: ∇(uθ)∗(y). For a given experiment, that
justifies the use of the same conjugate solver parameters for these different applications. We relied on ADAM solver for the
computation of the convex conjugate as it runs faster than LBFGS on our examples and use Amos implementation. The
two hyperparameters that remain to be set are the maximum number of iterations given to the solver to converge and the
tolerance factor at which the norm of the gradient is considered small enough for the solver to have converged. These two
hyperparameters are strongly dependent on the dimension of the problem as well as on the function uθ and, therefore, on the
distributions ρ and F#ρ. To amortize the number of iterations required for the solver to converge, it is always initialized
with the prediction of the Vϕ network that is trained in conjunction with uθ.

F.3. Parameterize Vϕ

We use an MLP with 2 hidden layers of size 512 and Relu activation functions to parameterize Vϕ in all our experiments.

F.4. Parameterize Mξ

The measure-preserving map M is parameterized by a neural network only when the vector field under study is available
through samples only. This is the case in the topography examples where Mξ is parameterized by an MLP with 2 hidden
layers of size 512 and Relu activation functions.

F.5. Parameterize Xψ

The learned part of the drift Xψ is parameterized using an MLP, and we use Silu activation functions which is the classic
choice for parameterizing the drift Xψ .

The same hyperparameters have been used for the Chamonix, London, and Cyprus cases.

17

Neural Polar Factorization

model hyperparameter value

uθ activation function elu
architecture [64, 64, 64, 64]
b1 0.50
b2 0.50
scheduler cosine decay
initial learning rate 0.001
α 0.10
scheduler steps 50000
training steps dual step ICNN
steps 50000

Iψ activation function silu
architecture [256, 256, 256]
scheduler cosine decay
initial learning rate 0.001
α 0.010
scheduler steps 50001
training steps flow matching
steps 50000
σ 0.10

Vϕ activation function relu
architecture [512, 512]
b1 0.90
b2 0.999
scheduler cosine decay
initial learning rate 0.0005
α 0.010
scheduler steps 51001
steps 50001

conjugate solver name Adam
max iteration 200
gtol 0.0010

Figure 17. Hyperparameters used for the topography experiments (the same hyperparameters have been used for Chamonix, London, and
Cyprus).

18

Neural Polar Factorization

model hyperparameter value

uθ activation function elu
architecture [128, 128, 128, 128]
b1 0.50
b2 0.50
scheduler cosine decays
initial learning rate 0.001
α 0.010000
scheduler steps 10000
training steps dual step ICNN
steps 10000

Iψ activation function silu
architecture [512, 512]
scheduler cosine decay
initial learning rate 0.0005
α 0.010
scheduler steps 4000°
training steps flow matching
steps 50000
σ 1.0

Vϕ activation function relu
architecture [512, 512]
b1 0.90
b2 0.999
scheduler cosine decay
initial learning rate 0.0005
α 0.010
scheduler steps 11000
steps 10001

conjugate solver name Adam
max iterations 700
gtol 0.10

Figure 18. Hyperparameters used for experiment 6.3.

19

Neural Polar Factorization

model hyperparameter value

uθ activation function elu
architecture [128, 128, 128, 128]
b1 0.50
b2 0.50
scheduler cosine decay
initial learning rate 0.0001
α 0.10
scheduler steps 30000
training steps dual step ICNN
steps 1002

Iψ activation function silu
architecture [512, 512]
scheduler cosine decay
initial learning rate 0.0005
α 0
scheduler steps 61003
training steps flow matching
σ 0.10

Vϕ activation function relu
architecture [512, 512]
b1 0.90
b2 0.999
scheduler cosine decay
initial learning rate 0.0005
α 0
scheduler steps 62005
steps 1002

conjugate solver name Adam
max iteration 1000
gtol 0.001

particles steps 60000
coefficient LMC f 1
coefficient LMC u 1
particules 1024
warming steps 30000
consecutive LMC steps on f 200
consecutive LMC steps on u 200
τf 0.10
τu 0.10

Figure 19. Hyperparameters used for experiment 6.4.

20

Neural Polar Factorization

model hyperparameter value

uθ activation function elu
architecture [128, 128, 128, 128]
b1 0.50
b2 0.50
scheduler cosine decay
initial learning rate 0.0001
α 0.10
scheduler steps 30000
training steps dual step
steps 1002

Iψ activation function silu
architecture [512, 512]
scheduler cosine decay
initial learning rate 0.000500
α 0
scheduler steps 61003
training steps flow matching
σ 0.10

Vϕ activation function relu
architecture [512, 512]
b1 0.90
b2 0.999
scheduler cosine decay
initial learning rate 0.0005
α 0
scheduler steps 62005
steps 1002

conjugate solver name Adam
max iteration 1000
gtol 0.001

particles steps 60000
coefficient LMC f 1000
coefficient LMC u 1000
particules 1024
warming steps 30000
LMC steps on f 200
LMC steps on u 200
τf 0.10
τu 0.10

Figure 20. Hyperparameters used for experiment 6.5.

21

