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Abstract

We present an explicit quantum circuit that prepares an arbitrary U(1)-eigenstate
on a quantum computer, including the exact eigenstates of the spin-1/2 XXZ quantum
spin chain with either open or closed boundary conditions. The algorithm is determin-
istic, does not require ancillary qubits, and does not require QR decompositions. The
circuit prepares such an L-qubit state withM down-spins using (LM)−1 multi-controlled
rotation gates and 2M(L −M) CNOT-gates.
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1 Introduction

It is widely believed that the simulation of quantum physics is one of the most promising
applications of quantum computers, see e.g. [1, 2]. Among the potential target quantum
systems, one-dimensional quantum spin chains are attractive candidates. Indeed, these are
many-body quantum systems that appear in a myriad of contexts in fields such as physics
(condensed matter [3], statistical mechanics [4, 5], high-energy theory [6]), chemistry [7] and
computer science [8]. A subset of those models are quantum integrable, and thus their exact
energy eigenstates (“Bethe states”) and eigenvalues can be expressed in terms of solutions
(“Bethe roots”) of so-called Bethe equations. These results can be derived by either the
coordinate [9–12] or algebraic [13–15] Bethe ansatz. Given the Bethe roots (say, of the
ground state), it would be desirable to prepare the corresponding Bethe state on a quantum
computer [16], which would then allow the computation of correlation functions in this state,
see e.g. [17, 18].

After [19], an algorithm for preparing Bethe states of the spin-1/2 closed XXZ chain
based on coordinate Bethe ansatz was formulated [20]. This algorithm, which was later
generalized to the open chain [21], was restricted to real Bethe roots, required ancillary
qubits, and was probabilistic. Moreover, the success probability was shown to tend super-
exponentially to zero with the number of down-spins [22]. A different approach, based instead
on algebraic Bethe ansatz, was subsequently developed for the closed XXZ chain [23]. The
latter algorithm was not limited to real Bethe roots, and was deterministic; however, it
required performing QR decompositions of matrices whose size scale exponentially with the
number of down-spins. Analytic formulae for the unitaries of [23] were proposed in [24].

We present here a new algorithm for preparing arbitrary L-qubit U(1)-eigenstates, in-
cluding exact Bethe states of the spin-1/2 XXZ chain with either open or closed boundary
conditions. Like the algorithms [20, 21], it is based on coordinate Bethe ansatz; however, it
is not limited to real Bethe roots, does not require ancillary qubits, and it is deterministic.
Moreover, unlike [23], our algorithm is explicit, and does not make use of QR decompositions.
For a state withM down-spins in a chain of length L, the circuit uses only L qubits, and has
size and depth O((LM)). Our algorithm is inspired by an efficient recursive algorithm [25–28]
for preparing Dicke states [29]. Code in Qiskit [30] implementing this algorithm is available
as Supplementary Material.

2 Recursion

We consider the eigenstates of any Hamiltonian with U(1) symmetry. An important example
are Bethe states, which are eigenstates of the XXZ spin-1/2 quantum spin chain of length L
with either open or closed (periodic) boundary conditions. In the coordinate Bethe ansatz
approach [9–12], a normalized Bethe state with 0 <M < L down-spins is expressed as

∣BL
M⟩ =

1

F ({})
∑

w∈P (L,M)
f(w) ∣w⟩ , (2.1)
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where the sum is over the set P (L,M) of all permutations w with L −M zeros (up-spins)
and M ones (down-spins), which we think of as (LM) strings of length L. Moreover, the
coefficients f(w) are known complex numbers, which depend on the correspondingM Bethe
roots that we assume are known, see Appendix A. Here F ({}) denotes the normalization

F ({}) =
√

∑
w∈P (L,M)

∣f(w)∣2 , (2.2)

and the motivation for this notation shall soon become clear. For example,

∣B4
2⟩ =

1

F ({})
(f(0011) ∣0011⟩ + f(0101) ∣0101⟩ + f(1001) ∣1001⟩

+f(0110) ∣0110⟩ + f(1010) ∣1010⟩ + f(1100) ∣1100⟩) , (2.3)

and ∣0011⟩ = ∣0⟩⊗ ∣0⟩⊗ ∣1⟩⊗ ∣1⟩, etc., with computational basis states ∣0⟩ = (
1
0
) and ∣1⟩ = (

0
1
).

