HOMOCLINIC CLASSES OF GEODESIC FLOWS ON RANK 1 MANIFOLDS

YURI LIMA AND MAURICIO POLETTI

Abstract

We prove that the homoclinic class of every hyperbolic periodic orbit of a geodesic flow over a C^{∞} closed rank 1 Riemannian manifold equals the unit tangent bundle. As an application, we give a proof using symbolic dynamics of the theorem of Knieper on the uniqueness of the measure of maximal entropy Kni98] and theorems of Burns et al on the uniqueness of equilibrium states BCFT18.

1. Introduction

Homoclinic classes are an efficient way of decomposing the dynamics of hyperbolic systems into smaller pieces. Introduced by Newhouse in New72 as generalizations of the basic sets introduced by Smale in his spectral decomposition theorem Sma67, homoclinic classes have been used in more complicated settings beyond uniform hyperbolicity, see e.g. [BC04].

Rodriguez Hertz et al introduced ergodic homoclinic classes of hyperbolic periodic points, and studied the uniqueness of SRB measures for surface diffeomorphisms RHRHTU11. Buzzi, Crovisier and Sarig introduced homoclinic classes of hyperbolic measures and proved that each class carries at most one measure of maximal entropy BCS22. Later, Buzzi, Crosivier and Lima studied homoclinic classes of measures for three-dimensional flows with positive speed BCL23.

In this article, we consider homoclinic classes for geodesic flows over rank 1 manifolds, in any dimension. Let M be a C^{∞} closed Riemannian manifold with nonpositive sectional curvature, and let $\varphi=\left\{\varphi^{t}\right\}_{t \in \mathbb{R}}: T^{1} M \rightarrow T^{1} M$ be its geodesic flow. We say that M is rank 1 if there is a vector $x \in T^{1} M$ without a parallel Jacobi field perpendicular to the flow direction. This assumption implies various geometrical and dynamical properties of φ, see Section 2.1. Let $\mathrm{HC}(\mathcal{O})$ denote the homoclinic class of the periodic orbit \mathcal{O}, see Section 2.2 for the definition.

Main Theorem. Let φ be the geodesic flow over a C^{∞} closed rank 1 Riemannian manifold. If \mathcal{O} is a hyperbolic periodic orbit, then $\mathrm{HC}(\mathcal{O})=T^{1} M$.

Returning to the case of diffeomorphisms, Buzzi, Crovisier and Sarig proved that the constructions of countable Markov partitions of Sarig [Sar13] and Ben Ovadia BO18 code homoclinic classes by irreducible countable topological Markov shifts,

[^0]and that each homoclinic class supports at most one equilibrium state for each admissible potential, see Theorem 3.1 and Corollary 3.3 in BCS22. Employing the same methods, we provide applications of the Main Theorem to give proofs, for rank 1 manifolds, of the theorem of Knieper on the uniqueness of the measure of maximal entropy Kni98 and theorems of Burns et al on the uniqueness of equilibrium states for some classes of potentials BCFT18. Let ψ^{u} denote the geometric potential of φ and let Sing be the singular set of φ, see Section 2.1 for the definitions.

Theorem 1.1 (Theorem A of BCFT18]). Let M be a C^{∞} closed rank 1 Riemannian manifold, and let $\psi: T^{1} M \rightarrow \mathbb{R}$ be Hölder continuous or of the form $\psi=q \psi^{u}$ for $q \in \mathbb{R}$. If $P(\operatorname{Sing}, \psi)<P(\psi)$, then ψ has a unique equilibrium state μ. This measure is hyperbolic and fully supported.

Above, $P(\psi)$ and $P(\operatorname{Sing}, \psi)$ denote the topological pressure and topological pressure restricted to Sing respectively. We note that Theorem 1.1 is not the full statement proved in BCFT18, since we do not characterize μ as the weak-* limit of hyperbolic periodic orbits. We also remark that μ is Bernoulli, due to LLS16 in dimension two and to CT22, ALP20 in any dimension.

For multiples of the geometric potential in surfaces, we also recover part of Theorem C of BCFT18.

Theorem 1.2 (Theorem C of BCFT18]). If M is a C^{∞} closed rank 1 surface, then its geodesic flow φ has a unique equilibrium state μ_{q} for the potential $q \psi^{u}$ for each $q \in(-\infty, 1)$. This measure is hyperbolic and fully supported.

Again, we are not able to characterize μ as the weak-* limit of hyperbolic periodic orbits. Finally, using the pressure gap $P($ Sing, 0$)<P(0)$ proved in BCFT18, Theorem B], we are also able to recover Knieper's theorem on the uniqueness of the measure of maximal entropy.

Theorem $1.3(\boxed{K n i 98})$. If M is a C^{∞} closed rank 1 Riemannian manifold, then its geodesic flow φ has a unique measure of maximal entropy. This measure is hyperbolic and fully supported.

Let us stress that, in dimension two, the pressure gap is automatic, hence we provide a self-contained proof of Knieper's theorem in dimension two, using homoclinic classes and symbolic dynamics.

2. Preliminaries

2.1. Geodesic flows in nonpositive curvature. Let M be a C^{∞} closed Riemannian manifold and $T^{1} M$ be its unit tangent bundle, which is also a closed Riemannian manifold. Let $\varphi=\left\{\varphi^{t}\right\}_{t \in \mathbb{R}}: T^{1} M \rightarrow T^{1} M$ be the geodesic flow on M, and X be the vector field generating this flow. We assume that M is a rank 1 manifold: it has nonpositive sectional curvature and there is a vector without parallel Jacobi fields perpendicular to the flow direction.
Regular and Singular sets: The regular set of φ is defined by

$$
\operatorname{Reg}=\left\{x \in T^{1} M: \exists t \in \mathbb{R} \text { s.t. } K(\pi)<0 \text { for every plane } \pi \subset T_{\gamma_{x}(t)} M\right\}
$$

where γ_{x} is the geodesic starting at x. The singular set of φ is defined by

$$
\text { Sing }=T^{1} M \backslash \operatorname{Reg}=\left\{x \in T^{1} M: \forall t \in \mathbb{R}, \exists \pi \subset T_{\gamma_{x}(t)} M \text { plane s.t. } K(\pi)=0\right\}
$$

