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Abstract: Due to the recent increase in interest in Financial Technology (FinTech), applications like credit default pre-

diction (CDP) are gaining significant industrial and academic attention. In this regard, CDP plays a crucial

role in assessing the creditworthiness of individuals and businesses, enabling lenders to make informed deci-

sions regarding loan approvals and risk management. In this paper, we propose a workflow-based approach

to improve CDP, which refers to the task of assessing the probability that a borrower will default on his or

her credit obligations. The workflow consists of multiple steps, each designed to leverage the strengths of

different techniques featured in machine learning pipelines and, thus best solve the CDP task. We employ

a comprehensive and systematic approach starting with data preprocessing using Weight of Evidence encod-

ing, a technique that ensures in a single-shot data scaling by removing outliers, handling missing values, and

making data uniform for models working with different data types. Next, we train several families of learning

models, introducing ensemble techniques to build more robust models and hyperparameter optimization via

multi-objective genetic algorithms to consider both predictive accuracy and financial aspects. Our research

aims at contributing to the FinTech industry in providing a tool to move toward more accurate and reliable

credit risk assessment, benefiting both lenders and borrowers.

1 Introduction and background

In the financial sector, credit scoring is a crucial task

in which lenders must assess the creditworthiness of

potential borrowers. In order to determine credit risk,

several characteristics related to income, credit his-

tory, and other relevant aspects of the borrower must

be deeply investigated.

To manage financial risks and make critical de-

cisions about whether to lend money to their cus-

tomers, banks and other financial organizations must

gather consumer information to identify reliable bor-

rowers from those unable to repay debt. This re-

sults in solving a credit default prediction problem,

or in other words a binary classification problem

(Moula et al., 2017).

In order to address this challenge, over the

years several statistical techniques have been em-

bedded in a wide range of applications for the

development of financial services in credit scor-

ing and risk assessment (Sudjianto et al., 2010;

Devi and Radhika, 2018). However, such models of-
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ten struggle to represent complex financial patterns

because they rely on fixed functions and statistical as-

sumptions (Luo et al., 2017). While they have some

advantages such as transparency and interpretability,

their performance tends to suffer when faced with the

challenges presented by the vast amounts of data and

intricate relationships in credit prediction tasks.

On the contrary, Deep Learning (DL) approaches

have garnered significant attention across diverse

domains, including the financial sector. This is

due to their superior performance compared to

traditional statistical and Machine Learning (ML)

models (Teles et al., 2020). In particular, DL has

made great strides in several application areas, such

as medical imaging (Parola et al., 2023b), price

forecasting (Lago et al., 2018) (Cimino et al., 2018),

and structural health monitoring (Parola. et al., 2023)

(Parola et al., 2023a) (Cimino. et al., 2022)

(Parola. et al., 2022), demonstrating its versatil-

ity in handling complex data patterns.

Besides developing classification strategies, a dis-

tinct approach to enhance the workflow is to focus on

preprocessing. A common data preprocessing tech-

nique in the credit scoring field is Weight of Evidence

(WoE) data encoding, as it enjoys several properties

http://arxiv.org/abs/2403.03785v1


(Thomas et al., 2017). First, being a target-encoding

method, is able to capture nonlinear relationships be-

tween the features and the target variable. Second, it

can handle missing values; which often afflict credit

scoring datasets as borrowers may not provide all the

required information when applying for a loan. WoE

handles missing values by binning them separately.

Finally, WoE coding reduces data dimensionality by

scaling features (both numerical and categorical) into

a single continuous variable. This can be particu-

larly useful in statistic, ML and DL contexts, be-

cause models may have different intrinsic structures

and may only be able to work with a specific data type

(L’heureux et al., 2017).

The goal of this work is to combine different tech-

nologies and frameworks into an effective ML work-

flow to address the task of credit default prediction for

the financial sector. Besides the data preprocessing

via WoE coding, we introduce an ensemble strategy

to build a more robust model; a hyperparameter opti-

mization to maximize performance, and a loss func-

tion that focuses learning on hard-to-classify exam-

ples to overcome data imbalance problems.

To assess model performance and workflow

strength, we present results obtained on known and

publicly available benchmark datasets. These datasets

provide a common reference point and enable mean-

ingful comparisons between different models.

The paper is organized as follows. The material

and methodology are covered in Section 2, while the

experiment results and discussions are covered in Sec-

tion 3. Finally, Section 4 draws conclusions and out-

lines avenues for future research.

2 Materials and methodology

The proposed ML workflow is shown in Figure

1 by means of a Business Process Model and

Notation (BPMN) diagram. BPMN is a formal

graphical notation that provides a visual representa-

tion of business processes and workflows, allowing

for efficient interpretation and analysis of systems

(Cimino and Vaglini, 2014). BPMN was chosen due

to its ability to visually represent complex processes

in a standardized and easily understandable manner.

