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Abstract. We study the Dirichlet problem for the weighted Schrödinger operator

−∆u+ V u = λρu,

where ρ is a positive weighting function and V is a potential. Such equations appear nat-
urally in conformal geometry and in the composite membrane problem. Our primary goal
is to establish concavity estimates for the principle eigenfunction with respect to conformal
connections. Doing so, we obtain new bounds on the fundamental gap problem, which is
the difference between the first and second eigenvalues. In particular, we partially resolve
a conjecture of Nguyen, Stancu and Wei [NSW22] on the fundamental gap of horoconvex
domains. In addition, we obtain a power convexity estimate for solutions to the torsion
problem in spherical geometry on convex domains which are not too large.

1. Introduction

In this article, we use conformal deformations to show that the ground-state eigenfunction
u1 of a convex domain Ω satisfies certain log-convexity properties with respect to a suitably
chosen connection. More precisely, given a bounded domain Ω in a Riemannian manifold
(M, g), we consider the Dirichlet eigenvalue problem

−∆gu = λu in Ω, u = 0 on ∂Ω, (1.1)

where ∆g is the Laplace-Beltrami operator. There is a discrete sequences of eigenvalues

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · ↗ ∞,

repeated with multiplicity as well as associated eigenfunctions ui which form an orthogonal
basis of L2(Ω). By changing the underlying metric in a conformal fashion, the eigenvalue
equation changes as well. In particular, if g̃ = e2φg and ũ is a g̃ Dirichlet eigenfunction, then

u = e
n−2
2 φũ solves a Schrödinger equation of the form

−∆gu+ V u = λρu in Ω, u = 0 on ∂Ω, (1.2)

where V is a potential and ρ is a weighting function (see Section 2 for details). Equation 1.2
is also known as a composite membrane problem, because the weighting function ρ describes
objects whose density varies throughout the domain [CM90, CGI+00].

One central motivation for establishing log-concavity estimates for the principle eigenfunc-
tion is that doing so allows us to control fundamental gap, which is the difference between
the lowest two eigenvalues of Equation (1.2)

Γ(Ω) = λ2 − λ1 > 0.

In independent works of van den Berg, Ashbaugh-Benguria, and Yau [AB89, vdB83, Yau86],
it was conjectured that for any convex domain Ω ⊂ Rn and a convex potential V , the
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2 IOWA STATE UNIVERSITY AND UCSB

fundamental gap is at least 3π2

D2 , where D is the diameter of the domain. This conjecture
was proven by Andrews and Clutterbuck in 2011 [AC11] by proving a strong log-concavity
estimate for the first eigenfunction (see also, [BL76, SWYY85, YZ86, GLL16] for related
results). There has been a large amount of work on estimating the fundamental gap in
spherical geometry [LW87, Wan00, SWW19, CWY23] and for deformations of round spheres
in dimension two [KNTW22, KTW23], where the main challenge was to prove log-concavity
estimates of the first eigenfunction.

For spaces of negative curvature, the fundamental gap can be much smaller (see Section
2.2 for a discussion on this). In particular, in hyperbolic space it is possible to find convex
domains of any diameter D, whose fundamental gap is arbitrarily small [BCN+22] (see also
[KN24]). Since assuming only convexity is not enough to ensure uniform lower bounds on the
fundamental gap in such geometries, it is natural to consider stronger convexity assumptions.
In particular, Nguyen, Stancu and Wei [NSW22] posed the question of whether it is possible
to find lower bounds of the fundamental gap of a horoconvex domain in terms of its diameter.
In this article, we provide a partial answer to this question.

Theorem 1.1. Let Ω ⊂ H2 be a horoconvex domain whose diameter satisfies

D < 2 arccsch(2
√

11/3) ≈ 0.516474.

Then the fundamental gap of Ω satisfies

Γ(Ω) ≥ 32

3(7 +
√
33)

π2

D2
+

4

3
≈ 0.837

π2

D2
+

4

3
.

The key to proving this estimate is to establish the log-concavity of the first eigenfunction
with respect to a connection that has constant positive curvature. In prior work, the log-
concavity of eigenfunctions has been studied solely in terms of the Levi-Civita connection
of the associated metric. However, by considering a conformal deformation, this induces a
choice of a connection on the tangent bundle and one can study concavity properties of the
solution to (1.2) under the connection induced by g in contrast to the one induced by g̃.

Observation 1. It is possible to establish concavity estimates for solutions to elliptic PDEs
by choosing the connection carefully.

The idea of choosing a connection to prove analytic results has a long history in differ-
ential geometry (see, e.g., [Uhl82a, Uhl82b]) and is often known as gauge theory. From this
perspective, choosing a conformal deformation and considering the associated connection cor-
responds to a conformal gauge. Traditionally, conformal gauge theory has been developed
using the theory of principle bundles (see, for instance, [Ogi67]). In this paper, we will not use
this approach and so our choices of gauge will appear as particular choices of coordinates and
conformal factors. However, it is possible to express our results in coordinate-free language
by reformulating them in gauge-theoretic terms.

1.1. Overview of the Paper. The main results in this paper establish log-concavity esti-
mates for eigenfunction of the problem (1.2). To begin, let us first consider the case where
the potential function V vanishes.

Theorem 1.2. Suppose that Ω ⊂ Mn
K (for K ≥ 0) is a convex domain. If ρ : Ω → R is a

positive function which satisfies
∇2ρ ≤ 2KρgMn

K
, (1.3)

then the principle eigenfunction of (1.2) (with vanishing potential) is log-concave with respect
to the Levi-Civita connection on Mn

K .
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In this theorem and throughout the rest of the paper, we denote Mn
K to be the simply

connected space-form of dimension n with constant sectional curvature K. In other words,
Mn

K is a sphere when K > 0, is Euclidean space when K = 0, and is hyperbolic space when
K < 0.