Clearly, Reg and Sing form a partition of $T^{1} M$, with Reg open and Sing closed. Geodesic flows on rank 1 manifolds have (weak) invariant directions and manifolds at every point. More specifically, there are continuous $d \varphi$-invariant bundles $x \in$ $T^{1} M \rightarrow E_{x}^{s / u}$ and continuous foliations $\left\{\widehat{W}^{s s / u u}(x): x \in T^{1} M\right\}$ tangent to $E^{s / u}$ and invariant under φ such that:
(1) E^{s}, E^{u} are orthogonal to X and $\operatorname{dim}\left(E^{s}\right)=\operatorname{dim}\left(E^{u}\right)=\operatorname{dim}(M)-1$.
(2) $x \in$ Reg if and only if $E_{x}^{s} \oplus\left\langle X_{x}\right\rangle \oplus E_{x}^{u}=T_{x}\left(T^{1} M\right)$.
(3) Reg is dense in $T^{1} M$.
(4) $\widehat{W}^{s / u}(x):=\bigcup_{t \in \mathbb{R}} \widehat{W}^{s s / u u}\left(\varphi^{t}(x)\right)$ is a φ-invariant connected manifold of dimension $\operatorname{dim}(M)$ and tangent to $E^{s / u} \oplus\langle X\rangle$.
(5) There is a universal constant $C=C(M)$ such that if d_{x} is the induced distance on $\widehat{W}^{s}(x)$ then $d_{x}\left(\varphi^{t}(x), \varphi^{t}(y)\right) \leq C d_{x}(x, y)$ for all $y \in \widehat{W}^{s}(x)$ and all $t \geq 0$; a similar statement holds for $\widehat{W}^{u}(x)$ and $t \leq 0$.
(6) $\widehat{W}^{s / u}(x)$ is dense in $T^{1} M$ for every $x \in T^{1} M$.

See Ebe01 for proofs of (1)-(5), and Bal82 for a proof of (6). For an orbit \mathcal{O}, define $\widehat{W}^{s / u}(\mathcal{O}):=\widehat{W}^{s / u}(x)$ for any $x \in \mathcal{O}$. We also recall the definition of the geometric potential.
The geometric potential of φ BR75: The geometric potential of φ is the function $\psi^{u}: T^{1} M \rightarrow \mathbb{R}$ defined as

$$
\psi^{u}(x)=-\left.\frac{d}{d t}\right|_{t=0} \log \operatorname{det}\left(\left.d \varphi_{x}^{t}\right|_{E_{x}^{u}}\right)=-\lim _{t \rightarrow 0} \frac{1}{t} \log \operatorname{det}\left(\left.d \varphi_{x}^{t}\right|_{E_{x}^{u}}\right)
$$

2.2. Homoclinic classes and symbolic dynamics. In this section, we combine results of LS19, ALP20, BCS22, BCL23 on codings of hyperbolic measures. Let $\mathscr{G}=(V, E)$ be an oriented graph, where V, E are the vertex and edge sets. We denote edges by $v \rightarrow w$, and assume that V is countable.
Topological Markov shift (TMS): It is a pair (Σ, σ) where

$$
\Sigma:=\{\mathbb{Z} \text {-indexed paths on } \mathscr{G}\}=\left\{\underline{v}=\left\{v_{n}\right\}_{n \in \mathbb{Z}} \in V^{\mathbb{Z}}: v_{n} \rightarrow v_{n+1}, \forall n \in \mathbb{Z}\right\}
$$

is the symbolic space and $\sigma: \Sigma \rightarrow \Sigma,[\sigma(\underline{v})]_{n}=v_{n+1}$, is the left shift. We endow Σ with the distance $d(\underline{v}, \underline{w}):=\exp \left[-\inf \left\{|n| \in \mathbb{Z}: v_{n} \neq w_{n}\right\}\right]$. The regular set of Σ is

$$
\Sigma^{\#}:=\left\{\underline{v} \in \Sigma: \exists v, w \in V \text { s.t. } \begin{array}{l}
v_{n}=v \text { for infinitely many } n>0 \\
v_{n}=w \text { for infinitely many } n<0
\end{array}\right\}
$$

We will sometimes omit σ from the definition, referring to Σ as a TMS. We only consider TMS that are locally compact, i.e. for all $v \in V$ the number of ingoing edges $u \rightarrow v$ and outgoing edges $v \rightarrow w$ is finite. Although we use the same notation, the regular set of φ and the regular set of Σ are not related; we maintain the notation because they are classical in their contexts.

Given (Σ, σ) a TMS, let $r: \Sigma \rightarrow(0,+\infty)$ be a continuous function. For $n \geq 0$, let $r_{n}=r+r \circ \sigma+\cdots+r \circ \sigma^{n-1}$ be the n-th Birkhoff sum of r, and extend this definition for $n<0$ in the unique way such that the cocycle identity holds: $r_{m+n}=r_{m}+r_{n} \circ \sigma^{m}, \forall m, n \in \mathbb{Z}$.
Topological Markov flow (TMF): The TMF defined by (Σ, σ) and roof function r is the pair $\left(\Sigma_{r}, \sigma_{r}\right)$ where $\Sigma_{r}:=\{(\underline{v}, t): \underline{v} \in \Sigma, 0 \leq t<r(\underline{v})\}$ and $\sigma_{r}: \Sigma_{r} \rightarrow \Sigma_{r}$ is the flow on Σ_{r} given by $\sigma_{r}^{t}\left(\underline{v}, t^{\prime}\right)=\left(\sigma^{n}(\underline{v}), t^{\prime}+t-r_{n}(\underline{v})\right)$, where n is the unique integer such that $r_{n}(\underline{v}) \leq t^{\prime}+t<r_{n+1}(\underline{v})$. We endow Σ_{r} with a natural
metric $d_{r}(\cdot, \cdot)$, called the Bowen-Walters metric, such that σ_{r} is a continuous flow BW72. The regular set of $\left(\Sigma_{r}, \sigma_{r}\right)$ is $\Sigma_{r}^{\#}=\left\{(\underline{v}, t) \in \Sigma_{r}: \underline{v} \in \Sigma^{\#}\right\}$.