The diagram provides a comprehensive overview

of the ML workflow for credit scoring default predic-

tion tasks. The first lane focuses on data preprocess-

ing, where manual column removal and data encod-

ing through Weight of Evidence (WOE) techniques

are employed. The second lane is dedicated to model

training and optimization, exploring various learning

models described below. Finally, the third lane in-

volves computing evaluation metrics, while also in-

corporating the expertise of a financial expert to as-

sess the performance.

The second lane aims to solve a supervised ma-

chine learning problem where the goal is to predict

whether a borrower is likely to default on a loan

or not. Specifically, a binary classification model

(Dastile et al., 2020), trained on a dataset of historical

borrowers information with the final goal of finding

a model ψp : Rn ⇒ {−1,+1} which maps a feature

vector x ∈ R
n to an output class y ∈ {−1,+1}; where

x identifies the set of attributes describing a borrower,

y is the class label (non-default −1, default +1), and

p is the set of parameters describing the model ψ:

ψp : x ⇒ y. (1)

To evaluate the classification performance of the

above problem, the Area Under the Curve (AUC)

metric is introduced:

AUC =

∫ 1

0
ROC(u) du, (2)

where ROC(u) is the receiver operating characteris-

tic (ROC) curve at threshold u, defined as the ratio

between the true positive rate TPR(u) and the false

positive rate FPR(u) both at threshold u.

Another popular metric for evaluating perfor-

mance when dealing with unbalanced datasets is the

F-score, computed as the average of the well-known

precision and recall metrics.

The Brier score metric (Bequé et al., 2017) was

used to measure the mean squared difference be-

tween the predicted probability and the actual out-

come. Given a dataset D , composed of n samples,

BS metric is shown in Equation 3.

BS =
1

n

n

∑
i=1

(pi − oi)
2
, (3)

where pi is the (default) probability predicted by the

model and oi is the actual label.

Generally in the credit scoring literature, the cost

of incorrectly classifying a good applicant as a de-

faulter (i.e., c0, false positive) is not considered to be

as important as the cost of misclassifying a default

applicant as good (i.e., c1, false negative). Indeed,

when a bad borrower is misclassified as good, they

are granted a loan they are unlikely to repay, which

can lead to significant financial losses for the lender

(Hand, 2009). The c0 cost is equal to the return on

investment (ROI) of the loan and we assume the ROI

(c0) to be constant for all loans, as is usually the case

in consumer credit scoring (Verbraken et al., 2014a).

It is worth noting that the above argument assumes



that there is no opportunity cost associated with not

granting a loan to a good credit borrower. However,

in reality, there may be some opportunity cost, as the

borrower may take their business elsewhere if they are

not granted a loan (Verbraken et al., 2014b).

Under this premise, we introduce the Expected

Maximum Profit (EMP) metric, since the metrics in-

troduced previously consider only minimizing credit

risk and not necessarily maximizing the profit of the

lender. The EMP metric takes into account both the

probability of insolvency and the profit associated

with each loan decision (Óskarsdóttir et al., 2019).

To define the EMP metric we first introduce the

average classification profit metric per borrower in

Equation 4; it is determined based on the prior proba-

bilities of defaulters p0 and non-defaulters p1, as well

as the cumulative density functions of defaulters F0

and non-defaulters F1. Additionally, b0 represents the

profit gained from correctly identifying a defaulter, c1

denotes the cost incurred from erroneously classify-

ing a non-defaulter as a defaulter, while c∗ refers to

the cost associated with the action taken. Hence, EMP

can be defined as shown in Equation 5:

P(t;b0,b1,c∗) = (b0 − c∗)π0F0(t)− (c1 − c∗)π1F1(t)
(4)

EMP =
∫

b0

∫
c1

P(T (θ);b0,c1,c∗) ·h(b0,c1) db0 cd1

(5)

where θ = c1+c∗
b0−c∗ is the cost-benefit ratio, while

h(b0,c1) is the joint probability density function of

the classification costs. Finally, the best cut-off value

is T as shown in Equation 6; and, the average cut-off-

dependent classification profit is optimized to produce

the highest profit.

T = argmax
∀t

P(t;b0,b1,c∗) (6)

2.1 Learning models

According to (Dastile et al., 2020), in this section, we

introduce three categories of learning models: statis-

tical models, machine learning, and deep learning.

