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NONASSOCIATIVE CYCLIC ALGEBRAS AND THE

SEMIASSOCIATIVE BRAUER MONOID

S. PUMPLÜN

Abstract. We look at classes of semiassociative algebras, with an emphasis on those

that canonically generalize associative (generalized) cyclic algebras, and at their be-

haviour in the semiassociative Brauer monoid defined by Blachar, Haile, Matri, Rein,

and Vishne. A possible way to generalize this monoid in characteristic p that includes

nonassociative differential algebras is briefly considered.

Introduction

Recently, semiassociative algebras and the semiassociative Brauer monoid denotedBrsa(F )

were introduced by Blachar, Haile, Matri, Rein, and Vishne [4] as canonical generalizations

of associative central simple algebras and their Brauer group. Semiassociative algebras A

over a field F are F -central and are characterized by having an étale algebra E contained

in their nucleus, such that A is cyclic and faithful as an E ⊗F E-module via the action

(e ⊗ e′)a = eae′ for all a ∈ A, e, e′ ∈ E. This definition makes it possible to use classical

Brauer factor sets [12, Chapter 2] when developing the theory, and guarantees that the

algebras are forms of skew matrix algebras, which are defined and investigated in depth [4].

Together with the tensor product, equivalence classes of semiassociative algebras over F

form a monoid that contains the classical Brauer group as its unique maximal subgroup.

The skew matrix algebras now play the role of the classical matrices in the Brauer group.

In particular, a semiassociative algebra is called split if it is isomorphic to a skew matrix

algebra. The authors state that “the key example for semiassociative algebras are skew

matrices” [4].

In this paper we will look at another important example of semiassociative algebras;

the nonassociative (generalized) cyclic algebras (and their opposite algebras). It is well

known that (generalized) cyclic algebras play a prominent role in the structure theory of

classical central simple algebras. Here, we look at the role nonassociative (generalized) cyclic

algebras play in the structure theory of semiassociative simple algebras. These algebras

are canonical generalizations of associative cyclic algebras (respectively, of the generalized

associative cyclic algebras introduced by Jacobson [12]) over F .

If F has a cyclic Galois field extension K/F of degree n, then there exist nonassociative

cyclic algebras that haveK as their nucleus, and these are semiassociative algebras of degree
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2 S. PUMPLÜN

n. More generally, for any field F with cyclic Galois field extensions, there exist nonasso-

ciative generalized cyclic algebras. These have a central simple algebra in their nucleus

with center a separable field extension of F and are semiassociative algebras as well. Both

these types of semiassociative algebras are not semicentral, and thus in particular not ho-

mogeneous. They have infinite order in Brsa(F ), even when they are not division algebras.

Nonassociative (generalized) cyclic algebras also nicely show that the splitting behaviour of

an algebra in Brsa(F ) (i.e., whether or not it will be split or split under a field extension)

only depends on its nucleus.

Cyclic algebras (K/F, σ, d) of degree n that are not associative are division algebras in

many cases, e.g. for all prime n. Some of the tensor products we consider yield exam-

ples of semiassociative algebras which again are division algebras, and are nonassociative

generalized cyclic algebras.

Nonassociative (generalized) cyclic algebras already appeared in space-time block coding

[26, 25, 19, 20], and in (f, σ, δ)-codes [22]. In this paper we generalize their definition which

previously usually employed skew polynomials in D[t;σ] over division rings D, and drop

the assumption that D has no zero divisors. Generalized Menichetti algebras [17, 27] can

be seen as generalizations of both crossed products and nonassociative cyclic algebras, and

make up the second class of semiassociative algebras we present.

We finish by suggesting possible generalizations of the semiassociative Brauer monoid,

which allow us to include nonassociative (generalized) differential extensions as classes of

algebras in the monoid, if the characteristic of F is prime. Our motivation is that the

associative differential algebras play an important role in the Brauer group, so it seems

natural to try find a way to include them in some semiassociative Brauer monoid definition.

The structure of the paper is as follows: we collect the basic results needed in Section 1. In

Section 2, we generalize the definition of nonassociative cyclic algebras (K/F, σ, d) to include

the case that K/F is an étale extension, and the definition of generalized nonassociative

cyclic algebras (D, σ, d) to include the case that the algebra D employed in the construction

with the skew polynomial tm − d ∈ D[t;σ] has zero divisors, collecting and generalizing

several previously achieved results, including the explicit computation of the right nucleus

for these algebras. We observe that the opposite algebra of a nonassociative cyclic algebra

is semiassociative, but need not be a nonassociative cyclic algebra again (Corollary 2). In

Section 3, we look at the tensor product of a central simple algebra and a nonassociative

cyclic algebra. We investigate the behaviour of nonassociative (generalized) cyclic algebras

in the Brauer monoid Brsa(F ) in Section 4, and briefly look at Brsa(R) and Brsa(Fq).

When F is a field of prime characteristic p, the definition of Brsa(F ) may benefit from

a generalization that includes a class of algebras that generalize algebras that are associa-

tive differential extensions [12]: All associative central division algebras over a field F of

characteristic zero can be constructed using differential polynomials (Amitsur [2], and later

[11], [12, Sections 1.5, 1.8, 1.9]). The construction method is an analogue to the well-known

crossed product construction, except that instead of algebraic splitting fields it uses splitting

fields K, where F is algebraically closed in K. For p-algebras over base fields of charac-

teristic p > 0 the construction employs differential polynomial rings D[t; δ] (where D is a
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central division algebra over C), factoring out a two-sided ideal generated by some suitable

f ∈ D[t; δ]. This construction was generalized to the nonassociative setting in [23]. We

briefly consider these algebras in characteristic p and the pros and cons to include them in

potential generalizations of Brsa(F ) in the last two sections.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field. An F -vector space A is an algebra over F ,

if there exists an F -bilinear map A×A→ A, (x, y) 7→ x·y, usually denoted by juxtaposition,

the multiplication of A. An algebra A is called unital if there is an element in A, denoted

by 1, such that 1x = x1 = x for all x ∈ A. We only consider unital algebras. The center

of A is C(A) = {x ∈ Nuc(A) |xy = yx for all y ∈ A} and A is called (F -)central if it has

center F .

Associativity in A is measured by the left nucleus Nucl(A) = {x ∈ A | [x,A,A] = 0},
the middle nucleus Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus Nucr(A) =

{x ∈ A | [A,A, x] = 0} of A, where [x, y, z] = (xy)z − x(yz) is the associator. Nucl(A),

Nucm(A), and Nucr(A) are associative subalgebras of A, and their intersection Nuc(A) =

{x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an associative

subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z is in

Nuc(A). Multiplication on both sides make A into a bimodule over its nucleus. Moreover,

for every subalgebra N of the nucleus the N -bimodule structure of A can be viewed as a

left module structure over the ring Ne = N ⊗F Nop.

An algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left multiplication

with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. If A has

finite dimension over F , A is a division algebra if and only if A has no zero divisors [29, pp.

15, 16].

An étale algebra over F is a finite direct product of finite separable field extensions of F .

1.2. Semiassociative algebras. (cf. [4])

A finite dimensional nonassociative F -central algebra A is called semiassociative if its

nucleus has an étale F -subalgebra E, such that A is cyclic and faithful over E ⊗F E via the

action (e ⊗ e′)a = eae′ for all a ∈ A, e, e′ ∈ E. The dimension of a semiassociative algebra

A is a square [4, Corollary 3.4 ] and the root of the dimension of A is called the degree of A.

If A is semiassociative of degree n, then any n-dimensional étale subalgebra E of Nuc(A) is

a maximal commutative subalgebra of A [4, Corollary 7.3].

If A is a nonassociative algebra containing an étale subalgebra E in its nucleus, then any

two of the following conditions imply the third: A is faithful over E ⊗Eop, A is cyclic over

E ⊗ Eop, and dimA = (dimE)2 [4, Remark 3.3].

Every associative central simple algebra of degree n has a maximal étale subalgebra E

of dimension n and is semiassociative. We call A E-semiassociative if E is an étale F -

subalgebra of its nucleus, such that A is cyclic and faithful over Ee = E ⊗F E. The

nucleus of a nonassociative algebra may contain more than one étale subalgebra of the same

dimension. However, if A is a semiassociative algebra with respect to one étale subalgebra

of its nucleus, then it is semiassociative with respect to all étale subalgebras of its nucleus
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[4, Proposition 3.6]. A scalar extension of a semiassociative algebra is semiassociative [4,

Proposition 12.1].

A tensor cijk of degree n of n × n × n scalars in F is called a skew set c of degree n. A

skew set c is called reduced if ciij = cjii = 1 for all i, j. Let c be such a reduced skew set.

