
Temporal relaxation of disordered many-body quantum systems under driving and
dissipation

Jonas Richter 1, 2

1Department of Physics, Stanford University, Stanford, CA 94305, USA
2Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany

(Dated: April 10, 2024)

Strong disorder inhibits thermalization in isolated quantum systems and may lead to many-body
localization (MBL). In realistic situations, however, the observation of MBL is hindered by residual
couplings of the system to an environment, which acts as a bath and pushes the system to thermal
equilibrium. This paper is concerned with the transient dynamics prior to thermalization and studies
how the relaxation of a disordered system is altered under the influence of external driving and
dissipation. We consider a scenario where a disordered quantum spin chain is placed into a strong
magnetic field that polarizes the system. By suddenly removing the external field, a nonequilibrium
situation is induced and the decay of magnetization probes the degree of localization. We show that
by driving the system with light, one can distinguish between different dynamical regimes as the
spins are more or less susceptible to the drive depending on the strength of the disorder. We provide
evidence that some of these signatures remain observable at intermediate time scales even when the
spin chain is subject to noise due to coupling to an environment. From a numerical point of view,
we demonstrate that the open-system dynamics starting from a class of experimentally relevant
mixed initial states can be efficiently simulated by combining dynamical quantum typicality with
stochastic unraveling of Lindblad master equations.

I. INTRODUCTION

Generic many-body quantum systems prepared in
some out-of-equilibrium initial state are expected to relax
to thermal equilibrium at long times [1, 2]. In strongly
disordered systems, the process of thermalization can be
slowed down and may potentially cease entirely due to
many-body localization (MBL) [2, 3]. While numerous
studies have found evidence for MBL in disordered one-
dimensional systems (e.g., [4–7]), the asymptotic stability
of MBL as a nonequilibrium phase of matter is still under
debate at present [8–11]. The main complication stems
from the necessity of studying large system sizes and long
time scales, which is beyond the reach of state-of-the-art
numerical approaches [12–14]. Similarly, while ground-
breaking experiments in cold-atom or trapped-ion plat-
forms have immensely contributed to our understanding
of disordered many-body quantum dynamics, they can-
not unambiguously confirm the (non)existence of MBL
based on intermediate-time signatures [15–17]. In con-
trast to such quantum-simulator platforms, it is even
more challenging to observe MBL in traditional solid-
state experiments as the inevitable coupling of the spin
or electron system to the phonons provides a heat bath
that favors thermalization [18, 19].

The phenomenology of MBL is typically understood
with respect to local integrals of motion, so-called l-bits
[20–23]. Due to overlap with these l-bits, local observ-
ables fail to relax to thermal equilibrium under time evo-
lution. When coupled to a thermal bath [24–31], MBL is
typically believed to be unstable [32–34], as also observed
in cold-atom experiments [35, 36]. However, interesting
dynamical regimes might emerge if the coupling is weak
or the bath is small [37, 38]. Moreover, driving a disor-
dered system has been shown to enable the realization of

novel concept such as time crystals [39, 40]. Generally,
the combination of a bath and an external drive opens
up a vast landscape of driven-dissipative systems with
exotic out-of-equilibrium phenomena [41].

In this paper, we study how the dynamics of a disor-
dered system changes when subjected to certain driving
protocols and a noisy environment. We do not aim to
resolve the question of whether MBL asymptotically ex-
ists as a stable phase of matter, neither in open nor in
closed systems. Rather, we ask more generally if certain
features of the dynamics of disordered quantum systems
leave a fingerprint in a potentially experimentally feasi-
ble setup. To this end, we particularly build on an idea
proposed by Ros and Müller [42], who considered the re-
manent magnetization of an antiferromagnetic spin chain
that is initially polarized in a ferromagnetic state. Specif-
ically, consider a spin system, which is fully polarized by
a strong magnetic field, cf. Fig. 1 (a). At some point,
the field is switched off and the magnetization will decay
towards a long-time value which is nonzero in the case of
MBL. In contrast to typical probes of MBL that require
highly local resolution, the total magnetization has the
advantage that it should in principle be easier measur-
able in solid-state experiments. While Ref. [42] focused
on the ideal situation of unitary time evolution, we here
go beyond these results and consider a scenario where the
decay of the magnetization is altered due to the influence
of an environment, cf. Fig. 1 (b).

While we expect the system to relax to thermal equi-
librium when coupled to a thermal bath, another moti-
vation for our work stems from studies by Lenarčič et
al., who argued that certain features of MBL can be re-
activated by driving the system with light [43, 44]. In
contrast to Ref. [43], which explored the emergence of
characteristic features in the steady state, we here study
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H

ρ(0) ∝ e−β(H−BM)

Γ, ω
γ

H(t) = H −Hd(t)

〈M(t)〉

ρ̇(t) = i[ρ(t), H(t)] +Dρ(t)

(a)

(b)

FIG. 1. Sketch of the setup. (a) Initial-state preparation. A
disordered quantum spin chain described by a Hamiltonian
H is subject to a (strong) magnetic field B that couples to
the global magnetization M . The system is weakly connected
to a heat bath at inverse temperature β, and thermalization
to a Gibbs state ρ(0) ∝ exp[−β(H −BM)] is assumed. (b)
Dynamics. At t = 0, the magnetic field is suddenly switched
off, resulting in a nonequilibrium situation (i.e., a quantum
quench), and the magnetization ⟨M(t)⟩ will decay in time de-
pending on the disorder strength W . We study how ⟨M(t)⟩ is
altered by driving the system with circularly polarized light
with amplitude Γ and frequency ω, as well as by consider-
ing dissipation modelled by a Lindblad master equation with
system-bath coupling γ.

the possibility of using the drive to induce observable sig-
natures in the transient dynamics on intermediate time
scales. In this context, we follow earlier works, which
showed that circularly polarized light can be used to in-
duce a magnetization in strongly anisotropic spin chains
[45–47]. Combined with our setup, we demonstrate that
this type of driving can be used to alter the temporal
relaxation in disordered spin chains.

