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Abstract—Acoustic recognition is a common task for deep 
learning in recent researches, with the employment of spectral 
feature extraction such as Short-time Fourier transform and 
Wavelet transform. However, not many researches have found 
that discuss the advantages and drawbacks, as well as 
performance comparison of them. In this consideration, this 
paper aims to comparing the attributes of these two transforms, 
called spectrogram and scalogram. A Convolutional Neural 
Networks for acoustic faults recognition is implemented, then 
the performance of them is recorded for comparison. A latest 
research on the same audio database is considered for 
benchmarking to see how good the designed spectrogram and 
scalogram is. The advantages and limitations of them are also 
analyzed. By doing so, the results of this paper provide 
indications for application scenarios of spectrogram and 
scalogram, as well as potential further research directions. 

Keywords—spectrogram and scalogram, acoustic faults 
recognition, Convolutional Neural Networks. 

I. INTRODUCTION 
In acoustic recognition task, features in audio signal are 

extracted using spectral and time analysis techniques, which 
are commonly applied as Short-time Fourier transform 
(STFT) and Wavelet transform (WT). STFT decomposes 
signal in linear frequency manner while WT decomposes the 
time-domain signal into variant scales of frequency. The 
output of these transforms are then produced as spectrogram 
and scalogram respectively, and being fed into a deep learning 
model to train and perform classification task. A number of 
researches have been done in recent years for this topic. 

Adoption of spectrogram for speech emotion recognition, 
Badshah, Ahmad, Rahim and Baik [1] employ Convolutional 
Neural Networks (CNNs) to predict the emotions of audio 
speech. Before feeding into CNNs for training, the 
spectrograms are produced as images. The model includes 
only three convolutional layers and three fully connected 
layers, but it performs better than the famous pre-trained 
model AlexNet. Santos and Nilizadeh [2] propose a solution 
for acoustic event detection (AED) by application of 
spectrogram and CNNs. Audio of surveillance system is 
transformed to spectrogram as images, then being classified 
by a CNNs binary classifier if it is the sound of gun shot or 
siren. This model outperforms a benchmarking AED-capable 
system. Purohit et al. [3] develop abnormal machinery sound 
detection by mean of spectrogram and autoencoder. Two 
types of audio data including normal and abnormal sound 
collected in factory are then transformed to images of 
spectrogram. An autoencoder-base model is designed for this 
binary classification task to detect whether the machine is in 
normal condition or damaged. 

Scalogram is another audio feature extractor which has 
been recently growing in application. Tran, Liu, and Tran [4] 
implement a deep CNNs to detect milling chatter using 

scalogram. The system is designed for real-time detection 
where the cutting force is measured to determine if it is in 
healthy operation or not. The combination between scalogram 
and CNNs has achieved an excellent performance in 
comparison to the benchmark methods, which employed some 
machine learning models. Copiaco, Ritz, Fasciani, and 
Abdulaziz [5] also apply the same approach for domestic 
audio classification task. Scalogram is produced by the output 
of continuous WT, then it is fed into pre-trained neural 
network and additional Support Vector Machine model to 
predict whether the sound is made by social activities, or 
vacuum machine. Chen et al. [6] make use of scalogram and 
CNNs for audio scene modeling. The research shows a better 
performance of trained model for scalogram than  
spectrogram. However, the model which uses spectrogram as 
input, is not a CNNs model. Therefore, the comparison does 
not make sense much for these two types of feature extractors. 

As can be seen above, although a large number of 
researches have been done for audio recognition using 
spectrogram or scalogram incorporation with deep learning, 
not many researches do comparison the performance of these 
two types. If anything, the benchmarking is restrictedly done 
for different deep learning models, or at most, as in [6], the 
comparison is quite relative by purely comparing the 
performance, with different prediction models. Considering 
these aspects, this paper is aiming to a development of an 
approach for a fairly tight comparison of spectrogram and 
scalogram as two types of audio feature extractors. For this 
purpose, the design of experiment for spectrogram and 
scalogram is done identically, including original used audio 
data, format of input for deep learning model, complete 
configuration of CNNs model, training and evaluation method 
and metrics. The only distinction is the spectrogram and 
scalogram itself. 

