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Abstract—Massive MIMO (mMIMO) enables users with dif-
ferent requirements to get connected to the same base station
(BS) on the same set of resources. In the uplink of Multi-
user massive MIMO (MU-mMIMO), while such heterogeneous
users are served, decoupling facilitates the use of user-specific
detection schemes. In this paper, we propose a low-complexity
linear decoupling scheme called Sequential Decoupler (SD),
which aids in the parallel detection of each user’s data stream.
The proposed algorithm shows significant complexity reduction.
Simulations reveal that the complexity of the proposed scheme
is only 0.15% of the conventional Singular Value Decomposition
(SVD) based decoupling and is about 47% of the pseudo-inverse
based decoupling schemes when 80 users with two antennas each
are served by the BS. Also, the proposed scheme is scalable
when new users are added to the system and requires fewer
operations than computing the decoupler all over again. Further
numerical analyses indicate that the proposed scheme achieves
significant complexity reduction without any degradation in
performance and is a promising low-complex alternative to the
existing decoupling schemes.

Index Terms—Multi-User Massive MIMO, Decoupled Detec-
tion, Low-Complexity Algorithms, Uplink Communication, Left
Nullspace, Sequential Estimation.

I. INTRODUCTION

Massive Multiple Input Multiple Output (mMIMO) commu-

nication offers several advantages, such as increased spectral

efficiency and reliability, and is a suitable candidate for

the next generation wireless networks [1], [2]. It provides

improved utilization of radio resources by receiving and trans-

mitting signals at the same time and frequency resources by

exploiting the spatial degrees of freedom. In uplink multi-

user massive MIMO (MU-mMIMO), the base station (BS)

receives signals from several users simultaneously, and all

users’ signals need to be decoded. Typically, in MU-mMIMO

scenarios, BS will have more antennas than user terminals. In

order to make the user terminal design simple, the issue of han-

dling the users’ interference is vested with the BS. Thus, the

requirement of computationally efficient interference handling

schemes with multiple users having different requirements is

of key importance.

The optimal Maximum Likelihood (ML) detection will give

the best performance but is not an option even for small-

scale MIMO systems as the computational complexity scales

exponentially with the number of user streams to be decoded.

Linear inverse channel detection schemes such as Zero-Forcing

*Equal contribution.

(ZF) detectors and Linear Minimum Mean Squared Error

(LMMSE) detectors offer low complexity detection but at

the cost of performance degradation [3]. Non-linear sub-

optimal schemes such as Successive Interference Cancellation

(SIC) [4] offer improved performance over linear schemes.

SIC sequentially decodes symbols and excises their impact

on the received signal for successive detections. However,

with improper decoding order, the performance of SIC can

degrade due to error propagation. Several schemes [4]–[8]

have been devised to identify an appropriate ordering for SIC,

but they impose very high computational costs, particularly for

large-scale massive MIMO systems. Also, the aforementioned

schemes do not provide the elegance and ease of using

independent detectors for each user.

Decoupled Detection (DD) [9]–[11] enables parallel detec-

tion by segregating users (or groups of users) and using the

existing schemes to detect the segregated streams with lesser

complexity, and the segregation is achieved through linear

decouplers. The design of such decouplers is inspired by the

existing precoding schemes for the downlink [9]. Thus, DD

schemes facilitate the hybridization of linear and non-linear

detection methods, enabling a distinct trade-off between the

performance and computational cost. They also facilitate the

use of user-specific detectors independent of other users since

every user might have their own requirements.

A. Prior Works and Motivation

Authors of [9] proposed a decoupler for each user that

projects the received signal onto the left nullspace of its

complementary channel, which is computed using the Singular

Value Decomposition (SVD) before detecting its symbols. It

has to be noted that the decoupler has to be computed for

every user, and thus, the computational complexity of this

scheme is high. In [10] and [11], the authors proposed a

scheme that computes the decoupler using the pseudo-inverse

of the channel matrix. These DD schemes have been used

extensively for parallel detection on the uplink [12]. The main

disadvantage of the aforementioned schemes is that once there

is a new user in the system, the decoupler of every user has

to be recomputed. Motivated by this, we have designed a low-

complexity decoupling scheme that can adapt to the changes

in the system.
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B. Contributions

(i) We propose a novel, low-complex linear decoupler called

Sequential Decoupler (SD), which aids in processing

every user’s streams individually.