Summarizing our main results, we show that the pre-
sented protocol allows to distinguish between systems
with weak disorder (which show a strong response to the
drive) and systems with strong disorder (which show a
weaker response to the drive). In particular, for suit-
able values of driving amplitude and frequency, we find
that the relaxation of weakly disordered systems is sig-
nificantly slowed down due to the drive-induced nonequi-
librium magnetization. In contrast, at stronger disorder,
the drive appears to facilitate the relaxation of magneti-
zation and weakens the system’s tendency to localize.

While our focus is on fully polarized pure initial states,

we also consider mixed states at finite temperatures and
different initial polarizations, i.e., states that are pre-
pared close to as well as far away from equilibrium. In
this context, from a numerical point of view, we show
that the dynamics resulting from this class of nonequi-
librium states can be efficiently simulated by exploiting
the typicality of random pure quantum states. In partic-
ular, we demonstrate that dynamical quantum typical-
ity (DQT) provides a useful approach even if the system
is coupled to an environment by combining DQT with
stochastic unraveling of Lindblad master equations. This
numerical combination to study open-system dynamics
might be of independent interest also in other contexts
due to its independence on details of the system, the en-
vironment, and the driving protocol.

The rest of this paper is structured as follows. In Sec.
II, we define the models and observables studied in this
work. Our numerical approach is discussed in Sec. III,
and we present our results in Sec. IV. We summarize and
conclude in Sec. V.

II. SETUP

We consider a spin chain with L sites and periodic
boundary conditions,

H =

L∑
ℓ=1

∑
µ=x,y,z

JµSµ
ℓ S

µ
ℓ+1 +

L∑
ℓ=1

hℓS
z
ℓ , (1)

where Sµ
ℓ = 1

2σ
µ
ℓ are spin-1/2 operators, and the on-

site fields hℓ are drawn at random from a uniform dis-
tribution, hℓ ∈ [−W,W ], with W setting the disorder
strength. For Jx,y,z = 1, Eq. (1) reduces to the dis-
ordered Heisenberg chain which is well studied in the
context of MBL. In this paper, however, we are particu-
larly interested in the case of anisotropic couplings with
nonconserved global magnetization M , i.e.,

M =

L∑
ℓ=1

Sz
ℓ , [H,M ] ̸= 0 . (2)

For concreteness, we will set Jx = Jz = 1 and Jy = 0
[42], but we expect that our findings will qualitatively
carry over also to other choices of the exchange couplings.
Moreover, in Appendix A we present additional results
for the standard MBL model with Jx = Jy = Jz = 1.

We consider a nonequilibrium protocol as in [42], where
the spin system is initially placed in a strong external
magnetic field. Let us further assume that the system
is weakly coupled to a heat bath at inverse temperature
β, such that the situation can be described by a thermal
Gibbs state of the form

ρ(0) =
e−β(H−BM)

tr[e−β(H−BM)]
, (3)

where the field of strength B couples to the magnetiza-
tion operator, see Fig. 1 (a). At time t = 0, the magnetic
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field is suddenly switched off (B → 0) and the state ρ(0)
is no equilibrium state of the remaining Hamiltonian H,
see Fig. 1 (b). Such types of quench protocols involv-
ing the sudden removal of an external force have been
studied also in [48–50].

In the limit of strong B, the spin chain is fully po-
larized such that ρ(0) → |ψ⟩⟨ψ| is a pure state with
|ψ⟩ = |↑↑ · · · ↑⟩. While our focus will be on this fully
polarized case, we also consider weaker magnetic fields
where ρ(0) remains a mixed state and one can explore
the ensuing dynamics depending on β and B.

Given ρ(0), we study the temporal relaxation of the
magnetization,

⟨M(t)⟩ = tr[ρ(t)M ] , (4)

where we consider different scenarios for the time evolu-
tion of ρ(t), namely (i) the isolated system without ex-
ternal driving or dissipation, (ii) the driven system with
unitary dynamics, and (iii) the driven-dissipative situa-
tion where the system is coupled to an environment.

In the isolated case, the time evolution is understood
with respect to H in Eq. (1), ρ(t) = e−iHtρ(0)eiHt. For
weak disorder, we expect ⟨M(t)⟩ to decay towards zero
indicating thermalization. In contrast, for stronger dis-
order, the decay of ⟨M(t)⟩ will be slower and the rema-
nent magnetization will remain nonzero on rather long
time scales [42], indicating a transition to a finite-size
MBL regime. While we are interested in the behavior of
⟨M(t)⟩ on realistic time scales, we do not aim to draw
conclusions on the asymptotic stability of MBL in the
thermodynamic limit.

We also study the possibility of altering the dynam-
ics of ⟨M(t)⟩ by driving the system. Specifically, we
here follow the setup in [45–47], which considered the
induced nonequilibrium magnetization by circularly po-
larized light propagating in the z-direction. Assuming
that only the magnetic component of the light couples
to the system, the resulting time-dependent Hamiltonian
takes the form,

H(t) = H −Hd(t) , (5)

where the driving term Hd(t) is given by

Hd(t) = Γ

L∑
ℓ=1

(
e−iωtS+

ℓ + eiωtS−
ℓ

)
. (6)

Here, Γ > 0 is the amplitude and ω > 0 is the frequency
of the light. In an actual experiment, Γ and ω might be
time-dependent, which is neglected here.