The strategy used in the proof of Theorem 1.2 is a continuity method (see e.g. [SWYY85,
CF85]). In other words, we consider a one-parameter family of PDEs so that the eigenfunc-
tion at the initial time is log-concave and the final time is the problem of interest. If the
eigenfunction is not log-concave for t = 1, then there must be an intermediate time t0 for
which the log-concavity fails. Applying then a maximum principle, we derive a contradic-
tion. We should note that Lemma 3.3 generalizes the main lemma from our previous work in
[KNTW22]. This theorem implies the following fundamental gap estimate (see Lemma 2.4).

Corollary 1.3. Under the assumption of Theorem 1.2, the fundamental gap of the problem
(1.2) satisfies

Γ(Ω) ≥ 1

∥ρ∥∞

(
π2

D2
+
K

2

)
.

Note that Theorem 1.2 only holds if K ≥ 0. However, by applying this result for a
particular choice of conformal deformation, we prove Theorem 1.1. This result is the first
known lower bound on the fundamental gap in a space of negative curvature in terms of the
diameter.1 In fact, it is possible to relax the assumption of horoconvexity somewhat (see
Subsection 4.2 for details).

It is possible to generalize Theorem 1.2 to Schrödinger operators with non-vanishing po-
tential (see Theorem 4.1 for the precise version). From this, one can establish fundamental
gap estimates for C4 conformal deformations of a round sphere for domains whose second
fundamental form h̃∂Ω is larger than some constant.

Corollary 1.4. Let (Mn
K , g̃ = e2φgMn

K
) be a conformal deformation of a round sphere. There

exists ε = ε(n,K) > 0 such that whenever ∥φ∥C4 ≤ ε(K,n), we have for any Ω convex

with respect to gMn
K
, the function u = e

n−2
2 φũ is log-concave with respect to gMn

K
Levi-Civita

connection, where ũ is the principle eigenfunction of Ω with respect to ∆g̃. Furthermore, the
fundamental gap of the domain satisfies

Γ(Ω,∆g̃) ≥
min exp(2φ)

max exp(2φ)

π2

D2
+

1

max exp(2φ)

K

2
. (1.4)

Remark 1. In the previous corollary, we assumed that the domain is convex with respect to
spherical geometry. If one wants to express this condition in terms of the conformal metric
g̃, it suffices to assume to that the second fundamental for on ∂Ω (with respect to g̃) satisfies

h̃∂Ω ≥ ∥∇̃φ∥∞,g̃. See Remark 3.

Although there is a large body of work studying the fundamental gap for domains in
spherical or flat geometry, there are comparatively few results known when the sectional
curvature is positive but non-constant. In particular, Corollary 1.4 is the first lower bound
for domains in positively curved geometries of dimensions three or higher.

The idea of considering a conformal deformation to find a more tractable connection can
be applied to other elliptic equations as well. As a simple demonstration of this approach,

1There are estimates on the fundamental gap in general settings [RORWW23], but these results require that
the domain satisfy an interior rolling ball condition and use the radius of this ball in their gap estimate.
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we consider the torsion problem {
∆u+ 1 = 0, x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(1.5)

on a convex domain Ω ⊂ S2. Applying stereographic projection to obtain a flat connection,
we can apply a result of Kennington to obtain the following [Ken85].

Theorem 1.5. Let Ω ⊂ S2 be a convex domain whose circumradius is at most 2 arctan(1/5)
and consider the solution u to the torsion problem. Then it is possible to find a point p ∈ Ω

so that (πpu)
1
3 is concave where πp is stereographic projection based at p. As a result, the

level sets of u must be connected and we can derive lower bounds on their geodesic curvature.

Remark 2. This result can be generalized for C2 small deformations of round spheres in a
straightforward way.

1.2. Structure of the paper. In Section 2, we recall some well-known facts about conformal
geometry and fundamental gap estimates. We then discuss how to obtain fundamental gap
estimates for the problem (1.2), which is done by a comparison argument to the case where
ρ is constant. In addition, we show how changing the connection allows us to prove Theorem
1.5 In Section 3.1, we prove a generalization of the the barrier method from [KNTW22].
Using this, we prove Theorem 1.2 in Section 4. In this section, we also prove Theorem 1.1.

Acknowledgements. Malik T. wishes to thank Rugang Ye for fruitful discussions. He
wishes to thank especially Guofang Wei for several helpful comments that improved this
manuscript. Gabe K. would like to thank Mizan Khan for his helpful suggestions about
exposition. The authors would also like to thank Xuan Hien Nguyen for her helpful comments.

2. Background and Preliminaries

2.1. Conformal deformations of the Laplace operator. In this section, we recall some
well-known facts about conformal geometry. Given a function φ : M → R, we consider the
conformal metric g̃ = e2φg. There is a known formula for conformal deformations of Hessian
and the Laplace operator, which states that for a smooth function F :M → R

Hessg̃ F = Hessg F − 2dφ⊗ dF + (∇φ · ∇F )g (2.1)

∆g̃F = e−2φ
(
∆gF + (n− 2)∇φ · ∇F

)
. (2.2)

Then, we consider a (possibly weighted) g̃-eigenfunction ψ satisfying

∆g̃ψ = −λρ̃ψ in Ω and ψ = 0 on ∂Ω. (2.3)

Observe that for any a ∈ R that

∆gψ + (n− 2)∇φ · ∇ψ

=e−aφ
(
∆g(ψe

aφ) +
[
−a2|∇φ|2 − a∆gφ

]
ψeaφ

)
− (n− 2− 2a)∇φ · ∇ψ.