(ii) The proposed decoupler is scalable and helps in the

inclusion of new users into the system without having

to recompute all over again.

(iii) Extensive complexity and Bit Error Rate (BER) analy-

ses corroborate that the proposed scheme achieves re-

markable complexity reduction without any performance

degradation.

To the authors’ best knowledge, the proposed sequential

decoupler is not available or published in open literature.

Basic Notations: Boldface capital letters and boldface small

letters denote matrices and vectors, respectively. The i-th entry

of vector a and (i, j)-th entry of matrix A are respectively

denoted as (a)i and (A)i,j . The unary operator ⌈·⌉ denotes

the ceil function, i.e., it provides the largest integer closest to

its argument. The set of all complex numbers is denoted as C.

We use NJ to denote the set of first J positive integers, i.e.,

NJ = {1, 2, . . . , J}. For the ordered, countable set S , |S|
indicates its cardinality; S[Ω] denotes the subset of S formed

from the entries that are indexed by Ω, where Ω ⊆ N|S|. Let

CN (µ, σ2) indicate circularly symmetric complex Gaussian

distribution of mean µ and variance σ2. IM is the identity

matrix of dimension M . R(A) and K(A) respectively denote

the range space and the kernel of the matrix A; A⊤, A† and

‖A‖
F

respectively denote the transpose, adjoint, and Frobenius

norm of the matrix A.

II. BACKGROUND

In this section, we will introduce the system model and

describe the decoupled detection of user streams.

A. System Model

We consider the uplink MU-mMIMO systems with K users,

and the i-th user has Mi transmit antennas, i ∈ NK . The

BS, which is equipped with NR receiver antennas, receives

data from all the users. With perfect time and frequency

synchronization, the received signal at the BS is given by

y =
K∑
i=1

Hixi + n , (1)

where y ∈ CNR×1, Hi ∈ CNR×Mi is the i-th user’s channel,

xi ∈ CMi×1 is the i-th user’s signal and n ∈ CNR×1 ∼
CN (0, σ2

n IM
i
) is the receiver noise at the BS. In order to

make the mobile terminals’ design simple, user terminals do

not transmit signals with any pre-processing such as precoding.

The BS has to eliminate multi-user interference in the received

vector in order to process each user’s signal.

In order to facilitate inter-user interference management, it

is assumed that the BS has good estimates of users’ channels,

which are obtained prior to the detection. The received signal

in (1) can be re-expressed as y = Hx + n, where H =
[H1 H2 · · · HK ] ∈ CNR×M is the overall channel matrix

comprising of all the users’ channels, M =
∑K

j=1 Mj , and

x =
[
x⊤
1 x⊤

2 · · · x
⊤
K

]⊤
is the collective transmit signal to

be decoded at the BS. The complementary channel of the i-th

user can be given by

Hi =
[
H1 · · · Hi−1 Hi+1 · · · HK

]
∈ C

NR×M i , (2)

where M i = M −Mi .

B. Decoupled Detection

The BS has to decouple every user’s signal in order to

demodulate the corresponding user’s streams effectively. Let

W =
[
W⊤

1 W⊤
2 · · · W

⊤
K

]⊤
∈ C

M×NR (3)

denote the linear decoupler, where Wi ∈ CMi×NR is the

decoupler corresponding to the i-th user, i ∈ NK . The linear

decoupling is performed by satisfying (or nearly satisfying) the

condition WiHi = 0 [9]; i.e., the rows of Wi have to be in

the left nullspace of the user’s complementary channel, Hi . By

applying the decoupler to the received signal y, i.e., ỹ = Wy,

the uplink channel is transformed into a set of parallel single-

user MIMO channels, and user-specific detection schemes can

be applied on the slices of ỹ corresponding to each user.

With the requirement that M i < NR , the left nullspace can

be computed using SVD of the user’s complementary channel,

Hi,

Hi =
[
U

(1)

i U
(0)

i

]
Σi V

†

i ; (4)

the columns of U
(0)

i ∈ CNR×(NR−Mi) will constitute a basis

for the left nullspace of Hi. Thus, Wi =
(
U

(0)

i

)†
is used as

a decoupler in [9]. However, different decouplers can be ob-

tained by choosing different basis spanning (or approximately

spanning) the left nullspaces of the complementary channels.

