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We have studied a walk in a one-dimensional virtual space corresponding to an extended version
of the three-state BChS model of opinion formation, originally proposed in Physica A 391, 3257
(2012), in which the agents are located on a two dimensional lattice. The opinions are designated by
the values ±1 and zero. Here we also consider switches between the extreme states ±1. The model
involves two noise parameters representing the fraction of negative interactions p and the probability
of extreme switch denoted by q. The study shows that the nature of the walks changes drastically
as the noise parameters exceed certain threshold values. The order-disorder phase transitions are
independently obtained using the finite size scaling method showing that these threshold values are
indeed consistent with those values of the parameters where a phase transition exists. The criticality
is found to be Ising-like even when extreme switches are allowed. A new critical exponent associated
with the probability distribution of the displacement is also obtained independent of the values of
the critical parameters. The nature of the walks is compared to similar virtual walks studied earlier.

I. INTRODUCTION

In the past few decades, extensive research has been
made to study the problem of opinion formation in a so-
ciety, using the tools of statistical physics [1–3]. Several
models of opinion dynamics have been proposed in the
past. One class of models, namely, the kinetic exchange
(KE) models involves an interaction between two agents
at any instant [4]. A particular KE model, popularly
called the BChS model, incorporates negative interac-
tions as well [5]. This model yields an interesting phase
transition. It has also been possible to obtain some re-
sults from this model that correspond to realistic scenar-
ios [6–8].
It is often convenient to study a model in statistical

physics by mapping it into another model and studying
the latter. In recent times, various models of statistical
physics involving dynamics of spins, opinions, and finan-
cial status have been mapped to walks in a virtual space
[9–24]. In these mappings, a walker is associated with
each spin/agent. The position of the walker is updated
according to the state of the spin/agent it is associated
with, following either a Markovian or a non-Markovian
dynamics. The nature of the walks usually undergoes
a change at the phase transition points, if any. This is
indicated by the existence of a Gaussian distribution of
the displacements of the walkers above the critical point
while it has a double peaked non-Gaussian behavior be-
low it. New critical exponents associated with the width
of the distribution have been seen to exist as well. It
is possible to conjecture whether the ordered state is an
absorbing state by studying the scaling behavior of this
distribution. An interesting crossover behavior involv-
ing diverging timescales, not obtained directly from the
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model, has been observed previously also [22, 23].
In this paper, we have studied a KE model of opin-

ion formation, an extended version of the so-called BChS
model. In this opinion dynamics model, the agents are
embedded on a two-dimensional (2d) lattice while the
walks are defined in a virtual one-dimensional (1d) space.
The BChS model is taken with three opinion states de-

noted by ±1 and 0. The interactions here can be negative
with probability p. In the original version [5], switches
between the extreme states (i.e. +1 and −1) were not
possible according to the dynamical rules. In some recent
works, the present authors introduced the possibility of
extreme switches occurring with probability q [25, 26].
The mean field case was studied to show that a phase
diagram can be obtained in the p− q plane showing the
presence of ordered and disordered regions [26].
The critical behavior of the BChS model on two-

dimensional square lattices for q = 0 has been studied
earlier using numerical simulations [27, 28]. It was found
that the model belongs to the two-dimensional Ising crit-
icality class. In this paper, we have simulated the model
in 2d with extreme switches, i.e., q 6= 0, and obtained the
corresponding walk from which the phase diagram can be
estimated. In addition, for comparison, a few phase tran-
sition points have been found directly by analyzing the
relevant physical quantities and using finite size scaling.
From the results obtained in the mean-field case [26], we
expect that q will effectively impart an additional noise.
It is also interesting to see whether the critical behavior
is affected by q; in the mean-field case, it is not.
The walks are also analyzed quantitatively by fitting

appropriate curves to the distributions and studying the
fitting parameters. This leads to some further under-
standing of the system both quantitatively and qualita-
tively.
In section II, we describe the model and the methods

used. The results are presented in section III and in the
last section, discussions and conclusive statements have
been made.
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II. MODEL AND METHOD