Choosing a = n−2
2 , we see that the function u = ψe

n−2
2 φ is a weighted eigenfunction of a

Schrödinger operator of g.{
−∆gu+

[
(n−2)2

4 |∇φ|2 + n−2
2 ∆gφ

]
u = λe2φρ̃u

u|∂Ω = 0
, (2.4)
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which is a composite membrane equation with the weighting function ρ = ρ̃e2φ and potential

V = (n−2)2

4 |∇φ|2 + n−2
2 ∆gφ. Note that for surfaces (n = 2), when there is no potential in

the eigenvalue equation, after a conformal change there is again no potential and the factor

e
n−2
2 φ is trivial. As a result, changing the metric conformally for surfaces essentially just

changes the weighting function. However, in higher-dimensions, a conformal transforma-
tion will transform the Laplace operator into a Schrödinger operator with a non-vanishing
potential term.

Since convexity of domains will play a central role in this paper, we conclude this subsection
by recalling how the second fundamental form of a hypersurface changes under conformal
deformation. Given a domain Ω, let h and h̃ denote the second fundamental form of ∂Ω
under g and g̃, respectively. Then for p ∈ ∂Ω and tangent vectors X,Y ∈ Tp∂Ω one has

h̃(X,Y ) = eφ
(
h(X,Y ) + g(X,Y )

∂φ

∂N

)
, (2.5)

where N is the normal vector (unit length with respect to g) at p. Thus the smallest principle
curvature κmin satisfies

κ̃min = inf
g̃(X,X)=1

h̃(X,X) = e−φ

(
κmin +

∂φ

∂N

)
.

2.2. The fundamental gap in hyperbolic space. As mentioned in the introduction, the
fundamental gap of convex domains in hyperbolic space behaves very differently than in
Euclidean or spherical geometries. As for the eigenfunctions of such regions, Shih [Shi89]
constructed convex domains in hyperbolic space whose principle eigenfunction has two dis-
tinct maximum points. As a result, such a function cannot be log-concave with respect to
any connection since some of its level sets are disconnected. Using a similar construction,
Bourni et al. constructed convex domains in hyperbolic space (with arbitrary diameter)
whose fundamental gap is arbitrarily small [BCN+21, BCN+22]. In recent work [KN24], the
first named author and Nguyen extended this argument to manifolds with any negative sec-
tional curvature. In particular, for any manifold with even a single tangent plane of negative
curvature, there are (small) convex domains whose fundamental gap is arbitrarily small.

Despite these results, there are a number of open questions remaining about the funda-
mental gap of domains in negative curvature. In particular, if we strengthen the notion of
convexity, we can ask whether it is possible to establish lower bounds on the fundamental
gap. For instance, we can consider domains which are horoconvex.

Definition 2.1. A horocycle is a continuous curve in hyperbolic space whose normal geodesics
all converge asymptotically in the same direction. Such curves have geodesic curvature iden-
tically 1. We say that a domain Ω ⊂ H2 is horoconvex if at every point p ∈ ∂Ω there exists a
horocycle passing through p such that Ω is contained in the region bounded by the horocycle.

For the Poincaré disk model, horocycles are Euclidean circles entirely contained in the unit
disk B and tangent to ∂B. Concerning the fundamental gap of horoconvex domains, Nguyen,
Stancu and Wei recently obtained the following result.

Theorem 2.2 (Theorem 1.1 [NSW22]). For every n ≥ 2, there exists a constant C(n) such
that the Dirichlet fundamental gap of every horoconvex domain Ω with diameter D ≥ 4 ln 2
satisfies

Γ(Ω) ≤ C(n)

D3
.
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As D → ∞, the quantity Γ(Ω)D(Ω)2 tends to 0, so this shows the fundamental gap of
large horoconvex domains is small (relative the gaps of Euclidean domains). Nonetheless,
Nguyen et. al. conjectured that it may be possible to recover some lower bound on the gap
in terms of the diameter and the dimension.

To this end, Theorem 1.1 partially establishes this conjecture for n = 2, with the additional
assumption that the diameter is sufficiently small. We also note recent work of Grossi and
Provenzano, which showed that for any horoconvex domains in H2, the principle eigenfunction
has a unique non-degenerate critical point [GP23]. This result gives some partial evidence
for log-concavity, since it implies that the level sets must be connected.

2.3. Spectral Gap Estimates. We now turn our attention to proving fundamental gap
estimates for the problem of the form (1.2). Our strategy to obtain fundamental gap estimates
uses an import insight of [SWYY85]. The function w = u2

u1
, the ratio of the second and first

eigenfunction, satisfies a PDE with Neumann boundary conditions:

Lemma 2.3 ([SWYY85]). Consider the function w = u2
u1
. Then w satisfies the equation

∆w + 2∇ log u1 · ∇w = −Γρw (2.6)

with Neumann boundary conditions.

Hence, estimating the fundamental gap can be reduced to estimating the first non-trivial
weighted Neumann eigenvalue of the operator −∆g − 2∇ log u1 · ∇(·). To estimate these, we
make use of a result by Andrews and Ni [AN12].

Lemma 2.4 (Proposition 3.1 [AN12]). Let Ω be a convex domain in any Riemannian man-
ifold with Ricij + fij ≥ agij for some a ≥ 0. Then the second Neumann eigenvalue of the
problem

−∆gu+ ⟨∇u,∇f⟩+ µρu = 0

satisfies the estimate

∥ρ∥∞µ2(ρ) ≥
a

2
+
π2

D2

Proof. Note that the second eigenvalue satisfies

µ2(ρ) = min
V⊂H1, dimV=2

max
u∈V

∫
Ω |∇u|2e−f dx∫
Ω ρu

2e−f dx

≥ 1

∥ρ∥∞
min

V⊂H1, dimV=2
max
u∈V

∫
Ω |∇u|2e−f dx∫
Ω u

2e−f dx
=
µ2(1)

∥ρ∥∞
.