Since WiHi = 0 ⇐⇒ WiHk = 0 ∀ k ∈ NK\{i}, the

decouplers need to satisfy the condition

R(W†
i ) =

⋂

k∈N
K
\{i}

K(H†
k), i ∈ NK , (5)

i.e., each user’s decoupler lies in the intersection of left

nullspaces of all other users’ channel matrices. Thus, comput-

ing the decouplers in the aforementioned way involves a lot of

redundancy. A low-complexity decoupler design is proposed

in the following section by harnessing this redundancy.

C. Detection of User Streams

As mentioned before, each user’s data can be individually

detected after decoupling their streams. Consider the decoupler

Wi of user i ∈ NK ; once the decoupler is applied to the

received signal y, the resulting signal ỹi = Wiy corresponds

to the received signal arising from the user’s data stream

xi passing through the equivalent channel H̃i = WiHi ,

corrupted by the additive noise ñi = Win. Any detection

algorithm to recover xi can be applied on ỹi . Thus, decou-

pling reduces the system dimension, facilitating the use of

complex non-linear detection schemes for each user. Also, the

user streams can be detected parallelly after decoupling. We

consider the following detection schemes in our work.



1) LMMSE detector [3]:

In the LMMSE detector, the received stream is passed

through a linear filter to eliminate the channel effects before

the demodulation. From the equivalent received signal yi, the

i-th user stream is detected by demodulating each coordinate

of x̂i = Giyi, where Gi =
(
H̃

†

i H̃i+σ2
nI
)−1

H̃
†

i ∈ CMi×Mi .

2) Successive Interference Cancellation (SIC) [4]:

The non-linear SIC detectors recursively eliminate inter-

symbol interference within the user streams by demodulat-

ing one symbol at a time. In this work, we consider QR

decomposition-based SIC. Consider the QR decomposition

of the i-th user’s effective channel H̃i = QiRi and let

vi = Q
†
i ỹi. SIC detection is performed as

[x̂i]j = Q

(
(vi)j −

∑Mi

p=j+1(Ri)j,p(x̂i)p
(Ri)j,j

)
,

where j is decreased from Mi to 1 and Q(·) indicates the

slicing function that maps its input to the nearest alphabet.

Typically, SIC achieves better performance than LMMSE

owing to the fact that the SNR gets maximized every time

a stream is eliminated recursively [4].

III. PROPOSED SEQUENTIAL DECOUPLER (SD)

We now introduce our proposed approach for computing the

decoupler. We first describe a recursive procedure to estimate

the left nullspace1 of a matrix with column partitions, which

will help us find a low-complex decoupler by exploiting the

redundancy in (5).

A. Recursive Estimation of Left Nullspace

The following result, inspired from [13, Theorem 6.4.1.],

presents a way to compute the common left nullspace of two

matrices.

Theorem 1. Consider the matrices A ∈ Cn×m and B ∈
Cn×p. Let the rows of F ∈ Ct×n constitute the basis for

K(A†). Also, let the rows of G ∈ Cq×t constitute the basis

for K
(
(FB)†

)
. Then, rows of GF form a basis for K(A†) ∩

K(B†).

Proof. We have FA = 0 =⇒ GFA = 0. Also, we have

GFB = 0. Therefore, R
(
(GF)†

)
⊆ K(A†)∩K(B†). Now,

let us consider an arbitrary vector x ∈ K(A†) ∩ K(B†).
Since x ∈ K(A†), ∃ y ∈ Ct×1 such that x = F†y. Also,

since x ∈ K(B†), B†x = 0 =⇒ B†F†y = 0 =⇒ y ∈
K
(
(FB)†

)
; thus ∃ z ∈ Cq×1 such that y = G†z =⇒ x =

F†G†z. Hence, x ∈ R
(
(GF)

†)
=⇒ K(A†) ∩ K(B†) ⊆

R
(
(GF)

†)
. Therefore, R

(
(GF)

†)
= K(A†)∩K(B†); since

rows of F and G are linearly independent, the rows of GF are

also linearly independent, and hence, the rows of GF form a

basis for K(A†) ∩ K(B†).