Similarly, we will sometimes omit σ_{r} and refer to Σ_{r} as a TMF. The roof functions we consider will always be Hölder continuous, in which case $\exists \kappa, C>0$ such that $d_{r}\left(\sigma_{r}^{t}(z), \sigma_{r}^{t}\left(z^{\prime}\right)\right) \leq C d_{r}\left(z, z^{\prime}\right)^{\kappa}$ for all $|t| \leq 1$ and $z, z^{\prime} \in \Sigma_{r}$, see LS19, Lemma 5.8]. IRREDUCIBLE COMPONENT: If Σ is a TMS defined by an oriented graph $\mathscr{G}=(V, E)$, its irreducible components are the subshifts $\Sigma^{\prime} \subset \Sigma$ defined over maximal subsets $V^{\prime} \subset V$ satisfying the following condition:

$$
\forall v, w \in V^{\prime}, \exists \underline{v} \in \Sigma \text { and } n \geq 1 \text { such that } v_{0}=v \text { and } v_{n}=w
$$

An irreducible component Σ_{r}^{\prime} of Σ_{r} is a set of the form $\Sigma_{r}^{\prime}=\left\{(\underline{v}, t) \in \Sigma_{r}: \underline{v} \in \Sigma^{\prime}\right\}$ where Σ^{\prime} is an irreducible component of Σ.
χ-HYPERBOLIC MEASURE: A φ-invariant probability measure μ on $T^{1} M$ is χ hyperbolic if for μ-a.e. $x \in T^{1} M$ all the Lyapunov exponents are greater than χ in absolute value, except for the zero exponent in the flow direction.

Let μ be a hyperbolic φ-invariant probability measure. For μ-a.e. $x \in T^{1} M$,

$$
W^{s s}(x)=\left\{y \in T^{1} M: \limsup _{t \rightarrow+\infty} \frac{1}{t} \log d\left(\varphi^{t}(x), \varphi^{t}(y)\right)<0\right\}
$$

denotes the strong stable manifold of x and

$$
W^{s}(x)=\bigcup_{t \in \mathbb{R}} \varphi^{t}\left[W^{s s}(x)\right]
$$

denotes the stable manifold of x. We define similarly $W^{u u}(x)$ and $W^{u}(x)$ the strong unstable and unstable manifolds of x.

Given a hyperbolic periodic orbit \mathcal{O}, we let $W^{s / u}(\mathcal{O})=W^{s / u}(x)$ denote the stable/unstable manifold of \mathcal{O}, for any $x \in \mathcal{O}$.
Homoclinic class of hyperbolic periodic orbit: The homoclinic class of a hyperbolic periodic orbit \mathcal{O} is the set

$$
\mathrm{HC}(\mathcal{O})=\overline{W^{u}(\mathcal{O}) \pitchfork W^{s}(\mathcal{O})}
$$

To simplify the notation, we will sometimes write $N:=T^{1} M$.
Homoclinic relation of measures BCS22, BCL23: We say that two ergodic hyperbolic measures μ, ν are homoclinically related if for μ-a.e. x and ν-a.e. y there exist transverse intersections $W^{s}(x) \pitchfork W^{u}(y) \neq \emptyset$ and $W^{u}(x) \pitchfork W^{s}(y) \neq \emptyset$, i.e. points $z_{1} \in W^{s}(x) \cap W^{u}(y)$ and $z_{2} \in W^{u}(x) \cap W^{s}(y)$ such that $T_{z_{1}} N=$ $T_{z_{1}} W^{s}(x)+T_{z_{1}} W^{u}(y)$ and $T_{z_{2}} N=T_{z_{2}} W^{u}(x)+T_{z_{2}} W^{s}(y)$.

The homoclinic relation is an equivalence relation among ergodic hyperbolic measures, see BCL23, Prop. 10.1]. Next, we state the coding theorem for nonuniformly hyperbolic flows that we will use to prove Theorems $1.1,1.2$, and 1.3 . This theorem mixes the versions presented in ALP20, Theorem 10.1] and BCL23, Theorem 1.1].
Theorem 2.1. Let X be a $C^{1+\beta}$ vector field with $X \neq 0$ everywhere, let $\varphi: N \rightarrow N$ be the flow generated by X, and let $\chi>0$. If μ_{1}, μ_{2} are homoclinically related $\chi-$ hyperbolic probability measures, then there is an irreducible topological Markov flow $\left(\Sigma_{r}, \sigma_{r}\right)$ and a Hölder continuous map $\pi_{r}: \Sigma_{r} \rightarrow N$ s.t.:
(1) $r: \Sigma \rightarrow \mathbb{R}^{+}$is Hölder continuous and bounded away from zero and infinity.
(2) $\pi_{r} \circ \sigma_{r}^{t}=\varphi^{t} \circ \pi_{r}$ for all $t \in \mathbb{R}$.
(3) $\pi_{r}\left[\Sigma_{r}^{\#}\right]$ has full measure with respect to μ_{1} and μ_{2}.
(4) Every $x \in N$ has finitely many pre-images in $\Sigma_{r}^{\#}$.

Proof. If M has dimension two, then we can apply BCL23, Theorem 1.1] directly. Since this latter theorem is not available in higher dimension, we have to argue differently. Let $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ be the χ-hyperbolic periodic orbits homoclinically related to μ_{1} (and hence to μ_{2}).