Then the skew matrix algebra Mn(F ; c) is the F -vector space with basis the matrix units

eij and multiplication given by eijekl = δjkcijleil. Note that Mn(F ) =Mn(F ; 1).

A semiassociative algebra A is called split, if it is a skew matrix algebra.

A field extension K/F splits a semiassociative algebra A, if AK = A ⊗F K is split. A

semiassociative algebra of degree n is split if and only if Fn is a unital subalgebra of the

nucleus [4, Proposition 7.2]. Let A be an E-semiassociative algebra with E = Nuc(A). Then

a field extension K/F splits A if and only if it splits E [4, Corollary 7.5]. If K is a field that

splits an étale subalgebra in the nucleus of an n-dimensional semiassociative algebra A of

degree n, and F is an infinite field, then K splits A [4, Theorem 7.1].

If A is semiassociative of degree n, then any n-dimensional étale subalgebra E of Nuc(A)

is a maximal commutative subalgebra of A [4, Corollary 7.3].

Let J(Nuc(A)) denote the radical of the associative algebra Nuc(A). For a semiassociative

algebra A, the simple components of the semisimple quotient σ(A) = Nuc(A)/J(Nuc(A))

are called the atoms of A. A semiassociative algebra over F is called semicentral, if all of

its atoms are F -central [4, Definition 16.1]. A semiassociative algebra is homogeneous if it

is semicentral, and the atoms are all Brauer equivalent to each other [4, Definition 17.2].

Two semiassociative algebras A and B over F are called Brauer equivalent, if there exist

skew matrix algebras Mn(F ; c) and Mm(F, c′) such that A⊗F Mn(F ; c) ∼= B⊗F Mm(F ; c′).

The semiassociative Brauer monoid Brsa(F ) is the set of equivalence classes with respect

to Brauer equivalence, with product [A]sa[B]sa = [A⊗F B]sa and unit element [F ]sa. If A is

a homogeneous semiassociative algebra, and D the (associative) underlying division algebra

of its atoms, then there is a decomposition A ∼= D⊗F M , where M is a skew matrix algebra

and D is the unique member of minimal degree in the class [D]sa ∈ Brsa(F ) [4, Proposition

18.2, Corollary 18.3].

1.3. Nonassociative algebras obtained from skew polynomial rings. (for details, cf.

[22])

Let S be a unital associative noncommutative ring, σ ∈ Aut(S), and δ : S → S a σ-

derivation, i.e. an additive map such that δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ S. The

skew polynomial ring R = S[t;σ, δ] is the set of skew polynomials a0 + a1t+ · · ·+ ant
n with

ai ∈ S, where addition is defined term-wise and multiplication by ta = σ(a)t + δ(a) for all

a ∈ S. We write S[t;σ] = S[t;σ, 0] and S[t; δ] = S[t; id, δ].

For f(t) = a0 + a1t+ · · ·+ ant
n with an 6= 0 define deg(f) = n and deg(0) = −∞. Then

deg(gh) ≤ deg(g) + deg(h) for f, g ∈ S[t] (with equality if h or g have an invertible leading

coefficient, or if S is a division ring). An element f ∈ R is irreducible in R if it is not a unit

and it has no proper factors, i.e if there do not exist g, h ∈ R with deg(g), deg(h) < deg(f)

such that f = gh. We call f ∈ R right-invariant polynomial, if fR ⊂ Rf . If f is right

invariant then Rf is a two-sided ideal.
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Let f ∈ R have degree m and an invertible leading coefficient. Then for all g(t) ∈ R of

degree l ≥ m, there exist uniquely determined r, q ∈ R with deg(r) < deg(f), such that

g(t) = q(t)f(t) + r(t). This generalizes the right division algorithm in R that is well-known

when S is a division ring [12, p. 6].

From now on we assume that f ∈ R = S[t;σ, δ] is monic of degree m. Let modrf

denote the remainder of right division by f . Since the remainder is uniquely determined,

the skew polynomials of degree less that m canonically represent the elements of the left

S[t;σ, δ]-module S[t;σ, δ]/S[t;σ, δ]f .

The additive group {g ∈ R | deg(g) < m}, together with the multiplication g ◦ h =

gh modrf for all g, h ∈ R of degree less than m, is a unital nonassociative algebra over

S0 = {a ∈ S | ah = ha for all h ∈ Sf}, denoted by Sf or R/Rf . The construction for S

a division algebra goes back to [18], and theses algebras are called Petit algebras. S0 is a

commutative subring of S, and if S is a division algebra, it is a subfield of S. Sf is associative

if and only if f is two-sided. If Sf is not associative then S ⊂ Nucl(Sf ), S ⊂ Nucm(Sf ) (if

S is a division ring, the inclusions become equalities), and the eigenspace of f is the right

nucleus: Nucr(Sf ) = {g ∈ R | deg(g) < m and fg ∈ Rf}.
If f ∈ S[t;σ, δ] is reducible then Sf contains zero divisors. If S is a division ring, then Sf

has no zero divisors if and only if f is irreducible.

If Rf is a two-sided ideal in R (i.e. f is (right)-invariant) then Sf is the associative

quotient algebra obtained by factoring out the ideal generated by a two-sided f ∈ S[t;σ, δ].

For all g ∈ R of degree s ≥ m, there also exist uniquely determined r, q ∈ R with

deg(r) < deg(f), such that g(t) = f(t)q(t) + r(t). Let modlf denote the remainder of left

division by f . Then the additive group {g ∈ R | deg(g) < m} together with the multiplication

g⋄h = gh modlf defined for all g, h ∈ R of degree less than m, is also a unital nonassociative

algebra fS over S0 denoted by R/fR. Moreover, the canonical anti-automorphism

ψ : S[t;σ, δ] → Sop[t;σ−1,−δ ◦ σ−1], ψ(

n∑

k=0

akt
k) =

n∑

k=0

(

k∑

i=0

∆n,i(ak))t
k

induces an anti-automorphism between the algebras Sf = S[t;σ, δ]/S[t;σ, δ]f and ψ(f)S =

Sop[t;σ−1,−δ ◦ σ−1]/ψ(f)Sop[t;σ−1,−δ ◦ σ−1], so that Sopf = ψ(f)S. Here, ∆n,j is defined

recursively via ∆n,j = δ(∆n−1,j) + σ(∆n−1,j−1), with ∆0,0 = idS , ∆1,0 = δ, ∆1,1 = σ and

so ∆n,j is the sum of all polynomials in σ and δ of degree j in σ and degree n− j in δ [12,

p. 2]. If δ = 0, then ∆n,j = σn.

2. Nonassociative (generalized) cyclic algebras and generalized Menichetti

algebras

2.1. Nonassociative cyclic algebras. The equivalence class of a homogeneous semiasso-

ciative algebra in Brsa(F ) is represented by a unique central associative division algebra [4].

However, we will see now that the question whether an algebra is a division algebra or not

is much less important in Brsa(F ).

Nonassociative cyclic algebras of degree n are canonical generalizations of associative

cyclic algebras of degree n and were first introduced over finite fields by Sandler [28]. In-

deed, nonassociative quaternion algebras (where n = 2) were the first known example of a
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nonassociative division algebra [9]. Over arbitrary fields they were investigated by Steele

[30, 31] (Steele studied the opposite algebras of the nonassociative algebras we define here,

but used our notation).

Definition 1. Let K be an étale algebra of dimension n over F and σ ∈ AutF (K) of order

n. Let f(t) = tn − d ∈ K[t;σ] with d ∈ K×. The F -central algebra Sf = K[t;σ]/K[t;σ]f is

called a nonassociative cyclic algebra over F and denoted by (K/F, σ, d).

This definition generalizes the one used in most papers, where K is a cyclic Galois field

extension of degree n (for an earlier generalization, cf. [22]).

If K/F is a cyclic Galois field extension of degree n with Galois group Gal(K/F ) = 〈σ〉,
then (K/F, σ, d) is a classical associative cyclic algebra over F of degree n if d ∈ F×, and a

nonassociative cyclic algebra as defined in [6, 28, 30], if d ∈ K \ F . We note that with our

more general definition, we now have for instance that (K/F, σ, d) ⊗F K ∼= (K ⊗F K,σ, d)
with σ denoting the canonical extension σ⊗ id of σ to K⊗F K. For more details and proofs

in the case that K is a division algebra, cf. [6, 30].

If K is a cyclic Galois field extension of F and d ∈ K \ F , then Nuc((K/F, σ, d)) = K.

