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A BIJECTION BETWEEN SUPPORT τ-TILTING SUBCATEGORIES

AND τ-COTORSION PAIRS IN EXTRIANGULATED CATEGORIES

ZHIWEI ZHU, JIAQUN WEI∗

Abstract. Let C be an extriangulated category with enough projectives and injectives.

We give a new definition of tilting subcategories of C and prove it coincides with the

definition given in [19]. As applications, we introduce the notions of support τ -tilting

subcategories and τ -cotorsion pairs of C . We build a bijection between support τ -tilting

subcategories and certain τ -cotorsion pairs. Moreover, this bijection induces a bijection

between tilting subcategories and certain cotorsion pairs.

1. Introduction

Tilting theory is a generation of Morita equivalences and plays an important role in

the representation theory of algebra. It originated with the study of reflection functors in

[1, 4]. The first set of axioms for a titling module was described by Brenner and Butler

in [5]. After that, tilted algebras [7] was defined by Happel and Ringel as endmorphism

algebras of tilting modules over hereditary algebras. Nowadays, tilting theory has been

generalized in many directions. Krause [11] defined tilting objects in exact categories and

Sauter [16] defined tilting subcategories in exact categories. Recently, Zhu and Zhuang

[19] generalized the definition of tilting subcategories in extriangulated categories.

Extriangulated categories was introduced by Nakaoka and Palu [14], which shares some

properties of triangulated categories and exact categories. There are some examples

of extriangulated categories such as exact categories and extension-closed subcategories

of triangulated categories, while some extriangulated categories may be neither exact

nor triangulated categories. Hence, some results of triangulated categories and exact

categories can be generalized to extriangulated categories.

Adachi, Iyama and Reiten [3] introduced τ -tilting theory on finite dimensional algebra.

One can refer to [17] for more details. Then Iyama, Jørgensen and Yang [10] introduced

support τ -tilting subcategories in functor categories. Later on, support τ -tilting subcat-

egories were generalized in Hom-finite abelian categories with enough projectives by Liu

and Zhou [12]. Asadollahi, Sadeghi and Treffinger [2] showed that there is a bijection

between support τ -tilting subcategories and τ -cotorsion triples, which is a generalization
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cotorsion pairs; extriangulated categories.
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of [6]. Recently, Pan, Zhang and Zhu [15] defined support τ -tilting subcategories in ex-

act categories and gave a bijection between support τ -tilting subcategories and certain

τ -cotorsion pairs.

The main result of this paper is to provide a bijection between support τ -tilting subcat-

egories and certain τ -cotorsion pairs in extriangulated categories. Moreover, this bijection

induces a bijection between tilting subcategories and certain cotorsion pairs.

The paper is organized as follows. In Section 2, we summarize some definitions and

results of extriangulated categories. In Section 3, we give a new definition of tilting sub-

categories in extriangulated categories and prove it coincides with the definition given in

[19]. Later on, we define support τ -tilting subcategories and τ -cotorsion pairs of extri-

angulated categories with enough projectives and injectives. Finally, we prove the main

result.

2. Preliminaries

Throughout the article, we assume, unless otherwise stated, that C denotes an additive

category, which is skeletally small and Krull-Schmidt. All subcategories considered are

full and closed under isomorphisms. We denote by C (A,B) the set of morphisms from

A to B in C . The composition of a ∈ C (A,B) and b ∈ C (B,C) is denoted by ba. For a

subcategory A of C , a ∈ C (A,C) is a right A -approximation for C ∈ C if A ∈ A and

C (A′, a) is surjective for any A′ ∈ A . Dually, we can define left A -approximation.

2.1. Extriangulated categories. Let us recall some notions concerning extriangulated

categories from [14].

Let E : C op × C → Ab be a biadditive functor, where Ab is the category of abelian

groups. For any pair of objects A,C ∈ C , an element δ ∈ E(C,A) is called an E-

extension. The zero element 0 ∈ E(C,A) is called the split E-extension. For any morphism

a ∈ C (A,A′) and c ∈ C (C ′, C), we have the following E-extensions

E(C, a)(δ) ∈ E(C,A′), E(c, A)(δ) ∈ E(C ′, A),

which are denoted by a∗δ and c∗δ, respectively.