Claim: There is a global Poincaré section Λ such that if $f: \Lambda \rightarrow \Lambda$ is the Poincaré return map and \mathscr{S} is the singular set of f, then:
(1) Λ is adapted for μ_{1} and μ_{2}, i.e.

$$
\begin{equation*}
\lim _{|t| \rightarrow \infty} \frac{1}{t} \log d\left(\varphi^{t}(x), \mathscr{S}\right)=0 \tag{2.1}
\end{equation*}
$$

for μ_{i}-a.e. $x \in \Lambda, i=1,2{ }^{1}$
(2) For every n, there exists a compact, φ-invariant, transitive, locally maximal, χ-hyperbolic set K_{n} that contains $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ and such that $K_{n} \cap \mathscr{S}=\emptyset$.

The singular set is $\mathscr{S}=\left\{x \in \Lambda:\left\{x, f(x), f^{-1}(x)\right\} \cap \partial \Lambda \neq \emptyset\right\}$.
Proof of the claim. Fix $x_{i} \in \mathcal{O}_{i}$ and $z_{i j} \in W^{u}\left(x_{i}\right) \pitchfork W^{s}\left(x_{j}\right)$, and let $\tau_{i j} \in \mathbb{R}$ such that $z_{i j} \in W^{u u}\left(x_{i}\right) \cap W^{s s}\left(\varphi^{\tau_{i j}}\left(x_{j}\right)\right)$. We construct a one-parameter family of global Poincaré sections Λ_{r}, where r varies in an interval $[a, b]$ and each Λ_{r} is the union of finitely many codimension 1 disjoint balls $D_{1}(r), \ldots, D_{k}(r) \subset N$ centered at points $y_{1}, \ldots, y_{k} \in N$, each of them with radius r and almost orthogonal to X. The details of the construction can be found in LS19, Section 2] for three-dimensional flows and in ALP20, Section 10] for any dimension. We can assume that the roof functions of the Poincaré return maps to Λ_{r} are all larger than some $\varepsilon_{0}>0$. As the radius r varies, the boundary of Λ_{r} varies as well. Applying a double counting argument and the Borel-Cantelli lemma, for Lebesgue almost every choice $r \in[a, b]$ the section Λ_{r} satisfies (1) above, see LS19, Theorem 2.8] for details. Hence we focus on showing that (2) holds in a set of parameters $r \in[a, b]$ of positive measure. We will prove this using parameter selection. Observe that if K is φ-invariant, then $K \cap \mathscr{S}=\emptyset$ if and only if $K \cap \partial \Lambda_{r}=\emptyset$.

Write $z_{i i}=x_{i}$, and let $\mathcal{O}_{i j}$ denote the orbit of $z_{i j}$. Consider the countable union of orbits $\bigcup_{i, j} \mathcal{O}_{i j}$. Clearly, the set of parameters $r \in[a, b]$ such that $\left(\bigcup_{i, j} \mathcal{O}_{i j}\right) \cap$ $\partial \Lambda_{r} \neq \emptyset$ is countable. Below, we consider r in the complement of this set. We will use the following notation: given two functions $g(\delta), h(\delta)$, write $g=O_{n}(h)$ when there is a constant $C>0$ that depends on n and $\delta_{0}>0$ such that $|g(\delta)| \leq C|h(\delta)|$ for all $|\delta|<\delta_{0}$.

Fix n and $\delta>0$. In the sequel, we construct a δ-neighborhood of $\bigcup_{1 \leq i, j \leq n} \mathcal{O}_{i j}$. Let $C=C(n)>0$ such that

$$
\begin{aligned}
d\left(\varphi^{-t}\left(x_{i}\right), \varphi^{-t}\left(z_{i j}\right)\right) & \leq C e^{-\chi t} \\
d\left(\varphi^{t+\tau_{i j}}\left(x_{j}\right), \varphi^{t}\left(z_{i j}\right)\right) & \leq C e^{-\chi t}, \quad \forall 1 \leq i, j \leq n, \forall t \geq 0
\end{aligned}
$$

[^1]Let $t_{i j}=O_{n}(|\log \delta|)$ positive such that $\varphi^{-t_{i j}}\left(z_{i j}\right) \in B_{\delta}\left(\mathcal{O}_{i}\right)$ and $\varphi^{t_{i j}}\left(z_{i j}\right) \in B_{\delta}\left(\mathcal{O}_{j}\right)$. The set $Z_{n}=\bigcup_{i} \mathcal{O}_{i} \cup \bigcup\left\{\varphi^{t}\left(z_{i j}\right): 1 \leq i, j \leq n,|t| \leq t_{i j}\right\}$ is the union of finitely many pieces of orbits and $\bigcup_{1 \leq i, j \leq n} \mathcal{O}_{i j} \subset B_{\delta}\left(Z_{n}\right)$. Arguing as in [BCS22, Lemma 3.11], we can construct inside $B_{\delta}\left(Z_{n}\right)$ a compact, φ-invariant, transitive, locally maximal, χ-hyperbolic set that contains $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$. Thus, we estimate the measure of the set of $r \in[a, b]$ such that $B_{\delta}\left(Z_{n}\right) \cap \partial \Lambda_{r} \neq \emptyset$.

Denoting by $\left|\mathcal{O}_{i}\right|$ the length of \mathcal{O}_{i}, the total length of Z_{n} is

$$
\sum_{1 \leq i \leq n}\left|\mathcal{O}_{i}\right|+\sum_{1 \leq i, j \leq n} 2 t_{i j}=O_{n}(|\log \delta|) .
$$

Recalling that ε_{0} is a lower bound for the roof function of Λ_{r}, the set $Z_{n} \cap \Lambda_{r}$ has at most $\frac{1}{\varepsilon_{0}} O_{n}(|\log \delta|)=O_{n}(|\log \delta|)$ elements. Then the intersection $B_{\delta}\left(Z_{n}\right) \cap \Lambda_{b}$ is contained in $O_{n}(|\log \delta|)$ balls of radius 2δ. The set of parameters $\operatorname{Bad}(n)=\{r \in$ $\left.[a, b]: B_{\delta}\left(Z_{n}\right) \cap \partial \Lambda_{r} \neq \emptyset\right\}$ is thus contained in the union of $O_{n}(|\log \delta|)$ intervals of length 4δ, and so has Lebesgue measure $O_{n}(\delta|\log \delta|)$. Since $\lim _{\delta \rightarrow 0} \delta \log \delta=0$, we can take δ_{n} such that $\operatorname{Leb}[\operatorname{Bad}(n)]<\varepsilon / n^{2}$ for small $\varepsilon>0$ and so the complement $[a, b] \backslash \bigcup_{n \geq 1} \operatorname{Bad}(n)$ has positive Lebesgue measure.

