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Abstract

A series of the form
∑∞

ℓ=0 c(κ, ℓ)Mκ,ℓ+1/2(r0)Wκ,ℓ+1/2(r)Pℓ(cos(γ)) is evaluated
explicitly where c(κ, ℓ) are suitable complex coefficients, Mκ,µ and Wκ,µ are the
Whittaker functions, Pℓ are the Legendre polynomials, r0 < r are radial vari-
ables, γ is an angle and κ is a complex parameter. The sum depends, as far as
the radial variables and the angle are concerned, on their combinations r + r0
and (r2+r 2

0 −2rr0 cos(γ))
1/2. This addition formula generalizes in some respect

Gegenbauer’s Addition Theorem and follows rather straightforwardly from some
already known results, particularly from Hostler’s formula for Coulomb Green’s
function. In addition, several complementary summation formulas are derived.
They suggest that a further extension of this addition formula may be possible.

I. INTRODUCTION

Green’s function of a Hamiltonian is an important object in quantum physics as it con-
tains, in principal, all information about the respective physical system. Particularly
the set of singular points of Green’s function coincides with the spectrum. Green’s
function is in fact the integral kernel of the resolvent of the Hamiltonian which is
regarded as an integral operator. Sometimes, however, the integral kernel should be
interpreted in the distributional sense. Green’s function is also closely related to the
heat kernel or to the propagator. Namely, Green’s function is the Laplace transform
of the heat kernel.

Green’s function can be explicitly expressed in a compact form for some quantum
systems which are usually distinguished by their symmetry properties. As a rule,
such systems frequently enjoy rotational symmetry. If so, this also opens the way to
an alternative construction of Green’s function based on the method of separation of
variables. The problem then effectively reduces to a one-dimensional one. Finally one
deals with a positive second-order ordinary differential operator of Sturm-Liouville
type though on the half-line rather than on a bounded interval. This is a substantial
simplification since the construction of Green’s function for a Sturm-Liouville operator
is commonly known and, in fact, this is a text-book matter. Thus in distinguished
solvable cases the radial part of Green’s function can be expressed in terms of appro-
priate special functions. The full Hamiltonian depending on both radial and angle
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variables is then expressed as a sum with the summation running over eigenmodes of
the spherical part of the Hamiltonian. Equaling the compact form of Green’s function
to the sum obtained via the method of separation of variables leads to an addition
formula for the involved special functions.

This procedure can be successfully applied to the Hamiltonian of the hydrogen
atom, resulting in an addition formula for the Whittaker functions Mκ,µ and Wκ,µ.
The formula turns out to be a generalization of Gegenbauer’s Addition Theorem in
some respect. To the best of author’s knowledge, this possibility has not been exploited
yet and still remains overlooked. And this is despite the fact that a compact formula
for Coulomb Green’s function has been derived by Hostler rather long time ago in
[10, 11]. As a companion of the addition formula for the Whittaker functions we
further derive another addition formula concerning the Laguerre polynomials. There
already exists a well-known addition formula for the Laguerre polynomials but that
one reported here is completely different.

From the mathematical point of view, the formula for the Whittaker functions
cannot be considered fully satisfactory, however, as the resulting sum involves only
the Whittaker functions with the parameter µ = 1/2. A more general formula for
arbitrary parameters κ and µ seems to be lacking. Nevertheless here we present some
partial results in this direction which indicate that the derived formula could be further
generalized. In addition to the parameter κ, with µ being restricted to the values 1/2
modulo integers, the formula depends on the radial variables r0 and r and on an
angle γ. In the particular case γ = π we show that there exists an addition formula
admitting general values of both κ and µ. Further we derive a summation formula for
the Whittaker functions Wκ,µ only and another one for the Whittaker functions Mκ,µ.
Again, in both cases, the parameters κ and µ can take arbitrary values.

The paper is organized as follows. In Section II we summarize some known formulas
and results which are essential for the solution of our problem. The main result of the
paper, namely a derivation of an addition formula for the Whittaker functions, is the
content of Section III. Section IV is devoted to an addition formula for the Laguerre
polynomials. Finally, Section V contains some complementary results suggesting that
further generalizations could be possible, as discussed above.

II. PRELIMINARIES

First let us recall the definition of the Whittaker functions and summarize several
useful formulas related to them [1, 9]. The Whittaker functions are defined in terms
of the confluent hypergeometric functions,

Mκ,µ(r) := e−r/2 r1/2+µ
1F1

(

µ− κ+
1

2
; 2µ+ 1; r

)

, (1)

Wκ,µ(r) := e−r/2 r1/2+µ U

(

µ− κ+
1

2
, 2µ+ 1, r

)

. (2)
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For the derivatives we shall use the notation

W ′
ν,1/2(x) :=

∂Wν,1/2(x)

∂x
, M ′

ν,1/2(x) :=
∂Mν,1/2(x)

∂x
.

The modified Bessel functions Kν , Iν are particular cases of the Whittaker functions,‘

Kν(z) =

√

π

2z
W0,ν(2z), Iν(z) =

1

22νΓ(ν + 1)
√
2z
M0,ν(2z). (3)

Furthermore,

M0,1/2(z) = 2 sinh
(z

2

)

, W0,1/2(z) = e−z/2. (4)

For n ∈ Z+, the functions Wn+(α+1)/2,α/2 and Mn+(α+1)/2,α/2 are linearly dependent,

Mn+(α+1)/2,α/2(z) =
(−1)nΓ(α+ 1)

Γ(n+ α + 1)
Wn+(α+1)/2,α/2(z).

Moreover, the generalized (associated) Laguerre polynomials are related to the Whit-
taker functions,

Lα
n(z) =

(−1)n

n!
z−(α+1)/2Wn+(α+1)/2,α/2(z).