Definition 2.1. [14, Definition 2.3] A morphism (a, c) : δ → δ′ of E-extensions δ ∈

E(C,A), δ′ ∈ E(C ′, A′) is a pair of morphisms a ∈ C (A,A′) and c ∈ C (C,C ′) satisfying

a∗δ = c∗δ′.

Two sequences of morphisms A
x

−→ B
y

−→ C and A
x′

−→ B′
y′

−→ C in C are said to be

equivalent if there exists an isomorphism b ∈ C (B,B′) such that the following diagram is
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communtative.

A
x

// B
y

//

b≃

��

C

A
x′

// B′
y′

// C

We denote the equivalence class of A
x

−→ B
y

−→ C by [A
x

−→ B
y

−→ C]. In addition, for

any A,C ∈ C , we denote as

0 = [ A

(

1

0

)

// A⊕B
(0 1)

// C ].

For any two equivalence classes [A
x

−→ B
y

−→ C] and [A′ x′

−→ B′
y′

−→ C ′] we denote as

[A
x

−→ B
y

−→ C]⊕ [A′ x′

−→ B′ y′

−→ C ′] = [A⊕A′

(

x 0

0 x′

)

−→ B ⊕ B′

(

y 0

0 y′

)

−→ C ⊕ C ′].

Definition 2.2. [14, Definition 2.9] Let s be a correspondence, which associates an equiv-

alence class s(δ) = [A
x

−→ B
y

−→ C] to each E-extension δ ∈ E(C,A). This s is called

a realization of E if for any morphism (a, c) : δ → δ′ with s(δ) = [A
x

−→ B
y

−→ C] and

s(δ′) = [A′ x′

−→ B′
y′

−→ C ′], there is a commutative diagram as follows:

A
x

//

a
��

B
y

//

b
��

C

c
��

A′
x′

// B′
y′

// C ′

A realization s of E is said to be additive if the following conditions are satisfied:

(a) For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies s(0) = 0.

(b) s(δ ⊕ δ′) = s(δ)⊕ s(δ′) for any pair of E-extensions δ and δ′.

Definition 2.3. [14, Definition 2.12] We call the triple C = (C ,E, s) an extriangulated

category if it satisfies the following conditions:

(ET1) E : C op × C → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions, with

s(δ) = [A
x

−→ B
y

−→ C] and s(δ′) = [A′ x′

−→ B′ y′

−→ C ′].

For any commutative diagram

A
x

//

a
��

B
y

//

b
��

C

A′
x′

// B′
y′

// C ′

in C , there is a morphism (a, c) : δ → δ′ satisfying cy = y′b.
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(ET3)op Dual of (ET3)

(ET4) Let δ ∈ E(D,A) and δ′ ∈ E(F,B) be E-extensions realized by A
f

−→ B
f ′

−→ D

and B
g

−→ C
g′

−→ F , respectively. Then there exist an object E ∈ C , a

commutative diagram

A
f

// B
f ′

//

g

��

D

d
��

A
h

// C
h′

//

g′

��

E

e
��

F F

in C , and an E-extension δ′′ ∈ E(E,A) realized by A
h

−→ C
h′

−→ E, which

satisfy the following compatibilities:

(i) D
d

−→ E
e

−→ F realizes E(F, f ′)(δ′),

(ii) E(d, A)(δ′′) = δ,

(iii) E(E, f)(δ′′) = E(e, B)(δ′).

(ET4)op Dual of (ET4)

Remark 2.4. (a) A sequence A
x

−→ B
y

−→ C is called a conflation if it realizes some

E-extension δ ∈ E(C,A). Then x is called an inflation and y is called a deflation. We say

A
x

−→ B
y

−→ C
δ

99K is an E-triangle.

(b) For a given E-triangle A
x

−→ B
y

−→ C
δ

99K, we denote A = cocone(y) and C =

cone(x). An E-triangle is split if it realizes 0.

(c) A subcategory U of C is closed under extensions if for any conflation A
x

−→ B
y

−→ C

with A,C ∈ U , we have B ∈ U .