1In the remainder of the article, with a slight abuse of terminology, we call
the matrix W comprising of rows which are the basis of the left nullspace
of A simply as the left nullspace of A.

Motivated by this theorem, we propose the following recur-

sive algorithm for computing of the left nullspace of a block

column matrix.

Algorithm 1 : Recursive estimation of the common left

nullspace of a set of matrices

Input: Set of matrices A1, A2, . . . , AL , where Ai ∈
Cn×mi , initial left nullspace Z0.

1: for i ∈ NL do

2: T← Zi−1 ×Ai

3: Construct W whose rows form a basis for K(T†)
4: Zi ←W × Zi−1

5: end for

Output: ZL , whose rows form the basis for
⋂

i∈N
L

K(A†
i ).

B. Computing Left Nullspace for SD

We now introduce the proposed approach for decoupling

that exploits the redundancy in computing the left nullspaces.

We can use Algorithm 1 to find the common left nullspace

of the complementary channel as in (5), and we use the

intermediate estimates to reduce the computational cost.

Let us consider K user channels H1, H2, . . . , HK . To

begin with, in the first level, we divide the available users into

two sets S
(1)
1 = N

t
(1)
1

and S
(1)
2 = NK\Nt

(1)
1

, having indices

of t
(1)
1 =

⌈
K
2

⌉
and t

(1)
2 = K − t

(1)
1 users, respectively. The

collective channel matrices of the users enlisted in S
(1)
1 and

S
(1)
2 sets are

H
S

(1)
1

=
[
H1 · · · Ht

(1)
1

]
and H

S
(1)
2

=
[
H

t
(1)
1 +1

· · · HK

]
,

respectively. Now, we utilize Algorithm 1 to compute the

left nullspace of H
S

(1)
1

and H
S

(1)
2

as W
S

(1)
1

and W
S

(1)
2

,

respectively, which will satisfy the conditions

W
S

(1)
1

H
S

(1)
1

= 0 and W
S

(1)
2

H
S

(1)
2

= 0. (6)

Note that the set S
(1)
1 contains part of complementary users

for each of the user present in the set S
(1)
2 and vice versa. To

account for the rest of the complementary users, in the second

level, we further divide these sets and find the corresponding

left nullspaces; we divide the set in S
(1)
2 into two sets, S

(2)
3

and S
(2)
4 , having t

(2)
3 =

⌈
t
(1)
2

2

⌉
and t

(2)
4 = t

(1)
2 − t

(2)
3 users,

respectively. Similarly, we divide the users in S
(1)
1 into two

sets, S
(2)
1 and S

(2)
2 , having t

(2)
1 =

⌈ t(1)1

2

⌉
and t

(2)
2 = t

(1)
1 −

t
(2)
1 users, respectively. It is evident that the set S

(1)
1 ∪ S

(2)
3

comprises a part of complementary users for each of the users

in the set S
(2)
4 and so on. Again, using Algorithm 1, we can

compute the left nullspaces of the channel matrices of the

users listed in S
(2)
1 ,S

(2)
2 , S

(2)
3 and S

(2)
4

(
respectively denoted

as W
S

(2)
1

, W
S

(2)
2

, W
S

(2)
3

and W
S

(2)
4

)
, so that

W
S

(2)
3

W
S

(1)
1

[
H

S
(1)
1

H
S

(2)
3

]
= 0 , (7)



W
S

(2)
4

W
S

(1)
1

[
H

S
(1)
1

H
S

(2)
4

]
= 0, (8)

W
S

(2)
1

W
S

(1)
2

[
H

S
(1)
2

H
S

(2)
1

]
= 0, (9)

W
S

(2)
2

W
S

(1)
2

[
H

S
(1)
2

H
S

(2)
2

]
= 0. (10)

Thus, the intermediate left nullspaces W
S

(1)
1

and W
S

(1)
2

from

the previous level can be used to initialize Algorithm 1 to

compute the left nullspaces at the second level.