Therefore, for n ∈ Z+,

Wn,1/2(z) = (−1)n+1n!Mn,1/2(z) (5)

and, for n ≥ 1,

Mn,1/2(z) =
1

n
e−z/2zL1

n−1(z). (6)

Regarding the asymptotic forms, we have

er/2Wκ,µ(r) = rκ

(

1 +

(

µ− κ+ 1
2

) (

µ+ κ− 1
2

)

r
+O

(

1

r2

)

)

, as r → ∞ (7)

(see, for example, (2) and equation 13.5.2 in [1]). Furthermore [4, Eqs. 13.20.1,
13.20.2], when µ→ ∞ in C, Re(µ) > 0, and κ ∈ C is fixed,

Mκ,µ(z) = zµ+1/2
(

1 +O(µ−1)
)

(8)

uniformly for z in a bounded region in C, and

Wκ,µ(x) =
Γ(κ + µ)√

π

(x

4

)1/2−µ
(

1 +O(µ−1)
)

(9)

uniformly for bounded positive values of x (one can also consult [14, Chap. 7, Sect.
11.1] or [5]).
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Next let us shortly recall, without going into all details, a standard construction
of Green’s function of a Sturm-Liouville operator for it is essential for our purposes.
Thus we consider a second-order ordinary differential operator

Lf(x) := −
(

p(x)f ′(x)
)′
+ q(x)f(x)

on an interval which can be bounded or unbounded. Here p(x) > 0 and q(x) ≥ 0 are
sufficiently regular functions. At the finite endpoints one imposes mixed boundary
conditions or, if the interval is unbounded, one requires functions from the domain
of L to be square integrable on a neighborhood of infinity. One assumes that L with
properly chosen boundary conditions is positive definite. To describe Green’s function
of L one finds two nontrivial solutions v0, v1 of the differential equation

−pv′′j − p′v′j + qvj = 0, j = 0, 1,

on the given interval such that v0 satisfies the boundary condition at the left endpoint
(or minus infinity) only while v1 satisfies the boundary condition at the right endpoint
(or plus infinity) only. Then L−1 is an integral operator with the integral kernel

G(x, y) = − 1

pw
(ϑ(y − x)v0(x)v1(y) + ϑ(x− y)v0(y)v1(x))

where w := v0v
′
1 − v1v

′
0 is the Wronskian of v0 and v1. Note that p(x)w(x) is in fact a

constant function. Here and in the sequel ϑ denotes the Heaviside step function.
It may be instructive to illustrate the procedure leading to an addition formula, as

described in Section I, on the well-known example of the operator −∇2 + k2, k > 0,
in R2. Naturally, the partial differential operator is expressed in polar coordinates.
Using the method of separation of variables one finds that Green’s function can be
written in the form

G(r, ϕ; r0, ϕ0) =
1

2π
√
rr0

(

f0(r, r0) + 2
∞
∑

n=1

fn(r, r0) cos(n(ϕ− ϕ0))

)

. (10)

The functions fn(r, r0) can be obtained as solutions of the Sturm-Liouville problem in
the radial variable, as described above, and we get

fn(r, r0) =
1

2k(2n)!
Γ

(

n +
1

2

)

×
(

ϑ(r − r0)W0,n(2kr)M0,n(2kr0) + ϑ(r0 − r)M0,n(2kr)W0,n(2kr0)
)

.

The RHS can be also expressed in terms of the modified Bessel functions, see (3). At
the same time, a compact formula for Green’s function is well known,

G(rrr, rrr0) =
1

2π
K0(k|rrr − rrr0|).
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We can let ϕ0 = 0 and, by comparison, we obtain an addition formula for the modified
Bessel functions,

I0(kr0)K0(kr) + 2
∞
∑

n=1

In(kr0)Kn(kr) cos(nϕ) = K0(kR) for 0 ≤ r0 < r, (11)

where

R = R(ϕ) :=
√

r2 + r 2
0 − 2rr0 cos(ϕ) . (12)

As a matter of fact, formula (11) is a corollary of substantially more general Graf’s
Addition Theorem [1, Eq. 9.1.79].

Let us rewrite (10) just to have a comparison to Hostler’s result (20) which is
mentioned below. From (11) we deduce that

I0(v)K0(u) + 2
∞
∑

n=1

In(v)Kn(u) = K0(u− v) for 0 ≤ v < u.

Let (r = |rrr|, r0 = |rrr0|)
x := r + r0 + |rrr − rrr0|, y := r + r0 − |rrr − rrr0|. (13)

Then

2π G(rrr, rrr0) = I0

(

ky

2

)

K0

(

kx

2

)

+ 2

∞
∑

n=1

In

(

ky

2

)

Kn

(

kx

2

)

.

One can proceed very analogously in case of the operator −∇2 + k2, k > 0, in
R3. Doing so one obtains a particular case of Gegenbauer’s Addition Theorem. We
are not going to discuss this case, however. Instead, in Section III, we will focus on
the operator −∇2 − g/|rrr| + k2, g > 0 and k > 0, in R3. Nevertheless let us recall
what Gegenbauer’s theorem claims if specialized to the modified Bessel functions. For
0 ≤ r0 < r and ν ∈ R,

2νΓ(ν)

(rr0)ν

∞
∑

n=0

(ν + n)Kν+n(r)Iν+n(r0)C
(ν)
n (cos(γ)) =

Kν(R)

Rν
(14)

with R defined in (12), see [17, §II.4] (and also [1, Eq. 9.1.80]). Here C
(ν)
n (z) are the

Gegenbauer polynomials.
Another addition formula which is crucial for our purposes is Spherical Harmonic

Addition Theorem, also called Legendre Addition Theorem. Recall that the spherical
harmonics are defined for ℓ ∈ Z+ (the set of non-negative integers), m ∈ Z, |m| ≤ ℓ,

Y m
ℓ (θ, ϕ) :=

√

(2ℓ+ 1)(ℓ−m)!

4π (ℓ+m)!
Pm
ℓ (cos(θ))eimϕ. (15)

Here θ ∈ [ 0, π ], ϕ ∈ [ 0, 2π ] are coordinates on the unit sphere S2 and Pm
ℓ (z) is the

associated Legendre polynomial. We have

P−m
ℓ (z) = (−1)m

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (z). (16)
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and
Y −m
ℓ (θ, ϕ) = (−1)m Y m

ℓ (θ, ϕ).

The spherical harmonics {Y m
ℓ } form an orthonormal basis in L2(S2, dΩ) and

−∇2 Y m
ℓ (θ, ϕ) =

ℓ (ℓ+ 1)

r2
Y m
ℓ (θ, ϕ).

Spherical Harmonic Addition Theorem tells us that, for every ℓ ∈ Z+,

ℓ
∑

m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ0, ϕ0) =
ℓ
∑

m=−ℓ

(−1)mY m
ℓ (θ, ϕ)Y −m

ℓ (θ0, ϕ0) =
2ℓ+ 1

4π
Pℓ(cos(γ))

(17)
where

cos(γ) := cos(θ) cos(θ0) + sin(θ) sin(θ0) cos(ϕ− ϕ0),

that is cos(γ) = nnn · nnn0, nnn :=
(

sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)
)

and nnn0 is defined
similarly. Pℓ(z) ≡ P 0

ℓ (z) are the Legendre polynomials. Referring to (15) and (16),
equation (17) means that

Pℓ(cos(γ)) = Pℓ(cos(θ))Pℓ(cos(θ0))

+ 2

ℓ
∑

m=1

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos(θ))Pm

ℓ (cos(θ0)) cos(m(ϕ− ϕ0)).