(d) An object P in C is projective if for any conflation A
x

−→ B
y

−→ C, C (P, y) is

surjective. We denote the subcategory of projective objects by P(C ). Dually, we can

define injective objects and the subcategory of injective objects denoted by I(C ). We

say that C has enough projectives if for any A ∈ C , there is a deflation P → A for some

P ∈ P(C ). Dually, we define that C has enough injectives.

Throughout the article, we assume C has enough projectives and injectives.

Definition 2.5. Let C be an extriangulated category and U be a subcategory of C . Then

we define Defl(U) and Infl(U) as

Defl(U) = {F ∈ C | ∃ a deflation U
g

−→ F for some U ∈ U}

and

Infl(U) = {S ∈ C | ∃ an inflation S
f

−→ U for some U ∈ U}.

We say U is closed under deflations (resp. inflations), if Defl(U) = U (resp. Infl(U) = U).
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2.2. Exact sequences in extriangulated categories. In this section, we always as-

sume that C is an extriangulated category satisfying the following conditions.

Condition 2.6. (WIC). [14, Condition 5.8] (1) For any pair of morphisms f : X → Y

and g : Y → Z in C , if gf is an inflation, then so is f .

(2) For any pair of morphisms f : X → Y and g : Y → Z in C , if gf is a deflation,

then so is g.

Definition 2.7. [18, Definition 2.9] A sequence A
x

−→ B
y

−→ C is said to be right exact

E-triangle if there exists an E-triangle K
h2−→ B

y
−→ C

δ
99K and a deflation h1 : A → K

which is compatible, such that f = h2h1. Dually, we can define left exact E-triangles.

A morphism f in C is called compatible, if “f is both an inflation and a deflation”

implies f is an isomorphism.

Lemma 2.8. [18, Lemma 2.10] Let η : A
x

−→ B
y

−→ C be a right exact E-triangle in C .

If x is an inflation, then η is a conflation. Dually, we have the similar result on left exact

E-triangles.

Corollary 2.9. [18, Remark 2.11] A sequence η : A
x

−→ B
y

−→ C is both right exact and

left exact if and only if η is a conflation.

For any object C ∈ C , there exist E-triangles

A
x

−→ P
y

−→ C
δ

99K and C
x

−→ I
y

−→ A′
δ

99K

with P ∈ P(C ) and I ∈ I(C ). In this case, A is called the syzygy and A′ is called the

cosyszygy of C, which are denoted by Ω(C) and Σ(C), respectively.

For any subcategory U of C , put Ω0U = U , and for i > 0 we define ΩiU inductively by

Ωi(U) = Ω(Ωi−1U), i.e. the subcategory consisting of syzygies of objects in Ωi−1U . We

call ΩiU the i-th syzygy of U . Dually, we can define the i-th cosyzygy of U denoted by

ΣiU for i > 0.

By [13, Lemma 5.1], the higher extension group is defined as

E
i+1(X, Y ) ∼= E(X,ΣiY ) ∼= E(ΩiX, Y )

for any X, Y ∈ C and i > 0.

Remark 2.10. For any subcategory U of C , we define

U⊥n = {X ∈ C | En(U,X) = 0 for any U ∈ U}

for any n > 1. Dually, we define ⊥nU . In particular,

U⊥0 = {X ∈ C | C (U,X) = 0 for any U ∈ U},

⊥0U = {X ∈ C | C (X,U) = 0 for any U ∈ U}.
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The following result is well-known in [13] and we will use it frequently in the following.

Proposition 2.11. [13, Lemma 5.2] Let A
x

−→ B
y

−→ C
δ

99K be an E-triangle. There

exist long exact sequences

. . . −→ E
i(X,A) −→ E

i(X,B) −→ E
i(X,C)

−→ E
i+1(X,A) −→ E

i+1(X,B) −→ . . .

and

. . . −→ E
i(C,X) −→ E

i(B,X) −→ E
i(A,X)

−→ E
i+1(C,X) −→ E

i+1(B,X) −→ . . .

for any objects X ∈ C and i > 0.