A. Simulating BChS model on a two dimensional

lattice with the parameters p and q

We have simulated an agent-based BChS model where
agents are located on the sites of a 2d square lattice with
N sites (N = L×L) having periodic boundary conditions.
oi is considered as the opinion of the ith agent. Each
opinion (oi = ±1, 0) is updated upon interaction with
one of the nearest neighbors denoted by k, with opinion
ok, following the expression,

oi(t+ 1) = oi(t) + µok(t). (1)

Here µ is the interaction parameter; |µ| = 1, 2 with prob-
ability (1− q) and q respectively. µ can be negative with
probability p for both values of |µ|. If after an interac-
tion the opinion exceeds 1 or becomes less than −1, it is
adjusted to ±1 respectively.

In the simulations, a homogeneous disordered state is
considered as the initial configuration, i.e., equal propor-
tion of the population has opinion ±1 and zero.

B. Mapping the BChS model into a Virtual Walk

Mapping of the opinion dynamics model to a virtual
walk is done by associating a virtual walker with each
agent on the 2d lattice. The virtual walk takes place in
one dimension. Hence we have a scenario of N walkers
performing walks on a one dimensional lattice which is
strictly speaking, unbounded. The walks are not inde-
pendent as they are generated from the interaction of
the agents.

In the mapping scheme, the initial position of a walker
is taken to be 0. The walks are implemented according
to the opinions of the agents which are updated asyn-
chronously. The total distance travelled from the start-
ing point (at t = 0) by the ith walker at the (t + 1)th
Monte Carlo (MC) step is Xi(t+ 1), given by

Xi(t+ 1) = Xi(t) + oi(t+ 1). (2)

Only Markovian walks have been considered in the
present work.

We have simulated the system on L × L lattices with
various values of L. For the virtual walk, the results for
L = 64 (maximum size simulated) only are presented.
The walk is incremented by the value of the opinion af-
ter the completion of one Monte-Carlo step (MCS). One
agent is selected randomly in time 1

N and allowed to in-
teract with any of her four nearest neighbour after which
her opinion is updated; one MCS step comprises of N
such updates.

C. Finite size scaling analysis

For a system manifesting a continuous phase transi-
tion driven by a certain parameter, the critical point and
the exponents can be obtained using finite size scaling
method in a numerical simulation. Consider a physical
quantity Φ, which either goes to zero or diverges in the
manner Φ ∝ ǫφ, where ǫ is the small deviation from the
critical point. In a finite system of size L, Φ can be ex-
pressed as

Φ = L−φ/νf(ǫL1/ν),

where ν is the correlation length exponent. f(z) is ex-
pected to vary as zφ as z → ∞ such that one recovers
the behaviour Φ ∝ ǫφ for L → ∞.
A data collapse can be obtained (i.e., all data for dif-

ferent system sizes fall on the same curve) when properly
rescaled quantities are plotted with accurate choices of
the values of the critical point and the exponents.

III. RESULTS

We have determined the probability S(X, t) associated
with the distance X covered by a walker at a specific
time t by averaging over many configurations. In the
Ising and voter model in 2d and also in the mean-field
KE model [16, 22, 23], the nature of S(X, t) has been
observed to change at the phase transition points. Here
also we have observed a similar change beyond thresh-
old values of the parameters p, q. We investigated the
characteristics of the distribution both below and above
the threshold points. Additionally, by performing data
collapse analysis of the scaled data from the simulations
conducted on 2d lattices, we identified the critical points
and estimated the critical exponents. The latter study
has been made at larger times such that the system def-
initely reaches equilibrium.