II. THEORETICAL FOUNDATION 

A. Short-time Fourier transform 
STFT [7] is a method to perform Fourier transform (FT) 

in sections of time. It means that the signal is firstly captured 
in each time frame, and then being calculated the FT for these 
framed signals. By this way, signal is not only decomposed in 
frequency domain to tell which frequencies are included in the 
signal, but also the variation of signal over time is captured to 
indicate those frequencies occurring in which point of time. 
STFT stretches the signal from one dimension (time) into two 
dimensions (time and frequency) as (1). STFT is a function of 
time shift t and frequency w. By windowing using function 
g∗(𝑡 − t), for each defined period, a part of the signal within 
the window is taken for FT, the remaining parts are suppressed 
to zero. Therefore, the spectrum of a small duration of time is 
computed. The window is then shifted along the time axis to 
capture all portions of signal then performed FT. By doing so, 
the whole signal is decomposed by STFT. 



𝑆𝑇𝐹𝑇{𝑥(𝑡)} = 𝑋(t,w) = 	∫ 𝑥(𝑡)"
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In practice, signals are processed in time-discrete format, 
and STFT is performed in discrete manner using window with 
length of N, called frame size. This frame can shift in a 
sample-wise manner. However, shifting by a single sample 
creates huge data volume, which is redundant as neighbor 
spectra are very similar. Instead, the shifting step contains a 
large number of samples, called hop size H, usually selected 
as a half of window length H = N/2. This selection is 
considered as a good compromise between time resolution and 
volume of generated data [7]. Each point of sample in data 
length M where STFT is calculated, called frame index m (m 
= M/H). In a frame, the FT of a discrete signal with length of 
N points in time results a vector of N points in frequency. 
Nonetheless, two halves of the spectrum are mirrored with 
each other via Nyquist frequency, so that only the first half of 
spectrum is consider in result of STFT to remove the 
redundancy. Consequently, frequency index k of STFT is 
considered up to value N/2 (k = 0…N/2). The Fourier 
coefficient for mth time frame is represented by a complex 
number X(m, k). For a specific point in time mth, FT is a 
spectral vector of size K+1, resulting STFT as a matrix size 
(m = M/H, k = 1 + N/2). 

To visualize better STFT, one kind of heat map called 
spectrogram [8] is normally used. It is a two-dimensional 
representation of the squared magnitude of STFT as (2). 
Spectrogram is often visualized by image with time dimension 
in the x-axis and frequency dimension in the y-axis. The 
squared magnitude of STFT is represented by the color 
density of pixels on image. To show how high the values of 
each point, typically a range of colors is used. For instance, 
the color ranges from dark blue for lowest value to dark red 
for highest value as illustrated in the Fig. 1 (a). For better 
visualization, frequency axis and density of spectrogram is 
presented in logarithmic scale. 
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Fig. 1 Visualization of spectrogram (a) and scalogram (b) 

B. Wavelet transform 
WT is a technique converting a function or signal into a 

form that represents certain features of original signal better 
for further processing [9]. More specifically in audio signal 
processing, it is the way to decompose a signal in time domain 
(one dimension) into time and frequency domain (two 
dimensions) by using mother wavelet, being identified as (3). 
The WT is a function of time shift 𝑏 and frequency scale 𝑎. 
The factor 1/√𝑎  help normalizing the energy of signal to 
ensure the same energy level at every scale. In the 
transformation process, the mother wavelet is contracted and 
dilated when the scale is varying. Each modified shape of the 
wavelet then slides along the time axis to convolute with the 

signal 𝑥(𝑡) , resulting a matrix of so-called wavelet 
coefficients. Each coefficient in matrix represents for the 
magnitude of wavelet transform at time translation 𝑏  and 
frequency scale 𝑎. The wavelet transform, therefore, could be 
considered as cross-correlation of the signal with various 
versions of scaled and translated wavelet [9]. 
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Continuous WT (CWT) in discretized signal is computed 
by performing a naïve discretization of the transform, 
replacing the integral by a discrete summation of values within 
sampling interval. The translation parameter and scale 
parameter are also in discrete forms, with the translation is 
sample-wise. For each sample, and each scale, WT is a 
coefficient. Therefore, CWT will produce a matrix with size 
(data length = N, scale = a). Discrete WT (DWT), in other 
hand, is implemented by filter banks whose computational 
expense is much less than CWT. However, the result of the 
transformation is not a matrix, hence it is not suitable for 
generation of heat map. In addition, its time resolution and 
frequency resolution for feature extraction are not as good as 
CWT, so that it is not suitable for recognition task. 