This is a classical result with a long history [8], and a dozen different proofs of it
have been provided, some of them quite intricate [13]. A straightforward derivation,
as encountered in physical literature, is based on symmetry considerations and can be
briefly rephrased as follows. Observe that

P̃ℓ(nnn,nnn0) :=

ℓ
∑

m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ0, ϕ0)

is the integral kernel of the orthogonal projection in L2(S2, dΩ) onto the eigenspace of
minus the Laplace-Beltrami operator on S2 (denoted as −∆S2) corresponding to the
eigenvalue ℓ(ℓ+1). Thus we have (the differential operator acts in variables θ and ϕ)

−∆S2P̃ℓ(nnn,nnn0) = ℓ(ℓ+ 1)P̃ℓ(nnn,nnn0). (18)

Owing to rotational symmetry P̃ℓ(nnn,nnn0) should depend on the distance of the points
nnn,nnn0 ∈ S2 only which in turn is a function of nnn · nnn0 = cos(γ). Writing P̃ℓ(nnn,nnn0) =
f(nnn · nnn0) equation (18) reduces to the ordinary second-order differential equation

−(1− z2)f ′′(z) + 2zf ′(z)− ℓ (ℓ+ 1)f(z) = 0.

A general solution has the form f(z) = c1Pℓ(z) + c2Qℓ(z). Here Qℓ(z) is the Legendre
function of the second kind which is another independent solutions of the differential
equation and is known to be singular for z = ±1. Therefore P̃ℓ(nnn,nnn0) = c1Pℓ(nnn · nnn0).
The multiplicative constant is easily found to be c1 = (2ℓ + 1)/(4π) when letting
nnn = nnn0 = (0, 0, 1) and taking into account that Pℓ(1) = 1 and Pm

ℓ (1) = 0 for m 6= 0.
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III. THE HYDROGEN ATOM AND AN ADDITION

FORMULA FOR THE WHITTAKER FUNCTIONS

Using spherical coordinates r > 0, θ ∈ [ 0, π ], ϕ ∈ [ 0, 2π ], we denote

rrr =
(

r sin(θ) cos(ϕ), r sin(θ) sin(ϕ), r cos(ϕ)
)

.

We write the Hamiltonian of the hydrogen atom in a dimensionless form as H =
−∇2−g/r, g > 0, and we wish to apply the procedure leading to an addition formula,
as described in Section I, to the operator

H + k2 = − 1

r2
∂

∂r
r2
∂

∂r
− 1

r2

(

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂ϕ2

)

− g

r
+ k2, k > 0.

While the continuous spectrum of H coincides with the positive real half-line, the
discrete spectrum consists of eigenvalues En = −g2/4n2, n ∈ N, the multiplicity of En

equals n2. The corresponding normalized eigenfunctions are

ψn,ℓ,m(r, θ, ϕ) =
g3/2

nℓ+2

√

(n− ℓ− 1)!

2(n+ ℓ)!
(gr)ℓ exp

(

− gr

2n

)

L2ℓ+1
n−ℓ−1

(gr

n

)

Y m
ℓ (θ, ϕ),

where n ∈ N, ℓ ∈ Z+ and m ∈ Z are the principal, the azimuthal and the magnetic
quantum number, respectively, and |m| ≤ ℓ ≤ n− 1.

Application of the method of separation of variables to this operator again leads to
the Sturm-Liouville problem in the radial variable whose solution is rather straight-
forward, as outlined in Section II, and has already been described in the literature
[16, 15]. We have

G(r, θ, ϕ, r0, θ0, ϕ0) =
1

rr0

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

1

2k (2ℓ+ 1)!
Γ
(

ℓ+ 1− g

2k

)

×
(

ϑ(r − r0)Mg/(2k),ℓ+1/2(2kr0)Wg/(2k),ℓ+1/2(2kr)

+ϑ(r0 − r)Mg/(2k),ℓ+1/2(2kr)Wg/(2k),ℓ+1/2(2kr0)
)

Y m
ℓ (θ, ϕ)Y m

ℓ (θ0, ϕ0) .

With the aid of (17) this equation can be further simplified,

G(r, θ, ϕ, r0, θ0, ϕ0) =
1

8πkrr0

∞
∑

ℓ=0

1

(2ℓ)!
Γ
(

ℓ+ 1− g

2k

)

×
(

ϑ(r − r0)Mg/(2k),ℓ+1/2(2kr0)Wg/(2k),ℓ+1/2(2kr) (19)

+ϑ(r0 − r)Mg/(2k),ℓ+1/2(2kr)Wg/(2k),ℓ+1/2(2kr0)
)

Pℓ(cos(γ)).

Notably, there exists a remarkable compact formula for Green’s function due to
Hostler [10, 11],

G(r, θ, ϕ, r0, θ0, ϕ0) =
1

4πR
Γ
(

1− g

2k

)

(20)

×
(

M ′
g/(2k),1/2(ky)Wg/(2k),1/2(kx)−Mg/(2k),1/2(ky)W

′
g/(2k),1/2(kx)

)

7



where in this case we have

R := |rrr − rrr0| =
√

r2 + r 2
0 − 2rr0

(

sin(θ) sin(θ0) cos(ϕ− ϕ0) + cos(θ) cos(θ0)
)

,

and
x := r + r0 + |rrr − rrr0|, y := r + r0 − |rrr − rrr0| (21)

(formally the same equations as in (13) but now the dimension is 3 rather than 2).
Comparing (19) to (20) while still using notation (21) we have, for 0 ≤ r0 < r,

1

krr0

∞
∑

ℓ=0

1

(2ℓ)!
Γ
(

ℓ+ 1− g

2k

)

Mg/(2k),ℓ+1/2(2kr0)Wg/(2k),ℓ+1/2(2kr)Pℓ(cos(γ))

= Γ
(

1− g

2k

) 2

R

(

M ′
g/(2k),1/2(ky)Wg/(2k),1/2(kx)−Mg/(2k),1/2(ky)W

′
g/(2k),1/2(kx)

)

.

