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We investigate the transport properties of massive Dirac fermions subjected to uncorrelated scalar
potential disorder, and mass disorder. Using a finite difference method, the conductance is calculated
for a wide variety of combinations of these two disorder strengths. By calculating the scaling of
conductivity with system size we find that, depending on the combination, the system can have an
insulating, scale invariant, and metallic behavior. We identify the critical values of these disorder
strengths where the phase transitions occur. We study both the zero and nonzero average mass cases
to examine the effect of scalar potential disorder on band gap. Our results suggest a suppression of
the band gap by the scalar potential disorder.

I. INTRODUCTION

Two-dimensional Dirac fermions realize a wide variety
of symmetry classes when subjected to various types of
disorder [1–6]. Depending on the symmetry class, phase
transitions due to Anderson localization [7] vary consider-
ably. These phase transitions include the metal-insulator
transition (MIT) due to suppression of diffusion into lo-
calization and the insulator-insulator transition between
separate localized phases [8–12].

Numerous studies [13–21] have looked at the phase
transitions for different symmetry classes of Dirac
fermion systems. Graphene [22] and chiral p-wave su-
perconductors [23, 24] are examples of some of the
most studied such systems. In particular, disorder ef-
fects in transport properties are the subject of extensive
investigation[25–30]. If the disorder in graphene is ran-
dom scalar potential, V (x, y), which breaks the chiral
and particle-hole symmetry, it falls in the symmetry class
AII [31]. For the chiral p-wave superconductor system
with vortex disorder, chiral and time-reversal symmetry
are broken, but particle-hole symmetry remains invari-
ant, which leads the system to symmetry class BD [2].
Consequently, these two systems exhibit different types of
phase transition with the variation of disorder strength.

In clean graphene, the conductivity takes a scale-
invariant critical value [32, 33] of σc = G0/π, where G0

is the conductance quantum. When disorder V is in-
troduced (Class AII), this scale invariance is known to
change into logarithmic scaling of conductivity [13–15]
for sufficiently strong disorder (see Fig. 1(a)). A random
mass disorder, M(x, y) = M̄(x, y) + δM(x, y), can ap-
proximate a disordered chiral p-wave superconductor[17,
34, 35], where M̄ is the average mass and δM is the
random mass disorder. Consequently, instead of V , if
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FIG. 1. Scaling of conductivity for different combinations of
disorder. ∆V and ∆M are in the units of ℏv/a and ℏ/va,
respectively.

the disorder is M , the system belongs to class BD. A
very different phase transition is observed for this sys-
tem [17]. Depending on the disorder’s strength, the sys-
tem can now be at an insulating or metallic phase. This
insulator-to-metal transition is marked by a critical value
of disorder strength for which the conductivity is scale-
invariant, as indicated in Fig. 1(b).

A more general case is when both scalar potential dis-
order V and mass disorder M are present. In a Dirac
fermion system with both V and M , all three symme-
tries are broken [1], which puts the system into symmetry
class A [3]. Such systems have been studied extensively
[1, 31, 36–40] and includes examples like disordered d-
wave superconductor [37], and graphene on hexagonal
boron nitride(h-BN) [36, 41, 42].

In this manuscript, we numerically investigate the ef-
fect of disorder on conductivity when δV and δM are
simultaneously present. The physics of localization for
such a system depends sensitively on the range of the
disorders. Intervalley scattering is significant when short-
range correlated random disorder is present, and localiza-
tion sets in [13, 38]. For long-range correlated disorder,
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FIG. 2. On-site random scalar potential V (x, y) = δV (left) and random mass M(x, y) = M̄ + δM (right). M̄ = 0.3ℏ/va and
disorder strengths are ∆V = 3ℏv/a, ∆M = 3ℏ/va.

the conductivity flows to the quantum Hall critical point
value, σQHE

xx ≈ 0.57 × 4e2, for M̄ = 0 and to zero (in-
sulating) for M̄ ̸= 0. This insulating behavior is inter-
preted as a band gap opening induced by, for example,
the proximity of graphene to h-BN [36]. On the other
hand, it has been reported that uncorrelated onsite dis-
order can suppress the band gap and thereby induce a
metallic state [43, 44]. For graphene/h-BN systems, this
occurs through the onsite Coulomb impurities restoring
the inversion symmetry between neighboring carbons. It
has been argued that this phenomenon of band gap sup-
pression should be present in other van der Walls het-
erostructures as well [43].