The Bethe states are not the only example of states that take the form (2.1); in fact, the
eigenstates of any Hamiltonian with U(1) symmetry take this form.1 Although we have in
mind values f(w) dictated by Bethe ansatz, and we shall refer to ∣BL

M⟩ as Bethe states,
our algorithm is actually more general, as it prepares the state ∣BL

M⟩ for arbitrary complex
numbers f(w). In particular, for the case f(w) = 1, ∣BL

M⟩ reduces to the Dicke state ∣DL
M⟩,

whose preparation was shown to have an efficient recursive algorithm [25].

Inspired by [25–28], we shall prepare the Bethe state ∣BL
M⟩ recursively. To do so, for a

string b of zeros and ones, let us define the state

∣ψ(b)⟩ =
1

F (b)
∑

w∈P (L,M)
w=ab

f(w) ∣w⟩ , (2.4)

with normalization

F (b) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
∑

w∈P (L,M)
w=ab

∣f(w)∣2 , multiple a satisfy w = ab ∈ P (L,M) ,

f(w) , unique a satisfies w = ab ∈ P (L,M) .

(2.5)

That is, we are restricting the sum in (2.4) to permutations w of the form w = ab, where ab
denotes the concatenation of the strings a and b, so ∣w⟩ = ∣a⟩⊗ ∣b⟩. The state (2.4) is thus the
“b-tail” of the Bethe state (2.1). Note that when b = {} is the empty string, F (b) reduces to
the normalization given by (2.2). For example, for the state ∣B4

2⟩ (2.3) with b = 0, we have

∣ψ(0)⟩ =
1

F (0)
(f(0110) ∣0110⟩ + f(1010) ∣1010⟩ + f(1100) ∣1100⟩) . (2.6)

1Indeed, since the states ∣BL
M ⟩ form an orthonormal basis, any state ∣ϕ⟩ can be expressed as ∣ϕ ⟩ =

∑L
M=0CM ∣BL

M ⟩. Hence, if ∣ϕ⟩ is an eigenstate of Sz with eigenvalue α, then α ∣ϕ⟩ = Sz ∣ϕ⟩ = ∑L
M=0 (L/2 −

M)CM ∣BL
M ⟩. This implies αCM = (L/2 −M)CM , so either α = L/2 −M or CM = 0. In particular, CM is

non-zero for exactly one value of M , so ∣ϕ⟩ = ∣BL
M ⟩.
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We observe that the states ∣ψ(b)⟩ satisfy the elementary but important recursion

∣ψ(b)⟩ = G(0b) ∣ψ(0b)⟩ +G(1b) ∣ψ(1b)⟩ , (2.7)

with

G(ib) =
F (ib)

F (b)
, i = 0,1 , (2.8)

where ib (with i = 0,1) is the concatenation of the strings i and b. For the example (2.6), we
have

∣ψ(0)⟩ = G(00) ∣ψ(00)⟩ +G(10) ∣ψ(10)⟩

=
G(00)

F (00)
f(1100) ∣1100⟩ +

G(10)

F (10)
(f(0110) ∣0110⟩ + f(1010) ∣1010⟩) . (2.9)

It is clear that ∣BL
M⟩ = ∣ψ({})⟩ corresponding to the empty string b = {}, so preparing the

state ∣ψ(b)⟩ recursively over the length of the string b amounts to a recursive preparation of
the state ∣BL

M⟩.