After substitution g = 2kκ and rescaling r → r/(2k), r0 → r0/(2k) we get an addition
formula for the Whittaker functions. Moreover, the parameter κ can be extended to
complex values by analyticity.

Theorem 1. For 0 ≤ r0 < r, κ ∈ C \ N and γ ∈ R,

1

rr0

∞
∑

ℓ=0

Γ(ℓ+ 1− κ)

Γ(1− κ)(2ℓ)!
Mκ,ℓ+1/2(r0)Wκ,ℓ+1/2(r)Pℓ(cos(γ))

=
1

R

(

M ′
κ,1/2

(y

2

)

Wκ,1/2

(x

2

)

−Mκ,1/2

(y

2

)

W ′
κ,1/2

(x

2

))

(22)

where R = R(γ), see (12), and

x = r + r0 +R, y = r + r0 − R. (23)

One has to exclude the values κ ∈ N. As a matter of fact, the equation holds for
these values, too, but it should be achieved in the limit after the singular terms in the
equation have been combined. For instance, for κ = 1 we have

1

rr0

∞
∑

ℓ=1

(ℓ− 1)!

(2ℓ)!
M1,ℓ+1/2(r0)W1,ℓ+1/2(r)Pℓ

(

cos(γ)
)

= − ∂

∂κ

(

1

R

(

M ′
κ,1/2

(y

2

)

Wκ,1/2

(x

2

)

−Mκ,1/2

(y

2

)

W ′
κ,1/2

(x

2

)

)

− 1

rr0
Mκ,1/2(r0)Wκ,1/2(r)

)

∣

∣

∣

∣

κ=1

.

Remark 2. Let us check two particular cases. For γ = 0 (hence R = r − r0, x = 2r,
y = 2r0) we have

1

rr0

∞
∑

ℓ=0

Γ(ℓ+ 1− κ)

(2ℓ)!
Mκ,ℓ+1/2(r0)Wκ,ℓ+1/2(r)

=
Γ(1− κ)

r − r0

(

M ′
κ,1/2(r0)Wκ,1/2(r)−Mκ,1/2(r0)W

′
κ,1/2(r)

)

, (24)
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and for γ = π (hence R = r + r0, x = 2(r + r0), y = 0) we have

1

rr0

∞
∑

ℓ=0

(−1)ℓ
Γ(ℓ+ 1− κ)

(2ℓ)!
Mκ,ℓ+1/2(r0)Wκ,ℓ+1/2(r) =

Γ(1− κ)

r + r0
Wκ,1/2(r + r0). (25)

Remark 3. From (25) one can derive a summation formula for Whittaker functions
which seems to be also new. For κ ∈ C \ N and z ∈ C,

1

z

∞
∑

ℓ=0

(−1)ℓ
Γ(ℓ+ 1− κ)

Γ(1− κ)(2ℓ)!
Mκ,ℓ+1/2(z) = e−z/2 (26)

(where the singularity at z = 0 on the LHS is removable). It can be proven by
exploring the asymptotic behavior of both sides of (25), as r → ∞. We have, in virtue
of (7),

1

r + r0
Wκ,1/2(r + r0) = e−r/2−r0/2r−1+κ

(

1 +
κ− κ2 − (1− κ)r0

r
+O

(

1

r2

))

and
1

r
Wκ,ℓ+1/2(r) = e−r/2r−1+κ

(

1 +
(ℓ+ 1− κ)(ℓ+ κ)

r
+O

(

1

r2

))

.

Thus, writing z instead of r0, we see that (26) holds for z > 0. But the asymptotic
behavior of Mκ,ℓ+1/2(z) for ℓ large, as recalled in (8), which is locally uniform in z
implies that the LHS is an entire function of z. Since the same is true for the RHS we
conclude that (26) must hold for all z ∈ C.

Let us point out a relation of Theorem 1 to Gegenbauer’s Addition Theorem.
Confining ourselves to the value κ = 0 (corresponding to g = 0) in (22) we obtain a
simplified equation

∞
∑

ℓ=0

2ℓ+ 1√
rr0

Kℓ+1/2

(r

2

)

Iℓ+1/2

(r0
2

)

Pℓ(cos(γ)) =
1

R
e−R/2 =

1√
πR

K1/2

(

R

2

)

. (27)

This is a particular case of Gegenbauer’s Addition Theorem, however, see equation
(14) with ν = 1/2. To derive (27) from (22) we have used (3), (4) and also the equation

M ′
0,1/2

(y

2

)

W0,1/2

(x

2

)

−M0,1/2

(y

2

)

W ′
0,1/2

(x

2

)

= e−R/2 =

√

R

π
K1/2

(

R

2

)

.

Moreover, note that C
(1/2)
n (z) = Pn(z).

As for equation (26), letting κ = 0 we get
√

π

2r

∞
∑

ℓ=0

(−1)ℓ(2ℓ+ 1)Iℓ+1/2(z) = e−z.

This is a particular case of the identity

2νΓ(ν)
∞
∑

ℓ=0

(ℓ+ ν)C
(ν)
ℓ (γ)Iℓ+ν(z) = zνeγz,

which is well known, see [7, §7.15(1)]; note that C
(1/2)
ℓ (−1) = (−1)ℓ.
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IV. AN ADDITION FORMULA FOR THE LAGUERRE

POLYNOMIALS

Theorem 4. For n ∈ N, 0 ≤ r0 < r and γ ∈ R,

n−1
∑

ℓ=0

(2ℓ+ 1)(n− ℓ− 1)!

(n+ ℓ)!
(rr0)

ℓ L2ℓ+1
n−ℓ−1(r)L

2ℓ+1
n−ℓ−1(r0)Pℓ(cos(γ))

=
1

2R

(

xL1
n−1

(x

2

)

Ln

(y

2

)

− yL1
n−1

(y

2

)

Ln

(x

2

))

(28)

where x, y are defined in (23), with R = R(γ), see (12).

Remark. Note that formula (28) is completely different from the well known addition
formula for the Laguerre polynomials which claims that [1, Eq. 22.12.6]

n
∑

j=0

Lα
j (u)L

β
n−j(v) = Lα+β+1

n (u+ v).

Proof. Recall that

Res
(

Γ(z); z = −n
)

=
(−1)n

n!
, n ∈ Z+,

whence

Res
(

Γ
(

1− g/(2
√
−z)

)

; z = En

)

=
(−1)ng2

2n!n2
, n ∈ N.