The conclusion then follows from [AN12]. □

In the case of the fundamental gap problem, we choose f = −2 log u1. Hence, when the
Ricci curvature is non-negative, all we need to show is that the first eigenfunction is log-
concave.

2.4. A convexity result for the torsion problem. The results in this paper fall into a
broader class of convexity and quasi-convexity results for the solutions to uniformly elliptic
PDEs. There are a large number of such results (see, e.g., [ML71, Kor83, GM05, Ste22,
JMS23] and the references therein). Although the primary focus of this paper is eigenvalue
problems, conformal geometry can be used to study other elliptic equations as well. As
an example, we demonstrate how conformal change can can be used to obtain convexity
results for the torsion problem. In 1971, Makar-Limanov [ML71] showed that for convex
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Ω ⊂ R2, the solution to (1.5) is 1/2-concave (see [MSY12] for a discussion of the higher
dimensional problem). However, if one tries to adapt this result to more general geometries,
a large number of curvature terms appear in the computation which complicates the analysis.
In [Kor87], Korevaar mentions unpublished work of himself and Treisberg which performs
this analysis and shows that solutions to the torsion problem are 1/2-concave in spherical
geometry.2 However, if one uses conformal deformations, we can derive Theorem 1.5 almost
immediately from [Ken85].

Proof of Theorem 1.5. We let β ≥ 1 be a constant (the original claim follows by choosing
β = 1). The bound of the circumradius allows us to find a rotation of the sphere so that
Ω contains the south pole and such that Ω is contained in the ball of radius 2 arctan( 1

1+4β )

around the south pole. Since the spherical metric is conformal to the Euclidean metric,

gS2 =
4

(1 + ∥x∥2)2
gR2 .

We then rewrite the torsion problem in terms of stereographic projection from the north pole.
Doing so, in view of (2.2), (1.5) becomes

∆R2u+
4

(1 + ∥x∥2)2
= 0. (2.7)

Since Ω is convex as a spherical domain and contains the north pole, an exercise in spherical
geometry shows that the image of Ω under stereographic projection is a convex set. As such,
whenever ρ = 4

(1+∥x∥2)2 is a β-concave function, i.e. ρβ is concave, we appeal to a result by

Kennington [Ken85] to see that u
β

1+2β is a concave function. The eigenvalues of the Hessian
of ρβ are

− 41+ββ

(1 + ∥x∥2)1+2β
and

41+ββ(−1 + (1 + 4β)∥x∥2)
(1 + ∥x∥2)2(1+β)

,

both of which are negative whenever ∥x∥2 < 1/(1 + 4β). By the assumption on the circum-

radius, the image of Ω is contained within this disk and so u
β

1+2β is a concave function in
stereographic coordinates. Letting β = 1, the claim follows. □

Note that this result also implies lower bounds on the geodesic curvature of the level sets

of u. In particular, the level sets of (πpu)
1
3 will have non-negative curvature, so we can bound

the second fundamental form of the level sets of u in terms of the conformal factor using (2.5).
Moreover, if we further restrict the circumradius, it is possible to prove stronger convexity as-
sumptions. More precisely, if we assume that the circumradius is at most 2 arctan(1/(1+4β)),

we can repeat the argument to show that u
β

1+2β is concave under stereographic projection.
Finally, we note that this argument does not require for the geometry to be perfectly spherical
(in contrast with the previous known results on this problem), and can easily be generalized
to consider C2 deformations of a round S2 by modifying the weighting function.3

2Recent work of Grossi and Provenzano [GP23] implies that the level sets of the solutions must be connected
whenever Ω is a convex domains in spherical geometry or a horoconvex domain in hyperbolic space.
3An immediate consequence of the Uniformization Theorem is that a generic perturbation of the Riemann
sphere can be written as a conformal deformation.
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3. Log-concavity of the First Eigenfunction

3.1. Log-concavity via the barrier PDE approach. In [KNTW22], the first and third
named authors (along with Nguyen and Wei) provided a systematic way to apply the conti-
nuity method for establishing log-concavity estimates by constructing barrier functions which
satisfy a particular differential inequality. In this paper, we present a generalization of this
method.

Let us first set some notation and definitions. For a Riemannian manifold (Mn, g), we
write the (1, 3) curvature tensor of its Levi-Civita connection as

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

and define RX to be the (1, 1)-tensor given by

RX(Y ) = R(Y,X)X.

Definition 3.1. Given V, ρ : Ω → R, we let v = log u1 be the logarithm of the first eigen-
function of the problem (1.2). Then, for any function b : Ω → R and a unit vector X (with
respect to some metric g), the barrier operator B is the quantity

B(b,X) :=− 2b2 + 2⟨∇b,∇v⟩ − 2tr (RX ◦ (∇v ⊗∇v +Hess v)) (3.1)

−∇∇v Ric(X,X) + 2∇X Ric(X,∇v) + ∆b(p)− λρXX + VXX ,

where λ denotes the principle eigenvalue of Equation 1.2 and the curvature and derivative
terms are taken with respect to the Levi-Civita connection of g.

Note that this operator is the same as the one in [KNTW22], except for the final two terms
which are induced by the variable density and the potential, respectively. This operator
appears in a certain maximum principle computation and so we define a condition known as
the barrier criteria.

Definition 3.2. A barrier function b satisfies the barrier criteria if B(b,X) > 0 whenever
X ∈ UΩ is a unit vector4 such that the mapping

UΩ → R, Xq 7→ Hess v(Xq, Xq) + b(q) (3.2)

achieves a maximum at X and satisfies Hess v(X,X) + b(p) = 0.