Eventually, we want to consider a situation where the
system is not isolated but actually coupled to an envi-
ronment. For simplicity, we do not attempt to describe a
concrete microscopic situation, e.g., modeling explicitly
a phonon bath that would be present in a spin-chain ma-
terial. Instead, we treat the environment in terms of a
Lindblad master equation [51],

ρ̇(t) = L ρ(t) = i[ρ(t), H(t)] + D ρ(t) , (7)

consisting of a unitary time evolution with respect to the
(driven) H(t), and a dissipative part that is given by,

D ρ(t) =
∑
j

γ
(
Ljρ(t)L†

j −
1

2
{ρ(t), L†

jLj}
)
, (8)

where the Lj denote a set of Lindblad jump operators,
γ is the strength of the system-bath coupling, and {·, ·}
denotes the anticommutator. Specifically, we consider
structureless bulk noise in the form of dephasing with
jump operators at each lattice site,

Lj = σz
j , j = 1, . . . , L . (9)

The effect of dephasing noise on the stability of MBL
and on transport properties in disordered quantum sys-
tems has been studied both in the Markovian and non-
Markovian regime [24–28, 31, 52]. Even though this
choice of jump operators conserves the magnetization,
we will show below that it still facilitates the relaxation
of ⟨M(t)⟩.

III. NUMERICAL APPROACH

In order to study ⟨M(t)⟩, we evolve the out-of-
equilibrium initial state ρ(0) in time. If ρ(0) → |ψ⟩ =
|↑↑ · · · ↑⟩ and the system is isolated from the envi-
ronment, we employ standard sparse-matrix techniques
[53] to solve the time-dependent Schrödinger equation
|ψ(t)⟩ = e−iHt |ψ(0)⟩. Since H(t) does not conserve the
magnetization, these simulations are carried out in the
full Hilbert space with dimension 2L. Moreover, we per-
form a disorder average over approximately ∼ 500 re-
alizations of the random on-site fields. As the global
observable ⟨M(t)⟩ turns out to be rather insusceptible
to finite-size effects on the time scales considered (see
also Appendix B), we restrict ourselves to system sizes
L ≈ 18 − 20 in this paper. While this is already be-
yond the system sizes accessible to standard ED, we note
that even larger systems are in principle amenable to the
pure-state techniques used here.

We can use sparse-matrix propagation of pure quan-
tum states also in the more general case where ρ(0) is a
mixed state. To this end, we rely on the concept of dy-
namical quantum typicality, which exploits the properties
of random pure quantum states (see [54, 55] for reviews).
Specifically, we consider pure states of the form,

|ψ(0)⟩ =

√
ρ(0) |Ψ⟩√

⟨Ψ| ρ(0) |Ψ⟩
, (10)

where |Ψ⟩ is a random state drawn from the unitarily
invariant Haar measure, i.e.,

|Ψ⟩ =

2L∑
k=1

ck |φk⟩ , (11)
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where the real and imaginary parts of the complex coef-
ficients ck are drawn from a Gaussian distribution with
zero mean. The application of

√
ρ(0) on the random

state |ψ⟩ in Eq. (10) can be achieved by an imaginary
time evolution with respect to H − BM up to β/2.
Exploiting DQT, the exact dynamics of ⟨M(t)⟩ can be
approximated by the expectation value within the pure
state |ψ⟩,

⟨M(t)⟩ = tr[ρ(t)M ] = ⟨ψ(t)|M |ψ(t)⟩ + ϵ(|ψ⟩) , (12)

where the statistical error ϵ(|ψ⟩) scales as 1/
√
deff, with

deff denoting an effective Hilbert-space dimension that
depends on the choices of β and B [56, 57]. Crucially, deff
grows exponentially with increasing system size L such
that the approximation in Eq. (12) becomes highly accu-
rate. This accuracy can be further improved by averaging
over different instances of the random state |Ψ⟩. In fact,
in our simulations, we combine the averaging over states
with the above-mentioned disorder average by choosing
a new |Ψ⟩ for each random disorder realization.

Eventually, in order to simulate the dynamics of the
system coupled to dephasing noise, we rely on stochastic
unraveling of the Lindblad equation, where Eq. (7) is
approximated by averaging over pure-state trajectories
that consist of sequences of deterministic evolutions and
quantum jumps [58]. Specifically, for each trajectory, the
pure states |ψ(t)⟩ = e−iHefft |ψ⟩ evolve under an effective
Hamiltonian,

Heff(t) = H(t) − i
γ

2

L∑
ℓ=1

σz
ℓσ

z
ℓ = H(t) − iγL

2
. (13)

Since Heff is non-Hermitian, the norm of |ψ(t)⟩ will
decrease. Once || |ψ(t)⟩ || < ϵ drops below a ran-
domly drawn threshold ϵ ∈ [0, 1], a quantum jump oc-
curs with respect to one of the jump operators and
the resulting state is normalized, |ψ(t)⟩ → |ψ′(t)⟩ =
σz
ℓ |ψ(t)⟩ /||σz

ℓ |ψ(t)⟩ ||. Subsequently, another determin-
istic evolution with respect to Heff takes place.