If we substitute k =
√
−z in Hostler’s formula (20) then the residue of Green’s function

at z = En equals

(−1)ng2

8πn!n2R

(

M ′
n,1/2

(gy

2n

)

Wn,1/2

(gx

2n

)

−Mn,1/2

(gy

2n

)

W ′
n,1/2

(gx

2n

))

. (29)

The residue also equals minus the projection Pn onto the eigenspace corresponding to
eigenvalue En. Pn is an integral operator with the integral kernel

Pn(r, θ, ϕ, r0, θ0, ϕ0) =

n−1
∑

ℓ=0

ℓ
∑

m=−ℓ

ψn,ℓ,m(r, θ, ϕ)ψn,ℓ,m(r0, θ0, ϕ0). (30)

Hence, for n ∈ N,

(−1)n+1n

(n− 1)! gR

(

M ′
n,1/2

(gy

2n

)

Wn,1/2

(gx

2n

)

−Mn,1/2

(gy

2n

)

W ′
n,1/2

(gx

2n

))

= exp

(

−g (r + r0)

2n

) n−1
∑

ℓ=0

(2ℓ+ 1)(n− ℓ− 1)!

(n+ ℓ)!

(

g2rr0
n2

)ℓ

(31)

×L2ℓ+1
n−ℓ−1

(gr

n

)

L2ℓ+1
n−ℓ−1

(gr0
n

)

Pℓ(cos(γ)).

10



In regard of (5) and (6), we derive

M ′
n,1/2(z) =

d

dz

(

1

n
ez/2e−zzL1

n−1(z)

)

=
1

2
Mn,1/2(z) +

1

n
ez/2

d

dz

(

e−zzL1
n−1(z)

)

=
1

2
Mn,1/2(z) + e−z/2Ln(z).

Here we have used the formula [12, Eq. (9.12.8)]

d

dz

(

e−zzαLα
n−1(z)

)

= ne−zzα−1Lα−1
n (z).

Furthermore,

(−1)n+1g2

8πRn!n2

(

M ′
n,1/2

(gy

2n

)

Wn,1/2

(gx

2n

)

−Mn,1/2

(gy

2n

)

W ′
n,1/2

(gx

2n

))

=
g2

8πRn2

(

Mn,1/2

(gx

2n

)

M ′
n,1/2

(gy

2n

)

−Mn,1/2

(gy

2n

)

M ′
n,1/2

(gx

2n

))

(32)

=
g3

16πRn4
exp
(

− g

2n
(r + r0)

)(

xL1
n−1

(gx

2n

)

Ln

(gy

2n

)

− yL1
n−1

(gy

2n

)

Ln

(gx

2n

))

.

After rescaling r → (n/g)r, r0 → (n/g)r0, we get from (31) and (32)

n−1
∑

ℓ=0

(2ℓ+ 1)(n− ℓ− 1)!

(n + ℓ)!
(rr0)

ℓ L2ℓ+1
n−ℓ−1(r)L

2ℓ+1
n−ℓ−1(r0)Pℓ(cos(γ))

=
(−1)n+1

(n− 1)!R
exp

(

r + r0
2

)

(

M ′
n,1/2

(y

2

)

Wn,1/2

(x

2

)

−Mn,1/2

(y

2

)

W ′
n,1/2

(x

2

))

=
1

2R

(

xL1
n−1

(x

2

)

Ln

(y

2

)

− yL1
n−1

(y

2

)

Ln

(x

2

))

.

This concludes the proof.

Let us check two particular cases of (28). For γ = 0 we have

n−1
∑

ℓ=0

(2ℓ+ 1)(n− ℓ− 1)!

(n + ℓ)!
(rr0)

ℓ L2ℓ+1
n−ℓ−1(r)L

2ℓ+1
n−ℓ−1(r0)

=
1

r − r0

(

rL1
n−1(r)Ln(r0)− r0L

1
n−1(r0)Ln(r)

)

and for γ = π we get

n−1
∑

ℓ=0

(−1)ℓ
(2ℓ+ 1)(n− ℓ− 1)!

(n+ ℓ)!
(rr0)

ℓ L2ℓ+1
n−ℓ−1(r)L

2ℓ+1
n−ℓ−1(r0) = L1

n−1(r + r0),

Note that Ln(0) = 1 (and L1
n(0) = n+ 1).

After the shift n → n + 1 one observes, in these two particular cases, that both
sides are symmetric polynomials in r and r0, and therefore r, r0 can be replaced by
arbitrary complex variables.
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Corollary 5. For every n ∈ Z+ and all u, v ∈ C,

n
∑

ℓ=0

(2ℓ+ 1)(n− ℓ)!

(n + ℓ+ 1)!
(uv)ℓL2ℓ+1

n−ℓ (u)L
2ℓ+1
n−ℓ (v) =

1

u− v

(

uL1
n−1(u)Ln(v)− vL1

n−1(v)Ln(u)
)

(33)
and

n
∑

ℓ=0

(−1)ℓ
(2ℓ+ 1)(n− ℓ)!

(n+ ℓ+ 1)!
(uv)ℓ L2ℓ+1

n−ℓ (u)L
2ℓ+1
n−ℓ (v) = L1

n(u+ v). (34)

As a short digression let us note that the projection Pn, as introduced in equation
(30) in the proof, has already been discussed in the literature [3]. Using expression
for the residue of Green’s function, see (29) and (32), we get, for n ≥ 1,

Pn(r, θ, ϕ, r0, θ0, ϕ0) =
g3

16πRn4
exp
(

− g

2n
(r + r0)

)

×
(

xL1
n−1

(gx

2n

)

Ln

(gy

2n

)

− yL1
n−1

(gy

2n

)

Ln

(gx

2n

))

.

The diagonal in fact does not depend on angles and equals

Pn(r, θ, ϕ, r, θ, ϕ) =
g3

8πn4
exp
(

−gr
n

)

×
(

Ln

(gr

n

)

L1
n−1

(gr

n

)

− gr

n
Ln

(gr

n

)

L2
n−2

(gr

n

)

+
gr

n
L1
n−1

(gr

n

)

2
)

.

Pn(r, θ, ϕ, r0, θ0, ϕ0) is called the density function in [3], and

Dn(r) := 4πr2Pn(r, θ, ϕ, r, θ, ϕ)

is called the radial distribution function. It holds true that

4π

∫ ∞

0

Pn(r, θ, ϕ, r, θ, ϕ) r
2dr = n2

meaning that
∫ ∞

0

exp(−r)
(

Ln(r)L
1
n−1(r)− rLn(r)L

2
n−2(r) + rL1

n−1(r)
2
)

r2dr = 2n3.