The proof that K ⊂ Nucr((K/F, σ, d)) when K is étale is analogous to the case where K is

a field and implies that K ⊂ Nuc((K/F, σ, d)) holds in our general definition, too.

The easiest example of a nonassociative cyclic algebra is a nonassociative quaternion

division algebra (K/F, σ, d), where K/F is a quadratic field extension, and d ∈ K \F . This
is, up to isomorphism, also the only simple K-semiassociative division algebra of degree 2

that is not associative [32]. This algebra and the simple skew matrix algebra that represents

it when it splits over the field extension K are presented in [32].

Theorem 1. Let K/F be a cyclic Galois field extension of degree n with Galois group

Gal(K/F ) = 〈σ〉 and d ∈ K \ F . Let H = {τ ∈ G | τ(d) = d}. Then H = 〈σs〉 for some

integer s such that n = sr and

Nucr((K/F, σ, d)) = (K/E, σs, d)

is a cyclic algebra of degree r over E = Fix(σs), where [E : F ] = |H |. In particular, if n is

prime then Nucr((K/F, σ, d)) = K.

Proof. By [31, Proposition 3.2.3], Nucr((K/F, σ, d)) = K⊕Kts⊕· · ·⊕Kt(r−1)s. By [30, The-

orem 5.1], the linear subspace K⊕Kts⊕· · ·⊕Kt(r−1)s is the cyclic subalgebra (K/E, σs, d)

of degree r over E = Fix(σs), where [E : F ] = |H | and d ∈ E. �

Corollary 2. Let K/F be a cyclic Galois field extension of degree n with Galois group

Gal(K/F ) = 〈σ〉 and d ∈ K \F . Let H = {τ ∈ G | τ(d) = d} = 〈σs〉 for some integer s with

1 < s < n. Then (K/F, σ, d)op is not isomorphic to a nonassociative cyclic algebra.

Proof. If 1 < s < n then Nucr((K/F, σ, d)) = (K/F, σs, d) and E is a proper intermediate

field of K/F . Thus Nucl((K/F, σ, d)
op) = (K/F, σs, d) is unequal to K = Nucl((K/F, σ, d

′))

for any nonassociative cyclic algebra (K/F, σ, d′). (Note that the middle nucleus of a

nonassociative cyclic algebra is K, so if A is a nonassociative cyclic algebra isomorphic

to (K/F, σ, d)op, A must involve the same field extension K/F , up to isomorphism.) �
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Nonassociative cyclic algebras (and analogously, their opposite algebras) are important

examples of semiassociative (division) algebras that are not semicentral, thus in particular

not homogeneous:

Proposition 3. (i) Every nonassociative cyclic algebra (K/F, σ, d) over F is K-semiassociative

of degree n and thus semiassociative.

(ii) (K/F, σ, d) is split if and only if K = Fn.

(iii) (K/F, σ, d) ⊗F K splits.

(iv) [30] Let K/F be a cyclic field extension of degree n. Then (K/F, σ, d) is a division

algebra for all d ∈ K \ F , such that 1, d, . . . , dn−1 are linearly independent over F . If K/F

has prime degree then (K/F, σ, d) is a division algebra for all d ∈ K \ F .
(v) Let K/F be a cyclic field extension, then for all d ∈ K \F , (K/F, σ, d) is not semicentral.

The proof of (i), (ii), (iii) is straightforward employing results from [4] listed in Section

1.2. For n = 2, (i) was already pointed out in [4]. (v) is clear because K = Nuc((K/F, σ, d)).

Example 4. The split nonassociative quaternion algebra defined in [32] is simple, has

nucleus F × F , the basis e1, e2, e3, e4, with e1 = (1, 0), e2 = (0, 1) and unit element e1 + e2,

and its multiplication is given by e1e1 = e1, e1e2 = 0 = e2e1, e1e3 = e3, e1e4 = 0, e2e2 = e2,

e2e3 = 0, e2e4 = e4, e3e1 = 0, e3e2 = e3, e3e4 = e1, e4e1 = e4, e4e2 = 0, e4e3 = λe2,

e4e4 = 0, with λ 6= 0, 1. This is the skew matric algebra M2(F ; c) of degree 2 with the

reduced tensor given by c212 = λ, c121 = 1, where e11 = e1, e22 = e2, e3 = e12, e4 = e21. As

already noted in [32], M2(F ; c) = M2(F ) when λ = 1, and for a nonassociative quaternion

algebra (K/F, σ, d) we have (K/F, σ, d) ⊗F K ∼= M2(F ; c) with λ = σ(d)/d in the reduced

tensor c. This is a skew matrix algebra of the type mentioned in [4, Example 6.12 (3)].

Remark 5. Let K be an étale algebra of dimension n over F and σ ∈ AutF (K) of order

n. Let f(t) = tn ∈ K[t;σ]. Then Sf = K[t;σ]/K[t;σ]f is an associative algebra over F

which is semiassociative but not simple; the semisimple quotient is K. Abusing notation we

denote it by (K/F, σ, 0) (cf. [4, Remark 3.8] for n = 2). It can be viewed as a generalization

of the dual quaternion algebra H ⊗R D used in physics, where D = R[t]/(t2) are the dual

numbers.

2.2. Nonassociative generalized cyclic algebras. (for details on the case that B is a

division algebra, cf. [6])

Let B be a central simple algebra over C (i.e., C-central) of degree n, and σ ∈ Aut(B)

such that σ|C has finite order m and for F = Fix(σ)∩C assume that C/F is a cyclic Galois

field extension of degree m with Gal(C/F ) = 〈σ|C〉. (This last assumption is automatically

satisfied, if B is a division algebra.)

Definition 2. Let f(t) = tm − d ∈ B[t;σ], d ∈ B×. We call (B, σ, d) = B[t;σ]/B[t;σ]f a

nonassociative generalized cyclic algebra over F .

This definition generalizes the definition of both a nonassociative and an associative

generalized cyclic algebra in [6] (see [12, p. 19] for the associative case), which also assumed

that B is a division algebra.
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The algebra (B, σ, d) has dimension m2n2 over F and is F -central. If d ∈ F× and B is a

division algebra, then (B, σ, d) is a classical associative generalized cyclic algebra over F of

degree mn. Indeed, (B, σ, d) is associative if and only if d ∈ F .

We have B ⊂ Nucl((B, σ, d)) = Nucm((B, σ, d)) with equality when B is a division

algebra. Moreover, if d ∈ C \ F then B ⊂ Nucr((B, σ, d)), i.e. B ⊂ Nuc((B, σ, d)) with

equalities when B is a division algebra [7].

In particular, if B = C, C/F is a cyclic Galois extension of degree m with Galois group

generated by σ and f(t) = tm − d ∈ C[t;σ], we obtain the nonassociative cyclic algebra

(C/F, σ, d).

Lemma 6. Let K be a maximal étale subalgebra of B of dimension n.

(i) [4, Remark 3.3] (B, σ, d) has the étale algebra K/F of dimension mn in its nucleus.

(ii) For all d ∈ C×, (B, σ, d) is a K-semiassociative algebra over F of degree mn. (B, σ, d)

is not semicentral.

Proof. (ii) If d ∈ F then (B, σ, d) is an associative central simple algebra over F and trivially

semiassociative. For all d ∈ C, d 6∈ F we have B ⊂ Nuc((B, σ, d)) and the étale algebra K/F

of degreemn lies in Nuc((B, σ, d)). The rest is a straightforward calculation as well: (B, σ, d)

is a faithful Ke-module, thus cyclic as a Ke-module. In particular, since B ⊂ Nuc((B, σ, d))

is an C-central simple algebra, (B, σ, d) is not semicentral. �

Theorem 7. Let B = D be a division algebra and d ∈ F \ F . Then C/F is a cyclic

Galois field extension of degree m with Galois group G = 〈σ|C〉. Write σ for σ|C for ease of

notation. Let H = {τ ∈ G | τ(d) = d}. Then H = 〈σs〉 for some integer s such that m = sr

and

Nucr((D, σ, d)) = D[t;σs]/(tm − d).

In particular, if m is prime then Nucr((D, σ, d)) = D.

Proof. By an analogous proof as the one for [31, Proposition 3.2.3], it is easy to see that

Nucr((D, σ, d)) = D ⊕Dts ⊕ · · · ⊕Dt(r−1)s as a left D-module. By an analogous proof as

the one for [30, Theorem 5.1], the linear subspace D⊕Dts⊕· · ·⊕Dt(r−1)s together with the

inherited algebra multiplication, is the associative subalgebra D[t;σs]/(tm−d) of dimension

n2[C : F ]r = n2mr. Here, d ∈ E = Fix(σs), and [E : F ] = |H | = r. �

Corollary 8. Let B = D be a division algebra and suppose that d ∈ C \ F , G = 〈σ|C〉, and
H = {τ ∈ G | τ(d) = d} = 〈σs〉, so that s is an integer with 1 < s < n. Then (D, σ, d)op is

not isomorphic to a nonassociative generalized cyclic algebra.