3 Algorithm

Suppose for m ≤ L the unitary operator Um independent of l and b satisfies 2

Um ∣0⟩
⊗(m−l) ∣1⟩⊗l ∣b⟩L−m = ∣ψ(b)⟩L (3.1)

for all 0 < l <m and all strings b of length L−m withM−l ones, i.e. for all b ∈ P (L−m,M−l).
This implies the restriction 0 ≤M − l ≤ L −m, so that

max(M +m −L,1) ≤ l ≤min(m − 1,M) . (3.2)

The reason we exclude the cases l = m or l = 0 is that in these cases, w = ab ∈ P (L,M) is
unique, and hence Um = I⊗L. This implies that for the case m = 1, where l = 0 or l = m = 1,
we must have U1 = I⊗L. For the case m = L, we have b = {}, hence (3.1) implies that

∣BL
M⟩ = UL ∣0⟩

⊗(L−M) ∣1⟩⊗M . (3.3)

It follows from (2.7) that Um has the recursive property

Um ∣0⟩
⊗(m−l) ∣1⟩⊗l ∣b⟩L−m = G(0b)Um−1 ∣0⟩

⊗(m−l−1) ∣1⟩⊗l ∣0b⟩L−m+1

+G(1b)Um−1 ∣0⟩
⊗(m−l) ∣1⟩⊗(l−1) ∣1b⟩L−m+1 . (3.4)

This motivates finding a unitary operator Wm independent of l and b that satisfies

Wm ∣0⟩
⊗(m−l) ∣1⟩⊗l ∣b⟩L−m = G(0b) ∣0⟩

⊗(m−l−1) ∣1⟩ ∣1⟩⊗(l−1) ∣0⟩ ∣b⟩L−m

+G(1b) ∣0⟩⊗(m−l−1) ∣0⟩ ∣1⟩⊗(l−1) ∣1⟩ ∣b⟩L−m (3.5)

2We occasionally put a subscript on a ket, such as ∣ψ(b)⟩L , to clarify that it is an L-qubit ket.
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for all max(M +m − L,1) ≤ l ≤ min(m − 1,M) and b ∈ P (L −m,M − l). In terms of this
operator, Um satisfies the recursion

Um = Um−1Wm (3.6)

which, using U1 = I⊗L, can be telescoped to

UL =

↷
L

∏
m=2

Wm , (3.7)

with the product going from left to right with increasing m.

It thus remains to construct a circuit Wm that performs (3.5) for all l and b. This can
be achieved using an operator Im,l independent of b with the following properties:

Im,l′ ∣0⟩
⊗(m−l) ∣1⟩⊗l ∣b⟩L−m =

⎧⎪⎪
⎨
⎪⎪⎩

∣0⟩⊗(m−l) ∣1⟩⊗l ∣b⟩L−m l′ < l

Wm ∣0⟩⊗(m−l) ∣1⟩⊗l ∣b⟩L−m l′ = l
, (3.8)

Im,l′ (Im,l ∣0⟩
⊗(m−l) ∣1⟩⊗l ∣b⟩L−m) = Im,l ∣0⟩

⊗(m−l) ∣1⟩⊗l ∣b⟩L−m l′ > l , (3.9)

for all b, where Wm ∣0⟩⊗(m−l) ∣1⟩⊗l ∣b⟩L−m in (3.8) is given by (3.5). Indeed, it readily follows
from these properties that Im,l performs the mapping (3.5) for fixed l, and that

⎛
⎜
⎝

↶
m−1
∏
l′=1

Im,l′

⎞
⎟
⎠
∣0⟩⊗(m−l) ∣1⟩⊗l ∣b⟩L−m =Wm ∣0⟩

⊗(m−l) ∣1⟩⊗l ∣b⟩L−m (3.10)

for all l. In view of the bounds (3.2), we conclude that the operator Wm, independent of l,
can be written as the following ordered product of these I operators:

Wm =

↶
min(m−1,M)
∏

l=max(M+m−L,1)
Im,l , (3.11)

with the product going from right to left with increasing l.

