
Risk-Sensitive Mean Field Games with Common Noise: A Theoretical

Study with Applications to Interbank Markets

Xin Yue Rena, Dena Firoozia

aDepartment of Decision Sciences, HEC Montréal, Montréal, QC
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Abstract

In this paper, we address linear-quadratic-Gaussian (LQG) risk-sensitive mean field games (MFGs)
with common noise. In this framework agents are exposed to a common noise and aim to minimize
an exponential cost functional that reflects their risk sensitivity. We leverage the convex analysis
method to derive the optimal strategies of agents in the limit as the number of agents goes to
infinity. These strategies yield a Nash equilibrium for the limiting model.

The model is then applied to interbank markets, focusing on optimizing lending and borrowing
activities to assess systemic and individual bank risks when reserves drop below a critical threshold.
We employ Fokker-Planck equations and the first hitting time method to formulate the overall
probability of a bank or market default. We observe that the risk-averse behavior of agents
reduces the probability of individual defaults and systemic risk, enhancing the resilience of the
financial system. Adopting a similar approach based on stochastic Fokker-Planck equations, we
further expand our analysis to investigate the conditional probabilities of individual default under
specific trajectories of the common market shock.

Keywords: Risk-sensitivity, mean-field games, common noise, exponential utility, LQG systems,
interbank market, default probability, systemic risk, Fokker-Planck equation.

1. Introduction

1.1. Literature Review

In stochastic games, multiple agents search for maximizing the profit or minimizing the cost
while competing continuously with others. However, the complexity of the problem increases when
the number of agents is large. In fact, each agent’s stochastic optimal control problem becomes
mathematically intractable in this case. As a solution for this issue, for such large-population
games, mean field game (MFG) theory is used to approximate the solution to the high dimensional
optimization problem each agent faces. MFG theory was introduced in a series of works (Lasry
and Lions, 2006a,b; Huang et al., 2006; Lions and Lasry, 2007; Huang et al., 2007) in the early
21st century. In MFG games, when there is an infinite number of agents, a Nash equilibrium
is reached when one agent takes the best-response action to the environment where the mass
behavior of others is modelled by the mean field distribution (Huang et al., 2006). Lions and
Lasry (2007) and Huang et al. (2006) reduce the optimal control problem of a representative agent
to a set of coupled forward-backward partial differential equations, where the forward component is
the Fokker-Planck-Kolmogorov equation generating the mean field distribution and the backward
component is the Hamilton-Jacobi-Bellman equation generating the value function of the agent.
The authors subsequently discuss the existence and uniqueness of the solutions within this context.
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When it comes to a finite number of agents, an approximate Nash equilibrium, called ϵ-Nash
equilibrium, can be reached by employing the limiting strategies obtained. In other words, one
agent can profit at most by ϵ by unilaterally deviating its strategy from others’ (Huang et al.,
2006, 2007).

Linear quadratic Gaussian (LQG) MFGs involve agents with linear dynamics in its own state
and control action and the mean field as well as an additive noisemodelled by a Brownian motion.
In addition, the cost functional to optimize is a quadratic function of these processes (Huang et al.,
2007). For this type of MFGs, explicit solutions can be obtained which is very convenient in the
context of applications.

In the classical setup of MFGs, there are a large number of agents where each has an asymp-
totically negligible influence on the system as the number of agents grows to infinity. However,
in applications, there are usually a few agents which are not asymptotically negligible. Huang
(2010) considers LQG games with a major agent and a large number of minor agents to address
such situations in practice. The behavior (dynamics and cost functionals) of individually negligible
minor agents and the influential major agent contribute collectively to the mean field formation.
Nourian and Caines (2013) presents nonlinear MFGs with a major agent and a large number of
minor agents. In this case, as the major agent’s state or control action induces random fluctua-
tion in the mean field distribution, the authors decompose the MFG problem into a non-standard
stochastic optimal control problem with random coefficient for a representative minor agent and a
stochastic coefficient McKean-Vlasov optimal control problem for the major agent. Other works in
this area include (Nguyen and Huang, 2012; Carmona and Zhu, 2016; Carmona and Wang, 2017,
2016; Şen and Caines, 2016; Firoozi and Caines, 2021; Firoozi et al., 2022; Lasry and Lions, 2018;
Bensoussan et al., 2017; Moon and Başar, 2018; Firoozi et al., 2020; Huang, 2021; Firoozi, 2022).

In the context of applications, it is natural to consider a common random shock to all agents,
especially when the game happens within the same environment for all agents. A common Brow-
nian motion may be added to the agent’s dynamics to model such shocks. Carmona et al. (2014)
presents the MFGs where the agents’ dynamics include a common Brownian motion. The authors
prove the existence of a weak MFG solution under general assumptions. With additional convex-
ity assumptions, the existence of solutions is established without relaxed or externally randomized
controls. Moreover, under the monotonicity condition of Lasry and Lions (Lions and Lasry, 2007),
the authors prove the existence and uniqueness of the solutions in a strong sense as the conse-
quences of their pathwise uniqueness. Carmona and Delarue (2018) develops the solutions for such
games and extend the subject to the games with major and minor players as well as the games of
timing. Caines et al. (2017) elaborates on two approaches to MFGs with common noise. The first
one is an extension of the master equation formulation to the MFG problems. The second one is
to treat the common noise as the dynamics of an uncontrolled major agent that embeds in each
agent’s dynamics.

When solving mean field games in the risk-neutral case, only the first moment of the integral
cost is included in the cost functional of the agent. On the contrary, in the risk-sensitive case,
an exponential function of integral cost is considered. In other words, all moments of the integral
cost, including the second moment which is a risk measure for the agent, are considered. Thus,
the risk-sensitive behavior of the agent is captured (Moon and Başar, 2017, 2019). Moon and
Başar (2017) solves a multi-agent linear-quadratic game with the exponential cost functional. The
authors first solve a generic risk-sensitive optimal problem and then characterize an approximated
mass behavior effect on one agent via the fixed-point analysis of the mean field system. They show
that the approximated mass behavior is the best estimate of the actual one as the population size
goes to infinity. Caines et al. (2017) mentions the use of dynamic programming for such problems
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with exponential integral cost. In Moon and Başar (2019) stochastic maximum principle is used to
address nonlinear risk-sensitive mean field games. The authors analyze the optimal control problem
under a fixed probability measure. Then, via Schauder’s theorem they obtain the conditions under
which a fixed-point solution exists to the consistency equation which equates the probability law
of the optimally controlled state of the representative agent to the fixed measure. Tembine et al.
(2014) elaborates on the fact that the mean field value derived using this method coincides with the
value function from Hamilton-Jacobi-Bellman equation with an additional quadratic term under
appropriate regularity conditions.

MFGs have found diverse applications in mathematical finance. Firoozi and Caines (2017);
Casgrain and Jaimungal (2020); Cardaliaguet and Lehalle (2018); Huang et al. (2019) use MFGs
in a dynamic trading context where the goal of each agent is to maximize the expected wealth
and close the position at the end. The authors express the solution of the game explicitly in
terms of a deterministic fixed point problem and discuss ϵ-Nash equilibrium when considering
a finite population. Carmona and Delarue (2017) incorporates the mean field game of timing
into a bank runs’ context. The authors model the value of the deposits with dividends of agents
in relation to the moment at which the agents exit the game satisfactorily in continuous time.
Through a probabilistic approach, the fixed point for best responses is found using the Nash
equilibrium. Carmona et al. (2015a, 2018) uses LQG MFGs to model an inter-bank borrowing and
lending system in which each agent’s dynamic represents the log-monetary reserves of one bank. In
addition, the authors investigate the individual and systemic risk by defining a default threshold for
each bank. Then, the Nash equilibrium is established following the banks’ optimization of monetary
reserve adjustments. Other applications include equilibrium pricing in financial markets (Gomes
and Saúde, 2020; Shrivats et al., 2022a; Féron et al., 2021; Fujii and Takahashi, 2022), portfolio
trading (Fu et al., 2018), financial market design (Shrivats et al., 2022b), and cryptocurrencies (Li
et al., 2019). Specifically, we

1.2. Problem Description

This paper studies LQG MFGs with a common noise, where agents have an exponential cost to
capture risk sensitivity. The methodology developed is mainly inspired by Firoozi et al. (2020) and
Liu et al. (2023), where the authors develop a convex analysis method to address, respectively, risk-
neutral and risk-sensitive LQG optimal control problems and then extend the analysis to MFGs
with major and minor agents. We leverage the convex analysis method to derive the best-response
strategies of risk-sensitive agents when exposed to a common noise. These strategies yield a Nash
equilibrium for the liming model when the number of agents goes to infinity.

Then, the model is used to investigate the impact of risk sensitivity on individual default and
systemic default probabilities in the context of an interbank market where individual banks seek
to pursue optimal strategies to reduce costs. For this purpose, first, risk-sensitivity is incorporated
in the market model introduced by Carmona et al. (2015b) through an exponential cost functional.
Then, to calculate the default probability of an individual agent and of the system, Fokker-Planck
equations are formulated based on Ding and Rangarajan (2004) via the hitting time approach
for diffusion processes. Then, the equations are numerically solved and the impact of various
parameters, in particular risk-sensitivity, is examined. Finally, the default probabilities subject
to specific trajectories of the common shock in the market are examined through a stochastic
Fokker-Planck equation, drawing inspiration from Carmona et al. (2015b). The conditional default
probability is numerically computed and the impact of distinct trajectories of the common noises
is investigated.