Squared magnitude of WT is one kind of heat map named 
scalogram, being calculated as (4). In case of CWT, result of 
transform is a matrix, so that, as spectrogram, scalogram is 
also used to visualize the distribution of signal energy across 
time and frequency dimension as an heat map having intensity 
being expressed by a range of colors. The frequency 
dimension (scale) and intensity of scalogram are also 
presented in logarithmic scale for better visualization as 
illustrated in Fig. 1 (b). 
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C. Time and frequency resolution of transforms 
1) Uncertainty principle 

To analyze the signal better, the time resolution and 
frequency resolution should be as high as possible. In other 
words, the variation of signal should be captured in a small 
shift of time and frequency. However, the uncertainty 
principle [8] imposes a constrain for the tradeoff between time 
and frequency as (5). If using narrow time window (small △%) 
to capture signal, STFT/WT will be generated in a good time 
resolution, but poor frequency resolution (large △w). On the 
opposite, using a large time window (large △%), in which the 
transforms is not able to distinguish the change of signal in 
short period of time, yields a poor time resolution, but better 
frequency resolution (small △w). 

          △% .△w	≥ 	
'
&
	       (5) 

2) Multiresolution 
The Fig. 2 gives a visual illustration of WT by scalogram 

in comparison with STFT by spectrogram. As in the plot, the 
time signal x(t) has two periodic components and two Dirac 
impulses as Fig. 2 (a). The  Fig. 2 (b) illustrates for 
spectrogram of x(t) with short window having high time 
resolution but low frequency resolution. Therefore, two 
distinctive impulses are clearly drawn in the center but two 
components in frequency axis are merged together. The Fig. 2 
(c). illustrates spectrogram with long window having low time 
resolution but high frequency resolution. Hence, two red 
horizontal stripes indicating two frequency components are 
clearly separated, but two impulses are merged together in the 
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center. Whereas scalogram represents both two distinctive 
impulses and two distinctive red horizontal stripes as the Fig. 
2 (d). This capability of scalogram is enabled by the 
multiresolution feature, in which the WT produces high time 
resolution at high frequencies, and high frequency resolution 
at low frequencies. 

 

 
 

 
 

 
 

 
 

Fig. 2 Time and frequency resolution of spectrogram and scalogram 

3) Comparison of time and frequency resolution 
In addition to multiresolution section, a comparison for 

time-frequency resolution of the transformations is illustrated 
in Fig. 3. The top left diagram is the signal in time domain 
with zero information about frequency. This signal is then 
used to generate FT as in top right diagram with no 
information about time. Performing STFT of the signal results 
the diagram at bottom left with constant time-frequency 
resolution, representing by the same rectangles. WT with 
multiresolution capability, produces the transform as in 
bottom right figure with varying time-frequency resolutions 
representing by varying size rectangles. 

III. METHODOGOLY 

A. Programming libraries 
In this paper, generation of STFT is done by Librosa 

library [10], a Python package for music and audio analysis. 
WT is created using Pywavelets library [11], a free Open 
Source software library. Tensorflow [12] is used for training 
and evaluation of CNNs model. Visualization images of 
spectrogram and scalogram is done by Matplotlib [13] library. 

B. MIMII audio dataset 
The MIMII dataset [3, 15] is the dataset made by Hitachi 

company in 2019. It provides a real-life sound data in factories 
for various machine types, including fan, pump, slider and 
valve. These machines produce both stationary and non-
stationary sound, with different levels of difficulty for 
distinguishing between normal and abnormal condition. A 

number of damage scenarios of machine are captured such as 
contamination, leakage, rotating unbalance, and rail damage. 
The background noise in various factory scenarios is recorded, 
then mixed with the target machine sound, creating a sound 
data simulating real environment at 3 levels of signal to noise 
ratio: -6dB, 0dB, and 6dB. This dataset is used for machinery 
fault detection by acoustic recognition in this paper. 