Logistic regression (LR) is a popular statistical

model in binary classification defined by the formu-

las P(y = 1|x) = 1
1+exp(−(α0+αT x))

and P(y =−1|x) =

1−P(y= 1|x); where P(y= 1|x) and P(y=−1|x) are

the probabilities of classifying the observation x as a

good or bad borrower, respectively. Once the model

parameters α0 and α are trained, the decision rule to

classify an input feature vector x as the output value y

is

y =

{

+1 when exp(α0 +αT x)< 1

−1 otherwise.
(7)

Another category of models introduced is the ML

ones. A Classification Tree (CT) is a popular algo-

rithm used as a classifier in ML. It is a flowchart-like

structure, where each internal node represents a fea-

ture, each branch represents a decision rule, and each

leaf node represents the classification. The algorithm

works by recursively partitioning the dataset, based

on the feature that best splits the data at each node,

until a stopping criterion is reached.

The last model category introduced is DL, which

through neural networks outperformed in several ar-
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Figure 1: Workflow design of the proposed method.



eas compared to traditional models. This is due to

DL’s ability to learn hierarchical representations and

complex patterns of input data.

Each learning model can be enhanced with the en-

semble technique. This approach combines the pre-

dictions of multiple models to improve the overall

classification performance. Specifically, a weight-

based voting strategy is implemented to combine the

predictions. The decision function of the ensemble

models can be expressed as:

y = argmax
n

∑
i=1

ai ·wi (8)

where ai is the predicted class probability by the i-th

individual model, and wi is the weight assigned to the

i-th model.

In the case of ensemble of different CT, a model

called Random Forrest (RF) is obtained; while in the

case of the DL ensemble, it is referred to as Ensemble

Multi-Layer Perceptron (EMLP).

2.2 Data encoding

The Weight of Evidence (WoE) encoding was used

as a data encoding method to preprocess the datasets

(Raymaekers et al., 2022). The WoE value of each

categorical variable is computed as:

WoEi = ln

(

Pi,0

Pi,1

)

(9)

where WoEi is the WoE value for category i, Pi,1 is the

probability of a borrower defaulting on a loan within

category i, and Pi,0 is the probability of a borrower not

defaulting on a loan.

WoE encoding can also be applied to numerical

variables, by first discretizing them through binning

process. It does not embed a binning strategy, hence

it must be explicitly defined and integrated within the

data encoding. Several binning techniques have been

devised, such as equal-width or equal-size, however,

not all of them guarantee the necessary conditions for

good binning in credit scoring (Zeng, 2014):

• missing values are binned separately,

• a minimum of 5% of the observations per bin,

• for either good or bad, no bins have 0 accounts.

In the proposed workflow, we integrated the

optimal binning method proposed by Palen-

cia; his implementation is publicly available at

(Navas-Palencia, 2020a). The optimal binning algo-

rithm involves two steps: A prebinning procedure

generating an initial granular discretization and

further fine-tuning to satisfy the enforced constraints.

The implementation proposed by Palencia is

based on the formulation of a mathematical optimiza-

tion problem solvable by mixed-integer programming

in (Navas-Palencia, 2020b). The formulation was

provided for a binary, continuous, and multi-class tar-

get type and guaranteed an optimal solution for a

given set of input parameters. Moreover, the math-

ematical formulation of the problem is convex, result-

ing that there is only one optimal solution that can

be obtained efficiently by standard optimization meth-

ods.

2.3 Hyperparameter optimization

Non-dominated Sorting Genetic Algorithm II

(NSGA-II) was introduced in the workflow to

perform the hyperparameter optimization of credit

scoring models (Verma et al., 2021). NSGA-II is a

well-known multi-objective optimization algorithm

widely used in various domains. In the workflow,

we used NSGA-II to optimize the hyperparameters

of the models, by considering two distinct objective

functions: the Area Under the Receiver Operating

Characteristic curve (AUC) as a classification metric,

and the Expected Maximum Profit (EMP) as a

financial metric. By incorporating EMP, we aim

to optimize the credit scoring models not only for

classification accuracy but also for their financial

impact. The proposed approach enables us to find

a set of non-dominated solutions that provide the

best trade-off between AUC and EMP and allows

us to select the best model for a particular financial

institution based on their specific requirements.

2.4 Focal loss

It has been shown that class imbalance impedes

classification. However, we refrain from balancing

classes for two reasons. First, our objective is to ex-

amine relative performance differences across differ-

ent classifiers. If class imbalance hurts all classifiers

in the same way, it would affect the absolute level

of observed performance but not the relative perfor-

mance differences among classifiers. Second, if some

classifiers are particularly robust toward class imbal-

ance, then such a trait is a relevant indicator of the

classifier’s merit. Equation 10 presents the ratede f in-

dicator used to evaluate the dataset unbalance.

ratede f =
De f ault cases

Total cases
(10)

To mitigate the problem, a loss function called

f ocalloss (Mukhoti et al., 2020) was used; Equation

11 shows its formulation.