In summary, we can choose $r \in[a, b]$ such that:

- Condition 2.1 is satisfied: the space of $r \in[a, b]$ satisfying it has full measure.
- $\left(\bigcup_{i, j} \mathcal{O}_{i j}\right) \cap \partial \Lambda_{r}=\emptyset$: the space of $r \in[a, b]$ satisfying it is the complement of a countable set, hence has full measure.
- $B_{\delta_{n}}\left(Z_{n}\right) \cap \partial \Lambda_{r}=\emptyset$ for all $n \geq 1$: the space of $r \in[a, b]$ satisfying it has positive measure.
This concludes the proof of the claim.
Once the section $\Lambda=\Lambda_{r}$ is chosen, apply ALP20, Theorem 10.1] to construct a TMF $\left(\Sigma_{r}, \sigma_{r}\right)$ and a Hölder continuous map $\pi_{r}: \Sigma_{r} \rightarrow N$ satisfying (1)-(4) in Theorem 2.1, with the exception that Σ_{r} might not be irreducible. Since $K_{n} \cap \mathscr{S}=\emptyset$ and K_{n} is compact and χ-hyperbolic, ALP20] implies that $K_{n} \subset \pi_{r}\left[\Sigma_{r}\right]$. Since K_{n} is uniformly hyperbolic, we actually have $K_{n} \subset \pi_{r}\left[\Sigma_{r}^{\#}\right]$.

The final step is to find an irreducible component Σ_{r}^{\prime} of Σ_{r} that lifts both μ_{1} and μ_{2}. For that, we proceed as in BCL23, Lemma 10.4]:

- For each $n \geq 1$, there is an invariant, compact, transitive set $X_{n} \subset \Sigma_{r}^{\#}$ that lifts K_{n}.
- Since \mathcal{O}_{1} has finitely many lifts in $\Sigma_{r}^{\#}$, the sequence X_{1}, X_{2}, \ldots has a subsequence $X_{n_{1}}, X_{n_{2}}, \ldots$ containing a same lift (\underline{v}, t) of \mathcal{O}_{1}. Take Σ_{r}^{\prime} to be the irreducible component of (\underline{v}, t). Then \mathcal{O}_{1}, \ldots all lift to periodic orbits in Σ_{r}^{\prime}.
Now proceed as in BCL23, Theorem 1.1] to lift generic points for μ_{1} and μ_{2} to Σ_{r}^{\prime}. This completes the proof of the theorem.

3. Proofs

Proof of Main Theorem. Let \mathcal{O} be a hyperbolic periodic orbit.
Claim: $W^{s / u}(\mathcal{O})=\widehat{W}^{s / u}(\mathcal{O})$.

Proof of the claim. We prove the claim for $W^{s}(\mathcal{O})$ (the other proof is analogous). We first show that $W^{s}(\mathcal{O}) \subset \widehat{W}^{s}(\mathcal{O})$. Fix $\varepsilon>0$ small enough so that

$$
W_{\varepsilon}^{s}(\mathcal{O})=\left\{y \in T^{1} M: d\left(\varphi^{t}(y), \mathcal{O}\right)<\varepsilon, \forall t \geq 0\right\} \subset W^{s}(\mathcal{O})
$$

Let $\widehat{W}_{\delta}^{s}(\mathcal{O}) \subset \widehat{W}^{s}(\mathcal{O})$ be the δ-neighborhood of \mathcal{O} in the d_{x} metric, for (any) $x \in \mathcal{O}$. If $y \in \widehat{W}_{\varepsilon / C}^{s}(\mathcal{O})$ with $d_{x}(y, x)<\varepsilon / C$ where $x \in \mathcal{O}$, then by property (5) of Section 2.1 we have

$$
d\left(\varphi^{t}(y), \mathcal{O}\right) \leq d_{x}\left(\varphi^{t}(y), \varphi^{t}(x)\right) \leq C d_{x}(y, x)<\varepsilon
$$

for all $t \geq 0$, hence $\widehat{W}_{\varepsilon / C}^{s}(\mathcal{O}) \subset W_{\varepsilon}^{s}(\mathcal{O})$. Since $\widehat{W}_{\varepsilon / C}^{s}(\mathcal{O})$ and $W_{\varepsilon}^{s}(\mathcal{O})$ both have dimension $\operatorname{dim}(M)$, we conclude that $W_{\delta}^{s}(\mathcal{O}) \subset \widehat{W}_{\varepsilon / C}^{s}(\mathcal{O})$ for small $\delta>0$. Therefore $W_{\delta}^{s}(\mathcal{O}) \subset \widehat{W}^{s}(\mathcal{O})$ and by the invariance of \widehat{W}^{s} the same occurs for $W^{s}(\mathcal{O})=$ $\bigcup_{t \geq 0} \varphi^{-t}\left[W_{\delta}^{s}(\mathcal{O})\right]$.