As we shall see, the barrier criteria prevents the Hessian of eigenfunction from ever touching
b. In particular, along a one-parameter family of eigenvalue problems, it is impossible for
there to be a first time and an interior point q so that Hess v(Xq, Xq) = b. More precisely,
we have the following.

Lemma 3.3. LetMn be a smooth manifold and consider a one-parameter family of eigenvalue
problems

−∆g(t)φ+ V (t)φ = λρ(t)φ, φ|∂Ω(t) ≡ 0 (3.3)

Here, the metric g(t), the domain Ω(t), the weighting ρ(t) and the potential V (t) are all
allowed to depend on t, so long as we assume that the domain Ω(t) is geodesically convex with
respect to the Levi-Civita connection of g(t) for all t. Suppose there is a function b : Ω(t) → R
which satisfies the following assumptions:

(1) b depends smoothly on both x and t.
(2) The barrier b(x, t) is uniformly bounded in t.

4Here, UΩ is the unit tangent bundle of Ω.
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(3) At time t = 0,
Hess v(x, 0) + b(x, 0) g(0) < 0. (3.4)

(4) And finally, for all 0 ≤ t ≤ 1, b satisfies the barrier criteria.

Then the function v(x, 1) satisfies the concavity estimate

Hess v(x, 1) + b(x, 1) g ≤ 0 (3.5)

on the original domain Ω(1).

Proof of Lemma 3.3. By Assumption 3.4, we have that

Hessg(0) v(x, 0) + b0(x) g(0) < 0.

For the sake of contradiction, suppose that Hessg(1) v(X,X)p + b(p)g(1) > 0 for some unit
vector X ∈ TpΩ(1), p ∈ Ω(1). Using the continuity in t and the fact that the estimate cannot
fail at the boundary, there must be a time t0 ∈ (0, 1) after which the Hessian bound fails to
hold. By Assumption 2, the Hessian bound holds in a neighborhood of the boundary for all
time (c.f. Lemma 3.4 of [SWW19]). As such, in order for the inequality to fail there must be
an interior point p and a unit vector Xp ∈ TpΩ(t0) such that

0 = Hessg(t0) v(Xp, Xp) + b(p) = max
Yq∈UΩ(t0)

(
Hessg(t0) v(Yq, Yq) + b(q)

)
.

We denote e1 = Xp, and extend this vector to an orthonormal basis {ej} of TpΩ(t0). Let us
denote e1 = Xp, Since e1 is the maximal direction of Hess v at p, which is symmetric, so e1
is an eigenvector of Hess v. Since {ej} is an orthonormal basis, we have at p,

Hess vp(e1, ej) = ⟨Hess vp(e1), ej⟩ = 0 for j = 2, . . . , n. (3.6)

where we here and in the following write Hess instead of Hessg(t0) . By the maximum principle,
we find that

ei(v11)(p) + ei(b)(p) = 0 for all i = 1, . . . , n (3.7)

∆(v11)(p) + ∆b(p) ≤ 0. (3.8)

We now compute ∆(v11)(p) + ∆b(p). Commuting the indices, we have that∑
i

v11,ii =
∑
i

vii,11 + 2v11Ric11−2
∑
ij

vjiR1j1i +
∑
i

2viRici1,1−
∑
i

viRic11,i .

To compute the right hand side, we note that v satisfies the following equation

∥∇v∥2 = V − λρ−∆v, (3.9)

Taking the derivative of both sides of (3.9), one has that∑
i

vii,11 + λρ11 − V11 = −2
∑
i

(v2i1 + vi1,1vi).

This gives that when commuting the indices

vi1,1 = v11,i +
∑
j

vjRj1i1 = −bi +
∑
j

vjRj1i1.

Hence, ∑
i

vii,11 = −2
∑
i

v2i1 − vibi +
∑
j

vivjRj1i1
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= −2b2 + 2⟨∇b,∇v⟩ − 2
∑
i,j

vivjRj1i1.

Putting this all together, we find that

0 ≥ ∆(v11 + b)(p)

= −2b2 + 2⟨∇b,∇v⟩ − 2
∑
i,j

vivjRj1i1 − 2
∑
i,j

vijR1j1i

−2bRic11−
∑
j

vj Ric11,j +2
∑
j

vj Ric1j,1+∆b(p)− λρ11 + V11

= −2b2 + 2⟨∇b,∇v⟩ − 2
∑
i,j

Rj1i1(vivj + vij)−∇∇v Ric(e1, e1)

+2∇e1 Ric(e1,∇v) + ∆b(p)− λρ11 + V11

which contradicts the fact that B(b) > 0. □

4. Applications of Conformal Deformations

We now provide a number of application for the previous approach. We start with a simple
example, which is to prove Theorem 1.2. In fact, we will prove a generalized version where the
potential V may be non-vanishing. Since our goal is to show that the principle eigenfunction
is log-concave, we use the barrier b = 0 and construct a continuity family to apply Lemma
3.3.

Theorem 4.1. Suppose that Ω ⊂ Mn
K is a convex domain. Furthermore, suppose that V and

ρ satisfy the inequality

∇2(V − λ(t)ρ) > 2K(V − λ(t)ρ) (4.1)

for all t ∈ (0, 1) where λ(t) is the principle eigenvalue of the problem (3.3) with potential
V (t) = tV and weighting function ρ(t) = tρ+(1− t). Then the principle Dirichlet eigenfunc-
tion of the problem (1.2) is log-concave.