For each trajectory of the stochastic unraveling, the
initial state is chosen as a random realization of |Ψ⟩ in
Eq. (10). Averaging over sufficiently many trajectories
then approximates the open-system dynamics of ⟨M(t)⟩
with initial state ρ(0), i.e.,

⟨M(t)⟩ ≈
∑
r

⟨ψr(t)|M |ψr(t)⟩
⟨ψr(t)|ψr(t)⟩

, (14)

where the subscript r labels trajectories with random
quantum jumps. Note that the averaging over trajec-
tories can again be performed simultaneously with the
averaging over typical states and disorder realizations hℓ.
Using this combination of quantum typicality [to mimic
the mixed initial state ρ(0)] and stochastic unraveling,
we here study open systems of sizes L = 18, beyond the
range of standard exact diagonalization, and with compa-
rable computational costs to simulations of isolated sys-
tems discussed above, see also [59, 60].

0

1

0 100

(a) L = 20

0

1

0 5

〈M
(t
)〉
/
〈M

(0
)〉

time t

W = 1

W = 2

W = 4

W = 5

〈M
(
1
0
0
)
〉

〈M
(
0
)
〉

disorder W

16

18

20

(b) t = 100
L =

FIG. 2. (a) Decay of normalized magnetization
⟨M(t)⟩/⟨M(0)⟩ starting from the fully polarized state |↑⟩ for
L = 20 and different values of W . (b) Long-time value
⟨M(t = 100)⟩/⟨M(0)⟩ versus disorder strengthW for different
L. Data is obtained by averaging over approximately ∼ 500
disorder realizations.

IV. RESULTS

We now present our numerical results. In Sec. IV A we
consider the relaxation of the magnetization ⟨M(t)⟩ in
the isolated system H. These results will provide a useful
point of reference for studying the impact of driving in
Sec. IV B, as well as for the Lindblad dynamics of the
open system in Sec. IV C.

A. Isolated system

As a starting point, it is instructive to study the dy-
namics of the isolated system in Eq. (1). For the initial
state, we consider a strong magnetic field B, such that
|ψ(0)⟩ = |↑↑ · · · ↑⟩. In Fig. 2 (a), the relaxation of magne-
tization ⟨M(t)⟩ is shown for system size L = 18 and dif-
ferent values of the disorder W , normalized by the initial
value ⟨M(0)⟩ = L/2. While at weak disorder ⟨M(t)⟩ de-
cays towards small values indicating thermalization, this
decay slows down considerably at larger W ≈ 5. The
remanent magnetization can thus be seen as an indica-
tor for the strength of disorder and the onset of a MBL
regime [42].

We analyze the decay of ⟨M(t)⟩ in some more detail
in Fig. 2 (b) by extracting ⟨M(t = 100)⟩, which is found
to increase monotonically with W . Moreover, comparing
data for different systems sizes, we find that at least on
the time scales t ≤ 100 shown here, finite-size effects are
comparatively weak.

In addition to the fully polarized initial state, one can
consider the case of a mixed state ρ(0) that depends on
the inverse temperature β and the field strength B. In
particular, it might be conceivable that an actual experi-
ment, for example in a solid-state setting, allows at least
some control over β and especially B in order to tune
ρ(0) into different regimes. In Figs. 3 (a) and 3 (b), we
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show ⟨M(t)⟩ for W = 1 and W = 5 at fixed β = 1 and
varying values of B. The data are obtained by relying
on the class of typical pure quantum states introduced
in Eq. (10). In Appendix C, we demonstrate that this
DQT approach indeed yields accurate results by compar-
ing to exact diagonalization for smaller system sizes. As
expected, we find that the initial value ⟨M(0)⟩ increases
with increasing B (see insets in Fig. 3). Correspondingly,
the resulting dynamics ⟨M(t)⟩ approaches with increas-
ing B the dynamics obtained from the fully polarized
state |↑⟩ (dashed curves). Moreover, we find that for a
given B, the initial value ⟨M(0)⟩ is lower for W = 5 than
for W = 1, i.e, at stronger disorder a larger external field
B is required to polarize ρ(0).

To better analyze the impact of B, the main panels in
Fig. 3 show ⟨M(t)⟩ rescaled by their B-dependent initial
values ⟨M(0)⟩. Remarkably, we find that for both W = 1
and W = 5, the dynamics for β = 1 and different B, as
well as for the fully polarized state |↑⟩, are all rather
similar to each other. The temporal relaxation of the
magnetization thus appears to be almost independent of
whether the initial state is prepared close to or far away
from equilibrium, see also Refs. [48–50].

This apparent independence of the dynamics on the
initial state (i.e., the choice of B) can be understood es-
pecially at strong disorder W = 5, for which the system
is in a finite-size MBL regime. In this case, there exists
a set of (approximate) l-bits and the overlap of these l-
bits with M will determine the long-time value of ⟨M(t)⟩.
This overlap will be almost independent of B such that
the long-time value ⟨M(t → ∞)⟩ is a fixed fraction of
the initial magnetization. Therefore, when rescaled by
⟨M(0)⟩, curves for different B become very similar. On
the other hand, such an argument does not immediately
apply at weaker disorder W = 1. Indeed, the data in
Fig. 3 (a) suggests a “close-to-equilibrium” regime with
the curves for B = 0.5, 1, 2 all agreeing perfectly, and a
“far-from-equilibrium” regime as ⟨M(t)⟩ for B = 4 and
B → ∞ (i.e., ρ(0) → |↑⟩) appear to be slightly differ-
ent compared to the lower-B dynamics. This effect is
however admittedly quite weak.