Now we prove that $W^{s}(\mathcal{O})=\widehat{W}^{s}(\mathcal{O})$. Since $\widehat{W}^{s}(\mathcal{O})$ is connected (see e.g. BP07, Prop. 12.2.4]), it is enough to show that $W^{s}(\mathcal{O})$ is open and dense in the induced topology of $\widehat{W}^{s}(\mathcal{O})$. Recall that $\varepsilon>0$ is small such that $W^{s}(\mathcal{O})=$ $\bigcup_{t \geq 0} \varphi^{-t}\left[W_{\varepsilon}^{s}(\mathcal{O})\right]$, where $W_{\varepsilon}^{s}(\mathcal{O})=\left\{y \in T^{1} M: d\left(\varphi^{t}(y), \mathcal{O}\right)<\varepsilon, \forall t \geq 0\right\}$. Since $W_{\varepsilon}^{s}(\mathcal{O})$ is open in the induced topology of $\widehat{W}^{s}(\mathcal{O})$, the same holds for $W^{s}(\mathcal{O})$. To prove that $W^{s}(\mathcal{O})$ is closed in the induced topology of $\widehat{W}^{s}(\mathcal{O})$, let $z \in \widehat{W}^{s}(\mathcal{O})$ and $z_{k} \in W^{s}(\mathcal{O})$ such that $d_{x}\left(z_{k}, z\right) \rightarrow 0$, for (any) $x \in \mathcal{O}$. We wish to show that $z \in W^{s}(\mathcal{O})$. By the triangle inequality and property (5) in Section 2.1. we have

$$
\begin{aligned}
& d\left(\varphi^{t} z, \mathcal{O}\right) \leq d\left(\varphi^{t} z, \varphi^{t} z_{k}\right)+d\left(\varphi^{t} z_{k}, \mathcal{O}\right) \\
& \leq d_{x}\left(\varphi^{t} z, \varphi^{t} z_{k}\right)+d\left(\varphi^{t} z_{k}, \mathcal{O}\right) \leq C d_{x}\left(z, z_{k}\right)+d\left(\varphi^{t} z_{k}, \mathcal{O}\right)
\end{aligned}
$$

Let k such that $d_{x}\left(z_{k}, z\right)<\varepsilon / 2 C$, and then let $T_{0}>0$ such that $d\left(\varphi^{t} z_{k}, \mathcal{O}\right)<\varepsilon / 2$ for all $t \geq T_{0}$. Hence $d\left(\varphi^{t} z, \mathcal{O}\right)<\varepsilon$ for all $t \geq T_{0}$, and so $\varphi^{T_{0}} z \in W_{\varepsilon}^{s}(\mathcal{O})$. This proves that $z \in W^{s}(\mathcal{O})$, as wished.

By the claim and property (6) of Section 2.1. we conclude that $W^{s / u}(\mathcal{O})=$ $\widehat{W}^{s / u}(\mathcal{O})$ is dense in $T^{1} M$. Fix $y \in \operatorname{Reg}$, and let $U \subset$ Reg be an open set containing y. Let $\varepsilon, \delta>0$ small such that:

- For every $z \in B_{\varepsilon}(y), \widehat{W}^{s / u}(z)$ has internal radius at z larger than δ.
- If N^{s}, N^{u} are submanifolds tangent to $E^{s} \oplus\langle X\rangle, E^{u} \oplus\langle X\rangle$ respectively and if there is $z_{s / u} \in N^{s / u} \cap B_{\varepsilon}(y)$ such that $N^{s / u}$ has internal radius at $z_{s / u}$ larger than δ, then N^{s}, N^{u} have a transverse intersection at some $z \in U$.
The parameter $\varepsilon>0$ exists because $E^{s / u}$ varies continuously and $E_{y}^{s} \oplus\left\langle X_{y}\right\rangle \oplus E_{y}^{u}=$ $T_{y}\left(T^{1} M\right)$. Since $W^{s / u}(\mathcal{O})$ is dense, then $W^{s}(\mathcal{O}) \cap B_{\varepsilon}(y) \neq \emptyset$ and $W^{u}(\mathcal{O}) \cap B_{\varepsilon}(y) \neq$ \emptyset, hence $W^{s}(\mathcal{O}) \pitchfork W^{u}(\mathcal{O})$ at some point $z \in U$. This implies that $y \in \operatorname{HC}(\mathcal{O})$. Since $y \in \operatorname{Reg}$ is arbitrary, $\mathrm{HC}(\mathcal{O}) \supset$ Reg. Finally, since Reg is dense in $T^{1} M$, we conclude that $\mathrm{HC}(\mathcal{O})=T^{1} M$.

Proof of Theorem 1.1. Let ψ be Hölder continuous or of the form $\psi=q \psi^{u}$ with $q \in \mathbb{R}$. In particular, ψ is continuous, hence the existence of an equilibrium state is guaranteed by the C^{∞} regularity of φ New 89 . For the uniqueness, let μ_{1}, μ_{2} be two ergodic equilibrium states. Since $P($ Sing, $\psi)<P(\psi)$, we have $\mu_{1}(\operatorname{Reg})=\mu_{2}(\operatorname{Reg})=$ 1 and so μ_{1}, μ_{2} are hyperbolic. Since μ_{1}, μ_{2} are ergodic, we can take $\chi>0$ small so that μ_{1}, μ_{2} are χ-hyperbolic. The measures μ_{1} and μ_{2} are homoclinically related.

Indeed, let \mathcal{O} be a hyperbolic periodic orbit and $x \in \mathcal{O}$. Let $y_{i} \in \operatorname{Reg}$ be a generic point for $\mu_{i}, i=1,2$. Since $W^{s / u}(\mathcal{O})=\widehat{W}^{s / u}(\mathcal{O})$ is dense in $T^{1} M$, we have $W_{\text {loc }}^{s}\left(y_{1}\right) \pitchfork W^{u}(x)$ and $W_{\text {loc }}^{u}\left(y_{2}\right) \pitchfork W^{s}(x)$. By the inclination lemma, we conclude that $W^{s}\left(y_{1}\right) \pitchfork W^{u}\left(y_{2}\right)$ near x. Interchanging the roles of y_{1}, y_{2}, we also have $W^{s}\left(y_{2}\right) \pitchfork W^{u}\left(y_{1}\right)$.

Applying Theorem 2.1 to μ_{1} and μ_{2}, we get an irreducible TMF $\left(\Sigma_{r}, \sigma_{r}\right)$ and a Hölder continuous map $\pi_{r}: \Sigma_{r} \rightarrow \mathbb{R}$ such that $\mu_{i}\left[\pi_{r}\left(\Sigma_{r}^{\#}\right)\right]=1$ for $i=1,2$. Therefore, μ_{1}, μ_{2} lift to ergodic measures $\widehat{\mu}_{1}, \widehat{\mu}_{2}$ on Σ_{r}. These measures are equilibrium states of the potential $\widehat{\psi}=\psi \circ \pi_{r}$.
Claim: $\widehat{\psi}$ is Hölder continuous.
Proof of the claim. When ψ is Hölder continuous, $\widehat{\psi}=\psi \circ \pi_{r}$ is the composition of two Hölder maps, hence Hölder continuous.