The contributions of the paper are summarized as follows:
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• The paper uses convex analysis to address linear-quadratic-Gaussian (LQG) risk-sensitive
mean field games (MFGs) with common noise. More specifically, this model introduces
exponential cost and a common Brownian motion, shedding light on risk-sensitive behavior
in the context of MFGs, where all agents are influenced by a shared noise. Optimal feedback
control actions for agents leading to a Nash equilibrium are derived.

• Within the context of interbank transactions, the paper makes contributions by (i) introduc-
ing risk sensitivity, (ii) utilizing the Fokker-Planck equation to derive the total probabilities
of individual default as well as systemic default, and (iii) investigating the conditional prob-
ability of individual default under specific trajectories of the common shocks using stochastic
Fokker-Planck equation.

1.3. Paper Organization

The paper is organized as follows. Firstly, a model of Linear-Quadratic-Gaussian (LQG) risk-
sensitive mean field games is presented 2, which incorporates a common Brownian motion with
exponential cost. Next, optimal feedback control actions for agents leading to a Nash equilibrium
are derived for the infinite-population scenario, where the number of agents goes to infinity in
Section in 3. Then, the paper demonstrates the application of this model in an interbank market
in Section 5. In Section 5.4 and Section 5.5, the probability of default for the agent and the system
is investigated by deriving corresponding Fokker-Planck equations and numerically solving them.
The impact of various parameters, in particular risk-sensitivity on these probabilities is examined
in Section 5.5.3. A more thorough investigation is conducted to study the conditional probability
of individual default using numerical methods over the stochastic Fokker-Planck equation, focusing
on specific trajectories of common shock in Section 5.5.4.

2. Finite-Population Model

In this section we present a general model for linear-quadratic-Gaussian (LQG) risk-sensitive
mean field game (MFG) systems with a finite number of agents impacted by a common noise.

Consider a system consisting of N competitive dynamic agents. We assume that agents are
heterogeneous and belong to K distinct types, where each type is characterized by a specific set of
model parameters. The index set of agents is defined by N = {1, 2, . . . , N}. Moreover, the index
set Ik of type k, k ∈ K = {1, 2, . . . , K}, is defined as

Ik = {i : θi = θ(k), i ∈ N},

where θi and θ(k) ∈ Θ denote, respectively, the model parameters of agent i and type k, with Θ
being the system parameter set. The cardinality |Ik| of the index set Ik determines the number
of agents in type k, denoted by Nk henceforth. The proportion of the agents that belong to type
k ∈ K, is defined by π

[N ]
k = Nk

N
. Thus, for the entire population, we obtain the vector of proportions

π[N ] = [π
[N ]
1 π

[N ]
2 ... π

[N ]
K ], which represents the empirical distribution of system parameters.

2.1. Dynamics

Agent i, i ∈ N, is governed by linear dynamics given by

dxi
t =

(
Akx

i
t + Fkx

[N ]
t +Bku

i
t + bk(t)

)
dt+ σkdw

i
t + σ0dw

0
t (1)

4



where t ∈ T := [0, T ] and k ∈ K. We denote respectively xi
t ∈ Rn and ui

t ∈ Rm as the state and
the control action of agent i at time t. We define w := {(w0

t )t∈T, (w
i
t)t∈T, i ∈ N} as a set of (N +1)

independent Brownian motions, where wi
t ∈ Rr denotes the idiosyncratic noise of agent i at time

t and w0
t ∈ Rr denotes a common noise that impacts the dynamics of all N agents at time t. The

latter models a random shock in the system. The coefficients Ak ∈ Rn×n, Fk ∈ Rn×n, Bk ∈ Rn×m,
σk, σ0 ∈ Rn×r, and the function bk(t) ∈ Rn are deterministic and known.

Moreover, x
[N ]
t ∈ Rn defines the average state of the entire population of agents at time t and

is given by

x
[N ]
t =

1

N

N∑
i=1

xi
t. (2)

From (1), each agent in the system is impacted by the average state of the entire population.

2.2. Filtration and Control σ-Fields

Let (Ω,FFF , (F [N ]
t )t∈T,P) be a filtered probability space, where Ω is the sample space, FFF is

a σ-algebra, (F [N ]
t )t∈T is a filtration, and P is a probability measure. We define the σ-algebra

F [N ]
t := σ(w0

s , w
i
s, 0 ≤ s ≤ t, i ∈ N). The admissible set of controls U i of an agent i is the set of

continuous linear state feedback Rm-valued control laws ui
t = u(t, xi

t), t ∈ T, that are F [N ]
t -adapted

such that E[
∫ T

0
(ui

t)
⊺ui

tdt] < ∞, for T < ∞.

Assumption 1. The initial states {xi
0, i ∈ N}, defined on (Ω,FFF , (F [N ]

t )t∈T,P), are identically dis-
tributed, mutually independent and also independent of w.

2.3. Cost Functional

Let Sn×m denote the set of symmetric matrices of dimension n×m, and let ∥a∥2B = a⊤Ba denote
the seminorm of vector a with respect toB ≥ 0. Additionally, we define u−i := (u0, . . . , ui−1, ui+1, . . . , uN)
to represent the control actions performed by agents other than agent i.

The cost functional of agent i to be minimized is given by

J i,[N ](ui, u−i) = γk logE
[
exp

(
1

γk

(
gk(xi

T , x
[N ]
T ) +

∫ T

0

fk(xi, x
[N ]
t , ui

t)dt

))]
(3)

where

gk(xi
T , x

[N ]
T ) =

1

2
∥xi

T −Hkx
[N ]
T − ηk∥2Q̂k

(4)

fk(xi
t, x

[N ]
t , ui

t) =
1

2

{
∥xi

t −Hkx
[N ]
t − ηk∥2Qk

+ 2(xi
t −Hkx

[N ]
t − ηk)

⊺Sku
i
t + ∥ui

t∥2Rk

}
(5)

with 1
γk

∈ (0,∞) indicating the degree of risk aversion of the agent. In particular, as 1
γ
increases,

the agent’s risk aversion intensifies. In the limit when 1
γ
→ 0, the cost functional reduces into a

risk-neutral form. The other parameters are Q̂k, Qk ∈ Sn×n, Rk ∈ Sm×m, Hk ∈ Rn×n, ηk ∈ Rn,
Sk ∈ Rn×m for all k ∈ K.

The cost functional is defined as the expected value of an exponential function of the integral
cost, enabling it to capture all moments of the integral cost, including those that indicate risk. As
a result, the cost functional incorporates risk, making it a risk-sensitive cost.

For a representative agent, the optimization problem involves finding the optimal control ui
t that

minimizes the cost functional while taking into account the agent’s dynamics and its interactions
with all other agents modeled by the average state. However, as the number of agents N increases,
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the complexity of this problem escalates, rendering it intractable. Mean Field Game (MFG) theory
provides a mathematically tractable approach to analyze such interactions among a large number of
agents. The MFG methodology involves finding the solution to the asymptotic game as the number
of agents approaches infinity. In this limiting case, the average state of the population, known as
the mean field, can be mathematically characterized. As each agent can compute the mean field,
the problem becomes significantly simplified and can be represented as a set of individual optimal
control problems linked together through the mean field. In the next section, we present the
optimization problem in the limiting case referred to as the infinite-population model.

3. Infinite-Population Model

In this section we present the infinite-population model, as N → ∞, for the linear-quadratic-
Gaussian (LQG) risk-sensitive mean field games described in the preceding section. The model
consists of an infinite number of competitive dynamic agents that belong to K < ∞ distinct types,
each with a unique set of model parameters. Stated differently, we are considering the limiting
case where each type is comprised of an infinite population. The index set of agents is denoted by
N∞ = {1, 2, . . . }.

Assumption 2. The empirical distribution of model parameters converges to a theoretical distri-
bution. In other words, there exists πk such that limN→∞ π

[N ]
k := limN→∞

Nk

N
= πk for all k ∈ K.

Thus, limN→∞ π[N ] = π, where π = [π1, . . . , πK ].

3.1. Dynamics

From the dynamics (1), we consider the limit case of the empirical average for an infinite
population case and acknowledge the convergence criterion imposed in Assumption 2. Then, agent
i, i ∈ N∞, in the infinite-population limit is governed by linear dynamics given by

dxi
t =

(
Akx

i
t + F π

k x̄t +Bku
i
t + bk(t)

)
dt+ σkdw

i
t + σ0dw

0
t (6)

where F π
k ∈ Rn×Kn and x̄t ∈ RKn. We define F π

k = π⊗Fk := [Fkπ1 Fkπ2 ... FkπK ]. In LQG case,
the mean field can be written as x̄⊺

t =
[
(x̄1

t )
⊺ . . . (x̄K

t )
⊺
]
which denotes the population mean field

at time t, where x̄k
t ∈ Rn is defined as

x̄k
t = lim

Nk→∞

1

Nk

∑
i∈Ik

xi
t (7)

representing the mean field of type k at time t. The mean field dynamics is derived in Section 3.4.
All other continuous states and coefficients maintain their definitions from the finite population
model. The assumption on the starting states remains also the same but in the filtered probability
space defined in Section 3.2.