Proceeding in this way, we continue until there are subsets

that cannot be divided further, i.e., until S
(1)
1 gets partitioned

into
⌈
K
2

⌉
subsets and S

(1)
2 into K −

⌈
K
2

⌉
subsets. This will

result in
⌈
log2 K

⌉
levels, and finally, there will be K left

nullspaces, which constitute the decouplers of each of the

K users. Indeed, the decoupler thus derived for each user

will satisfy Wi

[
HK · · · Hi+1 Hi−1 · · · H1

]
= 0, where

Wi ∈ CM i×NR helps parallel processing of every user. Hence,

this approach provides a low-complex linear decoupler by

using intermediate left nullspace estimates at each level; since

the left nullspaces are computed sequentially, the decoupler

is named so. We summarize the above logic to obtain the

decouplers in Algorithm 2.

Algorithm 2 : Sequential Decoupler (SD)

Input: User channels Hi ∈ C
NR×Mi , i ∈ NK .

Initialization: Number of levels, ν = ⌈log2 K ⌉, left nullspace

initialization Z
(0)
1 = IN

R
, A

(0)
1 = ∅, B

(0)
1 = NK .

1: for l ∈ Nν do

2: for i ∈ N2l−1 do

3: ξ ←
∣∣B(l)

i

∣∣, C1 ← N⌈ξ/2⌉, C2 ← Nξ

∖
C1

4: for j ∈ N2 do

5: λ← 2(i− 1) + j

6:
Get Z

(l)
λ using Algorithm 1 with input Hp,

p ∈ B
(l−1)
i [C3−j ], and initialization Z

(l−1)
i .

7: A
(l)
λ = A

(l−1)
i ∪ C3−j

8: B
(l)
λ = B

(l−1)
i [Cj ]

9: end for

10: end for

11: end for

12:
For every i ∈ {j ∈ N2ν | B

(ν)
i 6= ∅}, assign Wp

i
with

Z
(ν)
i , where pi = B

(ν)
i [{1}]

Output: Decouplers of all users, Wi, i ∈ NK .

C. Users Inclusion

We now discuss how the proposed SD is adaptable to the

inclusion of new users into the system. When new users are

added, the existing SD can be updated with less number of

computations, unlike other schemes [9]–[11] that require the

re-computation of the entire decoupler. Let us consider there

are already K users in the system and let P denote the number

of users wanting to be newly added to the system. Algorithm

3 illustrates how the new set of decouplers can be determined

from the existing ones with less computational cost rather

than computing decouplers for the entire set of users. The

Algorithm derives the decoupler of a new user from that of

an existing user. The decouplers of all the existing users are

then updated by accounting for the new user’s channel,

Algorithm 3: Users inclusion in Sequential Decoupler, SD-UI

Input: Channels of existing users Hi, i ∈ NK , decouplers

of existing users Wi, i ∈ NK and channels of new users

Hi, i ∈ NP +K .

Initialization: Indices of users with decouplers, U = NK .

1: for i ∈ NP do

2: Pick an arbitrary index p ∈ U

3:
Get WK+i using Algorithm 1 with input Hp and

initialization Wp .

4: for j ∈ U do

5:
Replace Wj with output of Algorithm 1 with

input Hi and initialization Wj .

6: end for

7: U ← U ∪ {i}

8: end for

Output: Decouplers of all users, Wi, i ∈ NK+P .

IV. EMPIRICAL VALIDATIONS

In this section, we compare the performance of the proposed

SD with existing decoupling schemes Decoupler-pinv [10],

[11] and Decoupler-SVD [9] through numerical simulations in

terms of computational complexity and Bit Error Rate (BER).

Throughout the section, we use the notation {NR,K,Mi}
to denote the number of receiver antennas at the BS, the

number of users, and the number of transmit antennas per

user, respectively.

A. Computation Complexity

We compare the computational complexity of the algorithms

in terms of Floating Point Operations (FLOPs) [13]. In Table I,

the complexity comparison between the proposed SD approach

and Decoupler-SVD is presented; Table Ia furnishes the

computational complexity when the number of users increases;

Table Ib provides the computational complexity when the

number of transmit antennas increases for all users. It is

evident that the proposed SD has substantially reduced the

computational complexity. A key result is that when the

number of users in the system increases from 30 to 80,

the computational complexity required by the proposed SD

approach decreases from 0.41% to 0.152%. Figures 1a and 1b

plot the FLOPs required by our SD approach and Decoupler-

pinv. We can clearly see that the proposed decoupler has

remarkably reduced the computational complexity and only

requires 46% of the FLOPs as Decoupler-pinv.