When $\psi=q \psi^{u}$ for some $q \in \mathbb{R}$, we show that $(\underline{v}, t) \in \Sigma_{r} \mapsto E_{\pi_{r}(\underline{v}, t)}^{u}$ is Hölder continuous, which obviously implies that $\widehat{\psi}$ is Hölder continuous. It is enough to show that $\underline{v} \in \Sigma \mapsto E_{\pi_{r}(\underline{v}, 0)}^{u}$ is Hölder continuous, since by $d \varphi$-invariance this implies that $(\underline{v}, t) \in \Sigma_{r} \mapsto E_{\pi_{r}(\underline{v}, t)}^{u}$ is Hölder continuous.

As in the proof of Theorem 2.1, let $f: \Lambda \rightarrow \Lambda$ be the Poincaré return map. The map $\mathscr{F}: \underline{v} \in \Sigma \rightarrow F_{x}^{u} \subset T_{x} \Lambda$, where F_{x}^{u} is the unstable direction for f at $x=\pi_{r}(\underline{v}, 0)$, is Hölder continuous. As a matter of fact, employing the notation of ALP20, F_{x}^{u} is the tangent direction of the u-admissible graph $V^{u}[\underline{v}]=$ $\lim _{n \rightarrow \infty}\left(\overline{\mathscr{F}}_{-1} \circ \cdots \circ \mathscr{F}_{-n}\right)\left(V_{-n}\right)$, where \mathscr{F}_{-n} is the unstable graph transform defined by the edge $v_{n} \rightarrow v_{n+1}$ and V_{-n} is any $u-$ admissible graph at v_{-n}, see ALP20, Section 4.5]..2 Therefore, if two sequences $\underline{v}, \underline{w}$ are close then $V^{u}[\underline{v}], V^{u}[\underline{w}]$ are C^{1}-close. For the details, see $\overline{B O 18}$, Proposition. 3.12(5)], whose proof applies verbatim in the context of ALP20].

Let $\mathfrak{p}_{x}: T_{x} \Lambda \rightarrow X_{x}^{\perp}$ be the orthogonal projection. Such map exists and is an isomorphism because both $X_{x}^{\perp}, T_{x} \Lambda$ have dimension $\operatorname{dim}\left(T^{1} M\right)-1$ and $T_{x} \Lambda$ is almost orthogonal to X_{x}. We have $E_{x}^{u}=\mathfrak{p}_{x}\left(F_{x}^{u}\right)$. Since $x \in T^{1} M \mapsto X_{x}^{\perp}$ and $x \in \Lambda \mapsto T_{x} \Lambda$ are C^{∞}, the map $\mathscr{P}: x \in \Lambda \mapsto \mathfrak{p}_{x}$ is C^{∞}. Therefore $\underline{v} \in \Sigma \mapsto E_{\pi_{r}(\underline{v}, 0)}^{u}$, being the composition $\mathscr{P} \circ \mathscr{F}$, is Hölder continuous.

The measures $\widehat{\mu}_{1}, \widehat{\mu}_{2}$ project to ergodic σ-invariant probability measures $\widehat{\nu}_{1}, \widehat{\nu}_{2}$ on the irreducible component Σ which are equilibrium states of the Hölder continuous potential $\widehat{\psi}_{r}-P_{\text {top }}(\psi) r$ where $\widehat{\psi}_{r}(\underline{v})=\int_{0}^{r(\underline{v})} \widehat{\psi}(\underline{v}, t) d t$, see e.g. PP90, Proposition 6.1]. By BS03, Theorem 1.1], we conclude that $\widehat{\nu}_{1}=\widehat{\nu}_{2}$, and so $\mu_{1}=\mu_{2}$.

Finally, we show that the unique equilibrium state μ is fully supported. The proof is the same of BCS22, Corollary 3.3]. Using the same notation of the previous paragraphs, $\widehat{\nu}$ has full support in Σ by BS03 and so $\widehat{\mu}$ has full support in Σ_{r}. This implies that $\operatorname{supp}(\mu)=\overline{\pi_{r}\left(\Sigma_{r}\right)}$, so it is enough to show that $\pi_{r}\left(\Sigma_{r}\right)$ is dense in $T^{1} M$. Let \mathcal{O} be a hyperbolic periodic orbit homoclinically related to $\mu!^{3}$ We thus have $\operatorname{supp}(\mu) \subset \mathrm{HC}(\mathcal{O})=T^{1} M$, hence it is enough to show that $\pi_{r}\left(\Sigma_{r}\right)$ is dense in $\left\{W^{u}(\mathcal{O}) \pitchfork W^{s}(\mathcal{O})\right\}$. The proof of this fact in BCS22, Corollary 3.3]

[^2]uses BCS22, Proposition 3.7], which works equally well in our context. Hence we conclude that $\operatorname{supp}(\mu)=\overline{\pi_{r}\left(\Sigma_{r}\right)}=\mathrm{HC}(\mathcal{O})=T^{1} M$.