B. Driven system

We now turn to the dynamics of the driven system
H(t) with Γ > 0 and ω > 0. In Fig. 4, we consider
a weakly disordered spin chain with W = 1, for which
⟨M(t)⟩ decayed quickly in the undriven case [cf. Fig. 2].
Specifically, in Fig. 4 (a), ⟨M(t)⟩ is shown for small Γ =
0.2 (“linear response regime” [47]) and different driving
frequencies ω. Generally, ⟨M(t)⟩ behaves rather similarly
to the undriven dynamics (dashed curve for comparison)
with a fast decay towards an unpolarized state. While
this decay appears to be even facilitated at ω = 1, 2,
we observe a small amount of induced magnetization for
the largest frequency ω = 4 shown here (red curve above
dashed curve).

0

10

0 20

0

1
(a) β = 1, W = 1

0

10

0 20
0

1

0 100

(b) β = 1, W = 5

〈M
(t
)〉

B = 0.5

B = 1

B = 2

B = 4

| ↑〉

〈M
(t
)〉
/
〈M

(0
)〉

〈M
(t
)〉

t

〈M
(t
)〉
/
〈M

(0
)〉

time t

B = 0.5

B = 1

B = 2

B = 4

| ↑〉

FIG. 3. (a) ⟨M(t)⟩ for initial states ρ(0) at fixed inverse tem-
perature β = 1 and varying magnetic field B = 0.5, · · · , 4.
The dashed curve indicates data for the fully polarized state
|↑⟩ (i.e., B → ∞). Original dynamics is shown in the inset
(shorter times), while the main panel shows the data normal-
ized by the initial value ⟨M(0)⟩ and t ≤ 100. (b) Analogous
data but now for stronger disorder W = 5. The system size
is L = 20 in all cases.

A considerably stronger effect can be achieved by go-
ing beyond the linear-response regime and considering a
drive with amplitude Γ = 1. In particular, as shown
in Fig. 4 (b), we find that at ω = 1, 2 the decay of
⟨M(t)⟩ exhibits distinct (damped) oscillations with pe-
riod ∼ π/ω. While the response to the drive is strongest
at short times, the oscillations die out at later times
and the long-time behavior close to equilibrium is al-
most unchanged compared to the undriven system. This
“stalled” response near thermal equilibrium has been re-
cently proposed as a more general phenomenon of driven
many-body quantum systems [61].

With increasing driving frequency ω, the oscillations of
⟨M(t)⟩ become less pronounced. More importantly, Fig.
4 (b) unveils that the decay of ⟨M(t)⟩ becomes slower
with increasing ω, i.e., the drive induces a net magneti-
zation into the system. This effect is particularly striking
at ω = 4, where ⟨M(t)⟩ at t = 100 is still significantly
larger compared to the undriven case. While the data in
Fig. 4 are obtained for system size L = 18, we show in
Appendix B that the data are essentially converged with
respect to L.

The dependence on the driving strength is studied in
Fig. 4 (c), where ⟨M(t)⟩ is shown for various Γ at fixed
ω = 4. While the induced magnetization increases as ex-
pected by increasing the amplitude from Γ = 0.2 up to
Γ = 1, we find that, somewhat counterintuitively, ⟨M(t)⟩
again decays faster when applying an even stronger drive
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0

1
(a) Γ = 0.2

0

1
(b) Γ = 1

0

1

0 20 40 60 80 100

() ω = 4

〈M
(t
)〉
/
〈M

(0
)〉

ω = 1
ω = 2
ω = 4
Γ = 0

〈M
(t
)〉
/
〈M

(0
)〉

ω = 1
ω = 2

ω = 3
ω = 4

〈M
(t
)〉
/
〈M

(0
)〉

time t

Γ = 0.2
Γ = 0.5

Γ = 1
Γ = 1.5

FIG. 4. ⟨M(t)⟩ starting from the fully polarized initial state
|↑⟩, time-evolved under the driven Hamiltonian H(t) [Eq. (5)]
with weak disorder W = 1 and driving strength (a) Γ = 0.2;
and (b) Γ = 1. Data is shown for different driving frequencies
ω. The dashed curve indicates the dynamics in the undriven
case (Γ = 0). (c) ω = 4 and varying Γ. The system size is
L = 18 in all cases.

with Γ = 1.5. Stronger driving thus not necessarily leads
to a stronger response, see also [62] for similar findings.
Note that a similar effect is also expected for the depen-
dence of ⟨M(t)⟩ on the frequency ω. Specifically, there
will be a resonance frequency (here numerically found
as ω ≈ 4) for which the induced magnetization is largest.
Increasing ω further beyond the resonance frequency (not
shown here) will not yield a stronger effect since the sys-
tem is unable absorb energy from the drive [63, 64].

To proceed, in Fig. 5, we study the impact of driving
at stronger disorder W = 5, where the isolated system
behaves fairly localized. We again consider weak driv-
ing with Γ = 0.2 and stronger driving with Γ = 1. We
find that the effect of Γ > 0 is qualitatively different to
the weakly disordered case with W = 1 considered be-
fore. In particular, no excess magnetization is induced
compared to the undriven Γ = 0 case. Rather, ⟨M(t)⟩ is
reduced compared to the undriven case. While full MBL
can suppress drive-induced heating [65], the data in Fig.
5 suggest that the drive facilitates thermalization for all
ω and Γ shown here. Furthermore, comparing curves for
different ω > 0 in Fig. 5, we find that the curves for in-
creasing ω approach the undriven Γ = 0 dynamics from
below. This can again be understood from the fact that
for sufficiently high ω, the system absorbs less and less
energy from the drive.