3.2. Filtration

We define the filtration for agent i as (F i
t )t∈T := σ(w0

s , w
i
s, 0 ≤ s ≤ t) for all i ∈ N∞ and the

filtration for the mean field as (F0
t )t∈T := σ(w0

s , 0 ≤ s ≤ t). The admissible set of controls U i for
an agent i is the set of continuous linear state feedback control laws ui

t = u(t, xi
t), t ∈ T, that are

F i
t -adapted R

m-valued processes such that E[
∫ T

0
(ui

t)
⊺ui

tdt] < ∞, for T < ∞.
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3.3. Cost Functional

The cost functional to be minimized is given by

J i,∞(ui) = γk logE
[
exp

(
1

γk

(
gk(xi

T , x̄T ) +

∫ T

0

fk(xi, x̄t, u
i
t)dt

))]
(8)

where

gk(xi
T , x̄T ) =

1

2
∥xi

T −Hπ
k x̄T − ηk∥2Q̂k

(9)

fk(xi
t, x̄t, u

i
t) =

1

2

{
∥xi

t −Hπ
k x̄t − ηk∥2Qk

+ 2(xi
t −Hπ

k x̄t − ηk)
⊺Sku

i
t + ∥ui

t∥2Rk

}
(10)

with Hπ
k ∈ Rn×Kn defined as Hπ

k = π ⊗ Hk = [Hkπ1 Hkπ2 ... HkπK ]. The other parameters are
the same as the ones in the finite-population model.

Assumption 3. Q̂k ≥ 0, Rk > 0, Qk − SkR
−1
k S⊺

k ≥ 0.

Assumption 3 ensures the convexity of the cost functional (8) with respect to xi
t and ui

t. By
completing the square, we obtain the following equality

fk(xi
t, x̄t, u

i
t) =

1

2

{
∥xi

t −Hπ
k x̄t − ηk∥2Qk

+ 2(xi
t −Hπ

k x̄t − ηk)
⊺Sku

i
t + ∥ui

t∥2Rk

}
=

1

2

{
∥xi

t −Hπ
k x̄t − ηk∥2Qk

+ 2(xi
t −Hπ

k x̄t − ηk)
⊺Sku

i
t − ∥S⊺

k(x
i
t −Hπ

k x̄t − ηk)∥R−1
k

+ ∥S⊺
k(x

i
t −Hπ

k x̄t − ηk)∥R−1
k

+ ∥ui
t∥2Rk

}
=

1

2

{
∥xi

t −Hπ
k x̄t − ηk∥2Qk−SkR

−1
k S⊺

k

+ ∥ui
t +R−1

k Sk(x
i
t −Hπ

k x̄t − ηk)∥2Rk

}
. (11)

Consider gk(xi
T , x̄T ) and fk(xi

t, x̄t, u
i
t), we refer to Jacobson (1973) for the conditions in Assumption

3 that guarantee the convexity of the cost functional (8) with respect of xi
t and ui

t.

Coefficients Ak, F
π
k , Bk and σk in the agent’s dynamics can be viewed as type-specific factors

with respect to the associated variable. The function bk(t) is an additional deterministic function
with the dynamics’ drift. The factor σ0 is a multiplier to the common noise presented in the envi-
ronment in which all agents inhabit. There are numerous potential financial applications linked to
these variables. For instance, the state xi

t can be interpreted as the portfolio value, market price of
inventory, or monetary reserves of a fund. The corresponding feedback control ui

t can be regarded
as the trade or transaction rate.

The cost functional that the agent wants to minimize can be viewed as a regulator’s imposition
or the agent’s preference or cost. In this model, parts of the cost functional include the distance of
the agent’s state to a factor of the mean field up to a constant ηk. From equation (8), the impact
of the agent’s control action on the cost functional is also present.

A thorough interpretation of the parameters will be presented in application sections within
the interbank context.
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3.4. Mean Field Dynamics

The mean field dynamics for the agents of the type k is derived from the definition provided in
equation (7). An equivalent representation in the infinite-population limit can be written in the
conditional expectation form x̄k

t = E[xi,k
t |F0

t ], where xi,k
t represents the state of a representative

agent of the type k (Carmona and Delarue, 2018). The mean field dynamics is then derived as

dx̄k
t =

(
Akx̄

k
t + F π

k x̄t +Bkū
k
t + bk(t)

)
dt+ σ0dw

0
t (12)

where ūk
t ∈ Rm is defined by

ūk
t = lim

Nk→∞

1

Nk

∑
i∈Ik

ui
t.

If the limit exists, ūk
t represents the control mean field of agents of type k ∈ K.

Note that as Nk increases to infinity for all types of agent, by the strong Law of Large Numbers,

lim
Nk→∞

1

Nk

∑
i∈Ik

∫
dwi

t = 0 (13)

or equivalently E[
∫
dwi

t|F0
t ] = 0.

Subsequently, the state mean field of the population x̄t ∈ RKn can be represented as the vector
x̄⊺
t =

[
(x̄1

t )
⊺ . . . (x̄K

t )
⊺
]
satisfying

dx̄t = (Ăx̄t + B̆ūt + m̆t)dt+111Kn×nσ0dw
0
t (14)

where ūt ∈ RKm represents the population control mean field ū⊺
t =

[
(ū1

t )
⊺ . . . (ūK

t )
⊺
]
. The

associated coefficients Ăt ∈ RKn×Kn, B̆ ∈ RKn×Km, m̆t ∈ RKn×1, and 111Kn×n ∈ RKn×n are defined
as in

Ă =

 A1eee1 + F π
1

...
AKeeeK + F π

K

 , B̆ =

B1 0
. . .

0 BK

 , m̆t =

 b1(t)...
bK(t)

 , 111Kn×n =

In...
In

 . (15)

Moreover, the matrix eeek ∈ Rn×Kn is defined as eeek = [0n×n, ..., 0n×n, In, 0n×n, ..., 0n×n], which has
the n× n identity matrix In at the kth block.

4. Solutions to the Infinite-Population Model

4.1. Optimal Control Action

Consider the infinite-population LQG risk-sensitive MFG model with common noise presented
in Section 3, our objective is to determine the optimal control actions that achieve the best re-
sponse using convex analysis. To implement this approach, we adapt the definition of the Gâteaux
derivative described in Ekeland and Témam (1999) and Allaire (2007) to our specific problem. By
using this modified definition, we can identify the control action that leads to the vanishing of the
Gâteaux derivative of the cost function. Then, given the exponential nature of the cost integral,
we use completion of squares and Girsanov’s theorem to change the measure and determine the
optimal control action.
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Definition 1 (Gâteaux Derivative). The cost functional J i,∞ defined on a neighbourhood of ui ∈ U i

with values in R is Gâteaux differentiable at ui in the direction of ωi ∈ U i if there exists a Gâteaux
differential DJ(ui) such that

⟨DJ(ui), ωi⟩ = lim
ϵ→0

J(ui + ϵωi)− J(ui)

ϵ
. (16)

Theorem 1 (Gâteaux Derivative Expanded). The Gâteaux derivative of the cost functional (8)
in the infinite population case is given by

⟨DJ i,∞(ui), ωi⟩ =
E
[∫ T

0
(ωi

t)
⊺hk(ϵ, xi

t, x̄t, u
i
t)dt
]

E [exp(Gi
T (u))]

(17)

where

Gi
T (u) =

1

γk

[
gk(xi

T , x̄T ) +

∫ T

0

fk(xi
t, x̄t, u

i
t)dt

]
(18)

hk(ϵ, xi
t, x̄t, u

i
t) = M i

1,t

(
S⊺
k(x

i
t −Hπ

k x̄t − ηk) +Rku
i
t −B⊺

k

∫ t

0

exp (A⊺
k(s− t))

×
(
Qk(x

i
s −Hπ

k x̄s − ηk) + Sku
i
s

)
ds
)
+B⊺

k exp (−A⊺
kt)M

i
2,t (19)

M i
1,t = E

[
exp (Gi

T (u))|F i
t

]
, (20)

M i
2,t = E

[
exp (Gi

T (u))

(
exp (A⊺

kT )Q̂k(x
i
T −Hπ

k x̄T − ηk) +

∫ T

0

exp (A⊺
ks)

×
(
Qk(x

i
s −Hπ

k x̄s − ηk) + Sku
i
s

)
ds

)∣∣∣∣F i
t

]
. (21)

Proof. To compute the Gâteaux derivative, we start by deriving the agent’s state as the solution
to the stochastic differential equation (SDE) given by (6). We perturb the control action of the
representative agent i and analyze the impact of this perturbation on the agent’s state, the mean
field, and the cost functional. Finally, we use Definition 1 to derive the Gâteaux derivative of
the agent’s cost functional. This approach allows us to effectively capture the impact of a small
perturbation on the agent’s overall performance and on the entire system.