Focal loss is a modification of the cross-entropy

loss function, which assigns a higher weight to hard

examples that are misclassified. The focal loss also

introduces the focusing parameter, which tunes the

emphasis degree on misclassified samples.

FL(pt) =−αt(1− pt)
γln(pt) (11)

where pt is the predicted probability of the true class,

αt ∈ [0,1] is a weighting factor for class t and γ is the

focusing parameter.

3 Experiments and results

The described experiments were performed in Python

programming language on a Jupyter Lab server run-

ning Arch Linux operating system. Hardware re-

sources used included AMD Ryzen 9 5950x CPU,

Nvidia RTX A5000 GPU and 128 GiB of RAM. To

ensure reproducibility and transparency, we publicly

released the code and results of the experiments on

GitHub.

Four datasets well-known in the literature and

publicly available were used to implement and test the

proposed methodology. Table 1 presents the datasets

indicating the amount of samples and the ratede f .

Table 1: Dataset details

Name Cases ratedef

GermanCreditData-GER 1000 0.3

HomeEquityLoans-HEL 5960 0.19

HomeEquityCreditLine-HECL 10460 0.52

PolishBankruptcyData-PBD 43405 0.04

The GER and PBD datasets are popular credit

scoring data accessible through the UCI Machine

Learning repository1. The HEL dataset was re-

leased publicly in 2020 with (Do et al., 2020). The

HELC dataset was provided by Fair Isaac Corporation

(FICO) as part of the Explainable Machine Learning

challenge2.

To ensure that good estimates of the perfor-

mance of each classifier are obtained, Optuna

(Akiba et al., 2019), an open source hyperparameter

optimization software framework, was used. Op-

tuna enables efficient hyperparameter optimization

by adopting state-of-the-art algorithms for sampling

hyperparameters and pruning efficiently unpromising

trials. The provided NSGA-II implementation with

default parameters was used to continually narrow

1https:archive.ics.uci.edu
2https:community.fico.comsexplainable-machine-

learning-challenge

down the search space leading to better objective val-

ues.

Figure 2 illustrates an example of hyperparame-

ter optimization processes and highlights the pareto

front, represented by the red points in the scatter plot.

The pareto front is composed of the non-dominated

solutions that refer to the best sets of hyperparame-

ters, capturing the trade-off between EMP and AUC

performance metrics (Hua et al., 2021). The models

whose results are shown in Tables 2, 3, 4 and 5 were

manually chosen from those on the pareto front by

observing the values of the performance metrics.

We can see how the DL models outperformed the

statistical and ML models for each dataset; in fact, the

best results are consistently found in the last rows of

the tables for the MLP and EMLP models. In addi-

tion, the ensemble models introduce an enhancement

over the corresponding non-ensemble models.
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Figure 2: Scatter plot of the random forrest hyperparameter
optimization process

Table 2: Performance metrics on GER dataset.

Model AUC F1 BS EMP

LR .800 .627 .255 .051

CT .701 .546 .341 .041

RF .792 .558 .236 .037

MLP .799 .616 .273 .050

EMLP .801 .632 .249 .053

Table 3: Performance metrics on HEL dataset.

Model AUC F1 BS EMP

LR .869 .580 .151 .017

CT .820 .671 .152 .025

RF .940 .693 .114 .023

MLP .864 .604 .210 .022

EMLP .866 .636 .136 .024



Table 4: Performance metrics on HECL dataset.

Model AUC F1 BS EMP

LR .801 .610 .251 .054

CT .812 .631 .242 .060

RF .863 .703 .214 .063

MLP .892 .717 .198 .068

EMLP .906 .748 .136 .070

Table 5: Performance metrics on PBD dataset.

Model AUC F1 BS EMP

LR .781 .516 .359 .051

CT .793 .538 .342 .059

RF .824 .609 .317 .060

MLP .841 .612 .296 .062

EMLP .883 .648 .233 .069

4 Conclusion

In this paper, we proposed a novel ML workflow

for assessing the risk evaluation in the credit scor-

ing context that combines WoE-based preprocessing,

ensemble strategies of different learning models, and

NSGA-II hyperparameter optimization.

The proposed workflow has been tested on dif-

ferent public datasets, and we have presented bench-

marks. The experiments indicate the methodology

succeeds in effectively combining the strengths of the

different technologies and frameworks that constitute

the workflow to improve the robustness and reliabil-

ity of the risk assessment support tools in the financial

industry.

Future work could explore the applicability of

our approach in real-world scenarios by integrating

the classification models into enterprise software sys-

tems, thereby enhancing usability for bank employees

and financial consultants. This integration has the po-

tential to streamline and optimize financial processes,

providing a practical solution for the challenges faced

in the banking and financial consulting domains. In

addition, the applicability of this approach can be ex-

tended to corporate credit scoring, beyond the cus-

tomer.
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