This manuscript is organized as follows. In Sec. II, we
introduce the model and describe our system structure
and method for calculating conductivity. We choose both
types of disorders, δV (x, y) and δM(x, y), to be on-site
and spatially uncorrelated. δV and δM are distributed
uniformly in the disorder strength interval, (−∆V,∆V ),
and (−∆M,∆M), respectively. In Sec. III, we study the
zero average mass (M̄ = 0) case before dealing with the
nonzero average mass (M̄ ̸= 0) in Sec. IV. Under a wide
variety of disorder strengths, we calculate the change in
conductivity with system size using a finite difference ap-
proximation of the transfer matrix method [15]. Our nu-
merical results indicate that the system can behave as
an insulator, scale-invariant with a critical conductivity
value, and a diffusive metal depending on the average
mass M̄ and the disorder strengths. We look closer at
the critical points, which separate two different phases,
in Sec. V. We conclude with the summary of our results
in Sec. VI.

II. MODEL

We consider here a two-dimensional massive Dirac
fermion Hamiltonian that satisfies the Dirac equation

HΨ = EΨ, H = v(σ·p)+V (x, y)+v2M(x, y)σz, (1)

where Ψ is the two-component spinor eigenstate, E is the
energy, and v is the velocity of the Dirac fermion. The
Pauli matrices (σ) are given by the components

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The scalar potential landscape is V (x, y), and M(x, y) is
the local mass of the Dirac fermion. While the scalar po-
tential V breaks the chiral and particle-hole symmetries,
the Dirac mass term M breaks time-reversal symmetry,
putting the system in class A.

We model disorder by having at each lattice point a
random value around the Fermi energy, i.e., V (x, y) =
E + δV (x, y), where δV is the random scalar potential
distributed uniformly in the interval (−∆V,∆V ). Sim-
ilarly, a random mass fluctuation, δM , is introduced as
M(x, y) = M̄ + δM(x, y). Disorders are assigned ran-
domly with a correlation length equal to the lattice con-
stant a, illustrated in Fig. 2. These defects are realized
through various physical and chemical processes. Any
strain on the system and Coulomb impurities contribute
to the scalar potential [36]. For multilayer systems, un-
precedented precision of twist angle and interlayer dis-
tance [45–48] has made it possible to control the inter-
layer coupling, which strongly affects the electronic struc-
ture and can result in a gap opening[49–52] which corre-
sponds to the mass term.

In our calculations, we model the system around the
Dirac point, V = δV . We consider four different values
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of average mass, M̄ , including the zero average mass case
for bench-marking our results. The disorders, δV and δM
are assigned at each lattice point independently from its
neighboring lattice points, i.e., correlation length is equal
to the lattice constant.

We find the conductance of the system by mapping the
Hamiltonian to a finite difference method (see Ref. 15 for
details) for solving the scattering by disorder problem of
Dirac fermions. Our approach is the so-called staggered-
fermion model, initially developed in lattice gauge theory
[53, 54], extensively used for calculating conductivity of
different Dirac fermion systems [15–18, 55–58].

The geometry of the two-dimensional system we con-
sider is of length L = Nxa and width W = Nya. All
calculations assume periodic boundary conditions along
the transverse direction with the system having an aspect
ratio of W/L = 3. The Hamiltonian and the boundary
conditions are used to write the transfer matrix T . The
derivation of the transfer matrix T is presented in the
Appendix for completeness. The transmission matrix T
was calculated from the evolution of eigenstates from one
end of the system to the other via the transfer matrix.
The conductance is calculated using the Landauer for-
mula

G = G0

∑
n

Tn, (2)

where G0 is the conductance quantum and Tn are the
eigenvalues of the transmission matrix T . ⟨G⟩ is the av-
erage of the conductance taken over many disorder real-
izations and is used to calculate the average conductivity,
σ = (L/W )⟨G⟩.

III. ZERO AVERAGE MASS (M̄ = 0)

The scaling behavior of conductivity in the presence
of one type of disorder (either scalar potential or mass)
while the other type is absent is well known [15, 17, 34,
35, 59–61]. To investigate the combined effect of the two
disorders, we start with two limiting cases, i.e., small
mass fluctuations (∆M ≈ 0) with ∆V > 0, and small
potential fluctuations (∆V ≈ 0) with ∆M > 0. For small
∆M and nonzero ∆V , the conductivity scales towards
that of a diffusive metal, as shown by the green line in
Fig. 3. These results agree with Ref. 15.