The circuit diagram for an operator Im,l with the properties (3.8) and (3.9) is displayed
in Fig. 1. There, U(m, l) denotes the product

U(m, l) = ∏
b∈P (L−m,M−l)

u(m, l, b) (3.12)

with the product over all b ∈ P (L−m,M − l) in arbitrary order.3 Here u(m, l, b) is the u-gate

u(m, l, b) = (
cos( θ2) −eiλ sin( θ2)
eiϕ sin( θ2) ei(ϕ+λ) cos( θ2)

) (3.13)

3If f(w) = 0 for some subset of permutations w, it is possible that F (b) = 0 for some b, so that G(ib) (2.8)
is singular; in these cases, the gates u(m, l, b) should simply be omitted. If the product in (3.12) is empty,
the operator Im,l can be omitted.
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⋮

⋮

0
●

●

●

L −m − 1

L −m U(m, l)

L −m + 1

L − 1

(a) Im,l with l = 1

⋮

⋮

⋮

0
●

●

●

L −m − 1

L −m U(m, l)

L −m + l − 1

L −m + l

L − 1

(b) Im,l with l > 1

Figure 1: Circuit diagrams for Im,l, with U(m, l) defined as a product of u-gates (3.12).
Additional controls on wires 0 to L −m − 1 (represented by a rectangle with 3 bullets) are
placed on each u(m, l, b) at the locations where b contains a one.

whose angles θ, ϕ, λ depend on b as follows:

θ = 2arccos (∣G(1b)∣) , λ = arg(G(0b)) − π , ϕ = arg(G(1b)) − λ . (3.14)

Each u-gate acts on wire L −m, and has controls on the wires L −m + l and L −m + l − 1
(the latter of which is present if and only if l > 1).4 Additionally, because the angles depend
on b, additional controls are placed on wires 0 to L−m− 1 at the locations where the string
b takes the value 1, to differentiate between different b.5 For example, for L = 4, M = 2,
u(m = 2, l = 1, b = 01) has controls on the wires 3 and 0, whereas u(m = 2, l = 1, b = 10) has
controls on the wires 3 and 1. For the case in which b in (3.12) is unique, these additional
controls can be omitted. Complete circuit diagrams for examples with L = 4, M = 2 and
L = 6, M = 3 are displayed in Figs. 2 and 3 in Appendix B. An implementation of this
algorithm using Qiskit [30] is available as Supplementary Material.

To summarize, the Bethe state ∣BL
M⟩ is given by (3.3), where UL is given by (3.7) in terms

of Wm (3.11), where the operators Im,l are given by Fig. 1. The U -gate in Fig. 1 defined
in (3.12) is a product of u(m, l, b) gates (3.13), with additional controls on the wires 0 to
L −m − 1 at the locations of the ones in the string b.

The number of CNOT-gates in UL, as follows from Eqs. (3.7) and (3.11), is given by

L

∑
m=2

min(m−1,M)
∑

l=max(M+m−L,1)
2 = 2M(L −M) . (3.15)

The number of u-gates in UL, considering (3.12), is given by

L

∑
m=2

min(m−1,M)
∑

l=max(M+m−L,1)
(
L −m

M − l
) = (

L

M
) − 1 . (3.16)

4We follow Qiskit conventions, where e.g. ∣110⟩ corresponds to ∣0⟩ on wire 0 and ∣1⟩ on wires 1 and 2.
5This method has been used before to generate states with many free parameters, see e.g. [31].
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We see that this circuit generates the state ∣BL
M⟩, which has (LM) free parameters f(w),

w ∈ P (L,M), with precisely (LM) − 1 rotations. The total circuit size, including preparing
the initial state ∣0⟩⊗(L−M)∣1⟩⊗M , is therefore

M + 2M(L −M) + (
L

M
) − 1 = O((

L

M
)) . (3.17)

For the central case M = L/2, we note the asymptotic approximation (see e.g. [32], p. 35)

(
L

L/2
) =

2L
√
πL/2

(1 +O(1/L)) . (3.18)

Besides the preparation of the initial state, no two gates in this circuit can run in parallel,
so the depth is O((LM)) as well. Further, we see that the number of CNOT-gates (3.15) and
u-gates (3.16) are symmetric under M → L−M , which implies that there is no advantage to
using the dual symmetry ∣BL

M⟩ =X
⊗L ∣BL

L−M⟩.