Consider the transformation yt = exp (−Akt)x
i
t. Using Itô’s lemma we can show that yt satisfies

dyt = −Ak exp (−Akt)x
i
tdt+ exp (−Akt)

(
[Akx

i
t + F π

k x̄t +Bku
i
t + bk(t)]dt

+ σkdw
i
t + σ0dw

0
t

)
. (22)

Integrating both sides of (22) from 0 to t and then multiplying by exp (Akt), we get

xi
t = exp (Akt)x0 +

∫ t

0

exp (Ak(t− s))(F π
k x̄s +Bku

i
s + bk(s))ds+

∫ t

0

exp (Ak(t− s))σkdw
i
s

+

∫ t

0

exp (Ak(t− s))σ0dw
0
s . (23)

Let xi,ϵ
t denote the solution to (6) subject to a perturbed control action ui

t+ ϵωi
t in the direction

of ωi
t ∈ U i. From (23), we can write

xi,ϵ
t = xi

t + ϵ

∫ t

0

exp (Ak(t− s))Bkω
i
sds. (24)
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Subsequently, the infinitesimal variation of xi,ϵ
t is given by

dxi,ϵ
t = dxi

t + ϵBkω
i
tdt+ ϵAk

∫ t

0

exp (Ak(t− s))Bkω
i
sds. (25)

On the one hand, we observe that the perturbed mean field x̄k,ϵ
t because of the perturbed

control action of agent i in type k, if the limit exists, is defined by

x̄k,ϵ
t = lim

Nk→∞

1

Nk

( ∑
j∈Ik,j ̸=i

xj
t + xi,ϵ

t

)
. (26)

On the other hand, the mean field of other agents belonging to the other types is not perturbed.
Thus, we note that the population mean field x̄ϵ

t, if the limits exist, is defined by

x̄ϵ
t =

[
(x̄1

t )
⊺ . . . (x̄k,ϵ

t )⊺ . . . (x̄K
t )

⊺
]
. (27)

From (26), for the infinite-population model, the impact of the perturbed control action of agent
i on the population mean field is negligible. Hence, we conclude that x̄ϵ

t = x̄t.
The cost of the perturbed control action ui

t + ϵωi
t and the corresponding perturbed state xi,ϵ

t is
given by

J i,∞(ui + ϵωi) = γk logE
[
exp

(
1

γk

(
gk(xi,ϵ

T , x̄T ) +

∫ T

0

fk(xi,ϵ, x̄t, u
i
t + ϵωi

t)dt

))]
. (28)

To simplify the notation, we can define

Gi
T (u) :=

1

γk

(
gk(xi

T , x̄T ) +

∫ T

0

fk(xi
t, x̄t, u

i
t)dt
)
. (29)

Let Φt = Hπ
k x̄t + ηk. From (24), we can write the perturbed integral cost as

J i,∞(ui + ϵωi) = γk logE
[
exp(Gi,ϵ

T )
]

(30)

where

Gi,ϵ
T =

1

γk

(
gk(xi,ϵ

T , x̄T ) +

∫ T

0

fk(xi,ϵ
t , x̄t, u

i
t + ϵωi

t)dt
)

= Gi
T +

1

2γk
∥ϵ
∫ T

0

exp (Ak(T − s))Bkω
i
sds∥2Q̂k

+
1

γk
(xi

T − ΦT )
⊺Q̂kϵ

×
∫ T

0

exp (Ak(T − s))Bkω
i
sds+

1

γk

∫ T

0

{1
2
∥ϵ
∫ t

0

exp (Ak(t− s))Bkω
i
sds∥2Qk

+ (xi
t − Φt)

⊺
(
Qkϵ

∫ t

0

exp (Ak(t− s))Bkω
i
sds+ Sk(ϵω

i
t)
)
+ (ϵ

∫ t

0

exp (Ak(t− s))

×Bkω
i
sds)

⊺Sk(u
i
t + ϵωi

t) +
1

2
∥ϵωi

t∥2Rk
+ (ui

t)
⊺Rkϵω

i
t

}
dt. (31)
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By reordering the variables, we obtain

Gi,ϵ
T = Gi

T +
ϵ

γk
(xi

T − ΦT )
⊺Q̂k

∫ T

0

exp (Ak(T − s))Bkω
i
sds+

ϵ

γk

∫ T

0

{
(xi

t − Φt)
⊺

×
(
Qk

∫ t

0

exp (Ak(t− s))Bkω
i
sds+ Skω

i
t

)
+ (

∫ t

0

exp (Ak(t− s))

×Bkω
i
sds)

⊺Sku
i
t + (ui

t)
⊺Rkω

i
t

}
dt+

ϵ2

2γk
∥
∫ T

0

exp (Ak(T − s))Bkω
i
sds∥2Q̂k

+
ϵ2

γk

∫ T

0

{1
2
∥
∫ t

0

exp (Ak(t− s))Bkω
i
sds∥2Qk

+ (

∫ t

0

exp (Ak(t− s))Bkω
i
sds)

⊺Skω
i
t +

1

2
∥ωi

t∥2Rk

}
dt. (32)

According to Definition 1, for the representative agent-i the Gâteaux derivative is given as

⟨DJ i,∞(ui), ωi⟩ = lim
ϵ→0

γk
ϵ
log

E
[
exp(Gi,ϵ

T )
]

E [exp(Gi
T )]

. (33)

As the limit involves an indeterminate quotient, we can employ L’Hôpital’s rule while applying
Talor expansion on exp(Gi,ϵ

T ) to continue the analysis as in

⟨DJ i,∞(ui), ωi⟩ = lim
ϵ→0

γk
1

E[exp(Gi,ϵ
T )]

∂

∂ϵ
E

[
exp(Gi

T )

(
1 +

ϵ

γk
(xi

T − ΦT )
⊺Q̂k

×
∫ T

0

exp (Ak(T − s))Bkω
i
sds+

ϵ

γk

∫ T

0

{
(xi

t − Φt)
⊺
(
Qk

×
∫ t

0

exp (Ak(t− s))Bkω
i
sds+ Skω

i
t

)
+ (

∫ t

0

exp (Ak(t− s))Bkω
i
sds)

⊺

× Sku
i
t + (ui

t)
⊺Rkω

i
t

}
dt+O(ϵ2)

)]
. (34)

By linearity of the expectation, we have

⟨DJ i,∞(ui), ωi⟩ = lim
ϵ→0

γk
1

E[exp(Gi,ϵ
T )]

∂

∂ϵ

[
E(exp(Gi

T ) + ϵE
(
exp(Gi

T )
( 1

γk
(xi

T − ΦT )
⊺Q̂k

×
∫ T

0

exp (Ak(T − s))Bkω
i
sds+

1

γk

∫ T

0

{
(xi

t − Φt)
⊺
(
Qk

∫ t

0

exp (Ak(t− s))

×Bkω
i
sds+ Skω

i
t

)
+ (

∫ t

0

exp (Ak(t− s))Bkω
i
sds)

⊺Sku
i
t + (ui

t)
⊺Rkω

i
t

}
dt
))

+ ϵ2E
(
exp(Gi

T )

ϵ2
O(ϵ2)

)]
. (35)
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Then, we can perform the derivative and obtain

⟨DJ i,∞(ui), ωi⟩ = lim
ϵ→0

γk
1

E[exp(Gi,ϵ
T )]

[
E
(
exp(Gi

T )
( 1

γk
(xi

T − ΦT )
⊺Q̂k

×
∫ T

0

exp (Ak(T − s))Bkω
i
sds+

1

γk

∫ T

0

{
(xi

t − Φt)
⊺
(
Qk

×
∫ t

0

exp (Ak(t− s))Bkω
i
sds+ Skω

i
t

)
+ (

∫ t

0

exp (Ak(t− s))Bkω
i
sds)

⊺

× Sku
i
t + (ui

t)
⊺Rkω

i
t

}
dt
))

+ 2ϵE
(
exp(Gi

T )

ϵ2
O(ϵ2)

)
+ ϵ2

∂

∂ϵ
E
(
exp(Gi

T )

ϵ2
O(ϵ2)

)]
. (36)

By performing the limit and simplifying the equation, we obtain

⟨DJ i,∞(ui), ωi⟩ = 1

E[exp(Gi
T )]

[
E
(
exp(Gi

T )
(
(xi

T − ΦT )
⊺Q̂k

×
∫ T

0

exp (Ak(T − s))Bkω
i
sds+

∫ T

0

{
(xi

t − Φt)
⊺
(
Qk

∫ t

0

exp (Ak(t− s))

×Bkω
i
sds+ Skω

i
t

)
+ (

∫ t

0

exp (Ak(t− s))Bkω
i
sds)

⊺

× Sku
i
t + (ui

t)
⊺Rkω

i
t

}
dt
))]

. (37)

For clarity, we can transpose and manipulate the order of some matrix multiplications to get

⟨DJ i,∞(ui), ωi⟩ = 1

E[exp(Gi
T (u))]

E

[
exp(Gi

T (u))

(∫ T

0

(ωi
s)

⊺B⊺
k exp (A

⊺
k(T − s))ds

× Q̂k(x
i
T − ΦT ) +

∫ T

0

(
(ωi

t)
⊺S⊺

k(x
i
t − Φt) + (ωi

t)
⊺Rku

i
t

)
dt

+

∫ T

0

(∫ t

0

(ωi
s)