V. SOMECOMPLEMENTARY SUMMATION FORMULAS

The following proposition presents a summation formula for the Whittaker functions
Wκ,µ and is a straightforward corollary of Theorem 8 below which in turn generalizes
the addition formula (25). Nevertheless this proposition should be proven indepen-
dently because, conversely, it is used in the proof of Theorem 8.

Proposition 6. For every n ∈ N, r > 0, κ, µ ∈ C, 2µ 6= −1,−2,−3, . . .,

n
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

2µ+ 2ℓ

(2µ+ ℓ)n+1
Wκ,µ+ℓ(r) = (−1)nr−n/2Wκ−n/2,µ+n/2(r). (35)
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Proof. We shall proceed by induction in n. For n = 0 the equation is trivial. For
n = 1 this is a well known identity (for instance, this is a combination of equations
9.234 ad(1) and ad(2) in [9])

Wκ,µ+1(r)−Wκ,µ(r) =
2µ+ 1√

r
Wκ−1/2,µ+1/2(r). (36)

Suppose n > 0. Set, for k = 0, 1, . . . , n,

A(k) :=

n−k−1
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

2µ+ 2ℓ

(2µ+ ℓ)n+1
Wκ,µ+ℓ(r) + (−1)n+k

(

n− 1

k

)

Wκ,µ+n−k(r)

(2µ+ n− k)n

− 1√
r

n−1
∑

ℓ=n−k

(−1)ℓ
(

n− 1

ℓ

)

2µ+ 2ℓ+ 1

(2µ+ ℓ+ 1)n
Wκ−1/2,µ+ℓ+1/2(r).

In particular,

A(0) =
n−1
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

2µ+ 2ℓ

(2µ+ ℓ)n+1
Wκ,µ+ℓ(r) + (−1)n

Wκ,µ+n(r)

(2µ+ n)n

=

n
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

2µ+ 2ℓ

(2µ+ ℓ)n+1
Wκ,µ+ℓ(r).

Thus A(0) coincides with the LHS of equation (35).
We claim that A(k + 1) = A(k) for k = 0, 1, . . . , n− 1. Suppose 0 ≤ k < n. Then

A(k + 1)− A(k) = (−1)n+k

(

n

k + 1

)

2µ+ 2n− 2k − 2

(2µ+ n− k − 1)n+1

Wκ,µ+n−k−1(r)

+ (−1)n+k+1

(

n− 1

k + 1

)

Wκ,µ+n−k−1(r)

(2µ+ n− k − 1)n

+ (−1)n+k+1

(

n− 1

k

)

Wκ,µ+n−k(r)

(2µ+ n− k)n

+
1√
r
(−1)n+k

(

n− 1

k

)

2µ+ 2n− 2k − 1

(2µ+ n− k)n
Wκ−1/2,µ+n−k−1/2(r) .

With the aid of (36) one finds that this expression equals

(−1)n+k+1

(

n− 1

k + 1

)

(2µ+ 2n− k − 1)Wκ,µ+n−k−1(r)

(2µ+ n− k − 1)n+1

− (−1)n+k+1

(

n

k + 1

)

(2µ+ 2n− 2k − 2)Wκ,µ+n−k−1(r)

(2µ+ n− k − 1)n+1

+ (−1)n+k+1

(

n− 1

k

)

(2µ+ n− k − 1)Wκ,µ+n−k−1(r)

(2µ+ n− k − 1)n+1
.

Now it is elementary to see that the expression actually equals 0, and therefore
A(k + 1)− A(k) = 0.
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In A(n) we apply substitutions κ′ = κ − 1/2, µ′ = µ + 1/2, and obtain, by the
induction hypothesis,

A(n) = − 1√
r

n−1
∑

ℓ=0

(−1)ℓ
(

n− 1

ℓ

)

2µ′ + 2ℓ

(2µ′ + ℓ)n
Wκ′,µ′+ℓ(r)

= − 1√
r
(−1)n−1 r−(n−1)/2Wκ′−(n−1)/2,µ′+(n−1)/2(r)

= (−1)nr−n/2Wκ−n/2,µ+n/2(r).

Since A(0) = A(n), the identity follows.

Remark 7. From (35) it follows that, for n ∈ Z+,

n
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

2µ+ 2ℓ

(2µ+ ℓ)n+1
= δn,0.

Indeed, one just has to recall (7) and compare the asymptotic expansions of both
sides of (35) as r → ∞.

Here is a generalization of the addition formula for the Whittaker functions (25).

Theorem 8. For 0 ≤ r0 < r, κ, µ ∈ C, Reµ > 0,

1

(rr0)µ+1/2

∞
∑

ℓ=0

(−1)ℓ
(µ− κ+ 1/2)ℓ
(ℓ+ 2µ)ℓ ℓ!

Mκ,ℓ+µ(r0)Wκ,ℓ+µ(r) =
1

(r + r0)µ+1/2
Wκ,µ(r + r0).

(37)

Remark. The equation for r0 = 0 should be understood as a limiting case of (37), and
it is trivial.

Remark 9. Regarding the convergence of the series, it is guaranteed by the assumption
0 ≤ r0 < r. Let us shortly analyze this point. Put

tℓ :=

(

r + r0
r r0

)µ+1/2
(µ− κ+ 1/2)ℓMκ,ℓ+µ(r0)Wκ,ℓ+µ(r)

(ℓ+ 2µ)ℓ ℓ!Wκ,µ(r + r0)
,

so that (37) becomes
∑∞

ℓ=0(−1)ℓ tℓ = 1. Referring to (8) and (9), we replace the
Whittaker functions in the numerator by their leading asymptotic terms and get

tℓ =
22µ−1(r + r0)

µ+1/2

√
π r2µWκ,µ(r + r0)

(µ− κ + 1/2)ℓΓ(ℓ+ κ+ µ)

ℓ! (ℓ+ 2µ)ℓ

(

4r0
r

)ℓ
(

1 +O(ℓ−1)
)

.