For the special case that all f(w) = 1, corresponding to Dicke states, our circuit is
similar to, but does not reduce to, the one in [25–28]. This is because the rotation angles
in u(m, l, b) are the same for all b, so only M(L −M) total rotations are needed, and the
additional controls on the wires 0 to L −m − 1 are unnecessary.

4 Discussion

We have formulated an algorithm for exactly preparing on a quantum computer an L-qubit
U(1)-eigenstate consisting of an arbitrary superposition of computational basis states with
M ones (down-spins) and L −M zeros (up-spins) (2.1). The circuit is ideally suited for
models solved by Bethe ansatz, which have available general recipes for the values f(w)
corresponding to the models’ eigenstates for arbitrary values of L and M in terms of Bethe
roots {k1, ..., kM}. However, these coefficients f(w), of which there are (LM) many, are each
expressed as a sum over M ! terms for the closed chain (A.5), and 2MM ! terms for the open
chain (A.12), and are thus expensive to compute classically for large M . (For eigenstates of
non-integrable models, the f(w) values are generally not known.) The circuit size is of the
same order as the number of free parameters f(w), suggesting that the circuit is optimal
for given values of L and M . Nevertheless, for M = L/2, the circuit size and depth scale
exponentially with L. As noted in the Introduction, these states could be used to compute
correlation functions [17, 18].

For the isotropic (∆ = 1) closed chain, the Bethe states are su(2) highest-weight states
[13]. It should also be possible to prepare the descendant (lower-weight) states using func-
tions f(w) obtained by taking appropriate limits of Bethe roots [13]. Although we have
focused here on eigenstates of XXZ models, we expect that this algorithm will also be appli-
cable to other U(1)-invariant spin-1/2 models, such as the Lipkin-Meshkov-Glick [33] model.

We have assumed here, as in [20–24], that the Bethe roots for the desired state are known.
Real Bethe roots can readily be determined classically, even for values L ∼ 103, by iteration
(see, e.g. [34] and references therein). However, complex Bethe roots are generally difficult to
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find classically. Following up on an idea suggested in [19], it may be possible to implement a
hybrid classical-quantum approach (see e.g. [7] and references therein) for determining such
complex Bethe roots by using our Bethe states as trial states and the unknown Bethe roots
as variational parameters.

It would be interesting to generalize the approach presented here to integrable U(1)-
invariant spin chains of higher spin [35] and of higher rank [36, 37], which should generalize
the circuits for corresponding Dicke states [28], [26] respectively. It would also be interesting
to try to extend this work to models without U(1) symmetry, such as the XYZ spin chain
[4, 11]. Indeed, a recursion analogous to (2.7) should still hold for such eigenstates; hence,
it may still be possible to formulate an appropriate algorithm.
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A Bethe ansatz

We briefly summarize here the coordinate Bethe ansatz for the spin-1/2 XXZ quantum spin
chain of length L.