Definition 2.12. [19] A long E-sequence

. . . −→ Xn−1
dn−1

−→ Xn
dn−→ Xn+1 −→ . . .

in C is called exact if there are E-triangles

Kn
gn
−→ Xn

fn
−→ Kn+1

δn
99K

in C for each n such that dn = gnfn−1.

Definition 2.13. [19] For any A ∈ C , A admits an exact E-sequence

. . . −→ Pn
dn−→ . . . −→ P1

d1−→ P0
d0−→ A

with Pi ∈ P(C ), which is called a projective resolution of A. We define the projective

dimension of A, denoted by pd(A), to be the minimal length of all projective resolutions

of A. If all projective resolutions of A are of infinite length, we set pd(A) = +∞. For

any subcategory U ⊆ C , we define pd(U) = sup{pd(U) | U ∈ U}. Dually, we can define

the injective resolution and the injective dimension of A ∈ C which is denoted by id(A).

Similarly, we can define id(U).

Lemma 2.14. [19, Lemma 3] For any A ∈ C , the following statements are equivalent:

(1) pd(A) 6 n;

(2) En+1(A,X) for any X ∈ C ;

(3) En+i(A,X) for any X ∈ C and i > 1.

The dual results also hold for id(A).
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3. Tilting subcategories and torsion theory

The tilting subcategories of extriangulated categories were introduced in [19]. In this

section, we give another definition, which is much more common, and prove the two

definitions coincide with each other. As a generalization, we introduce the notion of

support τ -tilting subcategories in extriangulated categories. Besides, we define τ -cotorsion

pairs in extriangulated categories and give some propositions.

We still assume that C is an extriangulated category satisfying Condition 2.6 in what

follows.

3.1. Tilting subcategories in extriangulated categories. In this section, we assume

all subcategories of C closed under direct summands and finite direct sum.

Definition 3.1. [19, Definition 7] Let T be a subcategory of C . Then we call T a tilting

subcategory of C if it satisfies the following conditions:

(T1) pd(T ) 6 1,

(T2) T is a generator of T ⊥1 .

Note that a subcategory U ⊆ C is a generator for another subcategory V ⊆ C if U ⊆ V

and for any V ∈ V, there is a conflation V ′ x
−→ U

y
−→ V with U ∈ U , V ′ ∈ V.

Let us give another definition of tilting subcategories, which is more commom.

Definition 3.2. Let T be a subcategory of C . Then T is called a tilting subcategory of

C if it satisfies the following conditions:

(T1) pd(T ) 6 1,

(T2′) E(T , T ) = 0,

(T3) For any P ∈ P(C ), there is a conflation

P −→ T0 −→ T1

with T0, T1 ∈ T .

Theorem 3.3. The definitions of tilting subcategories given in Definition 3.1 and Defi-

nition 3.2 are equivalent.

Proof. By [15, Remark 2], the conditions in Definition 3.1 clearly induce the conditions

in Definition 3.2.

On the contrary, it suffices to prove (T2). For any F ∈ DeflT , there is a conflation

A −→ TF −→ F

with TF ∈ T and A ∈ C . Then we get a long exact sequence

. . . −→ E(T, TF ) −→ E(T, F ) −→ E
2(T,A)

x2−→ . . .
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for any T ∈ T by Proposition 2.11. Note that E(T ′, F ) = 0 since pd(T ) 6 1 and

E(T , T ) = 0. Hence, we have E(T ,DeflT ) = 0. Since C has enough projectives, there

exist conflations

Y −→ P0 −→ X, Z −→ P1 −→ Y

with P0, P1 ∈ P(C ) for any X ∈ T ⊥1 . Then there exists a commutative diagram of

conflations

Z // P1
//

��

Y

��

Z // T 0 //

��

E

��

T 1 T 1

with T 0, T 1 ∈ T . By the duality of [14, Proposition 3.15], we have a commutative diagram

of conflations

Y //

��

P0
//

��

X

E //

��

M //

��

X

T 1 T 1 .