 
 

Fig. 3 Time and frequency resolution of transforms 

C. Evaluation metrics 
In machine learning, accuracy metric represents the 

general measure of how well the model performs prediction 
task on the whole dataset. However, it does not work well in 
case of imbalanced dataset, in which a class outnumbers the 
other classes. Therefore, the assessment for models based on 
accuracy seems to be helpless, since by simply predicting all 
elements as the highest weighted class, the model could 
achieve high accuracy. Due to this reason, another metric was 
introduced to provide a predictive performance of trained 
model independent of class distribution called Area Under 
Curve of Receiver Operating Characteristic (AUC-ROC) [15]. 
This metric is suitable for the Hitachi’s dataset, and for 
benchmarking purpose. 

IV. EXPERIMENT 

A. Workflow 
The whole workflow of the experiment is presented as the 

Fig. 4. The audio data is initially normalized to constrain the 
amplitude value within range [0, 1] before being transformed 
using STFT and WT respectively. This step is presented 
details in the next section. Following, the matrices produced 
at output after STFT and WT are used to create spectrogram 
and scalogram. They are then plotted as images, split into 
training set and validation set. The training set is fed into a 
CNNs to train the model, the validation set is used for 
evaluation of the trained model. The performance of trained 
CNNs model for two types of data is compared. 

Since the target of this paper is to evaluate the performance 
of spectrogram and scalogram on CNNs model, all parts of the 
experiment, except for generation of spectrogram and 
scalogram, are kept same for both transform types, including 
normalization technique, configuration of plotted images, 
configuration of CNNs model. These settings are designed 
arbitrarily as long as the trained CNNs model achieves a 
relative good performance. 
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Fig. 4 Experiment workflow 

B. Audio normalization 
  𝑦+ =
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Fig. 5 Effect of normalization technique 

In acoustical fault detection for machines in factories, the 
conditions of recording audio data are not always same in 
reality. Consequently, the amplitude of recorded audio varies 
from situation to situation for a same type of error, or even in 
the same situation, if the microphone is moved or vibrated. For 
example, the amplitude of recorded audio will be higher once 
the micro is placed nearer, or it is lower once the micro is 
placed further. To reduce the effect of this variation, in this 
paper, the audio signals are normalized to constrain the 
amplitude within the range [0, 1]. It means that the maximum 
amplitude of signal will be compressed to 1 if it is higher than 
1, and will be expanded to 1 if it is lower than 1 as in (6). 

Maximum value of a signal is calculated as 𝑦.)/, then other 
sample values are normalized by it. This would shape the 
structure of audio of same error type into more similar ones, 
and different error types into more distinctive ones. Indeed, 
the normalization step really enhanced the visibility of 
generated spectrogram and scalogram as illustrated in the Fig. 
5. On the left as Fig. 5 (a) and (c) where there is no 
normalization, it is very hard for human eyes to see the heat 
map of spectrogram and scalogram, respectively. However, on 
the right side as  Fig. 5 (b) and (d), the heat map is visualized 
much better by normalization technique. 

C. Input audio 
The input audio used for spectrogram and scalogram 

generation is remained as original audio dataset of Hitachi, 
which has 10 seconds length, 16 kHz sampling rate. Hence, 
each single discrete audio contains 160,000 samples. 

D. Implementation for Short-time Fourier transform 
STFT is performed in time-discrete manner. Initially the 

frame size N, hop size H are considered as hyper parameters 
for optimizing the performance of the trained model for first 
numbers of training, then a configuration of STFT with good 
prediction performance is selected as the table I. The output 
matrix after STFT has size (513, 313) for 160,000 samples per 
signal. This configurations is then applied on the whole audio 
dataset to generate STFT. 

TABLE I.  CONFIGURATION OF STFT 

Frame size Hop size Output matrix size 
1024 512 513 313 

 

E. Implementation for Continuous Wavelet transform 
CWT is also performed in time-discrete manner. The scale 

would be a range of consecutive natural numbers. Since the 
scale controls the frequency resolution, a number of different 
scale would be examined on CNNs model training to find out 
a scale with good prediction performance as the table II. This 
scale is then used to generate CWT for the whole audio data. 