A.1 Closed periodic XXZ chain

The Hamiltonian of the closed periodic spin-1/2 XXZ chain is given by

H = −1
2

L

∑
n=1
(σx

nσ
x
n+1 + σ

y
nσ

y
n+1 +∆ (σ

z
nσ

z
n+1 − I)) , σ⃗L+1 = σ⃗1 , (A.1)

where as usual σx
n, σ

y
n, σz

n are Pauli matrices at site n, and ∆ is the anisotropy parameter.
This Hamiltonian has the U(1) symmetry

[H , Sz] = 0 , Sz =
L

∑
n=1

1
2σ

z
n . (A.2)

For ∆ = 1, the model reduces to the isotropic su(2)-invariant XXX spin chain. Given a
solution {k1, . . . , kM} of the Bethe equations (see e.g. [4, 11])

eikjL =
M

∏
l=1;l≠j

(−
s(kl, kj)

s(kj, kl)
) , j = 1, . . . ,M , (A.3)
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where
s(k, k′) = 1 − 2∆eik

′

+ ei(k+k
′) , (A.4)

one can construct a corresponding exact simultaneous eigenvector ∣BL
M⟩ (2.1) of H and Sz,

with
f(w) = ∑

P
εPA(k1,⋯, kM) e

i∑M
j=1 kjxj , (A.5)

where the sum is over all permutations P of k1, . . . , kM , and εP = ±1 changes sign at each
such permutation. Moreover,

A(k1, . . . , kM) = ∏
1≤j<l≤M

s(kl, kj) , (A.6)

and the xj ∈ {1, . . . , L} in (A.5) are the positions of the 1’s in the argument w of f(w). For
example, if w = 0101, we have x1 = 2 and x2 = 4.

The corresponding eigenvalues of H and Sz are respectively given by

E =
M

∑
j=1

2 (∆ − cos(kj)) , Sz =
L

2
−M . (A.7)

A.2 Open XXZ chain

The Hamiltonian of the U(1)-invariant open spin-1/2 XXZ chain is given by

H = −1
2

L−1
∑
n=1
(σx

nσ
x
n+1 + σ

y
nσ

y
n+1 +∆ (σ

z
nσ

z
n+1 − I)) − 1

2 (hσ
z
1 + h

′ σz
L) +

1
2(h + h

′)I , (A.8)

where h and h′ are boundary magnetic fields. The Bethe equations are now given by [12]

α(kj)β(kj)

α(−kj)β(−kj)
=

M

∏
l=1;l≠j

B(−kj, kl)

B(kj, kl)
, j = 1, . . . ,M , (A.9)

where
B(k, k′) = s(k, k′) s(k′,−k) , (A.10)

see (A.4), and

α(k) = 1 + (h −∆) e−ik , β(k) = [1 + (h′ −∆) e−ik] ei(L+1)k . (A.11)

The exact simultaneous eigenvectors of H and Sz again have the form ∣BL
M⟩ (2.1) with

f(w) = ∑
P
εPA(k1, . . . , kM) e

i∑M
j=1 kjxj , (A.12)

where now the sum is over all permutations and negations of k1, . . . , kM , and εP = ±1 changes
sign at each such mutation. Moreover, now

A(k1, . . . , kM) =
M

∏
j=1
β(−kj) ∏

1≤j<l≤M
B(−kj, kl) e

−ikl . (A.13)

The xj ∈ {1, . . . , L} in (A.12) are again the positions of the 1’s in the argument w of f(w).
The corresponding eigenvalues of H and Sz are again given by (A.7).
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B Circuit diagrams

We present here the complete circuit diagrams for examples with (L,M) = (4,2) and
(L,M) = (6,3).

Figure 2: The complete circuit diagram for the open XXZ Bethe state with ∆ = 0.5, h =
0.1, h′ = 0.3, see (A.8), for the case L = 4, M = 2, and Bethe roots {0.682741, 1.38561}. Here
the barriers separate the different Wm, see (3.7) and (3.11). The fourth and fifth u-gates
correspond respectively to b = 10 and b = 01.

Figure 3: The complete circuit diagram for the closed XXZ Bethe state with ∆ = 1.005, see
(A.1), for the case L = 6, M = 3, and Bethe roots {0.0112138, 1.04159 − 0.7291i, 1.04159 +
0.7291i}. Here the barriers separate the different Wm, see (3.7) and (3.11).
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