Proof of Theorem 1.2. We fix the domain Ω and the barrier b(x, t) ≡ 0. To apply Lemma
3.3, we consider ρ(t) = (1− t)+ tρ and the potential V (t) = tV . In Mn

K , the barrier operator
becomes

B(0) = −2

n∑
i=2

K(v2i + vii)− λ ((1− t) + tρ)11 + tV11

= −2K(∆v + |∇v|2 − v11 − v21)− λtρ11 + tV11

= −2K(tV − λ ((1− t) + tρ)− v21)− λtρ11 + tV11,

where we used (3.9) in the last equality. In the case where V and ρ satisfy the first set of
assumptions, these hypotheses imply that

B(0) = tλ(2Kρ− ρ11) + 2Kv21 + 2Kλ(1− t) + t(V11 − 2KV ) > 0 (4.2)

for any 0 < t < 1. We thus conclude the claim from Lemma 3.3. □

Similarly, this approach can be used to prove log concavity properties of eigenfunctions
under conformal change on Mn

K (with K > 0).
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Proof of Corollary 1.4. By our assumption, Ω is convex with respect to g. Recall from the
calculation (2.4) u = ũ exp(n−2

2 φ) satisfies the equation{
−∆Mn

K
u+

[
(n−2)2

4 |∇φ|2 + n−2
2 ∆φ

]
u = λe2φu

u|∂Ω = 0
,

where ũ is the first Dirichlet eigenfunction on Ω with respect to g̃.

To apply Theorem 4.1, we let V = (n−2)2

4 |∇φ|2+ n−2
2 ∆φ and ρ = exp(2φ) we use the same

deformation, V (t) = tV and ρ(t) = tρ+ (1− t).
It thus suffices to show that ∇2(V −λ(t)ρ)− 2K(V −λ(t)ρ) > 0. Note that the eigenvalue

λ is bounded from below. Indeed, using the Raleigh quotient, we get that

λ(ρ) = inf

∫
Ω |∇u|2 + V u2 dx∫

Ω ρu
2 dx

≥ 1

∥ρ∥∞

(
inf

∫
Ω |∇u|2 dx∫
Ω u

2 dx
+min

Ω
V

)
=

1

∥ρ∥∞

(
λ1(Ω) + min

Ω
V

)
,

where λ1(Ω) denotes the first Dirichlet eigenvalue of the usual equation −∆u = λu in Ω
with Dirichlet boundary conditions. On the other hand, Ling [Lin06] showed that the first
eigenvalue satisfies the estimate

λ1(Ω) ≥
1

2
(n− 1)K +

π2

R2
Mn

K

,

where RMn
K

is the in-radius of the domain. One can now choose ε(n,K) > 0 small enough

such that (4.1) holds true.
We therefore infer that v = log u is concave with respect to gMn

K
. Applying Lemma 2.4, we

obtain

Γ(Ω) ≥ 1

∥ρ∥∞

(
π2

DMn
K

+
K

2

)
,

whereDMn
K
denotes the diameter of Ω with respect to metric gMn

K
. SinceDMn

K
≤ Dg̃/min exp(φ),

the claim follows. □

Remark 3. i) The assumption on the convexity of Ω with respect to gMn
K
can be rephrased

in terms of the metric g̃. Observe that by (2.6) and by the additional assumption that

h̃∂Ω ≥ ∥∇̃φ∥∞,g̃, we get that for the smallest principle curvature at p, written κmin(p),
we have that

e−φκmin(p) = κ̃min(p)− e−φ⟨∇φ,N⟩ ≥ κ̃min(p)− ∥∇̃φ∥∞,g̃ > 0.

ii) One of the assumptions of Corollary 1.4 is that the deformation is close in the C4

sense. In dimension n ≥ 3, we need this assumption since the potential function
V must be small in C2 and V depends on two derivatives of the conformal factor.
However, in two dimensions it suffices to assume that the metric is only C2 close to a
round metric, as the potential vanishes. This differs from our previous results, where
we needed a C4-estimate for the deformation. However, there we were able to prove
a fundamental gap estimate for all convex domains with respect to g̃ whereas here we
need a different convexity assumption [KNTW22, KTW23].
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iii) It is possible to establish stronger log-concavity estimates by setting the barrier b to
be some non-zero constant. For more details, see [KNTW22].

4.1. Fundamental Gap Estimates of Horoconvex Domains. We now turn our atten-
tion to proving Theorem 1.1 to obtain gap estimates for horoconvex domains. In hyperbolic
space, we cannot apply the barrier argument directly since the curvature terms have an
unfavorable sign. Instead, the strategy is to make use of the fact that the metric in H2

is conformal to a spherical metric, so we can choose a conformal connection with constant
positive curvature. By choosing the models of hyperbolic geometry and spherical geometry
carefully, we can find a region in spherical geometry where the weighting function is not too
convex so that Theorem 1.2 and its corollary apply.

Proof of Theorem 1.1. Consider the Poincaré disk model of hyperbolic space, where the met-
ric is given by gH2 = 4

(1−∥x∥2)2 gR2 . Without loss of generality, we suppose that Ω ⊂ Br(0, gR2),

where r will be specified below. The eigenvalue equation

∆H2u+ λ1u = 0 in Ω & u = 0 on ∂Ω,

using (2.2) becomes

∆R2u+
4

(1− ∥x∥2)2
λu = 0 in Ω & u = 0 on ∂Ω,

i.e. this an equation of the form (1.2) with ρ = 4
(1−∥x∥2)2 , V ≡ 0. Note that ρ has positive

eigenvalues, so that we cannot apply Theorem 1.2 directly in flat geometry. To circumvent
this issue, we then change the metric conformally again, writing

gR2 =
(R2 + ∥x∥2)2

4R4
gM2

K
,

where K = 1
R2 and R > 0 is a constant yet to be determined.5 In this new metric, using

again (2.2), the equation becomes

−∆M2
K
u =

(R2 + ∥x∥2)2

R4(1− ∥x∥2)2
λu.

In order to apply Theorem 1.2, we must verify (1.3) for ρ(x) = (R2+∥x∥2)2
R4(1−∥x∥2)2 with respect to the

Levi-Civita connection of Mn
K . In addition, we need to verify that Ω is convex with respect

to gM2
K
. We therefore divide this into two parts.