⊺B⊺
k exp (A

⊺
k(T − s))dsQk(x

i
t − Φt)

+

∫ t

0

(ωi
s)

⊺B⊺
k exp (A

⊺
k(t− s))dsSku

i
t

)
dt

)]
. (38)

As the function within the integral is continuous, by Fubini’s theorem and the change of order of
integrals (Strang, 1991), the last term in the above equation can be written as∫ T

0

(∫ t

0

(ωi
s)

⊺B⊺
k exp (A

⊺
k(t− s))dsQk(x

i
t − Φt) +

∫ t

0

(ωi
s)

⊺B⊺
k exp (A

⊺
k(t− s))dsSku

i
t

)
dt

=

∫ T

0

(ωi
s)

⊺

(∫ T

s

B⊺
k exp (A

⊺
k(t− s))Qk(x

i
t − Φt)dt+

∫ T

s

B⊺
k exp (A

⊺
k(t− s))Sku

i
tdt

)
ds. (39)
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From (38) and (39), we can then change the integration variable for the second integral and factor
out (ωi

s)
⊺ and substitute (39) to get

⟨DJ i,∞(ui), ωi⟩ = 1

E[exp(Gi
T (u))]

E

[
exp(Gi

T (u))

(∫ T

0

(ωi
s)

⊺
{
S⊺
k(x

i
s − Φs) +Rku

i
s

+B⊺
k

[
exp (A⊺

k(T − s))Q̂k(x
i
T − ΦT ) +

∫ T

s

(
exp (A⊺

k(T − s))Qk(x
i
t − Φt)

+ exp (A⊺
k(T − s))Sku

i
t

)
dt
]}

ds

)]
. (40)

The inner integral within (40) can be split in two terms as in∫ T

s

(
exp (A⊺

k(t− s))Qk(x
i
t − Φt) + exp (A⊺

k(t− s))Sku
i
t

)
dt

=

∫ T

0

exp (A⊺
k(t− s))

(
Qk(x

i
t − Φt) + Sku

i
t

)
dt−

∫ s

0

exp (A⊺
k(t− s))

(
Qk(x

i
t − Φt) + Sku

i
t

)
dt.

(41)

Thus, an equivalent expression for the Gâteaux derivative is given by

⟨DJ i,∞(ui), ωi⟩ = 1

E[exp(Gi
T (u))]

E

[
exp(Gi

T (u))

(∫ T

0

(ωi
s)

⊺

{
S⊺
k(x

i
s − Φs) +Rku

i
s

+B⊺
k

[
−
∫ s

0

exp (A⊺
k(t− s))

(
Qk(x

i
t − Φt) + Sku

i
t

)
dt

+ exp (−A⊺
ks)
(
exp (A⊺

kT )Q̂k(x
i
T − ΦT )

+

∫ T

0

exp (A⊺
kt)
(
Qk(x

i
t − Φt) + Sku

i
t

)
dt
)]}

ds

)]
. (42)

By taking exp (Gi
T (u)) inside the integral in (42) and applying the tower rule based on the filtration

F i
s, the Gâteaux derivative then can be written as

⟨DJ i,∞(ui), ωi⟩ = 1

E [exp (Gi
T (u))]

E

[∫ T

0

(ωi
s)

⊺

{
M i

1,s

(
S⊺
k(x

i
s − Φs) +Rku

i
s

+B⊺
k

[
−
∫ s

0

exp (A⊺
k(t− s))

(
Qk(x

i
t − Φt) + Sku

i
t

)
dt
)

+ exp (−A⊺
ks)M

i
2,s

]}
ds

]
(43)

where

M i
1,s = E

[
exp

(
Gi

T (u)
)
|F i

s

]
, (44)

M i
2,s = E

[
exp

(
Gi

T (u)
)(

exp (A⊺
kT )Q̂k(x

i
T − ΦT ) +

∫ T

0

exp (A⊺
kt)

×
(
Qk(x

i
t − Φt) + Sku

i
t

)
dt

)∣∣∣∣F i
s

]
. (45)
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Using the Gâteaux derivative given in Theorem 1, we can determine the optimal action ui,∗
t that

minimizes the cost functional (8) of the representative agent. A necessary condition for ui,∗
t ∈ U i

to be the optimal control action under P is

⟨DJ i,∞(ui,∗), ωi⟩ = 0 ∀w ∈ U i. (46)

If Assumption 3 holds, this condition is also a sufficient optimality condition for ui,∗
t . Hence the

optimal control action under P is given by

ui,∗
t = −R−1

k

(
B⊺

k exp (−A⊺
kt)

[
M i

2,t

M i
1,t

−
∫ t

0

(
exp (A⊺

ks)
(
Qk(x

i
s − Φs) + Sku

i,∗
s

))
ds

]
+ S⊺

k (x
i
t − Φt)

)
(47)

where

M i
2,t

M i
1,t

=

EP

exp (Gi
T (u))(exp (A⊺

kT)Q̂k(x
i
T−ΦT )+

∫ T
0 exp (A⊺

ks)(Qk(x
i
s−Φs)+Sku

i,∗
s )ds)

∣∣∣∣F i
t


EP[exp (Gi

T (u))|F i
t ]

. (48)

We observe that in its current form, the optimal control action is not practicable in the context
of applications. In particular, we are interested in a linear state feedback form for the optimal
control action as it is very convenient when it comes to implementing the optimal strategy. How-
ever, due to the nonlinearity introduced by the term (48) in the optimal control action, it is not
obvious how such a linear form can be achieved at first glance. By inspecting (48) we observe that
both the numerator and the denominator are involved with the exponential term exp (Gi

T (u)).
This fact suggests that a linear form for the optimal control action may be achievable through a
change of measure. To investigate this matter, the initial step involves determining whether or
not exp (Gi

T (u)) may represent a Radon Nikodym derivative. If such a representation is possible,
we can transform (48) from a quotient of martingales under the measure P to a martingale under
a new measure denoted by P̂. The subsequent step involves identifying the optimal control under
P̂, followed by applying the equivalent measure theorem to recover the optimal control under P.

4.2. Change of Measure

This section focuses on the derivation of the Radon-Nikodym exponent, which is needed to
transform (48) into a martingale under a new probability measure, denoted by P̂. To achieve
this, we adopt a strategy of selecting a set of control coefficients. With the help of a judiciously
chosen variable and its cumulative change with respect to its infinitesimal difference, Gi

T (u) can be
reduced to the desired form. The inspiration behind the introduced change of measure stems from
the financial realm, where we evaluate derivatives under the risk-neutral probability to simplify
complex pricing calculations. Specifically, we transition from the physical world to the risk-neutral
setting by quantifying the risk premium through the Radon-Nikodym exponent.

Theorem 2. Consider the LQG risk-sensitive system described by (6), (8)-(10), (14)-(15) and
suppose that Assumption 3 holds. The variable Gi

T (u)−Θ0 admits the representation

Gi
T (u)−Θ0 = − 1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt+
1

γk

∫ T

0

µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t (49)

with Θ0 ∈ R,µ(t,WWW t)µ(t,WWW t)µ(t,WWW t) = ((XXX t)
⊺HHHk

t + (CCCk
t )

⊺)ΣΣΣk such that

WWW t =

[
wi

t

w0
t

]
, XXX t =

[
xi
t

x̄t

]
, HHHk

t =

[
Πk

t Λk
t

(Λk
t )

⊺ ∆k
t

]
, (50)
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CCCk
t =

[
Υk

t

Γk
t

]
, ΣΣΣk =

[
σk σ0

000Kn×r 111Kn×nσ0

]
(51)

with Πk
t ∈ Sn×n, ∆k

t ∈ SKn×Kn, Λk
t ∈ Rn×Kn,Υk

t ∈ Rn, Γk
t ∈ RKn, if the following condition is

satisfied

ζ(u) =

∫ T

0

( 1

2γk
XXX⊺

tQkQkQkXXX t +
1

γk
ηkηkηkXXX t +

1

2γk
η⊺kQkηk +

1

γk
XXX⊺

tSSSku
i,∗
t − 1

γk
η⊺kSku

i,∗
t

+
1

2γk
(ui,∗

t )⊺Rku
i,∗
t +

1

γk
((XXX t)

⊺HHHk
t + (CCCk

t )
⊺){ÃAAkXXX t + B̃BBku

i,∗
t + β̃kβkβkūt + M̃MM t}

)
dt

+
1

2γk

∫ T

0

tr
(
σ⊺
kΠ

k
t σk) + σ⊺

0

(
Πk

t + 2111n×Kn(Λ
k
t )

⊺ +111n×Kn∆
k
t111Kn×n

)
σ0

)
dt

+
1

2γk

∫ T

0

XXX⊺
t dHHH

k
tXXX t +

1

γk

∫ T

0

d(CCCk
t )

⊺XXX t +
1

2γk

∫ T

0

dΨk
t

+
1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt = 0 (52)

with Θ0,Ψ
k
t ∈ R,

QkQkQk =

[
Qk −QkH

π
k

−(Hπ
k )

⊺Qk (Hπ
k )

⊺QkH
π
k

]
, ηkηkηk =

[
−η⊺kQk η⊺kQkH

π
k

]
, (53)

SSSk =

[
Sk

−(Hπ
k )

⊺Sk

]
, ÃAAk =

[
Ak F π

k

000Kn×Kn Ă

]
, B̃BBk =

[
Bk

000Kn×m

]
, (54)

β̃kβkβk =

[
000n×Km

B̆

]
, M̃MM t =

[
bk(t)
m̆t

]
, ΣΣΣk =

[
σk σ0

000Kn×r 111Kn×nσ0

]
. (55)

Moreover, there exists a probability measure P̂ characterized by the Radon Nikodym variable dP̂
dP =

exp (Gi
T (u)−Θ0).