This is trivial now as the right nucleus is not D in this case. Note that (D, σ, d)op is

semiassociative, however.

If D is a division algebra of degree n over C, then (D, σ, d) is a division algebra over

F0 if and only if tm − d ∈ D[t;σ] is irreducible [18, (7)]. We know that t2 − d ∈ D[t;σ]

is irreducible if and only if σ(z)z 6= d for all z ∈ D, t3 − d ∈ D[t;σ] is irreducible if and

only if d 6= σ2(z)σ(z)z for all z ∈ D, and t4 − d ∈ D[t;σ] is irreducible if and only if

σ2(y)σ(y)y + σ2(x)y + σ2(y)σ(x) 6= 0 or σ2(x)x + σ2(y)σ(y)x 6= d for all x, y ∈ D (cf.

[18, 24], and [5, Theorem 3.19], [7]). More generally, if F contains a primitive mth root of
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unity and m is prime then tm−d ∈ D[t;σ] is irreducible if and only if d 6= σm−1(z) · · ·σ(z)z
for all z ∈ D ([5, Theorem 3.11], see also [24, Theorem 6]), which generalizes the equivalent

condition in the associative setup.

2.3. Menichetti algebras. [17, 27]

Let K/F be a Galois field extension of F of degree m with Gal(K/F ) = {τ0, . . . , τm−1}.
Let ki ∈ K×, i ∈ 0, . . . ,m− 1, and let

ci,j = k−1
0 k−1

1 · · · k−1
j−1kiki+1 · · · ki+j−1

for all i, j ∈ Zm. Let z0, . . . , z
m−1 be an F -basis of Km and define a multiplication on Km

via

(azi) · (buj) = τj(a)b(ui · uj), zi · z0 = z0 · zi = zi for all i ∈ Zm,

zi · zj = cjizi+j for all i ∈ Zm \ {0}

for all a, b ∈ K. Then Km is a nonassociative unital algebra over F of dimension m2 we

denote (K/F, k0, . . . , km−1), and call a Menichetti algebra, as the construction generalizes

[17]. Define

M(x0, . . . , xm−1) =




x0 cm−1,1τ1(xm−1) ... c1,m−1τm−1(x1)

x1 τ1(x0) ... c2,m−1τm−1(x2)

x2 c1,1τ1(x1) τ2(x0) c3,m−1τm−1(x3)

... ... ... ...

xm−2 cm−3,1τ1(xm−3) ... cm−1,m−1τm−1(xm−1)

xm−1 cm−2,1τ1(xm−2) ... τm−1(x0)




and identify x0z0 + · · ·+ xm−1zm−1 with (x0, . . . , xm−1), xi ∈ K, then

(x0, . . . , xm−1) · (y0, . . . , ym−1) =M(x0, . . . , xm−1)(y0, . . . , ym−1)
t.

It is easy to see that K ⊂ Nuc((K/F, k0, . . . , km−1)) and that (K/F, k0, . . . , km−1) is a semi-

associative algebra over F . The algebras (K/F, k0, . . . , km−1)
op generalize nonassociative

cyclic algebras (K/F, σ, d) [27].

2.4. Generalized Menichetti algebras. [27]

Let D be a central simple algebra over C of degree n. Let σ ∈ Aut(D) such that σ|C has

finite orderm, and put F = Fix(σ)∩C. Assume that C/F is a cyclic Galois field extension of

degree m with Gal(C/F ) = 〈σ|C〉 (this is automatically satisfied, if D is a division algebra).

Let ki ∈ C×, i ∈ 0, . . . ,m− 1, and

ci,j = k−1
0 k−1

1 · · · k−1
j−1kiki+1 · · · ki+j−1

for all i, j ∈ Zm. Let z0, . . . , z
m−1 be a C-basis of Dm and define a multiplication on Dm

via

(azi) · (bzj) = σj(a)b(zi · zj),

zi · z0 = z0 · zi = zi for all i ∈ Zm, zi · zj = cjizi+j for all i ∈ Zm \ {0}
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for all a, b ∈ D. This yields a nonassociative unital algebra over F of dimension n2m2 that

we denote by (D, σ, k0, . . . , km−1) and call a generalized Menichetti algebra of degree mn.

Its multiplication can be written as

(x0, . . . , xm−1) · (y0, . . . , ym−1) =M(x0, . . . , xm−1)(y0, . . . , ym−1)
t

for all xi, yi ∈ D, with

M(x0, . . . , xm−1) =




x0 cm−1,1σ(xm−1) ... c1,m−1σ
m−1(x1)

x1 σ(x0) ... c2,m−1σ
m−1(x2)

x2 c1,1σ(x1) σ2(x0) c3,m−1σ
m−1(x3)

... ... ... ...

xm−2 cm−3,1σ(xm−3) ... cm−1,m−1σ
m−1(xm−1)

xm−1 cm−2,1σ(xm−2) ... σm−1(x0)




.

Generalized Menichetti algebras (D, σ, k0, . . . , km−1)
op can be seen as generalizations of the

generalized cyclic algebras (Dop, σ, d) for d ∈ C.

Let E be a maximal étale subalgebra of D of dimension n. Then (D, σ, k0, . . . , km−1)

has the étale algebra E/F of dimension mn in its nucleus. (D, σ, k0, . . . , km−1) is a faithful

Ee-module, is cyclic as a Ee-module [4, Remark 3.3] and thus a semiassociative algebra [4].

Let now K/C be a cyclic field extension of degree m with Gal(K/C) = 〈σ〉. Let D0 be

a central simple algebra over C of degree n, and put D = D0 ⊗C K. Let σ̃ be the unique

extension of σ to D such that σ̃|D0
= idD0

. Then it is straightforward to check that

A = D0 ⊗F (K/F, k0, . . . , km−1) ∼= (D0 ⊗C K, σ̃, k0, . . . , km−1)

is a nonassociative generalized Menichetti algebra over F of degree mn. Since Nuc(A) =

D0 ⊗Nuc((K/F, k0, . . . , km−1)), we have D ⊂ Nuc(A). A is a semiassociative algebra.

3. The tensor product of an associative algebra and a nonassociative

cyclic algebra

The tensor product of two semiassociative algebras is again a semiassociative algebra.

The special case of tensoring an associative central division algebra and a nonassociative

cyclic division algebra appeared already when constructing space time block codes [26, 19,

20, 16, 24]. The resulting algebra is a generalized nonassociative cyclic algebra (cf. [12, p.

36] for the associative setup, where D is assumed to be a division algebra, but the proof

goes through verbatim if not):

Let E/F be a cyclic field extension of degree m with Gal(E/F ) = 〈τ〉. Let D0 be a

central simple algebra over F of degree n, and put D = D0 ⊗F E. Let D1 = (E/F, τ, d) be

a nonassociative cyclic algebra over F of degree m (i.e. c ∈ F× and d ∈ E×), and let τ̃ be

the unique extension of τ to D such that τ̃ |D0
= idD0

. Then

A = D0 ⊗F (E/F, τ, d) ∼= (D0 ⊗F E)[t, τ̃ ]/(D0 ⊗F E)[t, τ̃ ](tm − d) = (D, τ̃ , d)

[21] and is a nonassociative generalized cyclic algebra over F of degree mn. Now (E/F, τ, d)

is associative if and only if d ∈ F×, so assume that d ∈ E \ F . Then Nuc((D, τ̃ , d)) =

D0⊗F E = D is a normal algebra over F and D0⊗F (E/F, τ, d) is a semiassociative algebra

over F of degree mn that is not semicentral.
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For any maximal étale subalgebra L in D0, K = L ⊗F E ⊂ Nuc(A) is a maximal étale

subalgebra of A of degree mn over F .

Proposition 9. Let H = {γ ∈ Gal(E/F ) | γ(d) = d} = 〈τs〉 for some integer s such that

m = sr.

(i) Let M = Fix(τs). Then

Nucr((D, τ̃ , d)) = D0 ⊗F (K/M, σs, d) ∼= D ⊕Dts ⊕ · · · ⊕Dts(r−1)

with (K/M, σs, d) a cyclic algebra of degree r over M , where [M : F ] = |H |. If m is prime

then Nucr((D, τ̃ , d)) = D.