TABLE II.  CONFIGURATION OF CWT 

Scale Output matrix size 
[1, 128] 16,000 128 

 

TABLE III.  CONFIGURATION OF CNNS 

Layer Name 
1 Rescaling (1/255) 

2 Conv2D(16, 3, activation='relu', use_bias=True, 
bias_initializer='zeros') 

3 MaxPooling2D 

4 Conv2D(32, 3, activation='relu', use_bias=True, 
bias_initializer='zeros') 

5 MaxPooling2D 

6 Conv2D(64, 3, activation='relu', use_bias=True, 
bias_initializer='zeros') 

7 MaxPooling2D 
8 Flatten 
9 Dense(128, activation='relu') 

10 Dropout(0.25) 
11 Dense(256, activation='relu') 
12 Dropout(0.25) 
13 Dense(units=2, activation='softmax') 
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F. Implementation for Convolution neural networks 
Since the target of the paper is the comparison 

performance between spectrogram and scalogram, the CNNs 
model is designed arbitrarily as long as it gets a quite good 
performance. Few configurations of CNNs are examined, and 
a good configuration is selected as in the table III. 

V. BENCHMARKING AND PERFORMANCE EVALUATION 

A. Benchmark research 

TABLE IV.  COMPARISON WITH BENCHMARK METHOD 

 Baseline Spectrogram Scalogram 
Method Supervised learning 
Metric AUC_ROC 

Normalization Zero mean, unit 
standard deviation 

𝑦!
|𝑦"#$|

		 

Spectral 
feature 

MFCCs+SC+SB+
SR+ZCR+Chroma 

Spectrogram Scalogram 

Input of model output matrix image 
Oversampling yes no 

Model MLP CNNs 
 

TABLE V.  COMPARISON OF COMPUTATIONAL EXPENSE 

 Single file 
Spectrogram Scalogram Deviation 

Time 0.58 22.38 21.8 
 Whole dataset 

Time 10,451.02 392,814.2 392,814.2 
 

The benchmark research [16] uses a number of spectral 
features for classification, including Chroma, Mel-frequency 
cepstral coefficients (MFCCs), Spectral Centroid (SC), 
Spectral Bandwidth (SB), Spectral roll-off (SR), Zero 
Crossing Rate (ZCR). However, the output of the 
transformation is not compressed as an image. Instead, the 
model uses directly the tuples containing spectral features. 
Before feeding into model for training, the abnormal sound is 
oversampled to get a balanced dataset. There are various 
algorithms used in this research, but only the Multilayer 
Perceptron (MLP) achieves the best performance, hence, its 
result is considered for benchmarking. The metric AUC is 
used as metric for performance evaluation. The tuples are 
normalized to zero mean and unit standard deviation before 
feeding into model for training and evaluation. MLP used in 
this research is a class of feedforward artificial neural network 
with three hidden layers. The detail comparison is presented 
as in the table IV. 

TABLE VI.  PERFORMANCE BENCHMARKING 

 baseline scalogram spectrogram 
-6 dB 0.893 0.9213 0.981 
0 dB 0.9425 0.964 0.992 
6 dB 0.9758 0.9885 0.997 

TABLE VII.  PERFORMANCE OMPARISON BETWEEN TWO TRANSFORMS 

 scalogram spectrogram 
fan 0.9343 0.9883 

pump 0.9623 0.9917 
slider 0.9473 0.9957 
valve 0.9877 0.9843 

 

B. Performance evaluation 
1) Computational expense 

Since the calculation of STFT and WT are different, 
resulting output matrices are also different in size, a 
comparison for computational expense is necessarily 
considered. For the sake of simplicity, it is done by measuring 
the amount of time (in second) that is used for generation of 
spectrogram and scalogram by the hardware in this paper. As 
can be seen in the table V, scalogram has computational 
expense much more than spectrogram. The deviation for 
generation of a single file is 21.8 seconds, and for the whole 
dataset with 18019 audio files is 392,814.2 seconds. 
Generation of scalogram for whole dataset costs about 109 
hours while just only about 2.9 hours for spectrogram. This 
huge deviation is obvious, since CWT computes for every 
single sample in 160,000 sample, whereas STFT computes 
only for every hop size samples. 