Since E ∈ DeflT ⊆ T ⊥1 and X ∈ T ⊥1 , M ∈ T ⊥1 by Proposition 2.11. There exists a

commutative diagram of conflations

P0
//

��

M //

��

T 1

T ′0 //

��

T ′ //

��

T 1

T ′1 T ′1

with T ′0, T ′1 ∈ T . The second row is split, since E(T , T ) = 0. Then T ′ ∈ T . We have a

commutative diagram of conflations

E // M //

��

X

��

E // T ′ //

��

L

��

T ′1 T ′1.
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The third column is split, since X ∈ T ⊥1 . Noting that T ′1 −→ L −→ X is also a

conflation, we have a commutative diagram of conflations

E // M ′ //

��

T ′1

��

E // T ′ //

��

L

��

X X.

Clearly, M ′ ∈ T ⊥1 . So T is a generator of T ⊥1 . Hence, we complete the proof. �

Then we will introduce the notion of support τ -tilting subcategories and give an equiv-

alence between tilting subcategories and support τ -tilting subcategories.

Definition 3.4. Let T is a subcategory of C . Then T is called a support τ -tilting

subcategory of C if it satisfies the following conditions:

(ST1) T is a generator of DeflT ,

(ST2) E(T ,DeflT ) = 0,

(ST3) For any P ∈ P(C ), there is a right exact E-triangle

P
f

−→ T 0 −→ T 1,

where T 0,T 1 ∈ T and f is a left T -approximation of P .

Lemma 3.5. Let T be a subcategory of C . Then T is a tilting subcategory if and only if

T is a support τ -tilting subcategory and there is an inflation f satisfying (ST3) for each

P ∈ P(C ) .

Proof. For the necessity, it suffices to show such f is a left T -approximation of P by

Definition 3.1 and the proof of Theorem 3.3. There is a conflation P
f

−→ T 0 −→ T 1 by

(T3). Then we get another long exact sequence

C (T 1, T ) −→ C (T 0, T )
C (f,T )
−→ C (P, T ) −→ E(T 1, T ) −→ . . .

for any T ∈ T . Since E(T , T ) = 0, we get C (f, T ) is surjective. This implies f is a left

T -approximation of P .

For the sufficiency, we only need to show pd(T ) 6 1. It suffices to prove E
2(T,A) = 0

for any T ∈ T and A ∈ C by Lemma 2.14. Consider the conflation

A −→ I −→ ΣA

with I ∈ I(C ). It suffices to show E(T,ΣA) = 0. Since C has enough projectives, there

exists a conflation

X −→ P −→ I.
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By assumptions and Lemma 2.8, we have a conflation

P −→ T 0 −→ T 1.

Then there is a commutative diagram of conflations

X // P //

��

I

��

X // T 0 //

��

M

a
��

T 1 T 1

in which I −→ M
a

−→ T 1 is a split conflation, since I is injective. Hence, there exists a

morphism b : T 1 −→ M such that ab = IdT 1. Then there is a commutative diagram of

conflations

A // I //

��

ΣA

��

A // M
c

//

a
��

E

d
��

T 1 T 1

with M,E ∈ DeflT . By Propositon 2.11, there is a long exact sequence

. . . −→ C (T,E)
C (T,d)
−→ C (T, T 1) −→ E(T,ΣA) −→ E(T,E) = 0

For any φ ∈ C (T, T 1), cbφ ∈ C (T,E) and dcbφ = abφ = φ. Since C (T, d) is a surjection,

E(T,ΣA) = 0. Hence, we complete the proof. �

Lemma 3.5 is a generalization of [15, Lemma 3.3], which gives the same result in

exact categories. However, [15, Lemma 3.3] uses some tools of higher extensions in exact

categories, which may not work in extriangulated categories. Hence, we just use the

definition of higher extensions in extriangulated categories to prove. The lemma below is

pivotal in the proof of the main result.

Lemma 3.6. Let T be a support τ -tilting subcategory of C . Then DeflT is closed under

extensions and ⊥1DeflT ∩ DeflT = T .