Building on previous works, where models with single-
ion anisotropy were studied [45–47], we have shown in
Figs. 4 and 5 that circularly polarized light can be used
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FIG. 5. Analogous data as in Fig. 4 (a),(b), but now for
stronger disorder W = 5.

to alter the dynamics of disordered systems considered in
the context of MBL. While the laser-induced magnetiza-
tion was explained in Refs. [45, 46] by using a mapping
to an effective static model, valid in case that the original
time-independent H has a U(1) symmetry and conserves
the total magnetization M , our numerical simulations
show that this phenomenon also occurs for H that do not
conserve M , see Eq. (1). Furthermore, we have demon-
strated that for our initial-state protocol, the external
driving allows to distinguish between regimes of weak
disorder, where excess magnetization is induced to the
system, as well as regimes of stronger disorder where the
drive leads to a faster relaxation of magnetization. This
is a main result. While this distinction is pronounced at
strong driving with Γ = 1, we should note that achieving
such strong magnetic-field intensities in lasers might be
a challenge in experiments [45, 46].

We note that a similar distinction between weakly and
strongly disordered systems can be obtained also in case
of the driven isotropic Heisenberg chain with Jx,y,z = 1,
which we demonstrate in Appendix A using a similar
nonequilibrium protocol.

C. (Driven-)dissipative system

We now also consider the influence of an environment,
modelled by the Lindblad dynamics in Eqs. (7) and (8)
with system-bath coupling γ > 0. In Fig. 6 (a), the
magnetization ⟨M(t)⟩ is shown at γ = 0.1, W = 1 and
W = 5, without external driving (Γ = 0). Compared to
the dynamics of the isolated system, ⟨M(t)⟩ now decays
monotonically towards zero due to the dephasing noise,
both for W = 1 and W = 5, although the relaxation is
still slower at stronger disorder.

In Fig. 6 (a), we not only show data for the fully polar-
ized initial state |ψ(0)⟩ = |↑⟩, but also for mixed states
ρ(0) with β = 1 and B = 4, obtained using stochastic un-
raveling with the random pure states in Eq. (10). Anal-
ogous to the isolated system (Fig. 3), we find that the
dynamics resulting from the mixed and pure initial con-
ditions are rather similar to each other. Importantly, we
emphasize that the combination of quantum typicality
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FIG. 6. (a) Relaxation of magnetization under Lindblad dy-
namics with γ = 0.1, and disorder W = 1 and W = 5. Solid
curves indicate data resulting from the pure initial state |↑⟩,
while dashed curves result from a mixed initial state with
β = 1 and B = 4 obtained using the typicality approach.
The system size is L = 20 and data are normalized by the ini-
tial value ⟨M(0)⟩. (b) Dynamics at fixed W = 5 and L = 18
for varying system-bath coupling γ in a logarithmic plot. We
have Γ = 0 (i.e., no driving) in all cases.

and stochastic unraveling allows us to simulate mixed-
state Lindblad dynamics in an open system with L = 20,
which is clearly beyond the range of exact diagonalization
where studies are typically limited to L < 10 [66].

The impact of the environment is further exemplified
in Fig. 6 (b), where ⟨M(t)⟩ is shown at fixed W = 5 and
varying γ. As can be seen from the logarithmic plot, we
can distinguish between two regimes, i.e., t ≲ 5, where
curves for different γ coincide; and longer times t ≳ 5,
where the decay of ⟨M(t)⟩ is more rapid with increasing
γ. The two regimes can be partially understood from the
dynamics of the isolated system (Fig. 2), where ⟨M(t)⟩
at W = 5 decays at short times but is approximately
constant at longer times. The short-time decay in Fig. 6
is thus dominated by the internal dynamics of H, while
the decay at t ≳ 5 is caused by γ > 0.

The shape of the curves in Fig. 6 (b) suggests that the
decay of ⟨M(t)⟩ is not exponential, but rather described
by a stretched-exponential behavior [24–28],

⟨M(t)⟩ ∝ e−λtα , (15)

where λ > 0 is a constant and α > 0 is the stretching
exponent. The scaling (15) can be confirmed by plotting
−log⟨M(t)⟩ ∝ λtα in Fig. 7. Indeed, we find that at
sufficiently long times −log⟨M(t)⟩ grows linearly in the
double logarithmic plot and α can be extracted from the
slope (dashed curve in Fig. 7). Moreover, we find that
the strength of the system-bath coupling γ does not have
a qualitative effect as the dynamics for different γ nicely
collapse onto each other when plotted against t→ γt.

Eventually, let us study how additional driving im-
pacts the relaxation of ⟨M(t)⟩ in the open system (i.e.,
Γ, ω, γ > 0). In Fig. 8, we fix γ = 0.1 and consider both,
weak disorder W = 1 [Fig. 8 (a)] and stronger disorder
W = 5 [Fig. 8 (b)]. Comparing W = 1 and W = 5,
we observe a behavior similar to our discussion earlier

0.1

1

10

0.1 1 10 100

−
lo
g
〈M

(
γ
t
)
〉

〈M
(
0
)
〉

time γt

γ = 0.1

γ = 0.2

γ = 0.4

FIG. 7. Visualizing the stretched-exponential decay by plot-

ting -log ⟨M(t)⟩
⟨M(0)⟩ versus rescaled time γt. The dashed curve is

a fit to the late-time data which can be used to extract the
stretching exponent α. For γ = 0.1 and late times, deviations
from the stretched-exponential decay are visible.

in the context of the isolated system. Namely, while the
drive slows down relaxation at weak disorder, it appears
to further accelerate relaxation in the strongly disordered
case. Thus, even in the presence of dephasing, the driv-
ing protocol allows to distinguish between a weakly and
a strongly disordered regime. Generally, however, the
impact of driving, and in particular the enhancement of
magnetization at weak disorder, is less striking compared
our previous result for the closed system. Observing
the laser-induced magnetization experimentally is thus
more likely in systems where the spin-spin interactions
dominate compared to, e.g., the spin-phonon coupling,
such that the dynamics remain approximately unitary
on longer time scales.