Proof. For the sake of clarity and organization, we will employ matrix notation instead of more
cumbersome scalar notation. For this purpose, we consider

XXX t =

[
xi
t

x̄t

]
, HHHk

t =

[
Πk

t Λk
t

(Λk
t )

⊺ ∆k
t

]
, CCCk

t =

[
Υk

t

Γk
t

]
(56)

where Πk
t ∈ Sn×n, ∆k

t ∈ SKn×Kn, Λk
t ∈ Rn×Kn,Υk

t ∈ Rn, Γk
t ∈ RKn. For our purpose, motivated by

Duncan (2013), we define the expression

Θk
t =

1

2γk
XXX⊺

tHHH
k
tXXX t +

1

γk
(CCCk

t )
⊺XXX t +

1

2γk
Ψk

t (57)

where Ψk
t ∈ R, HHHk

t ,CCC
k
t ,Ψ

k
t are deterministic. We have∫ T

0

dΘt = ΘT −Θ0. (58)
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Then we apply Itô’s lemma to obtain the infinitesimal variations of Θk
t as in∫ T

0

dΘt =

∫ T

0

{
1

2γk
XXX⊺

t dHHH
k
tXXX t +

1

γk
XXX⊺

tHHH
k
t dXXX t +

1

2γk
d
〈
XXX⊺HHHk

tXXX
〉
t
+

1

γk
d(CCCk

t )
⊺XXX t

+
1

γk
(CCCk

t )
⊺dXXX t +

1

2γk
dΨk

t

}
. (59)

By substituting (59) in (58) and taking all the terms to one side we have

0 =− (ΘT −Θ0)

+

∫ T

0

{
1

2γk
XXX⊺

t dHHH
k
tXXX t +

1

γk
XXX⊺

tHHH
k
t dXXX t +

1

2γk
d
〈
XXX⊺HHHk

tXXX
〉
t
+

1

γk
d(CCCk

t )
⊺XXX t

+
1

γk
(CCCk

t )
⊺dXXX t +

1

2γk
dΨk

t

}
(60)

where
dXXX t = {ÃAAkXXX t + B̃BBku

i,∗
t + β̃kβkβkū

∗
t + M̃MM t}dt+ΣΣΣkdWWW t (61)

with

ÃAAk =

[
Ak F π

k

000Kn×Kn Ă

]
, B̃BBk =

[
Bk

000Kn×m

]
, β̃kβkβk =

[
000n×Km

B̆

]
, M̃MM t =

[
bk(t)
m̆t

]
(62)

ΣΣΣk =

[
σk σ0

000Kn×r 111Kn×nσ0

]
, WWW t =

[
wi

t

w0
t

]
. (63)

For the sake of clarity, we also write Gi
T (u) in terms of XXX,

Gi
T (u) =

1

γk

[
1

2
∥xi

T −Hπ
k x̄T − ηk∥2Q̂k

+

∫ T

0

1

2

{
∥xi

t −Hπ
k x̄t − ηk∥2Qk

+ 2(xi
t −Hπ

k x̄t − ηk)
⊺Sku

i,∗
t + ∥ui,∗

t ∥2Rk

}
dt

]
=

1

2γk
XXX⊺

TQ̂kQ̂kQ̂kXXXT +
1

γk
η̂k̂ηk̂ηkXXXT +

1

2γk
η⊺kQ̂kηk +

∫ T

0

{
1

2γk
XXX⊺

tQkQkQkXXX t +
1

γk
ηkηkηkXXX t

+
1

2γk
η⊺kQkηk +

1

γk
XXX⊺

tSSSku
i,∗
t − 1

γk
η⊺kSku

i,∗
t +

1

2γk
(ui,∗

t )⊺Rku
i,∗
t

}
dt (64)

where

Q̂kQ̂kQ̂k =

[
Q̂k −Q̂kH

π
k

−(Hπ
k )

⊺Q̂k (Hπ
k )

⊺Q̂kH
π
k

]
, η̂k̂ηk̂ηk =

[
−η⊺kQ̂k η⊺kQ̂kH

π
k

]
(65)

QkQkQk =

[
Qk −QkH

π
k

−(Hπ
k )

⊺Qk (Hπ
k )

⊺QkH
π
k

]
, ηkηkηk =

[
−η⊺kQk η⊺kQkH

π
k

]
,SSSk =

[
Sk

−(Hπ
k )

⊺Sk

]
. (66)
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Then, we add together both sides of (60) and (64) to get

Gi
T (u) =

1

2γk
XXX⊺

TQ̂kQ̂kQ̂kXXXT +
1

γk
η̂k̂ηk̂ηkXXXT +

1

2γk
η⊺kQ̂kηk −ΘT +Θ0 +

∫ T

0

{
1

2γk
XXX⊺

tQkQkQkXXX t

+
1

γk
ηkηkηkXXX t +

1

2γk
η⊺kQkηk +

1

γk
XXX⊺

tSSSku
i,∗
t − 1

γk
η⊺kSku

i,∗
t +

1

2γk
(ui,∗

t )⊺Rku
i,∗
t

}
dt

+

∫ T

0

1

γk
XXX⊺

tHHH
k
t dXXX t +

∫ T

0

1

γk
(CCCk

t )
⊺dXXX t +

∫ T

0

1

2γk
d
〈
XXX⊺HHHk

tXXX
〉
t

+

∫ T

0

1

2γk
XXX⊺

t dHHH
k
tXXX t +

∫ T

0

1

γk
d(CCCk

t )
⊺XXX t +

∫ T

0

1

2γk
dΨk

t . (67)

The idea is to reduce (67) to the form

Gi
T (u)−Θ0 = − 1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt+
1

γk

∫ T

0

µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t. (68)

From (67), set the terminal conditions 1
2γk

XXX⊺
TQ̂kQ̂kQ̂kXXXT + 1

γk
η̂k̂ηk̂ηkXXXT + 1

2γk
η⊺kQ̂kηk = ΘT , then we can

consider µ(t,WWW t)µ(t,WWW t)µ(t,WWW t) = (XXX⊺
tHHH

k
t +(CCCk

t )
⊺)ΣΣΣk which belongs to the space of adapted stochastic processes

(Ω,FFF , (F i
t )t∈T,P), especially to the space of square-integrable functions defined on the interval T.

Next, we add and subtract the following formula to (67)

1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt =
1

2γ2
k

∫ T

0

tr
(
(ΣΣΣk)⊺

(
HHHk

tXXX t +CCCk
t

) (
(XXX t)

⊺HHHk
t + (CCCk

t )
⊺
)
ΣΣΣk
)
dt. (69)

Additionally, from (6) and (14), we can further expand the quadratic variation term

d
〈
XXX⊺HHHk

tXXX
〉
t
= tr

(
σ⊺
kΠ

k
t σk + σ⊺

0

(
Πk

t + 2111n×Kn(Λ
k
t )

⊺ +111n×Kn∆
k
t111Kn×n

)
σ0

)
dt. (70)

Then, (67) may be represented as

Gi
T (u) =Θ0 + ζ(u)− 1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt+
1

γk

∫ T

0

µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t. (71)

where

ζ(u) =

∫ T

0

( 1

2γk
XXX⊺

tQkQkQkXXX t +
1

γk
ηkηkηkXXX t +

1

2γk
η⊺kQkηk +

1

γk
XXX⊺

tSSSku
i,∗
t − 1

γk
η⊺kSku

i,∗
t

+
1

2γk
(ui,∗

t )⊺Rku
i,∗
t +

1

γk
((XXX t)

⊺HHHk
t + (CCCk

t )
⊺){ÃAAkXXX t + B̃BBku

i,∗
t + β̃kβkβkū

∗
t + M̃MM t}

)
dt

+
1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt+
1

2γk

∫ T

0

XXX⊺
t dHHH

k
tXXX t +

1

γk

∫ T

0

d(CCCk
t )

⊺XXX t +
1

2γk

∫ T

0

dΨk
t

+
1

2γk

∫ T

0

tr
(
σ⊺
kΠ

k
t σk + σ⊺

0

(
Πk

t + 2111n×Kn(Λ
k
t )

⊺ +111n×Kn∆
k
t111Kn×n

)
σ0

)
dt. (72)

Finally, we obtain the following desired form (68) for the change of measure

Gi
T (u)−Θ0 = ζ(u)− 1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt+
1

γk

∫ T

0

µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t (73)
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given that ζ(u) = 0 is satisfied. In other words, subject to this condition, we have

exp(Gi
T (u)−Θ0) = exp

(
− 1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt+
1

γk

∫ T

0

µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t

)
. (74)

We refer to Duncan (2013) and Karatzas and Shreve (1991) for the fact that (74) can define an

equivalent probability measure P̂, such that dP̂
dP = exp (Gi

T (u)−Θ0) under the condition ζ(u) = 0.
The proof is complete. Thus, exp(Gi

T (u)) is a martingale.