Next we do the same for the factorial and the Pochhammer symbols in the expression
while using Stirling’s asymptotic formula. We find that for large ℓ,

tℓ =
(r + r0)

µ+1/2

Γ(µ− κ + 1/2) r2µWκ,µ(r + r0)
ℓ2µ−1

(r0
r

)ℓ
(

1 +O(ℓ−1)
)

.
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This obviously guarantees the convergence.
But on the other hand, the series turns out to be numerically quite unstable for

large values of µ. In such a case we can be dealing with an alternating series with many
summands in its beginning attaining huge values. Then significant cancellations of
the terms necessarily happen. From the numerical point of view this is a troublesome
situation. As an example let us consider the case with µ = 20, κ = 1, r0 = 1,
and r = 2. The Computer Algebra System Mathematica, as of version 14.0.0, gives
the values t0 = 1.07239 × 107, t145 = 3214.65, and is not capable to compute tℓ for
higher indices. Nonetheless replacing the involved Wittaker functions by their leading
asymptotic terms for µ large one finds that the first index for which tℓ attains a value
smaller than 0.1 is ℓ = 168. This shows that this concrete series starts to rapidly
converge to its final sum only for very large summation indices.

Proof. In view of (1) and (2) the equation can be rewritten as

∞
∑

ℓ=0

(−1)ℓ
(µ− κ + 1/2)ℓ
(ℓ+ 2µ)ℓ ℓ!

(rr0)
ℓ

× 1F1

(

ℓ+ µ− κ+
1

2
; 2ℓ+ 2µ+ 1; r0

)

U

(

ℓ + µ− κ+
1

2
, 2ℓ+ 2µ+ 1, r

)

= U

(

µ− κ +
1

2
, 2µ+ 1, r + r0

)

. (38)

We have [1, Eq. 13.4.21]

∂j

∂rj
U(a, b, r) = (−1)j(a)jU(a + j, b+ j, r), j ∈ Z+.

whence

U (a, b, r + r0) =

∞
∑

n=0

(−1)n (a)n
n!

U(a + n, b+ n, r) r n
0 .

Using, in (38), this power expansion as well as the power expansion of 1F1 we get

∞
∑

ℓ=0

(−1)ℓ
(1/2 + µ− κ)ℓ
(l + 2µ)ℓ ℓ!

∞
∑

j=0

(ℓ+ µ− κ+ 1/2)j
(2l + 2µ+ 1)j j!

×U

(

ℓ+ µ− κ +
1

2
, 2ℓ+ 2µ+ 1, r

)

rℓr ℓ+j
0

=
∞
∑

n=0

(−1)n (µ− κ+ 1/2)n
n!

U

(

µ− κ + n+
1

2
, 2µ+ n+ 1, r

)

r n
0 .

Comparing the coefficients at the same powers of r0 we obtain an equivalent countable
system of equations, with n ∈ Z+,

n
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

(2ℓ+ 2µ)

(ℓ+ 2µ)n+1
rℓU

(

µ+ ℓ− κ +
1

2
, 2µ+ 2ℓ+ 1, r

)

= (−1)n U

(

µ− κ+ n+
1

2
, 2µ+ n + 1, r

)

.
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Expressing reversely the confluent hypergeometric function U in terms of the Whit-
taker function W we get

n
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

2µ+ 2ℓ

(2µ+ ℓ)n+1

Wκ,µ+ℓ(r) = (−1)n r−n/2Wκ−n/2,µ+n/2(r).

This identity has been proven in Proposition 6.

Finally we prove a summation formula for the Whittaker functions Mκ,µ.

Proposition 10. For z ∈ C, κ ∈ C, µ > 0 and c ∈ [−1, 1 ],

∞
∑

ℓ=0

(µ− κ + 1/2)ℓ
(2µ)2ℓ

zℓ 1F1

(

ℓ+ µ− κ+
1

2
; 2ℓ+ 2µ+ 1; z

)

C
(µ)
ℓ (c)

= 1F1

(

µ− κ +
1

2
;µ+

1

2
;
1 + c

2
z

)

, (39)

or, if rewritten in terms of the Whittaker functions, with γ ∈ [−π, π ],

z−µ−1/2

∞
∑

ℓ=0

(µ− κ+ 1/2)ℓ
(2µ)2ℓ

Mκ,ℓ+µ(z)C
(µ)
ℓ (cos(γ))

= e−z/2
1F1

(

µ− κ+
1

2
;µ+

1

2
; cos2

(γ

2

)

z

)

. (40)

Remark 11. Here we tacitly assume that z−µ−1/2Mκ,ℓ+µ(z) is understood as an entire
function – first defined on the positive half-line and then admitting an unambiguous
continuation to the entire complex plane as an analytic function.

The particular case γ = 0 gives

∞
∑

ℓ=0

(µ− κ+ 1/2)ℓ
(ℓ+ 2µ)ℓ ℓ!

Mκ,ℓ+µ(z) = e−z/2
1F1

(

µ− κ+
1

2
;µ+

1

2
; z

)

,

and the particular case γ = π gives

z−µ−1/2

∞
∑

ℓ=0

(−1)ℓ
(µ− κ+ 1/2)ℓ
(l + 2µ)ℓ ℓ!

Mκ,ℓ+µ(z) = e−z/2. (41)

Note that

C
(µ)
ℓ (1) =

(2µ)ℓ
ℓ!

, C
(µ)
ℓ (−1) = (−1)ℓ

(2µ)ℓ
ℓ!

.

We remark that (41) is a generalization of (26).

Remark 12. Convergence of the series in (40) can be justified by exploring the asymp-
totic behavior of the summands. Regarding the Gegenbauer polynomials, an elaborate
asymptotic expansion for large orders is derived in a recent paper [6]. For our purposes
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a comparatively simple approach is sufficient. From equation (3.30) in [2] one infers
that

C
(ν)
ℓ (cos(θ))

C
(ν)
ℓ (1)

=
2Γ
(

ν + 1
2

)

√
π Γ(ν)

×
∫ π/2

0

cos2ν−1(ϕ) cos

(

ℓ arccos

(

cos(θ)
√

1− sin2(θ) cos2(ϕ)

))

(1− sin2(θ) cos2(ϕ))ℓ/2 dϕ

for ν > 0, 0 ≤ θ ≤ π and ℓ ∈ Z+. It follows that

|C(ν)
ℓ (cos(θ))|
C

(ν)
ℓ (1)

≤ 2 Γ
(

ν + 1
2

)

√
π Γ(ν)

∫ π/2

0

cos2ν−1(ϕ) dϕ = 1.

Thus for c ∈ [−1, 1 ] we have

|C(µ)
ℓ (c)| ≤ C

(µ)
ℓ (1) =

(2µ)ℓ
ℓ!

=
ℓ2µ−1

Γ(2µ)

(

1 +O(ℓ−1)
)

as ℓ→ ∞.