(ii) If 1 < s < m, then (D, τ̃ , d)op is not a generalized nonassociative cyclic algebra.

Proof. (i) We have Nucr((D, τ̃ , d)) = D0 ⊗F Nucr((E/F, τ, d)), where Nucr((E/F, τ, d)) is

the cyclic subalgebra (E/M, τs, d) of degree r overM = Fix(τs). Here, Nucr((K/F, τ, d)) =

(K/M, σs, d) is a cyclic algebra of degree r over M = Fix(τs), and [M : F ] = |H |. In

particular, if m is prime then Nucr((K/F, τ, d)) = D0 ⊗F E = D.

(ii) The proof is straightforward, we just compare the left nuclei. �

Remark 10. (i) Let K be an étale algebra of dimension n over F . Note that the associative

algebra D0 ⊗F (K/F, σ, 0) also is a semiassociative algebra over F0. It is not simple, the

semisimple quotient is D. Abusing notation we denote it by (D0⊗F K,σ, 0) (cf. [4, Remark

3.8] for n = 2).

(ii) The nucleus of (D, τ̃ , d)⊗F (D, τ̃ , d)op is Mn2m2(K), so this algebra is not split.

In the following, let L/F be a cyclic Galois field extension of degree n with Gal(L/F ) =

〈σ〉. Let K = L⊗F E, then σ and τ canonically extend to K.

Let now D0 = (L/F, σ, c) be an associative cyclic algebra over F and D1 = (E/F, τ, d) be

a nonassociative cyclic algebra over F , i.e. c ∈ F×. Then D = (L/F, σ, c)⊗F E is a central

simple algebra over E of degree n and K/E is a maximal étale subalgebra of D of degree n

(i.e., D ∼= (K/E, σ, c) using our new generalized definition of a cyclic algebra). Then

A = (L/F, σ, c)⊗F (E/F, τ, d)

is a semiassociative algebra over F of degreemn, and if d ∈ E\F then Nuc(A) = D0⊗F E =

D and K = L ⊗F E ⊂ Nuc(A) is a maximal commutative subalgebra of A that is an étale

algebra of degree mn over F (if d ∈ F× then (E/F, τ, d) is associative).

In this case τ̃ is the unique L-linear automorphism of D such that τ̃ |K = τ , i.e. τ̃(x) =

τ(x0) + τ(x1)t+ τ(x2)t
2 + · · ·+ τ(xn−1)t

n−1 for x = x0 + x1t+ x2t
2 + · · ·+ xn−1t

n−1 ∈ D

(xi ∈ K, 1 ≤ i ≤ n). So here τ̃ |E has order m and Fix(τ̃ ) = F .

Corollary 11. The algebra (L/F, σ, c) ⊗F (E/F, τ, d) ∼= (D, τ̃ , d) is a generalized nonas-

sociative cyclic algebra over F if d ∈ F×. It is associative if d ∈ F , and has nucleus D

if d ∈ E \ F . It is K-semiassociative of degree mn and, if it is not associative, it is not

semicentral.

Remark 12. The proof of this result is a straightforward generalization of the proof [24,

Theorem 11] which assumed that D is a division algebra, and that L and E are lin-

early disjoint over F , so that K is a field: the proof that (L/F, σ, c) ⊗F (E/F, τ, d) ∼=
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(D, τ̃ , d)D[t; τ̃ ]/D[t; τ̃ ](tm − d) goes through verbatim in our more general setting, as the

whole theory does not depend on these two assumptions (it was originally developed for

space-time block codes which are built from division algebras). Since we look at the oppo-

site cyclic algebras than the one employed throughout [24, Theorem 11], τ̃−1 in [24, Theorem

11] in our setup becomes τ̃ . If d ∈ E \ F the algebra has as the nucleus the central simple

algebra D = (L/F, σ, c) ⊗F E, and K/F is a maximal étale subalgebra of the nucleus of

degree mn.

Let (E/F, τ, d) be a cyclic associative division algebra of prime degree m. Suppose that

B0 is a central associative algebra over F such that B = B0 ⊗F E is a division algebra. By

a classical result by Jacobson, the tensor product B0 ⊗F (E/F, τ, d) is a division algebra if

and only if d 6= τ̃m−1(z) · · · τ̃ (z)z for all z ∈ B ([12, Theorem 1.9.8], see also [1, Theorem

12, Ch. XI]).

This result can be generalized to the tensor product of a cyclic and a nonassociative cyclic

algebra, if the base field contains a suitable root of unity [24]. We now put the main results

from [24] into the context of semiassociative algebras, adjusting them where needed (some

of the algebras studied in [24, Section 3] are the opposite algebras of ours).

The generalization of Jacobson’s condition is a necessary condition for d ∈ E× in our

general nonassociative case as well:

Proposition 13. [24, Proposition 20] Let D0 = (L/F, σ, c) be an associative cyclic algebra

of degree n over F , such that D = D0 ⊗F E is a division algebra. If D0 ⊗F (E/F, τ, d) is a

division algebra then d 6= zτ̃(z) · · · τ̃m−1(z) for all z ∈ D.

From now on, let L and E be linearly disjoint over F , then K = L ⊗F E = L · E is

the composite of L and E over F with Galois group Gal(K/F ) = 〈σ〉 × 〈τ〉, and K/E is a

maximal separable subfield of D = (L/F, σ, c) ⊗F E of degree n.

Theorem 14. ([24, Theorems 14, 15, 16]) Suppose that D = (L/F, σ, c)⊗F E is a division

algebra, m is prime and in case m 6= 2, 3, additionally that F contains a primitive mth root

of unity.

(i) (L/F, σ, c)⊗F (E/F, τ, d) is a semiassociative division algebra if and only if d 6= zτ̃(z) · · · τ̃m−1(z)

for all z ∈ D, if and only if tm − d ∈ D[t; τ̃ ] is irreducible.

(ii) If τ(dn) 6= dn then (L/F, σ, c) ⊗F (E/F, τ, d) is a K-semiassociative division algebra of

degree mn with nucleus D.

(iii) If d ∈ E such that dn 6∈ ND/F (D
×), then (L/F, σ, c)⊗F (E/F, τ, d) is a K-semiassociative

division algebra of degree mn with nucleus D. In particular, for all d ∈ E \ F with dn 6∈ F ,

(L/F, σ, c)⊗F (E/F, τ, d) is a K-semiassociative division algebra of degree mn.

Theorem 15. [24, Theorem 17] Let F be of characteristic not 2. Let (a, c)F be a quaternion

algebra over F which is a division algebra over E = F (
√
b), and (F (

√
b)/F, τ, d) a nonas-

sociative quaternion algebra over F . Then (a, c)F ⊗F (F (
√
b)/F, τ, d) is a semiassociative

division algebra over F of degree 4 with nucleus (a, c)F (
√
b).

More generally, let B be a central simple algebra over C of degree n, and σ ∈ Aut(B)

such that σ|C has finite order m, F = Fix(σ)∩C and C/F is a cyclic Galois field extension
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of degree m with Gal(C/F ) = 〈σ|C〉 and d ∈ C×. Let D0 be a central simple algebra over

F of degree s, and let σ̃ be the unique extension of σ to D0 ⊗F0
B such that σ̃|D0

= idD0

Then σ̃ has order m over F0, and

D0 ⊗F (B, σ, d) ∼= (D0 ⊗B, σ̃, d)

with (D0 ⊗F B, σ̃, d) = (D0 ⊗F B)[t; σ̃]/(D0 ⊗F B)[t; σ̃](tm − d). We get a generalized

nonassociative cyclic algebra of degree mns with D0 ⊗F B contained in its nucleus.

4. The semiassociative Brauer monoid

4.1. The classes in Brsa(F ) that contain the homogeneous semiassociative algebras are

determined by the Brauer group and are of the kind [B]sa with B an associative central

simple algebra over F . In particular, if D is an associative F -central division algebra, then

[D]sa is the unique element of minimal degree in the class [D]sa ∈ Brsa(F ) which contains

the homogeneous semiassociative algebras of the kind D ⊗F M , where M is a skew matrix

algebra [4, Example 14.5, Corollary 18.3]. Moreover, if F is a field with nontrivial Brauer

group, then Brsa(F ) has elements [A]sa of infinite order [4, Corollary 20.4]. From the proof

of [4, Corollary 20.4], it is clear that these elements are constructed by finding semiassociative

algebras A, such that σ(A) = F ⊕B, where B is a central division algebra over F of index p,

so the similarity class [A]sa contains elements that are all semicentral (although the algebras

are not explicitly constructed there).