 
Fig. 6 Performance benchmarking 

 
Fig. 7 Performance comparison between two transforms 

2) Model prediction performance 
The performance of CNNs model applying on 

spectrogram and scalogram is computed by averaging over 10 
runs of training and evaluation. The results for benchmarking 
is shown in the table VI, and being illustrated by the chart in 
the Fig. 6. As being visualized, the averaged performance of 
model prediction increases consistently with the increase of 
SNR for both spectrogram and scalogram as well as the 
baseline. This covariation between SNR and performance is 
obvious, since improvement of SNR would make the sound of 
normal or abnormal machine clearer, meaning more 
distinguishing. Hence, the models can easily classify these 
two types of sound correctly. For benchmarking, the design of 
spectrogram and scalogram in this project always outperforms 
the benchmark research throughout 3 SNR levels. This shows 



that the design of spectrogram and scalogram have achieved a 
relative good performance. 

For the comparison between spectrogram and scalogram 
in each machine type, the result showes in the table VII and 
being visualized in the Fig. 7. The spectrogram always 
performs better then the scalogram. There is just one case of 
valve where the CNNs predict audio base on scalogram better 
than audio base on spectrogram. This is caused by the fact that 
audio signal of valve is non-stationary [3], which is impulsive 
and sparse in time. And the WT producing scalogram with 
multiresolution feature could enhance the feature extraction 
for non-stationary signals [8]. In opposite direction while 
looking at performance on audio of fan, the spectrogram 
achieves much higher performance than scalogram. The 
possible reason is that the sound of fan is stationary [3] where 
constant time and frequency resolution of spectrogram could 
extract the feature much better than scalogram. 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 
In this paper, comparison of two approaches for acoustic 

recognition are implemented by presenting knowledge of two 
types of audio extractor spectrogram and scalogram, as well 
as comparing their design. The classification task for normal 
and abnormal sound is done successfully by employing 
CNNs. With arbitrary design of CNNs, configuration of 
spectrogram and scalogram have shown a good performance 
when it always outperforms the benchmark method. The paper 
actually achieved the main purpose by providing a quite tight 
comparison between spectrogram and scalogram, in term of 
their attributes, configuration of each transform, and the 
model performance evaluation. In general, the design of STFT 
in this paper almost performs better than design of WT, except 
for audio of valve which is non-stationary. For stationary 
audio of fan, STFT perform much better than WT. 

B. Future work 
As being analyzed when designing configuration for STFT 

and WT, the output of matrices for these two transform are 
different in size. This is caused by the computation of CWT 
requiring for every single sample data, whereas computation 
of SFTT requires every each hop size samples. Consequently, 
the comparison may not be as tight enough. This limitation 
would be a potential topic in future when the translation 
parameter and the scale of WT are tuned in a way that can 
produces output matrix having same size as STFT. By doing 
so, the computational expense of them would be more similar, 
and the comparison is tighter. In addition, the current 
Pywavelets library is only able for tuning the scale, but not for 
the translation parameter. Hence, development of a library for 
CWT with a tunable translation parameter is a potential 
direction in reduction of computational expense, and making 
STFT and WT more comparable. 

The experiment of this paper uses the normalization 
technique, which constrains the signal amplitude to 1, seems 
to be a beneficial step for applying on the audio signals before 
performing STFT and WT. In addition, other common 
normalization techniques, such as moving the mean to zero 
and deviation to one, have not been tested to check which 
normalization technique is better. Therefore, experiment 
different normalization techniques to compare their 
robustness, or application of each normalization technique for 

different datasets to see test its generality, would be a 
promising topic. 

Finally, in the discussion part of the performance 
comparison, the scalogram performs better than spectrogram 
when audio signal is non-stationary thanks to its 
multiresolution, and in the other way round, the spectrogram 
has better prediction when the audio signal is stationary due to 
its linear resolution. Hence, future research about how the 
stationary level of signals impacts on the performance of 
spectrogram and scalogram would be interesting. The task 
may be a derivation of a function representing the dependence 
of CNNs model performance on the stationary degree of 
signal, as the SNR plays its role on the performance of CNNs 
model in this paper. 
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