Furthermore, for ℓ sufficiently large, surely for any ℓ such that ℓ + 2µ + 1 >
|µ− κ + 1/2|, we can estimate

∀n ≥ 0,
|(ℓ+ µ− κ+ 1/2)n|

(2ℓ+ 2µ+ 1)n
≤ 1,

and therefore
∣

∣

∣

∣

1F1

(

ℓ+ µ− κ+
1

2
; 2ℓ+ 2µ+ 1; z

)
∣

∣

∣

∣

≤ K(κ, µ) e|z|

where K(κ, µ) is a constant independent of ℓ and z although it may depend on κ and
µ. The convergence now becomes obvious.

These estimates even show that the LHS of (39) is an entire function.

Proof. Using the power series expansion for the hypergeometric series we have to show
that

∞
∑

ℓ=0

∞
∑

j=0

(µ− κ + 1/2)ℓ
(2µ)ℓ(l + 2µ)ℓ

(ℓ+ µ− κ + 1/2)j
(2ℓ+ 2µ+ 1)j j!

C
(µ)
ℓ (c) zℓ+j

=

∞
∑

n=0

(µ− κ + 1/2)n
(µ+ 1/2)n n!

(

1 + c

2

)n

zn.

Comparing coefficients at the same powers of z we get an equivalent countable set of
equations, with n ∈ Z+,

n
∑

ℓ=0

(µ− κ+ 1/2)ℓ
(2µ)2ℓ

(ℓ+ µ− κ+ 1/2)n−ℓ

(2ℓ+ 2µ+ 1)n−ℓ(n− ℓ)!
C

(µ)
ℓ (c) =

(µ− κ+ 1/2)n
(µ+ 1/2)n n!

(

1 + c

2

)n

.
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These equations can be simplified using straightforward manipulations,

n
∑

ℓ=0

(2µ+ 2ℓ)

(2µ)n+ℓ+1(n− ℓ)!
C

(µ)
ℓ (c) =

2n(µ)n
(2µ)2n n!

(1 + c)n.

Recall that [12, Eq. (9.8.19)]

C
(µ)
ℓ (c) =

(2µ)ℓ
ℓ!

2F1

(

−ℓ, 2µ+ ℓ;µ+
1

2
;
1− c

2

)

.

After the substitution c = 1− 2w we get the equation

n
∑

ℓ=0

(2µ+ 2ℓ)

(2µ)n+ℓ+1(n− ℓ)!

(2µ)ℓ
ℓ!

2F1

(

−ℓ, 2µ+ ℓ;µ+
1

2
;w

)

=
22n(µ)n
(2µ)2nn!

(1− w)n.

And after the power series expansion of the hypergeometric function and interchanging
the order of summation we obtain

n
∑

j=0

(

n
∑

ℓ=j

(2µ+ 2ℓ)

(2µ)n+ℓ+1(n− ℓ)!

(2µ)ℓ
ℓ!

(−ℓ)j(2µ+ ℓ)j
(µ+ 1/2)jj!

)

wj =
22n(µ)n
(2µ)2nn!

(1− w)n.

Comparing coefficients at the same powers of w leads to the equations

n
∑

ℓ=j

(2µ+ 2ℓ)

(2µ)n+ℓ+1(n− ℓ)!

(2µ)ℓ
ℓ!

(−ℓ)j(2µ+ ℓ)j
(µ+ 1/2)j

=
(−1)j

(n− j)!

22n(µ)n
(2µ)2n

, 0 ≤ j ≤ n,

and this can be further rewritten,

n
∑

ℓ=j

(

n− j

ℓ− j

)

2µ+ 2ℓ

(2µ+ ℓ+ j)n−j+1
=

(µ+ 1/2)j
(µ+ 1/2)n

, 0 ≤ j ≤ n.

Shifting the summation index ℓ → ℓ + j and applying the substitutions n = N + j,
ν = µ+ j, we obtain an identity (equation (42)) which is proven in Lemma 13 below
thus concluding this proof.

Lemma 13. For N ∈ Z+ and ν ∈ C, ν 6= 0,−1,−2, . . .,

N
∑

ℓ=0

(

N

ℓ

)

2ν + 2ℓ

(2ν + ℓ)N+1
=

1

(ν + 1/2)N
. (42)

Proof. For N ∈ Z+, consider the expression

N
∑

ℓ=0

(

N

ℓ

)

(2ν + 2ℓ)(ν + 1/2)N
(2ν + ℓ)N+1

(43)
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which is regarded as a function of ν ∈ C. This is a meromorphic function on C, and
its limit, as ν → ∞, equals

N
∑

ℓ=0

(

N

ℓ

)

1

2N
= 1. (44)

The poles are located at the points ν = 0,−1/2,−1, . . . ,−(2N − 1)/2,−N , and all of
them are of first order.

Owing to the factor (ν + 1/2)N the singularities are removable for

ν = −1/2,−3/2, . . . ,−(2N − 1)/2.

Hence it suffices to check the poles at ν = 0,−1, . . . ,−N . The residue at a pole
ν = −t, 0 ≤ t ≤ N , equals

(−t + 1/2)N

min{2t,N}
∑

ℓ=max{2t−N,0}

(

N

ℓ

) −2t + 2ℓ

(−2t+ ℓ)2t−ℓ(1)N−2t+ℓ

= (−t + 1/2)N

min{2t,N}
∑

ℓ=max{2t−N,0}

(−1)ℓ
(

N

ℓ

) −2t + 2ℓ

(2t− ℓ)!(N − 2t+ ℓ)!
.

Further we omit the nonzero factor 2 (−t + 1/2)N . Shifting the summation index
ℓ→ t + ℓ, for t ≥ N/2 we get

N
∑

l=2t−N

(−1)ℓ
(

N

ℓ

) −t + ℓ

(2t− ℓ)!(N − 2t+ ℓ)!
=

(−1)t

N !

N−t
∑

ℓ=t−N

(−1)ℓ
(

N

t + ℓ

)(

N

t− ℓ

)

ℓ = 0.

Just note that the summands are odd in ℓ. For t ≤ N/2 we similarly get

2t
∑

ℓ=0

(−1)ℓ
(

N

ℓ

) −t + ℓ

(2t− ℓ)!(N − 2t+ ℓ)!
=

(−1)t

N !

t
∑

ℓ=−t

(−1)ℓ
(

N

t + ℓ

)(

N

t− ℓ

)

ℓ = 0.

Hence all singularities are removable and therefore expression (43) equals 1 identically
from (44) and Liouville’s Theorem.
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