Step 1.6 To compute the Hessian of the weighting function ρ we use (2.1). Thus we calculate

∇R2ρ =
4(1 +R2)(R2 + ∥x∥2)

(1− ∥x∥2)2
x

and

∂21ρ =

(
4(1 +R2)(3x41 + x22 − x42 +R2(1 + 5x21 − x22) + x21(3 + 2x22))

R4(1− ∥x∥2)4

)
,

∂22ρ =

(
4(1 +R2)(−((−1 + x21)(R

2 + x21)) + (3 + 5R2 + 2x21)x
2
2 + 3x42)

R4(1− ∥x∥2)4

)
,

∂1∂2ρ =

(
8(1 +R2)x1x2(1 + 3R2 + 2∥x∥2)

R4(−1 + ∥x∥2)4

)
,

5This is the spherical metric (of radius R) in stereographic coordinates.
6A derivation of the calculations in this section can be found in the following Mathematica notebook.

https://www.wolframcloud.com/obj/gabekhan/Published/Hessian in Spherical Geometry using disk model.nb
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Setting

φ = log

(
2R2

R2 + ∥x∥2

)
,

the conformal factor is exp(2φ) = 4R4

(R2+∥x∥2)2 . It is straightforward to calculate

−2∇ρ⊗∇φ+ (∇ρ · ∇φ)I2 =
8(1 +R2)

(1− ∥x∥2)3

(
−x21 + x22 −2x1x2
−2x1x2 x21 − x22

)
.

We thus conclude

HessM2
K
ρ

=
4(1 +R2)

(1− ∥x∥2)4

(
5x21 − x22 +R2(1 + 5x21 − x22) + ∥x∥4 6(1 +R2)x1x2

6(1 +R2)x1x2 5x22 − x21 +R2(1 + 5x22 − x21) + ∥x∥4
)
.

Our goal now is to verify (1.3), i.e., to show that

HessM2
K
ρ ≤ 2KρgM2

K
. (4.3)

The right hand side becomes

2Kρg =
2

R2

4

(1− ∥x∥2)2
I2.

To verify (4.3), we calculate the eigenvalues of the left-hand side of (4.3) and find that

µ1 =
4(1 +R2)(R2 − ∥x∥2)

R4(1− ∥x∥2)3
, µ2 =

4(1 +R2)(∥x∥2(5 + ∥x∥2) +R2(1 + 5∥x∥2))
R4(1− ∥x∥2)4

.

Thus (4.3) is equivalent to

max{µ1, µ2} ≤ 2

R2

4

(1− ∥x∥2)2
.

Note also that µ1, µ2 depend only on r = ∥x∥, so we can rewrite this inequality in terms of
r. Doing so, the desired inequality becomes

max{µ1(r), µ2(r)} ≤ 2

R2

4

(1− r2)2
.

This is equivalent to

(1 +R2)(R2 − r2)

R2(1− r2)︸ ︷︷ ︸
=:µ̃1(r)

,
(1 +R2)(r2(5 + r2) +R2(1 + 5r2))

R2(1− r2)2︸ ︷︷ ︸
=:µ̃2(r)

≤ 2.

Taking R < 1, we note that

∂

∂r

R2 − r2

1− r2
=

2r(R2 − 1)

(1− r2)2
< 0.

Since, µ̃1(0) < 2, this implies that µ̃1(r) < 2 for all r < 1.
Therefore, we must now establish the inequality for the second eigenvalue. We can rear-

range the inequality

(1 +R2)(r2(5 + r2) +R2(1 + 5r2))

R2(1− r2)2
< 2
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as a quadratic in r2. Doing so, we see that the inequality holds whenever

r2 <
−5− 5R4 − 14R2 + (1 +R2)

√
25 + 94R2 + 25R4

2− 2R2
.

The right hand side of this inequality vanishes when R is zero and is maximized for R =√
7−

√
33

2 ≈ 0.560232. As such, we choose this value as the radius of our sphere. Doing so, the
inequality holds whenever

r2 < 0.0217494, i.e. r < 0.147477.

In other words, the desired inequality holds within a ball of radius r = 0.147477 with
respect to gR2 . So we must assume that the domain Ω has hyperbolic circumradius at
most C = 2arctanh(r) = 0.297121. We then appeal to a result of Dekster [Dek95] to
see that any domain of circumradius greater 0.297121 must have diameter greater than
Dmax = 2arcsinh(

√
3/2 sinh(C)) ≈ 0.516475. Solving for Dmax explicitly, we find that for

any domain ΩH whose diameter is at most 2arccsch(2
√
11/3), it is possible to find a Möbius

transformation so that it is contained entirely within the ball Br(0, gR2).
Step 2. We now verify that Ω is convex with respect to gM2

K
. To see this, note that the

geodesic curvature of ∂Ω for a horoconvex Ω ⊂ Br(0, gR2) has curvature κR2 ≥ 1(
1
2+r

)2 with

respect to R2. Indeed, for each p ∈ ∂Ω, there exists a horocycle tangent to Ω, and Ω must be
contained within that horocycle. Hence, the geodesic curvature of ∂Ω is greater than or equal
to the curvature of that horocycle. To show that the geodesic curvatures κM2

K
are positive,

we use (2.6):

κM2
K
≥ e−φ (κR2 − ∥∇φ∥∞)

≥ e−φ

(
1

(12 + r)2
− ∥x∥
R2 + ∥x∥2

)

≥ e−φ

(
1

(12 + r)2
− r

R2 + r2

)

≥ e−φ

(
1− 2r

(12 + r)2

)
> 0,

where in the first inequality, we used Cauchy-Schwarz. In the second inequality, we used the
fact that the Euclidean curvature of horocycles is greater or equal than 1/(12 + r)2. In the
third inequality, we used that the monotonicity of the function s 7→ s