Consider the quotient of martingales
M i

2,t

M i
1,t

from equation (48) and the constant Θ0 from Theorem

2. The quotient of two expectations will remain unchanged by being multiplied by a constant value
exp (−Θ0) in the numerator and denominator leading to

M i
2,t

M i
1,t

=

EP

[
exp (Gi

T (u)−Θ0)

(
exp (A⊺

kT)Q̂k(x
i
T−ΦT )+

∫ T
0 exp (A⊺

ks)(Qk(x
i
s−Φs)+Sku

i,∗
s )ds

)∣∣∣∣Fi
t

]
EP[exp (Gi

T (u)−Θ0)|F i
t ]

. (75)

Recall that from Theorem 2, we obtain a new measure P̂ defined by

dP̂
dP

= exp(Gi
T (u)−Θ0) = exp

(
− 1

2γ2
k

∫ T

0

∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt+
1

γk

∫ T

0

µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t

)
. (76)

Moreover, based on Kuo (2006, Lemma 8.9.2), we obtain the following equality

M i
2,t

M i
1,t

= E

[
exp (A⊺

kT )Q̂k(x
i
T − ΦT ) +

∫ T

0

exp (A⊺
ks)
(
Qk(x

i
s − Φs) + Sku

i,∗
s

)
ds

∣∣∣∣F i
t

]
P̂–a.s. (77)

We remark that (77) is a martingale under the measure P̂. For the sake of clarity and organization,
we define

M̂ i
t = EP̂

[
exp (A⊺

kT )Q̂k(x
i
T − ΦT ) +

∫ T

0

exp (A⊺
ks)
(
Qk(x

i
s − Φs) + Sku

i,∗
s

)
ds

∣∣∣∣F i
t

]
. (78)

Therefore, under P̂, (47) transforms to

ui,∗
t = −R−1

k

[
B⊺

k exp (−A⊺
kt)

[
M̂ i

t −
∫ t

0

(
exp (A⊺

ks)
(
Qk(x

i
s − Φs) + Sku

i,∗
s

))
ds

]
+ S⊺

k (x
i
t − Φt)

]
. (79)

Under P̂, the computed ui,∗
t is an implicit function. Subsequently, in order to obtain an explicit ui,∗

t ,
we investigate the existence of a linear feedback control representation under the new measure.

4.3. Linear Feedback Representation of Optimal Control

Using the Theorem 2, we can obtain an implicit control law as shown in equation (79). To
investigate the existence of linear feedback control under the new measure P̂, we introduce an
adjoint process, which allows us to transform the control function into a linear process. Specifically,
we can identify the control coefficients for the linear feedback control by equating the drift and
diffusion terms of the agent dynamics in equation (6) under the control functions obtained using
the martingale representation theorem method, with the ones derived by applying Itô’s lemma
directly to the dynamics under the new measure P̂. Interestingly, we observe that the control
coefficients coincide with the ones used in order to find the Radon-Nikodym exponent. This result
underscores the intimate link between these vital methods for analyzing and optimizing stochastic
processes.
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Theorem 3. For the LQG risk-sensitive system described by (6) and (8), under the risk-neutral
measure P̂, the optimal control action satisfying (79) admits the linear state feedback representation

ui,∗
t = −R−1

k

[
(B⊺

kΠ
k
t + S⊺

k)x
i
t + (B⊺

kΛ
k
t − S⊺

kH
π
k )x̄t +B⊺

kΥ
k
t − S⊺

kηk
]

(80)

where

dΠk
t =

{
−Πk

tAk − A⊺
kΠ

k
t −Qk + (Πk

tBk + Sk)R
−1
k (B⊺

kΠ
k
t + S⊺

k)

− 1
γk

[
Πk

t σkσ
⊺
kΠ

k
t + (Πk

t + Λk
t111Kn×n)σ0σ

⊺
0(Π

k
t +111n×Kn(Λ

k
t )

⊺)

]}
dt

Πk
T = Q̂k

(81)



dΛk
t =

{
−Πk

tF
π
k − Λk

t Āt − A⊺
kΛ

k
t +QkH

π
k + (Πk

tBk + Sk)R
−1
k (B⊺

kΛ
k
t − S⊺

kH
π
k )

− 1
γk

[
Πk

t σkσ
⊺
kΛ

k
t + (Πk

t + Λk
t111Kn×n)σ0σ

⊺
0(111n×Kn∆

k
t + Λk

t )

]}
dt

Λk
T = −Q̂kH

π
k

(82)



dΥk
t =

{
−Πk

t bk(t)− Λk
t m̄t − A⊺

kΥ
k
t +Qkηk + (Πk

tBk + Sk)R
−1
k (B⊺

kΥ
k
t − S⊺

kηk)

− 1
γk

[
Πk

t σkσ
⊺
kΥ

k
t + (Πk

t + Λk
t111Kn×n)σ0σ

⊺
0(Υ

k
t +111n×KnΓ

k
t )
]}

dt

Υk
T = −Q̂kηk.

(83)



d∆k
t =

{
−(Hπ

k )
⊺QkH

π
k +∆k

t Āt + Ā⊺
t∆

k
t − 2(F π

k )
⊺Λk

t

+
(
(Λk

t )
⊺Bk − (Hπ

k )
⊺Sk

)
R−1

k

(
B⊺

kΛ
k
t − S⊺

kH
π
k

)
− 1

γk

[
(Λk

t )
⊺σkσ

⊺
kΛ

k
t + ((Λk

t )
⊺ +∆k

t111Kn×n)σ0σ
⊺
0(Λ

k
t +111n×Kn∆

k
t )

]}
dt

∆k
T = −(Hπ

k )
⊺Λk

T

(84)



dΓk
t =

{
−(Hπ

k )
⊺Qkηk − (F π

k )
⊺Υk

t − (Λk
t )

⊺bk(t)−∆k
t m̄t − (Āt)

⊺Γk
t

+
(
(Λk

t )
⊺Bk − (Hπ

k )
⊺Sk

)
R−1

k

(
B⊺

kΥ
k
t − S⊺

kηk
)

− 1
γk

[
(Λk

t )
⊺σkσ

⊺
kΥ

k
t + ((Λk

t )
⊺ +∆k

t111Kn×n)σ0σ
⊺
0(Υ

k
t +111n×KnΓ

k
t )
]}

dt

Γk
T = −(Hπ

k )
⊺Υk

T

(85)
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dΨk
t =

{
−η⊺kQkηk − 2(Υk

t )
⊺bk(t)− 2(Γk

t )
⊺m̄t − tr(σ⊺

0(Π
k
t + 2111n×Kn(Λ

k
t )

⊺

+111n×Kn∆
k
t111Kn×n)σ0)− tr(σ⊺

kΠ
k
t σk) + ((Υk

t )
⊺Bk − η⊺kSk)R

−1
k (B⊺

kΥ
k
t − S⊺

kηk)

− 1
γk

[
(Υk

t )
⊺σkσ

⊺
kΥ

k
t + ((Υk

t )
⊺ + (Γk

t )
⊺111Kn×n)σ0σ

⊺
0(Υ

k
t +111n×KnΓ

k
t )
]}

dt

Ψk
t = −η⊺kΥ

k
T .

(86)

with

Āt =

 Ā1
...

ĀK

 ∈ RKn×Kn, m̄t =

 m̄1
...

m̄K

 ∈ RKn, (87)

and for k ∈ {1, 2, ..., K}

Āk =
[
Ak −BkR

−1
k (B⊺

kΠ
k
t + S⊺

k)
]
eeek + F π

k −BkR
−1
k (B⊺

kΛ
k
t − S⊺

kH
π
k ), (88)

m̄k =bk +BkR
−1
k S⊺

kηk −BkR
−1
k B⊺

kΥ
k
t . (89)

Furthermore, the diffusion terms satisfy the following equations

Πk
t σk = exp (−A⊺

kt)Z
i
t (90)

(Πk
t + Λk

t111Kn×n)σ0 = exp (−A⊺
kt)Z

0
t . (91)

In addition, ui,∗
t satisfies Condition (52) under P̂.

Proof. Under P̂, we define the adjoint process (pit)t∈T where as

pit = exp (−A⊺
kt)

[
M̂ i

t −
∫ t

0

(
exp (A⊺

ks)
(
Qk(x

i
s − Φs) + Sku

i,∗
s

))
ds

]
P̂–a.s. (92)

By the martingale representation theorem, there exists a F i
t -adapted process (Zs)s∈T such that

M̂ i
t = M̂ i

0 +

∫ t

0

Zi
sdŵ

i
s +

∫ t

0

Z0
sdŵ

0
s . (93)

Under P̂, we adopt the following ansatz for the adjoint process

pit = Πk
t x

i
t + Λk

t x̄t +Υk
t P̂–a.s., (94)

where Πk
t ∈ Sn×n, Λk

t ∈ Rn×Kn and Υk
t ∈ Rn are deterministic functions of time.