TABLE I
COMPUTATIONAL COMPLEXITY (IN TERMS OF FLOPS) OF THE DECOUPLER - SVD [9] AND THE PROPOSED SEQUENTIAL DECOUPLER

(a) WITH VARYING NUMBERS OF USERS, EACH USER HAVING M
i
= 2 ANTENNAS

Scheme
No. of users, K

30 40 50 60 70 80

Decoupler-SVD [9] 568381440 1837854720 4548454400 9517332480 17745960960 30420131840

Proposed SD 2350036 5677832 11180738 19385412 30947856 46378784

(b) WITH VARYING NUMBER OF STREAMS PER USER WHEN K = 50

Scheme
M

i

2 4 6 8

Decoupler-SVD [9] 4548454400 3638763520 122808268800 291101081600

Proposed SD 11180738 89283324 301141166 713587672

30 40 50 60 70 80

0

2

4

6

8

10
10

7

(a) with varying numbers of users, each user having M
i
= 2 antennas

2 3 4 5 6 7 8

0

5

10

15

10
8

(b) with varying number of streams per user when K = 50

Fig. 1. Computational complexity (in terms of FLOPs) of the Decoupler-pinv [10], [11] and the proposed SD.

From the above results, it is apparent that the proposed

scheme offers a significant reduction in the number of com-

putations over the state-of-the-art, helping to achieve fast

detection. In particular, the complexity reduction is more

pronounced when the dimension of the system increases. This

makes the scheme apt for handling a large number of users,

which is typically the case in massive MIMO systems.

Next, we study the computational complexity for adapting

the Sequential Decoupler when new users are included, i.e.,

SD-UI discussed in Algorithm 3. Table II shows the FLOPs

required when up to five users are included, starting with

K = 60. Note that Decoupler-SVD and Decoupler-pinv

require the decoupler to be computed for all users again

and, hence, are not scalable. For reference, we have also

provided the FLOPs required to compute the entire SD again

from scratch. The results elucidate that the computational

complexity can be drastically reduced by cleverly harnessing

the hierarchical structure of SD. Notably, when five users are

added to the system, the SD-UI scheme requires only 0.0670%
and 16.42% of the FLOPs needed for Decoupler-SVD and

Decoupler-pinv, respectively; this amounts to 35.7% of the

FLOPs required for computing the SD from scratch.

B. Bit Error Rate (BER) Analysis

This section provides BER analysis of the decouplers; after

decoupling, user streams are detected using schemes men-

tioned in Section II-C. We first study the performance under

channel effects such as small-scale fading, spatial correlation,

large-scale propagation effects, and channel impairments such

as channel estimation error (CE).

1) Kronecker Model [15]

We define a correlated channel model according to Kro-

necker model [15].

Hi = (Srx)
1
2 qHi (Stx)

1
2 (11)

where the entries of qHi are i.i.d. samples from CN (0, 1); Srx

is the correlation matrix at the BS and Stx is the correlation



TABLE II
COMPUTATIONAL COMPLEXITY (IN TERMS OF FLOPS) OF THE SCHEMES WHEN UP TO FIVE USERS (WITH M

i
= 2) GET ADDED TO {130, 60, 2} SYSTEM.

Scheme
Additional number of users, P

1 2 3 4 5

Decoupler-SVD [9] 10400256000 11044166144 11717250048 12420366336 13154385920

Decoupler-pinv [10], [11] 46323278 48086828 49890834 51735680 53621750

Sequential Decoupler (SD) 28914457 28034542 27030719 25899264 24673804

Sequential Decoupler−Users Inclusion 26975155 4917261 6702870 8008150 8808885

matrix at the user terminals, both of which are constructed as

Sa =




1 ρa . . . ρ
(Na−1)2

a

ρa 1 . . . ρ
(Na−2)2

a

...
...

. . .
...