On the other hand, for small ∆V and nonzero ∆M , two
phases are observed at M̄ = 0 [8, 9], separated by a tri-
critical point, ∆M∗ [17]. The tricritical point is defined
as the value of mass disorder such that for ∆M < ∆M∗

the system approaches the scale-invariant critical conduc-
tivity and ∆M > ∆M∗ drives the system to a diffusive
metal phase. We identify this behavior in Fig. 3 for a
small ∆V (= 0.25ℏv/a). The system is driven to a dif-
fusive metal phase around ∆M∗ ≈ 3.2ℏ/va and remains
metallic for still higher values of ∆M . This result agrees
with previous numerical results [17, 60, 61] found for the
∆V = 0 case.
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FIG. 3. Scaling of conductivity behavior for solo disorder (ei-
ther ∆V or ∆M) is recovered in the presence of dual disorder
(∆V and ∆M) for vanishing value of one.

In Fig. 4, we present the phase diagram by numerically
calculating ∆M∗ for different ∆V values. ∆M∗ decreases
with increasing ∆V and eventually becomes zero. We
define this value of ∆V , for which ∆M∗ reaches zero, as
the critical scalar potential disorder, ∆V ∗. for ∆V >
∆V ∗, the system loses access to the scale invariant phase
and must remain metallic regardless of the ∆M value.
For the massless case here, ∆V ∗ = 1ℏv/a, and as we will
see in the next section, ∆V ∗ increases with increasing
average mass M̄ .

We now consider the case when both ∆V and ∆M
are comparable in strength. We consider a wide range
of ∆M values for two fixed values of ∆V to examine
the conductivity under their combined effect. Like the
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FIG. 4. Phase diagram for the M̄ = 0 case. Data points are
the critical mass disorder values, ∆M∗, that separate the scale
invariant phase from the metallic phase at the corresponding
∆V
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FIG. 5. Scaling of conductivity σ for different ∆M at M̄ = 0. Two ∆V cases are demonstrated for both of which σ starts
decreasing at first with increasing ∆M and reaches a minimum value before increasing with ∆M .

lone ∆V disorder case, the conductivity always increases
logarithmically with system size L. This increase oc-
curs regardless of the disorder strength ∆M . However,
compared to the lone ∆V case, the conductivity curve is
significantly flattened, i.e., conductivity increases much
slower with system size when ∆V and ∆M are present
simultaneously.

Figure 5 also indicates that increasing ∆M initially de-
creases the overall conductivity, presumably due to some
competing effect between ∆V and ∆M . However, af-
ter reaching a minimum value, the conductivity increases
with ∆M . This increase occurs only when ∆M is large
enough to be the dominant disorder such that it increases
the conductivity, much like when ∆M is the only disor-
der.

IV. NONZERO AVERAGE MASS (M̄ ̸= 0)

So far, we have considered the zero average Dirac mass
case (M̄ = 0). We now examine the nonzero M̄ case in
the presence of ∆V and ∆M . For correlated disorder, A
nonzero M̄ is known to drive the system to an insulator.
We also identify such an insulating phase for uncorrelated
∆M , but this phase is now controlled by both ∆V and
∆M . Only for ∆V and ∆M values smaller than partic-
ular critical values, ∆V ∗ and ∆M∗, does the insulating
phase exist. We discuss these critical values in Sec. V.

When ∆V < ∆V ∗, various conductivity scaling behav-
iors are observed. Figure 6 shows that as we increase the
∆M values, the system switches from insulating to a scale
invariant conductivity and finally to a metallic phase. We
identify the ∆M value at which the system transitions
from insulating behavior to scale invariant conductivity
as the critical mass disorder ≡ ∆M∗. This critical value
depends on M̄ and ∆V . If the system’s average mass
M̄ increases, so does the required mass disorder, ∆M∗,

to lift the system from the insulating phase. However,
once the system reaches the metallic phase at ∆M val-
ues higher than its corresponding ∆M∗, the conductivity
scaling remains the same for different M̄ values, as seen
in Fig. 6.

There is no insulating phase for ∆V > ∆V ∗. The
variation of conductivity scaling with ∆M is similar to
that of the M̄ = 0 case. In other words, the band gap
(M̄) is suppressed by introducing ∆V , and for a suffi-
ciently strong value, the conductivity is much like the
closed band (M̄ = 0) case. This is indicated in Fig. 7,
which shows that, like the M̄ = 0 case, conductivity first
decreases with ∆M and reaches a minimum value before
increasing with larger values of ∆M . This result agrees
with the results found in Ref. 43 and 44 that the band
gap is suppressed by uncorrelated onsite scalar potential.