A. Features studied from the Virtual walk

In the (p, q) parameter space, the threshold points, de-
noted as (pT , qT ), have been determined using the virtual
walk analysis. In general, we have kept q = qT fixed and
varied p to study the behavior of the walk. It is observed
that when p is less than pT , the distribution S(X, t) ex-
hibits a non-Gaussian, double-peaked behavior. Above
the threshold point, the distribution assumes a centrally
peaked Gaussian shape. The data are shown in Fig. 1
for two different qT values.
The determination of the threshold points pT has been

carried out for several values of q within the range of
[0, 1), and as displayed in Fig. 2 these points can be
fitted to the form

pT ≈ C0 exp
−λqT −C1, (3)
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FIG. 1. The probability distribution of X at time step t =
60000, when the model has reached a steady state, has been
plotted for two different values of q (0.2 in (a) and 0.6 in (b))
for various p values. These plots are presented for a system
size of N = 64× 64.

where λ ≈ 3.14, C1 ≈ 0.0063 and C0 ≈ 0.1220. Specifi-
cally, one gets pT → 0 for qT = 1, exactly as in the case
of the mean-field version of the present model [26].

To determine the nature of the walk, S(X, t) is fitted
to the scaling form

S(X, t) ≈ t−αF (X/tα). (4)

When p < pT , an approximate data collapse has been
obtained with α = 1.0 (shown in Fig. 3). α = 1 implies
a ballistic walk. For an absorbing phase, a perfectly bal-
listic behavior is expected at late times. However such
is not the case here. This indicates that for p < pT ,
where the ordered phase exists as is concluded from the
nature of S(X, t), we have an active state. Indeed, the
snapshots shown in Fig. 4 taken at different time show
that the system is still active. It is understandable why
an active phase is present; in the presence of noise, some
agents will change opinion even at large times. In previ-
ous work, only for the noise-less case, it was shown that
an absorbing phase is reached, although for a consider-
able number of configurations, it becomes a very slow
process [8]. We will come back to this point in the next
section.

On the other hand, the data collapse observed for
p > pT yields α = 0.5 (as shown in Fig. 5), which is con-
sistent with the behavior expected in an unbiased random

walk. The Gaussian function is written as F (z) ∝ e−
z2

2σ2 ,

where z = X/t
1

2 . The distribution width σ, is observed
to diverge as |p − pT |

−δ, plotted in Fig. 6 for different
q values. δ shows no systematic dependence on the ex-
act location on the phase boundary where it is calculated
and lies within a small range; δ ≈ 0.84. Snapshots in the
disordered phase taken at different times show that the
states of the spins are changing considerably over time
which will show typical oscillations of the order param-
eter about zero for a single configuration (Fig. 7). It is
interesting that both below and above the phase bound-
ary, zero opinions are much less in number in comparison
to the others.

0.00
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 0.2  0.4  0.6  0.8

disordered state

ordered state

p

q

FIG. 2. The red dots in the p, q parameter space rep-
resent threshold values separating the ordered and disor-
dered phases. The phase boundary can be fitted to the
form pT = C0 exp

−λqT −C1 with λ = 3.14957 ± 0.02697,
C1 = 0.00626 ± 0.00033 and C0 = 0.12203 ± 0.00036.
Three critical points directly obtained from the simulation
for q = 0, 0.2, 0.5 using finite size scaling are also shown by
the green points in the figure.
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FIG. 3. The data collapse of S(X, t)t using the scaling vari-
able X/t is illustrated for two different points: (a) q =
0.2, p = 0.055 and (b) q = 0.6, p = 0.010, both of which
lie below the phase boundary (eq. 3).

B. Exploring phase transitions by finite size scaling

method

Up to this point, we have discussed the results of the
virtual walk generated from the BChS model with ex-
treme switches. In this section, we report the results
for the critical points in the p − q space obtained di-
rectly from the simulation of the BChS model. The most
prevalent approach for investigating order-disorder phase
transitions involves the finite-size scaling of the quantities
like Binder cumulant, the order parameter etc. In this
particular model, the critical points can be expressed as
(pc, qc). The order parameter for the system is the av-
erage of all opinions: O = 1