Proof. Let D1 f
−→ A

g
−→ D2 δ

99K be an E-triangle with D1, D2 ∈ DeflT . Then we have

two deflations T 1 f ′

−→ D1 and T 2 g′

−→ D2. Since E(T ,DeflT ) = 0, we have a commutative
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diagram

T 1

(

1

0

)

//

f ′

��

T 1 ⊕ T 2
(0 1)

//

h′

��

T 2

g′

��

D1
f

// A
g

// D2.

By [8, Lemma 4.15], we get h′ is a deflation. It is easy to see A ∈ DeflT .

Clearly, T ⊆ ⊥1DeflT ∩DeflT . On the contrary, for any D ∈ ⊥1DeflT ∩DeflT , there is

a split conflation

D′ −→ T −→ D

with T ∈ T , D′ ∈ DeflT , since T is a generator of DeflT . Hence, F ∈ T and the proof is

finished. �

3.2. Cotorsion pairs in extriangulated categories. We recall the notion of cotorsion

pairs in extriangulated categories and define τ -cotorsion pairs.

Definition 3.7. [14, Definition 4.1] Let U ,V ⊆ C be a pair of subcategories, which are

closed under direct summands. The pair (U ,V) is called a cotorsion pair in C if it satisfies

the following conditions:

(1) E(U ,V) = 0.

(2) For any C ∈ C , there is a conflation

V C −→ UC −→ C

satisfying UC ∈ U , V C ∈ V.

(3) For any C ∈ C , there is a conflation

C −→ VC −→ UC

satisfying UC ∈ U , VC ∈ V.

Definition 3.8. Let U ,V ⊆ C be a pair of subcategories. The pair (U ,V) is called a

τ -cotorsion pair in C if it satisfies the following conditions:

(1) U = ⊥1V.

(2) For any P ∈ P(C ), there is a right exact E-triangle

P
f

−→ V −→ U

where V ∈ U ∩ V, U ∈ U and f is a left V-approximation of P .

Lemma 3.9. Each cotorsion pair in C is a τ -cotorsion pair.

Proof. Let (U ,V) be a cotorsion pair. Then we get U = ⊥1V by [14, Remark 4.4]. For

any P ∈ P(C ), there is a conflation

V P −→ UP −→ P
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with UP ∈ U , V P ∈ V. Since P is a direct summmand of UP , P ∈ U . Note that we have

another conflation

P
f

−→ VP −→ UP

satisfying UP ∈ U , VP ∈ V. U is closed under extensions by [14, Remark 4.6]. Thus

VP ∈ U ∩ V. Since E(U ,V) = 0, f is a left V-approximation of P . Hence, the proof is

finished. �

Lemma 3.10. Let (U ,V) be a τ -cotorsion pair of C . Then U is closed under extensions

and direct summands.

Proof. Let U1 x
−→ U

y
−→ U2 δ

99K be an E-triangle with U1, U2 ∈ U . Using Proposition

2.11 we get U ∈ U . Hence, U is closed under extensions.

Let U ∈ U with U = U1 ⊕ U2. For any V ∈ V, 0 = E(U, V ) = E(U1, V ) ⊕ E(U2, V ).

Then E(U1, V ) = E(U2, V ) = 0. Hence, U is closed under direct summands. �

3.3. Main results. In this section, we provide a bijection between support τ -tilting

subcategories and certain τ -cotorsion pairs in an extriangulated category.

A subcategory V of C is said to be a torsion class, if V is closed under extensions and

deflations.

Theorem 3.11. There are mutually inverse bijections:

{support τ -tilting subcategories} oo // {τ -cotorsion pair (U ,V) | V is a torsion class}

T ✤ // (⊥1DeflT ,DeflT )

U ∩ V (U ,V) .✤oo

Proof. If T is a support τ -tilting subcategory of C , for any P ∈ P(C ) there is a right

exact E-triangle

P
f

−→ T 0 g
−→ T 1,

with T 0,T 1 ∈ T = ⊥1DeflT ∩ DeflT and f is a left T -approximation of P . In fact, f is

also a left DeflT -approximation of P . Hence, (⊥1DeflT ,DeflT ) is a τ -cotorsion pair with

DeflT a torsion class by Lemma 3.6.