Remark 3.1. When M is a surface and $\psi=q \psi^{u}$, LLS16 proves uniqueness without using the Hölder continuity of $\widehat{\psi}$. For that, the authors show that $\widehat{\psi}_{r}$ above is cohomologous to the Hölder continuous function $\underline{v} \in \Sigma \mapsto-\log \operatorname{det}\left(\left.d f\right|_{F_{\pi_{r(\underline{v}, 0)}^{u}}^{u}}\right)$, see LLS16, Lemmas 8.1 and 8.2]. We note that the same proof applies here.
Proof of Theorem 1.2. The proof is the same of BCFT18, Theorem C]. We include it for completeness. Let M be a surface and $\psi=q \psi^{u}$ for $q<1$. Inside Sing all Lyapunov exponents are zero. Let μ be a φ-invariant measure supported on Sing. By the Ruelle inequality, $h(\mu)=0$. Also, since $\psi^{u}=0$ on Sing, it follows that

$$
h(\mu)+q \int \psi^{u} d \mu=0
$$

Therefore $P(\operatorname{Sing}, \psi)=0$. On the other hand, if λ is the Lebesgue measure, then by Pesin equality

$$
h(\lambda)+q \int \psi^{u} d \mu=(1-q) h(\lambda)>0
$$

Therefore $P(\psi)>0=P($ Sing, $\psi)$. Now apply Theorem 1.1.
Proof of Theorem 1.3. When M is a surface we have, as in the previous proof, that $P($ Sing, 0$)=0$. Since $P(0)=h_{\text {top }}(\varphi)>0$, we get the pressure gap $P($ Sing, 0$)<$ $P(0)$. Applying Theorem 1.1. we conclude the uniqueness of the measure of maximal entropy. In higher dimension, we invoke BCFT18, Theorem B] to get the pressure gap $P($ Sing, 0$)<P(0)$. Again, applying Theorem 1.1, we obtain the uniqueness of the measure of maximal entropy.

References

[ALP20] Ermerson Araujo, Yuri Lima, and Mauricio Poletti, Symbolic dynamics for nonuniformly hyperbolic maps with singularities in high dimension, 2020. preprint arXiv:2010.11808.
[Bal82] Werner Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann. 259 (1982), no. 1, 131-144.
[BC04] Christian Bonatti and Sylvain Crovisier, Récurrence et généricité, Invent. Math. 158 (2004), no. 1, 33-104.
[BCFT18] K. Burns, V. Climenhaga, T. Fisher, and D. J. Thompson, Unique equilibrium states for geodesic flows in nonpositive curvature, Geom. Funct. Anal. 28 (2018), no. 5, 1209-1259.
[BCL23] Jérôme Buzzi, Sylvain Crovisier, and Yuri Lima, Symbolic dynamics for large non-uniformly hyperbolic sets of three dimensional flows, 2023. preprint arXiv:2307.14319.
[BCS22] Jérôme Buzzi, Sylvain Crovisier, and Omri Sarig, Measures of maximal entropy for surface diffeomorphisms, Ann. of Math. (2) 195 (2022), no. 2, 421-508.
[BO18] Snir Ben Ovadia, Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, Journal of Modern Dynamics 13 (2018), 43-113.
[BP07] Luis Barreira and Yakov Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge, 2007. Dynamics of systems with nonzero Lyapunov exponents. MR2348606 (2010c:37067)
[BR75] Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181-202. MR0380889 (52 \#1786)
[BS03] Jérôme Buzzi and Omri Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems 23 (2003), no. 5, 1383-1400. MR2018604 (2004k:37053)
[BW72] Rufus Bowen and Peter Walters, Expansive one-parameter flows, J. Diff. Equations 12 (1972), 180-193.
[CT22] Benjamin Call and Daniel J. Thompson, Equilibrium states for self-products of flows and the mixing properties of rank 1 geodesic flows, J. Lond. Math. Soc. (2) 105 (2022), no. 2, 794-824.
[Ebe01] Patrick Eberlein, Geodesic flows in manifolds of nonpositive curvature, Smooth ergodic theory and its applications (Seattle, WA, 1999), 2001, pp. 525-571.
[Kni98] Gerhard Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. of Math. (2) 148 (1998), no. 1, 291-314. MR1652924 (2000b:37016)
[LLS16] François Ledrappier, Yuri Lima, and Omri Sarig, Ergodic properties of equilibrium measures for smooth three dimensional flows, Comment. Math. Helv. 91 (2016), no. 1, 65-106.
[LS19] Yuri Lima and Omri M. Sarig, Symbolic dynamics for three-dimensional flows with positive topological entropy, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 1, 199-256.
[New72] Sheldon E. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc. 167 (1972), 125-150.
[New89] , Continuity properties of entropy, Ann. of Math. (2) 129 (1989), no. 2, 215-235. MR986792 (90f:58108)
[PP90] William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268. MR1085356 (92f:58141)
[RHRHTU11] F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi, and R. Ures, Uniqueness of SRB measures for transitive diffeomorphisms on surfaces, Comm. Math. Phys. 306 (2011), no. 1, 35-49.
[Sar13] Omri M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc. 26 (2013), no. 2, 341-426.
[Sma67] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.

Departamento de Matemática, Universidade Federal do Ceará (UFC), Campus do Pici, Bloco 914, CEP 60455-760. Fortaleza - CE, Brasil

Email address: yurilima@gmail.com
Departamento de Matemática, Universidade Federal do Ceará (UFC), Campus do Pici, Bloco 914, CEP 60455-760. Fortaleza - CE, Brasil

Email address: mpoletti@mat.ufc.br

[^0]: Date: March 7, 2024.
 2020 Mathematics Subject Classification. 37B10, 37C05, 37C83, 37D25, 37D35.
 Key words and phrases. geodesic flow, Markov partition, Pesin theory, symbolic dynamics.
 We thank Katrin Gelfert, Davi Obata, and Sergio Romaña for fruitful conversations. MP was supported by CNPq and Instituto Serrapilheira, grant number Serra-R-2211-41879. YL was supported by CNPq and Instituto Serrapilheira, grant "Jangada Dinâmica: Impulsionando Sistemas Dinâmicos na Região Nordeste".

[^1]: ${ }^{1}$ This is equivalent to the projection of μ_{i} to Λ being adapted in the notation of LS19.

[^2]: ${ }^{2}$ Actually, the coding Σ is obtained from a refinement of a preliminary coding. The sequences on Σ lift to sequences on this preliminary coding, whose vertices are double Pesin charts and whose edges define stable/unstable graph transforms.
 ${ }^{3}$ The existence of this orbit is consequence of Katok's horseshoe theorem for flows; another way to obtain this is by the symbolic coding of ALP20.