R2+s2
for small s. In the

fourth inequality, we used that R > 1
2 and that (12 + r)2 ≤ 2(14 + r2). This finishes Step 2.7

In view of Step 1 and Step 2, Theorem 1.2 implies that its principle eigenfunction is
log-concave with respect to gM2

K
. Therefore, Corollary 1.3 gives that

Γ(Ω) ≥ 1

∥ρ∥∞

(
π2

(DM2
K
)2

+
1

2R2

)
(4.4)

where DM2
K

is the diameter of the domain in spherical geometry and 1/R2 is the sectional

curvature of the sphere. Note that, DM2
K
≤ DH2 since the conformal factor is greater or equal

7For a demonstration of how the horocycles contain the spherical geodesics, we have written a Geogebra
notebook.

https://www.geogebra.org/calculator/p8s7f9eg
https://www.geogebra.org/calculator/p8s7f9eg
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Figure 1. In this figure, the blue spherical geodesic between the two points
is contained within the two red horocycles. The previous argument shows that
this is always the case when the points are contained within the green circle

than 1 and we can substitute back our values for R and bounds on the weighting function to
get the gap estimate stated in the introduction.

□

4.2. Remarks on Theorem 1.1. Let us make several comments on the previous theorem
and its proof.

Remark 4. It is possible to relax the hypotheses of the domains to satisfy weaker convexity
properties rather than horoconvexity. Indeed, all that is needed is for the domain is convex in
terms of the spherical connection.

In particular, given any α > 0, we can find a diameter D(α) so that any domain with
diameter at most D(α) and whose second fundamental form (with respect to the hyperbolic
metric) is larger or equal than α > 0 will be convex with respect to gM2

K
(see Step 2 of proof

of Theorem 1.1). For such domains, the preceding argument shows that the fundamental

gap is greater than almost π2

CD2 , for some constant C > 1, approaching 1 when the diameter
approaches 0. In other words, we can consider the family of domains

CD,α = {Ω ⊂ H2 : diam(Ω) ≤ D, κ∂Ω ≥ α}
and the quantity

Γ(CD,α) = inf
Ω∈CD,α

Γ(Ω)D(Ω)2.

Our arguments show that
lim

α→0+
lim

D→0+
Γ(CD,α) ≥ π2.
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On the other hand, [BCN+22] implies that

lim
α→0+

inf
Ω∈CD,α

Γ(Ω) = 0

for all D > 0, and so
lim

D→0+
lim

α→0+
Γ(CD,α) = 0.

This shows an interesting dichotomy in that similar types of domains can have very different
sizes of fundamental gap.

4.2.1. Finding conformal factors. At first, the proofs of Theorem 1.1 and Theorem 1.5 might
seem somewhat ad hoc. Therefore, let us conclude this paper with some intuition for how
to find these results and suggestions for how to adapt them to other settings. The gen-
eral philosophy throughout is to find a connection where the analysis simplifies as much as
possible.

For the eigenfunction problem, connections with constant positive curvature are well-
suited, since the curvature terms in (3.1) simplify greatly. To take advantage of this simpli-
fication, we used stereographic projection in the proof of Theorem 1.1 to relate the problem
to spherical geometry. In this proof, we also needed a conformal model of hyperbolic space.
The use of the disk model was done to further simplify the analysis, since the weighting
function will be radial. However, a similar argument can be done with the half-plane model
(or any other conformal model for hyperbolic geometry). This choice essentially equivalent
to choosing the conformal factor and by choosing the domain in a more refined way, it might
be possible to consider larger horoconvex domains.
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[KNTW22] Gabriel Khan, Xuan Hien Nguyen, Malik Tuerkoen, and Guofang Wei. Log-concavity and fun-
damental gaps on surfaces of positive curvature. arXiv preprint arXiv:2211.06403, 2022.

[Kor83] Nicholas J Korevaar. Convex solutions to nonlinear elliptic and parabolic boundary value prob-
lems. Indiana University mathematics journal, 32(4):603–614, 1983.

[Kor87] Nicholas J. Korevaar. Convexity Properties of Solutions to Elliptic P.D.E.’S, pages 115–121.
Springer New York, New York, NY, 1987.

[KTW23] Gabriel Khan, Malik Tuerkoen, and Guofang Wei. Modulus of concavity and fundamental gap
estimates on surfaces. arXiv preprint arXiv:2306.06053, 2023.

[Lin06] Jun Ling. A lower bound of the first Dirichlet eigenvalue of a compact manifold with positive
Ricci curvature. International Journal of Mathematics, 17(05):605–617, 2006.

[LW87] Yng-Ing Lee and Ai Nung Wang. Estimate of λ2 − λ1 on spheres. Chinese Journal of Mathe-
matics, pages 95–97, 1987.

[ML71] Leonid Grigor’evich Makar-Limanov. Solution of Dirichlet’s problem for the equation ∆u = −1
in a convex region. Mathematical Notes of the Academy of Sciences of the USSR, 9:52–53, 1971.

[MSY12] Xi-Nan Ma, Shujun Shi, and Yu Ye. The convexity estimates for the solutions of two elliptic
equations. Communications in Partial Differential Equations, 37(12):2116–2137, 2012.

[NSW22] Xuan Hien Nguyen, Alina Stancu, and Guofang Wei. The fundamental gap of horoconvex do-
mains in Hn. International Mathematics Research Notices, 2022(20):16035–16045, 2022.

[Ogi67] Koichi Ogiue. Theory of conformal connections. In Kodai Mathematical Seminar Reports, vol-
ume 19, pages 193–224. Department of Mathematics, Tokyo Institute of Technology, 1967.
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