We now collect some observations on elements in the semiassociative Brauer monoid

Brsa(F ). In particular, Brsa(F ) can be nontrivial even if the classical Brauer group is

trivial, as we can easily conclude from our previous results:

Proposition 16. (i) Let F be a field that has a cyclic Galois field extension K/F of degree

n, Gal(K/F ) = 〈σ〉. Then [F ]sa 6= [(K/F, σ, d)]sa for all d ∈ K \ F and so Brsa(F ) is

nontrivial. Moreover, [(K/F, σ, d)]sa has infinite order in Brsa(F ), i.e. the powers of these

element are distinct.

(ii) Let F be a field that has a Galois field extensionK/F of degree n, and (K/F, k0, . . . , km−1)

be any Menichetti algebra that is not associative. Then [F ]sa 6= [(K/F, k0, . . . , km−1)]
sa and

so Brsa(F ) is nontrivial, and [(K/F, k0, . . . , km−1)]
sa has infinite order in Brsa(F ).

Proof. A semiassociative algebra over F of degree kn is split if and only if F kn is contained

in its nucleus as a unital subalgebra.

(i) Now A = (K/F, σ, d) ⊗F · · · ⊗F (K/F, σ, d) (k-times) has degree kn and nucleus K ⊗F
K⊗F · · ·⊗F K (k-times). If K/F is a cyclic field extension of degree n with Galois group G

then K⊗F K⊗F · · ·⊗F K ∼=
∏
Gk−1 K, where the index set Gk−1 is the (k− 1)-fold product

of G. So clearly the étale algebra Fnk−n is a unital subalgebra of the nucleus of A, but F kn

is not.

(ii) (K/F, k0, . . . , km−1) ⊗F · · · ⊗F (K/F, k0, . . . , km−1) has degree kn and nucleus K ⊗F
K ⊗F · · · ⊗F K (k-times), so the assertion follows as in (i). �

Since (K/F, σ, d) is not semicentral for all d ∈ K \ F , it does not lie in the similarity

class of any F -central simple algebra B in Brsa(F ), and if n is prime (or if 1, d, . . . , dn−1 are
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linearly independent over F ), then (K/F, σ, d) is always a division algebra, thus is a division

algebra of smallest degree in [(K/F, σ, d)]sa.

Lemma 17. Let K/F be a field extension of degree m and D be a central simple algebra

over F of degree n. Then

[D]sa[(K/F, σ, d)]sa = [(D ⊗F K, σ̃, d)]sa

for all d ∈ K. In particular, for all d ∈ K \ F we have

[(K/F, σ, d)]sa = [(Mn(K), σ̃, d)]sa 6= [F ]sa

and

[D]sa[(K/F, σ, d)]sa = [(Mn(K), σ̃, d)]sa = [(K/F, σ, d)]sa

if K is a splitting field of D.

Moreover, for a generalized nonassociative cyclic algebra (B, σ, d) over F , we have

[D]sa[(B, σ, d)]sa = [(D ⊗F B, σ̃, d)]sa,

where σ̃ is the unique extension of σ to D ⊗F B such that σ̃|D = idD.

For a Menichetti algebra (K/F, k0, . . . , km−1) over F , we have analogously

[D]sa[(K/F, k0, . . . , km−1)]
sa = [(D ⊗F K, σ̃, k0, . . . , km−1)]

sa

and for a generalized Menichetti algebra (B, σ, k0, . . . , km−1) over F , we have

[D]sa[(B, σ, k0, . . . , km−1)]
sa = [(D ⊗F B, σ̃, k0, . . . , km−1)]

sa

for all ki ∈ F , where σ̃ is the unique extension of σ to D ⊗F B such that σ̃|D = idD.

Proof. Since D⊗F (K/F, σ, d) ∼= (D⊗FK, σ̃, d) is a nonassociative generalized cyclic algebra

over F of degree nm, we obtain

[D]sa[(K/F, σ, d)]sa = [(D ⊗F K, σ̃, d)]sa = [M2(F )]
sa[(K/F, σ, d)]sa = [(K/F, σ, d)]sa

for all d ∈ K \F . In particular, Mn(F )⊗F (K/F, σ, d) ∼= (Mn(K), σ̃, d) has nucleus Mn(K).

The maximal étale F -algebra in its nucleus is Kn. This yields the assertion that [F ]sa 6=
[(Mn(K), σ̃, d)]sa = [Mn(F )]

sa[(K/F, σ, d)]sa = [(K/F, σ, d)]sa. The rest is clear. �

Theorem 18. Let A and A′ be two semiasssociative algebras over F .

(i) Let Nuc(A) = K and Nuc(A′) = L be two field extensions of F . If [A]sa = [A′]sa ∈
Brsa(F ) then K ∼= L.

(ii) Let A and A′ have a simple nucleus N , respectively N ′, where N is an E-central simple

algebra and N ′ is an E′-central simple algebra, with E and E′ some separable field extensions

of F . If [A]sa = [A′]sa ∈ Brsa(F ) then E ∼= E′ and [N ] = [N ′] ∈ Br(E).

Proof. Since A ∼ A′ we have A⊗F Mn(F ; c) ∼= A′ ⊗F Ms(F ; c
′) for suitable skewed matrix

algebras Mn(F ; c), Ms(F ; c
′). From σ(A⊗F Mn(F ; c)) ∼= σ(A′ ⊗F Ms(F ; c

′)) it follows that

σ(A)⊗F σ(Mn(F ; c)) ∼= σ(A′)⊗Fσ(Ms(F ; c
′)) by [4, Proposition 13.5]. Now σ(Mn(F ; c)) and

σ(Ms(F ; c
′)) are sums of matrix algebras over F whose degrees sum up to n, respectively to s:

σ(Mn(F ; c)) ∼=Mn1
(F )⊕· · ·⊕Mnr

(F ), respectively σ(Ms(F ; c
′)) ∼=Ms1(F )⊕· · ·⊕Msj (F ).

(i) Since K and L are fields we have Nuc(A) = K = σ(K) and Nuc(A′) = L = σ(L). We
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obtain Mn1
(K)⊕ · · ·⊕Mnr

(K) ∼=Ms1(L)⊕ · · ·⊕Msj(L). These decompositions are unique

up to permutations of summands, so r = j and K ∼= L.

(ii) Here, J(Nuc(A)) = J(Nuc(A′)) = 0 and so N = Nuc(A) = σ(A) and N ′ = Nuc(A′) =

σ(A′) and the above argument yields Mn1
(N)⊕ · · · ⊕Mnr

(N) ∼=Ms1(N
′)⊕ · · · ⊕Msj (N

′).

These decompositions are unique up to permutations of summands, so r = j andMn1
(N) ∼=

Mnt
(N ′) for some t, where N is an E-central simple algebra and N ′ is an E′-central simple

algebra, with E and E′ some separable field extensions of F . This implies that E ∼= E′ as

both algebras must have the same center. Moreover, then [N ] = [N ′] ∈ Br(E). �

In particular, if K/F and L/F are two cyclic field extensions and [(K/F, σ, d)]sa =

[(L/F, τ, d′)]sa then K = L. It is an open and seemingly non-trivial problem, if two non-

isomorphic cyclic algebras (K/F, σ, d) and (K/F, σ, d′) which are both not associative, can

lie in the same similarity class in Brsa(F ).

Corollary 19. (i) Let K/F and L/F be two cyclic field extensions and (K/F, σ, d), (L/F, σ′, d′)

be two nonassociative cyclic algebras. If K and L are not isomorphic then [(K/F, σ, d)]sa 6=
[(L/F, σ′, d′)]sa in Brsa(F ).

(ii) Let Nuc(A) = K be a field extension of degree n and Nuc(A′) = D an F -central algebra

of degree m ≥ 2. Then [A]sa 6= [A′]sa in Brsa(F ).

(iii) Let D0, D
′
0 be two central simple algebras, and A = D0 ⊗F (E/F, τ, d) ∼= (D, τ̃ , d)

and B = D′
0 ⊗F (E′/F, τ ′, d′) ∼= (D′, τ̃ ′, d′) with E/F , E′/F two separable field exten-

sions and d ∈ E \ F , d′ ∈ E′ \ F . If [A]sa = [A′]sa ∈ Brsa(F ) then E ∼= E′ and

[D0 ⊗F E] = [D′
0 ⊗F E] ∈ Br(E).

Proof. (i) is clear.

(ii) The analogous argument as in Theorem 18 (i) and (ii) shows that if [A]sa = [A′]sa ∈ Brsa,

then Mn1
(K) ⊕ · · · ⊕Mnr

(K) ∼= Ms1(D) ⊕ · · · ⊕Msj (D) implies Mn1
(K) ∼= Mntb(D0) for

some b, t and some F -central division algebra D0, a contradiction.