V. CRITICAL POINTS

In Sec. IV, the transitions of scaling behavior (from in-
sulating to scale invariant and metallic) are demonstrated
without specifying the transition points. We now focus
on numerically evaluating the critical points, ∆V ∗ and
∆M∗, at which these transitions occur. As mentioned,
the insulating phase can only exist for ∆V values below
a critical value, ∆V ∗. We interpret ∆V ∗ as the onsite
potential disorder width necessary for quelling the band
gap to zero. ∆V ∗ thus depends on M̄ (band gap) i.e.,
∆V ∗ = ∆V ∗(M̄). In Fig. 8, we identify the ∆V ∗(M̄)
values by calculating the scale dependence of conductiv-
ity for different ∆V at ∆M = 0. As expected, a more
significant value of M̄ requires a larger ∆V ∗ to change
the conductivity scaling from insulating to scale invari-
ant.

The critical scalar potential disorder strength, ∆V ∗,
acts as a boundary above which the insulating phase
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disappears, but for ∆V < ∆V ∗, the system can have
all three scaling behaviors. Precisely which scale depen-
dence the system will exhibit for a particular ∆V de-
pends on the value of the mass disorder strength, ∆M .
We illustrate this dependence in Fig. 6 where we notice
that the system is insulating for ∆M = 0 and reaches
a scale-invariant conductivity as we increase ∆M . We
identify the ∆M∗ values by calculating the scale depen-
dence of conductivity for three different M̄ values with
fixed ∆V = 1ℏv/a. The results are shown in Fig. 9.

After reaching the scale invariant conductivity at
∆M = ∆M∗, the conductivity increase with system size
for ∆M values larger than ∆M∗ is relatively slow. This
trend is shown in Fig. 6. It is part of the general observa-
tion that when ∆V and ∆M are of comparable strength,
and the system is in a metallic phase, the system is a
poor conductor because the conductivity increase rate
with system size L is sluggish. This is also seen in Fig. 7
where we notice that the conductivity is lowest and has
the flattest scaling when the disorder strengths ∆V and
∆M are similar.

VI. CONCLUSION

In this manuscript, we have studied the transport prop-
erties of a massive Dirac fermion in the simultaneous
presence of scalar potential disorder ∆V and mass disor-
der ∆M . Our numerical calculations use the real space
tight-binding model on a lattice with on-site uncorre-
lated disorder developed by Tworzyd lo et at. [15, 17].
We study three different average masses, M̄ , which is
interpreted as the band gap. In all three cases, despite
the band gap, we identify that a critical ∆V ∗(M̄) exists
above which the system can no longer be an insulator for
any ∆M . The results support the idea of band gap sup-
pression by on-site coulomb potential discussed in Ref.
43 and 44. For ∆V < ∆V ∗, the system can be in an in-
sulating or metallic phase, depending on the ∆M value.
As ∆M increases, the system exhibits an insulator-to-
metal transition at a critical value ∆M∗(M̄,∆V ). We
have numerically estimated the critical values, ∆V ∗, and
∆M∗, for different M̄ values. Our work demonstrates
the interdependent way different types of disorders can
affect the phases accessible to a massive Dirac fermion
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Appendix: Transfer Matrix

The Dirac equation given in Eq. (1) can be rearranged
as,

∂xΨ =

(
−iσz∂y − iσx

V

ℏv
− vM

ℏ
σy

)
Ψ

Using the discretization method of Ref. 15, the dis-
cretized Dirac equation is expressed by

1

2a
J (Ψm+1 −Ψm)

=

(
− i

2a
σzK − i

4ℏv
σxV(m) − v

4ℏ
σyM(m)

)
(Ψm+Ψm+1)

where J , K, V(m), and M(m) are matrices with the
following nonzero elements:

Jn,n = 1, Jn,n+1 = Jn,n−1 =
1

2
,

Kn,n+1 =
1

2
, Kn,n−1 = −1

2
,

V(m)
n,n =

1

2
(Vm,n + Vm,n−1), V(m)

n,n+1 =
1

2
Vm,n,
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V(m)
n,n−1 =

1

2
Vm,n−1,

M(m)
n,n =

1

2
(Mm,n + Mm,n−1), M(m)

n,n+1 =
1

2
Mm,n,

M(m)
n,n−1 =

1

2
Mm,n−1.

The transfer matrix, Tm, which is defined as,

Ψm+1 = TmΨm

is then given by

Tm =

(
J − iσJK − a

2ℏv iσxV(m) − va
2ℏσyM(m)

)(
J + iσJK + a

2ℏv iσxV(m) + va
2ℏσyM(m)

)
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