Figures 6 - 8 demonstrate that finite dephasing with
γ > 0 facilitates the relaxation of ⟨M(t)⟩, even though
the Lindblad jump operators σz

ℓ themselves commute
with the total magnetization M . This can be under-
stood from the fact that, since the isolated system H
does not conserve M , and the Lindblad dynamics con-
sists of both the unitary and the dissipative part, the
the only fixed point of Eq. (7) is the maximally mixed-
state ρ(t → ∞) ∝ 1 such that ⟨M(t → ∞)⟩ → 0. Thus,
in our setup, any signatures of localization disappear at
long times, even in the driven system with Γ, ω > 0.
Therefore, we have here focused on the interplay be-
tween disorder, driving, and dissipation, on intermediate
time scales prior to equilibration [31]. Generally, it would
be interesting to see if the revival of localization in the
steady state due to driving reported in Ref. [43] can be
seen in the transient nonequilibrium dynamics of driven-
dissipative quantum systems using other driving proto-
cols or more general non-Markovian system-bath scenar-
ios beyond our setup considered here.

V. CONCLUSION

In summary, we have studied the temporal relaxation
of magnetization in disordered quantum spin chains fo-
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FIG. 8. Dynamics in the presence of driving and dissipation
for (a) weak disorder W = 1; and (b) stronger disorder W =
5. The system-bath coupling is γ = 0.1.

cusing on a realistic quench protocol where a system is
initially polarized due to a strong magnetic field which is
subsequently removed to induce a nonequilibrium situa-
tion. This protocol was motivated by earlier work in Ref.
[42], where it was shown that the remanent magnetiza-
tion of the system at long times can be seen as a proxy for
the crossover to a finite-size many-body localized regime.
Here, we have particularly studied the impact of driving
and dissipation on the resulting dynamics of the system.

Another motivation for our study was given by Ref.
[43], which showed that fingerprints of MBL can be re-
vived in the steady state of driven systems, even in the
presence of a bath that would usually lead to thermal-
ization. In contrast, we here focused on the dynamics
of disordered driven-dissipative systems on intermediate
time scales. To this end, we explored the possibility
of inducing magnetization by driving the system with
circularly polarized light [45–47]. As a main result, we
demonstrated that such a driving protocol indeed allows
to distinguish between systems with weak disorder and
systems with strong disorder. Specifically, we found that
in the strongly disordered case the drive facilitates re-
laxation and leads to a reduction of the magnetization.
In contrast, at weaker disorder and using suitable val-
ues of the drive amplitude and frequency, we found that
the drive induces a significant amount of excess magneti-
zation such that the system’s relaxation becomes slower
compared to the undriven case. Let us stress, however,
that this slower relaxation should not be interpreted as an
onset of localization. Rather, we still expect the system
to behave thermal, although the thermal value of mag-
netization is nonzero and set by an appropriate effective
Hamiltonian [67].

Eventually, when we considered additional dephasing
noise modeled by a Lindblad master equation, the decay
of magnetization towards equilibrium was found to be
consistent with stretched-exponential behavior [24–28].
While the system’s response to driving again revealed
differences between weak and strong disorder, these sig-
natures turned out to be less striking than in the unitary
case. Moreover, at long times, the system necessarily de-
cayed towards a featureless infinite-temperature state in

our setup.
From a numerical point of view, we used an effi-

cient scheme based on quantum typicality, where mixed
nonequilibrium initial states can be mimicked by a suit-
ably prepared random pure quantum state. Random
quantum states have been used extensively in previous
works to study the dynamics of isolated quantum many-
body systems (see e.g., [54, 55, 68–71]). By combining
typicality with stochastic unraveling of Lindblad mas-
ter equations, we have here demonstrated that they also
provide a useful numerical tool to study the dynamics
of open systems prepared in a class of experimentally-
relevant initial states, cf. Refs. [59, 60]. Moreover, while
powerful tensor-network algorithms certainly exist to
simulate Lindblad dynamics [44, 52, 72, 73], the appeal
of the combination of typicality and stochastic unravel-
ing lies in its simplicity and its applicability irrespective
of details of the system or the jump operators.

In the future, it would be interesting to study in
more detail the differences between internal mechanisms
of thermalization and environment-caused thermaliza-
tion in potential MBL systems. Distinguishing between
these internal and external mechanisms can be challeng-
ing since the dynamics of disordered, slowly thermaliz-
ing, isolated systems is also of streched-exponential form
[74–76]. Another natural avenue is to further explore po-
tential applications of quantum typicality in the context
of open quantum systems, e.g., in order to study the dy-
namics of non-Hermitian Hamiltonians [77]. Finally, it
would be interesting to see if the here reported response
of disordered spin chains can be experimentally observed
either in solid-state settings or noisy quantum simulators.
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Appendix A: Decay of magnetization in the
disordered isotropic Heisenberg chain

While we have focused on anisotropic couplings with
Jy = 0 in the main text, we here present additional re-
sults for the isotropic Heisenberg chain with Jx,y,z = 1.
In contrast to our analysis in the main text, the un-
driven H therefore now conserves the total magnetiza-
tion M . Due to a strong external magnetic field, the sys-
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tem is again prepared in the fully polarized initial state
ρ(0) = |ψ(0)⟩ ⟨ψ(0)| with |ψ(0)⟩ = |↑↑ · · · ↑⟩. At time
t = 0, the external field is removed and the system is
driven by circularly polarized light of amplitude Γ and
frequency ω, cf. Eq. (6). Due to the drive, M is not con-
served under the time-dependent H(t) such that ⟨M(t)⟩
shows nontrivial dynamics.