(iii) Since d ∈ E \ F and d′ ∈ E′ \ F , we have Nuc((D, τ̃ , d)) = D0 ⊗F E = D, and

Nuc((D′, τ̃ ′, d′)) = D′
0 ⊗F E′ = D′, therefore [(D, τ̃ , d)]sa = [(D′, τ̃ ′, d′)]sa implies [D0 ⊗F

E] = [D′
0 ⊗F E′] ∈ Br(E) by Theorem 18 (iii). �

Proposition 20. Let (Ki/F, σi, di) be nonassociative cyclic algebras of degree ni which are

all not associative (i.e., di ∈ K \ F ), i = 1, . . . , r, and let

A = (K1/F, σ1, d1)⊗F · · · ⊗F (Kr/F, σr, dr)

be their tensor product (which is a semiassociative algebra of degree n1 · · ·nr).
(i) The nucleus of A is the étale algebra E = K1 ⊗F · · · ⊗F Kr.

(ii) A is split if and only if E is a split étale algebra.

(iii) If K1, . . . ,Kr are linearly disjoint field extensions over F (e.g. all of different prime

degrees) then A is a semiassociative algebra of degree n1 · · ·nr with nucleus the field extension

E/F of degree n1 · · ·nr. In particular, A is not semicentral.

(iv) If A is a division algebra then K1, . . . ,Kr are linearly disjoint field extensions over F

and E/F is a field extension of degree n1 · · · dr. In particular, A is not semicentral.
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The proof is trivial, employing previously mentioned results from [4].

Mirrowing the classical setup, the semiassociative Brauer monoid of an algebraically

closed field is trivial, e.g. Brsa(C) = 1 [4, Example 14.5], so any semiassociative algebra

over C splits.

4.2. Brsa(R). We known that Br(R) = {[R], [H]} is a cyclic group of order 2; and H⊗RH
∼=

M4(R). Therefore the two classes in Brsa(R) that contain the homogeneous semiassociative

algebras are [R]sa and [H]sa.

Up to isomorphism, every nonassociative simple algebra of dimension four with C as its

nucleus is a nonassociative quaternion algebra [32] (note that (C/R, , 0) is semiassociative,

even associative, but not simple). For every a ∈ C\R, the nonassociative quaternion algebra

(C/R, , a) is a semiassociative division algebra over R of degree two that is not semicentral,

and [(C/R, , a)]sa has infinite order in Brsa(R). The class [(C/R, , a)]sa thus contains

algebras that are not semicentral and (C/R, , a) is a division algebra of smallest degree in

[(C/R, , a)]sa. For a, b ∈ C \ R, we have (C/R, , a) ∼= (C/R, , b) if and only if there is

x ∈ R such that either a = x2b or ā = x2b [32]. It is not clear, however, if two nonisomorphic

quaternion division algebras can lie in the same similarity class in Brsa(R).

Furthermore, for all d ∈ C \ R we have

[H]sa[(C/R, , d)]sa = [(M2(C), ˜, d)]sa 6= [R]sa,

[Mn(R)]
sa[(C/R, , d)]sa = [Mn(C), ˜, d)]sa,

so that

[H]sa[(C/R, , d)]sa = [(M2(C), ˜, d)]sa = [M2(R)]
sa[(C/R, , d)]sa = [(C/R, , d)]sa.

4.3. Brsa(Fq). The Brauer groupBr(Fq) is trivial. Therefore the only class in Br
sa(Fq) that

contains homogeneous semiassociative algebras is the trivial class [Fq]
sa = [Mn(Fq; c)]

sa with

Mn(Fq; c) a skew matrix algebra over F . The semiassociative Brauer monoid Brsa(Fq) is

not trivial: For each finite field extensionK/Fq of degree n, there exist simple nonassociative

cyclic algebras (K/Fq, σ, a) of degree n, with nucleus K if a ∈ K \ Fq. Two such algebras

(K/Fq, σ, a) and (K ′/Fq, σ
′, a′) will automatically be nonisomorphic for two nonisomorphic

field extensions K and K ′, and are not semisimple.

Again, [Mn(Fq)]
sa[(K/Fq, σ, d)]

sa = [(Mn(K), σ̃, d)]sa, i.e. [(K/Fq, σ, d)]
sa = [(Mn(K), σ̃, d)]sa.

There exist other large classes of semifields, e.g. Menichetti algebras, to name just one,

that are all semiassociative.

5. Algebras that are not semiassociative

Semiassociative algebras over F can be defined in terms of simple subalgebras of the

nucleus whose center is separable over F [4, Section 5]. This avoids problems when tensoring

these algebras, as the tensor product of two field extensions that are not both separable

may be a very “unpleasant” algebra, but excludes algebras with nuclei that are simple

subalgebras, and whose centers are (purely) inseparable over F , so creates restrictions when

char(F ) = p is prime. An example of such algebras that are excluded in the current set-up

are nonassociative algebras of square dimension that are a canonical generalization of cyclic
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p-algebras, and of Amitsur’s differential algebras ([2, 3, 11], [12, Sections 1.5, 1.8, 1.9]).

Their nucleus is a purely inseparable field extension of F :

5.1. Nonassociative differential extensions of a field. LetK be a field of characteristic

p together with an algebraic derivation δ : K → K of K of degree p with minimum polyno-

mial g(t) = tp
e

+ a1t
pe−1

+ · · ·+ aet ∈ F [t], where F = Const(δ) = {a ∈ K | δ(a) = 0}. Put
R = K[t; δ]. Then K/F is a purely inseparable extension of exponent one, and [K : F ] = p.

Let f(t) = g(t)− d ∈ K[t; δ], then the nonassociative F -central algebra

(K, δ, d) = K[t; δ]/K[t; δ]f

has dimension p2e and is called a (nonassociative) differential extension of K, or a (nonas-

sociative) differential algebra. (K, δ, d) is a division algebra if and only if f ∈ K[t; δ] is

irreducible. (K, δ, d) is associative if and only if d ∈ F .

If f(t) ∈ F [t] then (K, δ, d) is an associative central simple algebra over F , and K is a

maximal subfield of (K, δ, d) of dimension p [12, p. 23]. If f(t) ∈ F [t] is irreducible and

g(t) = tp − t, then (K, δ, d) contains the cyclic separable field extension F [t]/(tp − t− d) of

degree p, and is a cyclic p-algebra.

For d ∈ K \F , (K, δ, d) is not semiassociative as its nucleus is the purely inseparable field

extension K/F of degree p [23]. The K-algebra (K, δ, d)⊗F K contains the simple truncated

polynomial algebra K ⊗F K in its nucleus, and is called a split differential extension.

5.2. Nonassociative differential extensions of a division algebra. There are classes

of algebras over F that have a central simple algebra D over a field C as their nucleus, but

the field extension C/F is purely inseparable of degree p, so the center C of D is purely

inseparable over F [23]:

Let C be a field of characteristic p and D be a central simple algebra over C of degree n

(D = C is allowed and brings us back to the setup of the previous subsection). Let δ be a

derivation of D, such that δ|C is algebraic with minimum polynomial g(t) = tp
e

+ a1t
pe−1

+

· · ·+ aet ∈ F [t] and let F = Const(δ).

Assume that g(δ) = idd0 is an inner derivation of D and that there exists d0 ∈ F so that

δ(d0) = 0 (this is always possible if D is a division algebra [12, Lemma 1.5.3]). The center

of R = D[t; δ] is F [z] with z = g(t)− d0.

For all f(t) = g(t)− d ∈ D[t; δ], the nonassociative unital F -algebra

(D, δ, d) = Sf = D[t; δ]/D[t; δ]f(t)

has dimension p2en2 over F and is called a nonassociative generalized differential alge-

bra/extension. (Note that Amitsur’s associative differential extensions of division rings D

were generalized to simple rings D already in [14].) (D, δ, d) is an associative algebra if and

only if d ∈ F [23, Theorem 20]. For d ∈ F , (D, δ, d) is a central simple associative algebra

over F (cf. [12, p. 23] if D is a division algebra.) If f(t) = g(t) − d ∈ F [t] is irreducible,

then (D, δ, d) contains the field extension F [t]/(g(t)− d) as a subfield.

If d ∈ C\F , then the differential algebra (C, δ|C , d) is a subalgebra of (D, δ, d) of dimension

p2e.

We now correct part of [23, Lemma 19]:
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Lemma 21. For d ∈ C \F , D ⊂ Nucr(D, δ, d), thus D ⊂ Nuc((D, δ, d)). If D is a division

ring, the inclusions become equalities.