If (U ,V) is a τ -cotorsion pair with V a torsion class. Note that U ,V are closed under

extensions and direct summands by Lemma 3.10. Then so is U ∩ V. We get E(U ∩

V,Defl(U ∩ V)) = 0, since U = ⊥1V and V is closed under deflations. For any P ∈ P(C ),

there is a conflation

P
f

−→ V −→ U

where V ∈ U ∩V, U ∈ U and f is a left V-approximation of P . Since V is a torsion class,

U ∈ U ∩ V. For any D ∈ Defl(U ∩ V), there is a conflation

X −→ VD −→ D
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with VD ∈ U ∩ V. Since, C has enough projectives, there are conflations

Y −→ P ′ −→ X , P ′−→VP ′ −→ UP ′

with P ′ ∈ P(C ), VP ′ ∈ U ∩ V and UP ′ ∈ U . Since V is a torsion class, UP ′ ∈ U ∩ V.

Consider the commutative diagram of conflations

Y // P ′ //

��

X

��

Y // VP ′
//

��

M

��

UP ′ UP ′ .

Clearly, M ∈ Defl(U ∩ V). There is a commutative diagram of conflations

X //

��

VD
//

��

D

M //

��

E //

��

D

UP ′ UP ′ .

Since U ∩ V is closed under extensions, E ∈ U ∩ V. Thus the second row of the diagram

induces that U ∩ V is a generator of Defl(U ∩ V). Hence, U ∩ V is a support τ -tilting

subcategory of C .

To prove the two maps are mutually inverse bijections, it suffices to show V = Defl(U ∩

V) by Lemma 3.6. Clearly, Defl(U ∩ V) ⊆ DeflV = V. Conversely, for any X ∈ V, there

is a deflation g : P −→ X . By the definition of τ -cotorsion pairs, we have a commutative

diagram

P
f

//

g

��

V //

h~~⑦
⑦
⑦
⑦

U

X .

with V ∈ U ∩ V, U ∈ U and f is a left V-approximation of P . There exists a morphism

h : V −→ X such that g = hf . By Condition WIC, h is a deflation. Thus X ∈ Defl(U∩V).

Therefore, we complete the proof. �

Corollary 3.12. The bijection between support τ -tilting subcategories and certain τ -

cotorsion pairs induces a bijection between tilting subcategories and certain cotorsion pairs

Proof. If T is a support tilting subcategory of C . Similar to Lemma 3.10, ⊥1DeflT

is closed under direct summands. By definition, it is easy to see DeflT is also closed
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underdirect summands. For any X ∈ C , there is a conflation

Y −→ P −→ X

with P ∈ P(C ) and a conflation

P −→ T 0 −→ T 1

with T 0,T 1 ∈ T ⊆ DeflT . Consider the commutative diagram of conflations

Y // P //

��

X

��

Y // T 0 //

��

W

��

T 1 T 1

(3.1)

where X −→ W −→ T 1 is a conflation with W ∈ DeflT and T 1 ∈ T ⊆ ⊥1DeflT . There

exists a conflation

Z −→ P ′ −→ Y

with P ′ ∈ P(C ). Then we have a conflation

P ′ −→ T ′0 −→ T ′1

with T ′0,T ′1 ∈ T ⊆ DeflT . Similar to (3.1), we get a conflation Y −→ W ′ −→ T ′1 with

W ′ ∈ DeflT and T ′1 ∈ ⊥1DeflT . Consider the commutative diagram of conflations

Y //

��

P //

��

X

W ′ //

��

N //

��

X

T ′1 T ′1

where W ′ −→ N −→ X is a conflation with W ′ ∈ DeflT and T ′1, P ∈ ⊥1DeflT . Clearly,

N ∈ ⊥1DeflT by Proposition 2.11. So (⊥1DeflT ,DeflT ) is a cotorsion pair with DeflT a

torsion class by Lemma 3.6.

If (U ,V) is a cotorsion pair with V a torsion class. U ∩ V is a support τ -tilting subcat-

egory of C by Lemma 3.9 and Theorem 3.11. Then U ∩ V is a tilting subcategory of C

by Lemma 3.5 and the proof of Lemma 3.9. �
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