N

∑
i oi and the fourth order

Binder cumulant is U = 1− 〈O4〉
3〈O2〉2 . The angular brackets

indicate the ensemble average.
We conducted Monte Carlo simulations for various sys-

tem sizes L varying between 12 and 64. The simulations
were run with a sufficient number of time steps to al-
low measurable quantities to reach a steady value. Sub-
sequently, we calculated the ensemble averages of these
values. The number of configurations ranged from 2000
to 1000 with an increase in system size. It is well known
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FIG. 4. Snapshots of the 2d lattice space at different time
steps below the phase boundary. Red, blue, yellow dots de-
note ±1 and 0 states respectively.
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FIG. 5. The data collapse of S(X, t)t0.5 using the scaling
variable X/t0.5 is illustrated for two cases (a) q = 0.2, p =
0.064 and (b) q = 0.6, p = 0.015, both of which lie above the
phase boundary (i.e p < pT in each case). Both sets of data
can be fit using a Gaussian function denoted by F (z) in the
figures, where z = X

t1/2
.

that the scaling behavior of the Binder cumulant and the
order parameter are as follows: U = f1((x− xc)L

1

ν ) and

〈|O|〉 = L−β
ν f2((x − xc)L

1

ν ), where the phase transition
is driven by the parameter x and occurs at x = xc. ν and
β are critical exponents associated with the correlation
length and order parameter respectively.
Our aim is to check whether (pT , qT ) and (pc, qc) are

close enough so that it can be concluded that the virtual
walks bear the signature of the phase transition. Here we
have compared the values for three particular q values.
Fixing the value of q as qc, we determined pc by identi-
fying the crossing points of the Binder cumulant for dif-
ferent system sizes. Additionally, by employing the data
collapse technique, we estimated the critical exponent ν
to be very close to 1 (see Fig. 8). Using this value of
ν, we estimated the critical exponent β ≈ 0.125 from the
data collapse of the scaled order parameter shown in Fig.
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FIG. 6. The variation of the width σ of the Gaussian func-
tions as a function of p above pT is shown in this figure for
several q values. The figure shows that the nature of the
curves is compatible with a variation σ ∼ (p − pT )

−δ with
δ ≈ 0.84.
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FIG. 7. Snapshots of the 2d lattice space at different time
step above the phase boundary. Red, blue, and yellow dots
denote ±1 and 0 states respectively.

9. Both these exponent values are very close to the exact
values known for the 2d Ising model.
For q = 0.0 and 0.5, we obtain pc ≈ 0.1110 and

≈ 0.0170 respectively. From the walk picture, the corre-
sponding threshold values are pT ≈ 0.1150 and ≈ 0.0185
respectively, which are fairly close to the results obtained
using finite size scaling.

IV. DISCUSSIONS AND CONCLUSIONS

In the present work, we have obtained a phase diagram
in a two-parameter kinetic exchange model of opinion dy-
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FIG. 8. The finite-size scaling behavior of the Binder cu-
mulant U as a function of p is illustrated for two cases: (a)
q = 0.0 and (b) q = 0.5. Notably, data collapses are observed
with critical values of pc = 0.1110 and pc = 0.0170 in (a)
and (b) respectively. In both cases, the critical exponent ν is
estimated to be approximately 1.0± 0.05. The inset displays
the unscaled raw data for U versus p.
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FIG. 9. The data collapse of the scaled order parameter
〈|O|〉 for different system sizes is shown for two cases: (a)
q = 0.0 and (b) q = 0.5 using the critical values of pc and ν
obtained from the analysis of the Binder cumulant (Fig. 8).
In both instances, the critical exponent β is estimated to be
0.125 ± 0.001. The inset displays the unscaled raw data 〈O〉
vs p.