Proof. Since g is semi-invariant and monic of minimal degree, we have g(t)a = ag(t) for all

a ∈ D ([15, (2.1), p. 3], this also holds when D is only simple and not a division algebra,

since the polynomial is monic). Since d ∈ C \ F , we get f(t)a = ag(t) − ad = af(t) for all

a ∈ D and so in turn f is semi-invariant as well. Hence the right nucleus of (K, δ, d) contains

D [23, Proposition 3]. �

Thus every maximal étale subalgebra N of D also lies in the nucleus and has dimension

pen as algebra over F .

As an algebra over F , N is the product of finite dimensional field extensions that are

each of the type Ni/F , where we have a tower of field extensions F ⊂ C ⊂ Ni, such that

Ni/C is separable of degree n and C/F purely inseparable of exponent one. This means we

can write every Ni as a tensor product Ni = Si ⊗F C, where Si is the maximal separable

subfield of Ni/F [12, p. 32], and obtain that

N = N1 × · · · ×Nr = (S1 ⊗F C)× · · · × (Sr ⊗F C) = (S1 × · · · × Sr)⊗F C

is an étale algebra S1 × · · · × Sr over F tensored over F with the purely inseparable field

extension C/F of exponent one.

Remark 22. It is well-known that V : C → F , V (a) = Vp(a) − a is a homomorphism

between the additive groups C and F [13]. When D is a division algebra then (D, δ, d) is a

division algebra if and only if f is irreducible, if and only if d 6= Vp(z) − z for all z ∈ D, if

and only if d 6= (t− z)p − tp − z for all z ∈ D.

Let F have characteristic 3, and δ have minimum polynomial g(t) = t3 − ct ∈ F [t]. Then

for f(t) = t3 − ct − d ∈ C[t; δ], (D, δ, d) is a unital algebra over F of dimension 9, and a

division algebra if and only if V3(z)− cz 6= d and V3(z)− zc− d+ δ(c) 6= 0 for all z ∈ D [23,

Theorem 23].

Let F be a field of characteristic p and D be a central simple algebra over F of degree

n. Let K/F be a purely inseparable extension of exponent one such that [K : F ] = p. Let

δ be a derivation on K with F = Const(δ), such that δ is an algebraic derivation of degree

p with minimum polynomial g(t) = tp − t ∈ F [t] of degree p. Let δ be the extension of δ to

DK such that δ|D = 0. Then (K, δ, d) ⊗F D ∼= (DK , δ, d) is an algebra of dimension n2p2

over F .

Moreover, if DK = D ⊗F K is a division algebra and (K, δ, d) is a division algebra over

F , then (K, δ, d) ⊗F D ∼= (DK , δ, d) is a division algebra if and only if f(t) = g(t) − d

is irreducible in DK [t; δ]. In particular for g(t) = tp − t this is the case, if and only if

d 6= Vp(z)− z for all z ∈ DK , if and only if d 6= (t− z)p − tp − z for all z ∈ DK [23].

6. Outlook

While there are excellent reasons to use the existing definition of Brsa(F ) (it is the broad-

est possible one if we want to use Brauer factor sets), we believe it makes sense to discuss
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(i) a possible refinement of the semiassociative Brauer monoid to include only simple semi-

associative algebras, and (ii) a possible generalization of Brsa(F ) that allows us to include

nonassociative differential algebras, if the base field F is not perfect and has characteristic

p:

(i) The simple semiassociative algebras form a submonoid of Brsa(F ) that still contains

Br(F ) as unique maximal subgroup. If we only consider the simple semiassociative algebras

we exclude pathological cases like the associative algebras (K/F, σ, 0) or (D, σ, 0).

(ii) Suppose that we want to include generalized differential extensions in the definition of

the Brauer monoid. Here is one possible way to proceed: Let A be an F -central nonassocia-

tive algebra over F of dimension l2, char(F ) = p. We call A a generalized semisassociative

algebra, if its nucleus contains a tensor product N = N1⊗F · · ·⊗FNs of finite field extensions

Ni/F such that dimFN = l, with Ni either separable or purely inseparable of exponent one

and Ni/F primitive of the kind Ni = F [x] for xpi = a ∈ F . The root l of the dimension of

A is called the degree of A.

If all Ni/F are separable then N is an étale algebra over F , so let us additionally require

that A is cyclic and faithful as N ⊗N -module in this case, then A is semiassociative.

Two generalized semiassociative algebras A and B over F are called Brauer equivalent,

if there exist skew matrix algebras Mn(F ; c) and Mm(F ; c
′) such that A ⊗F Mn(F ; c) ∼=

B ⊗F Mm(F ; c′). This is an equivalence relation, as [4, Remark 6.9] still holds. We denote

the equivalence class of a generalized semiassociative algebra A by [A]gsa and the monoid of

equivalence classes by Brgsa(F ).

Note that every finite purely inseparable field extension of exponent one is a tensor

product of primitive extensions F [x1]⊗ · · · ⊗ F [xr], where x
p
i − ai = 0. Also note that if N

is purely inseparable of exponent one, then N ⊗N is a truncated polynomial algebra that

is isomorphic to F [G] for a finite abelian p-group G [8]. This means that N is always the

tensor product of an étale algebra over F (the “separable part”) and another algebra (the

“inseparable part”). This inseparable part is either a purely inseparable field extension of

F of exponent one, an F -algebras F [G], or a tensor product of an F -algebra F [G] and a

purely inseparable field extension of F of exponent one.

Let A be a generalized semiassociative algebra of degree n with N ⊂ Nuc(A), N =

N1 ⊗F · · · ⊗F Ns of dimension n over F , with finite field extensions Ni/F where Ni either

separable or purely inseparable and primitive of exponent one. Then A is called split,

if N ∼= E ⊗F F [G], where E/F is a split étale algebra, and F [G] is a simple truncated

polynomial algebra (G an abelian p-group). We allow here that E = F or F [G] = F . A

finite-dimensional field extension E/F splits A, if N⊗F E ∼= S⊗EE[G] for a suitable abelian

p group G, and an étale algebra S over E. We also note that if N = N1 ⊗F N2 is the tensor

product of a separable and a purely inseparable extension of exponent one, then N/F is a

finite field extension, as N1 and N2 are linearly disjoint over F .

Let A be a generalized semiassociative algebra with K = Nuc(A) a purely inseparable

field extension of exponent one. Then a finite-dimensional field extension E/F splits A, if

K⊗FE is a simple truncated polynomial algebra, which is the case if and only if F ⊂ K ⊂ E

is an intermediate field. In particular, K splits (K, δ, d). For the nonassociative generalized
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differential algebra (D, δ, d) we know that if K is a purely inseparable splitting field of the C-

central simple algebraD, then (D, δ, d)⊗FK ∼= (Mn(K), δ, d) is a generalized semiassociative

algebra over K whose nucleus contains the K-algebra K ⊗F K ∼= F [G], but the algebra is

not split, as the dimension of F [G] is too small.

Moreover, for every central simple algebra D over F , we have D⊗F (K, δ, d) ∼= (DK , δ, d),

so if K is a purely inseparable splitting field of D, then D ⊗F (K, δ, d) ∼= (Mn(K), δ, d),

which is, however, not a split algebra over F .

Let D be a p-algebra of degree ps with maximal separable splitting field E and purely

inseparable simple splitting field L of degree pf ≤ pe or degree ps (so D is cyclic). Then

D ⊗F (K, δ, d) ∼= (D ⊗F K, δ, d) contains the field extension E ⊗F K ⊂ D ⊗F K of degree

psp = pe+1 and the algebra L ⊗F K ⊂ D ⊗F K in its nucleus. Here, L ⊗F K is either a

finite purely inseparable field extension of exponent one, or - if L = K - an algebra F (G).

In the later case, we get D ⊗F (K, δ, d) ∼= (Mps(K), δ, d).

Alternatively, we could define Brgsa(F ) as the submonoid of the above generalized one

that is generated by Brsa(F ) and the algebras (D, δ, d) and (K, δ, d), and call the resulting

algebras generalized semiassociative algebras.

In either case, we obtain that

[(K, δ, d)]gsa[D]gsa = [(DK , δ, d)]
gsa,

in particular [(K, δ, d)]gsa = [(K, δ, d)]gsa[Mn(F )]
gsa = [(Mn(K), δ, d)]gsa. Furthermore, if

D is a p-algebra of degree ps and K is a finite-dimensional purely inseparable splitting field

of D then

[(K, δ, d)]gsa[D]gsa = [(Mps(K), δ, d)]gsa.

It would be interesting to explore other relations.
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