In Fig. 9, ⟨M(t)⟩ is shown for both weak disorder W =
1 [Fig. 9 (a)] and strong disorder W = 5 [Fig. 9 (b)].
We focus on the linear-response regime with Γ = 0.2 and
study the relaxation of magnetization for various driving
frequencies ω. Interestingly, there is a clear difference in
the system’s response when comparing the two disorder
strengths. On one hand, for W = 1 and ω = 0.5, we
find that ⟨M(t)⟩ exhibits distinct oscillations and decays
to a notably reduced long-time value. With increasing
ω, the oscillations become less pronounced and the long-
time value of ⟨M(t)⟩ increases. In particular, for high
driving frequency ω = 4, ⟨M(t)⟩ is again approximately
conserved with ⟨M(t)⟩/⟨M(0)⟩ ≈ 1 for all times shown
here.

On the other hand, for stronger disorder W = 5, the
dependence of ⟨M(t)⟩ on the choice of ω is significantly
weaker. In fact, we find that the dynamics remain essen-
tially unchanged when varying ω from ω = 0.5 to ω = 2.
The data in Fig. 9 thus exemplifies that driving a dis-
ordered spin chain by circularly polarized light, together
with the resulting response of the nonequilibrium mag-
netization, allows to distinguish between strongly disor-
dered (which show a weak response) and weakly disor-
dered systems (which show a strong response). While we
have demonstrated this finding in the main text for sys-
tems where the undriven H does not conserve M , Fig. 9
shows that a similar protocol also applies in the case of
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FIG. 9. Decay of magnetization in the isotropic Heisenberg
chain with Jx = Jy = Jz = 1. The system is driven in
the linear-response regime with driving amplitude Γ = 0.2
and data are shown for various driving frequencies ω. The
disorder strength is (a) W = 1, and (b) W = 5. We have
L = 18 in all cases.

0

1

0 20 40 60 80 100

〈M
(t
)〉
/
〈M

(0
)〉

time t

L = 14
L = 16

L = 18

Γ = 0.2, ω = 4

Γ = 1, ω = 4

FIG. 10. Finite-size scaling analysis for setup analogous to
Fig. 4, using a fixed driving frequency ω = 4. Data is shown
for different system sizes L = 14, 16, 18 and driving strength
Γ = 0.2 and Γ = 1.

isotropic couplings where H has a U(1) symmetry.

Appendix B: Finite-size scaling of dynamics at weak
disorder

In Fig. 10, we show the relaxation of magnetization
in driven spin chains with Γ = 0.2 and Γ = 1 at weak
disorder W = 1 (i.e., analogous to Fig. 4 in the main
text). The driving frequency is ω = 4. Plotting data
for system sizes L = 14, 16, 18, we find that curves of
⟨M(t)⟩/⟨M(0)⟩ with different L almost perfectly coincide
with each other, i.e., finite-size effects are negligible on
the time scales shown here.

Appendix C: Accuracy of dynamical quantum
typicality

Let us exemplify that the random pure states intro-
duced in Eq. (10) indeed yield accurate results for the
relaxation of ⟨M(t)⟩ in the case of mixed initial states
ρ(0) with finite β and B. To this end, Fig. 11 shows
⟨M(t)⟩ in small chains with L = 10 for weak disorder
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time t

DQT

ED

W = 1

W = 5

FIG. 11. Comparison of dynamical quantum typicality
(DQT) and exact diagonalization (ED). The mixed initial
state ρ(0) is prepared with β = 1 and B = 1 and we study
the unitary time evolution governed by the isolated model H
with (a) W = 1; and (b) W = 5. The system size is L = 10.
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W = 1 and strong disorder W = 5. In both cases, we
compare data obtained by dynamical quantum typical-
ity to results obtained from exact diagonalization. Note
that for the DQT data, averaging over random states is
performed simultaneously with averaging over disorder
realizations.

Generally, Fig. 11 unveils a convincing agreement be-

tween DQT and ED even for the small system size used.
While this agreement is of slightly lower quality for
W = 5, we note that this is caused by the fact that
sample-to-sample variations are larger at stronger disor-
der and that ED and DQT data are here obtained for
different sets of random disorder realizations.

[1] J. Eisert, M. Friesdorf, and C. Gogolin, Nature Physics
11, 124 (2015).

[2] R. Nandkishore and D. A. Huse, Annual Review of Con-
densed Matter Physics 6, 15 (2015).

[3] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Re-
views of Modern Physics 91, 021001 (2019).

[4] A. Pal and D. A. Huse, Physical Review B 82, 174411
(2010).

[5] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Physical
Review Letters 113, 107204 (2014).

[6] D. J. Luitz, N. Laflorencie, and F. Alet, Physical Review
B 91, 081103 (2015).

[7] J. Z. Imbrie, Physical Review Letters 117, 027201 (2016).
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