namics with three opinion states. The two parameters
represent the fraction of negative interactions and the
probability of extreme switches of opinions. By simulat-
ing the agent-based model on a 2d lattice, we generated
the walks corresponding to each agent’s opinion state in
a 1d virtual space. Analysis of the distribution S(X, t)
of the displacements shows a change in the nature of the
walk above threshold values of the parameters. Below
these values, the distribution is double peaked and the
data for different times can be approximately collapsed
using a scaling variable X/t which reveals the nearly bal-
listic nature of the walk. The nearly ballistic nature
and the double peaked structure with peaks occurring
at nonzero values of X indicate that most of the opin-
ions continue in a state of either +1 or −1. This is then
a partially ordered state. It may be mentioned here that
for the zero opinion, no displacement is occurring in the
walk and it does not significantly affect the walk’s nature.
Above the threshold values, we get Gaussian distribu-
tions centered at zero with the scaling variable X/t1/2

indicating a diffusive walk. This means that the opinions
are changing continuously and randomly in time and the
system is disordered. Hence the two regions below and
above the threshold values are identified as ordered and
disordered regions as had been observed earlier for such
virtual walks corresponding to other dynamical systems.
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q=0.0
0.2
0.5
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FIG. 10. The variation of the fraction of the number of ac-
tive agents A among the total number of agents N is plotted
against time, for different values of q, above and below the
phase boundary.

To establish that indeed the walk changes its nature
at critical points, we have also located the critical points
for three q values, using finite size scaling. The results
agree fairly well, the small discrepancy may be due to
finite size effects. The critical exponents ν and β are es-
timated and found to be close to the Ising exponents in
two dimensions, observed already for the one-parameter
model without extreme switches [27]. One can also com-
pare the results with the mean-field case [26], where the
phase boundary was obtained as a straight line. Except
for q = 1, the mean field phase boundary lies above that
of the 2d one which is a logical result. In both the mean-
field and two-dimensional versions, the role of q is to
provide additional noise without changing the universal-
ity class. Interestingly, in both cases, we find that the
system becomes totally disordered when the probabil-
ity of extreme switches is unity, i.e. when q = 1. In
the mean-field case, it was shown that for q = 1, the
model becomes identical to a voter model with binary
opinion values, we conjecture that the same happens for
the finite-dimensional case as essentially the presence of
q decreases the probability of having a zero opinion. This
is aptly reflected in the snapshots for a nonzero value of
q.

From the walk picture, a critical exponent δ related
to the diverging width of the Gaussian distribution is
obtained. Like the static critical exponents δ, character-
ising the distribution of the walk in the disordered phase,
is also q independent. Hence the signature of the phase
transition is contained in the distribution in this manner
as well. As δ apparently cannot be related to any static
critical exponent, we claim it is a new exponent.

We also obtained the result that the ordered phase is
not an absorbing one in general from the results obtained
so far. It is known that for p = 0, q = 0, an absorbing
state can be reached but may take a very long time [8].
The present study indicates that a detailed study of the
dynamics including q and the question of reaching an ab-
sorbing state could be interesting. for the case p = q = 0,
the presence of zero opinion states at the boundary of +1
and −1 domains was responsible for the slow dynamics.
With a nonzero value of q, the population of zero opinions
decreases and such states could be less significant for the
dynamics. A preliminary study of the active bonds show
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that indeed it decreases q is made larger in both the disor-
dered and ordered states (Fig. 10). That the active bond
fraction remains non-zero at long times also supports the
fact that both the phases are active. A detailed study of
this and dynamics in general could be interesting, how-
ever, at the moment we restrict to presenting the walk
features and the resulting phase diagram only.
One more point is there to be noted. In some earlier

studies of the virtual walks, a crossover behavior in time
had been observed in the ordered phase. Here, however,
no such tendency is noted.
In conclusion, we find that a phase diagram for the

two dimensional BChS model with extreme switches can
be obtained using the walk picture. A usual finite size
analysis has also been done to show that the criticality

is of Ising class. One more exponent entirely related to
the virtual walks has been obtained from the divergence
of the width of the distribution above the critical points.
For the two dimensional voter model, a similar divergence
was found [22], however, for the mean field BChS model,
the width was found to be independent of p above pc
[23]. This feature therefore needs to investigated more
by studying other models.
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