ρ
(Na−1)2

a ρ
(Na−2)2

a . . . 1



, (12)

where a ≡ ‘tx’ or ‘rx’, Ntx = Mi and Nrx = NR . We have

used ρtx = 0.25 and ρrx = 0.05 for the simulations. Figure 2

shows the BER performance in a {64, 15, 4} system under the

uncorrelated channel (i.e., ρtx = ρrx = 0), and Figure 3 shows

the performance of the channel in the presence of correlation.

It is clearly evident that the proposed SD does not undergo

any performance degradation despite the sequential nature of

the proposed algorithm.

Now, we consider large-scale propagation effects such as

shadowing and path loss in the channel as Γi
qHi , where

Γi = diag
(
10

µ
i
ν
i

10

√
Li

dτ
i

)
, µi is the shadowing spread in

decibels, νi ∼ N (0, 1), Li is the power path-loss between

user and the BS and dτi is the relative distance between the

user and the BS with path-loss component τ . The parameters

of the simulation are µi = 3dB, Li = 0.65, d = 0.65, and

τ = 3. For simplicity, all the users are assumed to have the

same large-scale parameters. The results are provided in Figure

4; results show that the presence of large-scale propagation

effects cannot deteriorate the performance of the proposed SD.

2) Performance Evaluation in the presence of Channel

Estimation Error

When the BS does not have perfect channel knowledge (for

instance, when there is a channel estimation error), the channel

available to the BS can be modelled as [16],

Herr,i = Hi +∆Hi , (13)

where [∆Hi]m,n
i.i.d.
∼ CN (0, σ2

e), m ∈ NN
R

, n ∈ NM
i
. The

BER performances of various schemes in the presence of a

correlated channel under such erroneous channel knowledge

are plotted in Figure 5. It can be observed that our SD scheme

performs on par with others as before; therefore, the sequential

process of the proposed algorithm does not propagate the

channel estimation error of a user to affect the quality of

decoupling of the other users.

TABLE III
CHANNEL PARAMETERS FOR SIMULATIONS ON THE TDL-A MODEL.

Parameters Value

Delay Profile TDL-A

Subcarrier Spacing 15kHz

Resource Blocks 25

Sample Rate 7.86× 10
6

Number of Subcarriers 300

Number of Users 15

M
i

2

N
R

32

SNR (dB) 0 to 26

Modulation QPSK

Type of Users Accomodated Humans, Cars, Bicycle

Maximum Doppler Shift 163Hz

3) TDL-A channel model of 38.901 [14]

We now study the BER performance of the decouplers in an

MU-mMIMO-OFDM system, where the frequency selective

MIMO channels become flat over each sub-carrier. Thus, de-

coupling needs to be performed on each sub-carrier, and hence,

the proposed decoupler will be desirable in such large-scale

systems due to its attractive complexity reduction. We consider

the Tapped Delay Line (TDL-A) channel model, defined in

3GPP Technical Specification 38.901 [14], with parameters

listed in Table III. Figure 6 shows the BER analysis of a

{32, 15, 2} system. It is evident that the proposed decoupler

does not undergo any performance degradation and performs

on par with the existing schemes. It corroborates the fact that

our SD is a superior alternative to the existing decoupling

schemes.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we described a novel, computationally effi-

cient linear decoupler for the MU-mMIMO system serving

heterogeneous users in the uplink. The proposed sequential

decoupler avoids redundant computations and offers significant

complexity reduction by harnessing the appropriate intermedi-

ate estimates. By cleverly leveraging the hierarchical structure,

the proposed SD can be efficiently scaled when new users

get added to the system. Extensive numerical simulations

indicate that the proposed scheme obtains the decoupler with a

remarkably low computational cost without any degradation in

the performance. Future research could consider a regularized
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Fig. 2. BER performance in a {64, 15, 4} system under uncorrelated
channel
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Fig. 3. BER performance in a {64, 15, 4} system under correlated
channel with ρtx = 0.25 and ρrx = 0.05

0 5 10 15 20 25

10
-3

10
-2

10
-1

10
0

Fig. 4. BER performance in a {32, 15, 2} system under large-scale
propagation effects
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Fig. 5. BER performance in a {64, 15, 4} system in the presence of
channel estimation error
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Fig. 6. BER performance in a {32, 15, 2} system under TDL-A channel

version of the Sequential Decoupler to effectively manage the

noise in the system.
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