We substitute (94) in (79) to get

ui,∗
t = −R−1

k

[
B⊺

k(Π
k
t x

i
t + Λk

t x̄t +Υk
t ) + S⊺

k(x
i
t − Φt)

]
= −R−1

k

[
(B⊺

kΠ
k
t + S⊺

k)x
i
t + (B⊺

kΛ
k
t − S⊺

kH
π
k )x̄t +B⊺

kΥ
k
t − S⊺

kηk
]

P̂–a.s. (95)

Subsequently, the mean field of control actions is given by ū⊺
t =

[
(ū1

t )
⊺ . . . (ūK

t )
⊺
]
where

ūk
t = −R−1

k

[
(B⊺

kΠ
k
t + S⊺

k)x̄
k
t + (B⊺

kΛ
k
t − S⊺

kH
π
k )x̄t +B⊺

kΥ
k
t − S⊺

kηk
]

P̂–a.s. (96)
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We then substitute (93) in (92), and apply Itô’s lemma to get

dpit =−
{
A⊺

kp
i
t +Qk(x

i
t −Hπ

k x̄t − ηk) + Sku
i,∗
t

}
dt

+ exp (−A⊺
kt)Z

i
tdŵ

i
t + exp (−A⊺

kt)Z
0
t dŵ

0
t P̂–a.s. (97)

Next, we substitute (95) in (97), which results in

dpit = −
{
A⊺

k

{
Πk

t x
i
t + Λk

t x̄t +Υk
t

}
+Qk(x

i
t −Hπ

k x̄t − ηk)

− SkR
−1
k

[
(B⊺

kΠ
k
t + S⊺

k)x
i
t + (B⊺

kΛ
k
t − S⊺

kH
π
k )x̄t +B⊺

kΥ
k
t − S⊺

kηk
]}

dt

+ exp (−A⊺
kt)Z

i
tdŵ

i
t + exp (−A⊺

kt)Z
0
t dŵ

0
t , P̂–a.s. (98)

By reordering the terms, the above equation is expressed as

dpit =
{
−A⊺

kΠ
k
t −Qk + SkR

−1
k (B⊺

kΠ
k
t + S⊺

k)
}
xi
tdt

+
{
−A⊺

kΛ
k
t +QkH

π
k + SkR

−1
k (B⊺

kΛ
k
t − S⊺

kH
π
k )
}
x̄tdt

+
{
−A⊺

kΥ
k
t +Qkηk + SkR

−1
k B⊺

kΥ
k
t − SkR

−1
k S⊺

kηk
}
dt

+ exp (−A⊺
kt)Z

i
tdŵ

i
t + exp (−A⊺

kt)Z
0
t dŵ

0
t , P̂–a.s. (99)

Next, we apply Itô’s lemma to (94) to get

dpit = dΠk
t x

i
t +Πk

t dx
i
t + dΛk

t x̄t + Λk
t dx̄t + dΥk

t , P̂–a.s. (100)

In order to obtain the dynamics that pit satisfies under P̂, it is essential to derive both the agent’s
and the mean field dynamics under the new measure P̂. From Theorem 2, and by expanding the
term µ(t,WWW t)µ(t,WWW t)µ(t,WWW t), the Wiener processes under P are given by

dŵi
t =dwi

t −
1

γk
σ⊺
k(Π

k
t x

i
t + Λk

t x̄t +Υk
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dŵ0
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Thus, under P̂, the dynamics (6) and (14) are, respectively, expressed as
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dŵi

t +
1

γk
σ⊺
k(Π

k
t xt + Λk

t x̄t +Υk
t )dt

)
+ σ0

(
dŵ0
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Now, we substitute the control action (95) and the mean field of control actions (96) in the above
agent and mean field dynamics under P̂ to obtain
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dŵi

t +
1

γk
σ⊺
k((Π

k
t )

⊺xi
t + Λk

t x̄t +Υk
t )dt

)
+ σ0

(
dŵ0
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and

dx̄t =(Ātx̄t + m̄t)dt
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where

Āt =

 Ā1
...

ĀK

 ∈ RKn×Kn, m̄t =

 m̄1
...

m̄K

 ∈ RKn×1, (107)

and for k ∈ {1, 2, ..., K}
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Finally, we substitute the derived agent dynamics and mean field dynamics under P̂ in (100) to
obtain the dynamics that pit satisfies as
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Since the two SDEs (99) and (110) that pit satisfies must align for every sample path of the Wiener
processes, it is necessary for both the drift coefficients and the diffusion coefficients to be identical.
Equating the drift coefficients of (99) and (110), we have
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By equating the diffusion coefficients of (99) and (110), we obtain

Πk
t σk = exp (−A⊺

kt)Z
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t , (114)
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Now, our focus turns to characterizing ∆k
t , Γ

k
t , and Ψk

t . For the change of measure to be valid, and
consequently, the obtained equations (111)–(113) to hold, it is essential to satisfy the condition
(52). To do so, we substitute the control action (95), the mean field of control actions (96), and
equations (111)–(113) into condition (52) under P̂, resulting in
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To satisfy the above condition, we further impose the following constraints on the coefficients of
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the control action:
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We have derived the optimal control under P̂. Now, we investigate its relationship with the
optimal control action under the original measure P.
Theorem 4. Under the risk-sensitive measure P, the optimal control action for the LQG risk-
sensitive system, described by (6)–(10), admits the linear state feedback representation
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where Πk
t , Λ

k
t , and Υk

t are characterized by (81)–(86) given in Theorem 3.

Proof. Consider the sample space Ω. Then, ui,∗
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if and only if

P̂
({

ν|ui,∗
t (ν) ̸= −R−1

k

[
(B⊺

kΠ
k
t + S⊺

k)x
i
t(ν) + (B⊺

kΛ
k
t − S⊺

kH
π
k )x̄t(ν) +B⊺

kΥ
k
t − S⊺

kηk
]})

= 0, (122)

where ν ∈ Ω represents a state of the world. By Girsanov theorem, P̂ is a measure equivalent to
P. Thus, by the equivalence of measure, (122) implies that
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Thus, under P, the optimal control action admits the representation (120) with the respective
control coefficients. In other words, (120) makes the Gâteaux derivative (17) zero. Therefore, it is
the optimal control action that minimizes the cost functional (8) given the dynamics of the system
(6).
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4.4. Nash Equilibrium

Definition 2 (Nash Equilibrium). A set of strategies {ui, i = 1, 2, . . . } ∈ U1 × · · · × UN achieves
the Nash equilibrium for all N plays given the cost functional J i for each if for every agent i ∈ N
with any admissible strategy u ∈ U i

J i(u1, . . . , ui, . . . , uN) ≤ J i(u1, . . . , ui−1, u, ui+1, . . . , uN). (124)

In other words, in the Nash equilibrium, no agent will be better off, specifically in this case,
with a smaller cost, if it unilaterally deviates from the strategies established by the equilibrium.

Theorem 5. Consider the optimal control (120) obtained in Theorem 4 for LQG risk-sensitive
system. For the infinite-population model given the system described by the dynamics (6) and the
cost functional (8), the set of the optimal controls {ui,∗, i = 1, 2, . . . } for agents yields a Nash
equilibrium.

Proof. Considering that all agents adhere to the optimal strategies outlined in Theorem 4, we
can establish the validity of the theorem statement. In situations where an individual agent i
chooses to diverge from the set of strategies unilaterally, the influence on the mean field will be
insignificant. Consequently, on the one hand, this prompts the remaining agents to execute the
original control, with the aim of minimizing the cost functional. On the other hand, as the mean
field state is unchanged, by Theorem 4, the optimal control of the agent i in question remains to
be ui,∗. Therefore, any deviation of the agent i from this optimal control ui,∗ will not lead to a
cost reduction.

In this work, our focus is on the infinite-population scenario. The connection between the
obtained Nash equilibrium strategies and the original finite-population system may be established
by following along the lines of proof in (Liu et al., 2023). More specifically, it can be shown that
these strategies yield an approximate Nash (ϵ-Nash) equilibrium for the finite-population system.

5. Application: An Interbank Market Model

In the context of the interbank market, we undertake a study utilizing the LQG risk-sensitive
model introduced in Section 3. Our objective is to acquire a deeper understanding of the dynamics
involved in interbank lending and borrowing. In this context, agents represent banks and their
state represents the logarithmic monetary reserve (log-reserve) of the bank. A representative bank,
driven by its financial requirements in different periods, engages in lending activities by purchasing
bonds from the central bank and lending to other banks, or engages in borrowing activities with
the central bank and other banks, all while striving to minimize operational costs. Within the
same framework, the mean field state is illustrated by the limiting average of the log-reserves held
by all banks participating in the market. Subsequently, we will henceforth denote this mean field
state as the market state. In this section, we introduce a simplified version of the model to give
an example. However, the general model can also be used similarly when there is a demand.

We consider log-reserves of banks and of the market and their control action to be scalars and
reduce the dimension of the matrices by setting K = r = 1. Consequently, the market exclusively
comprises homogeneous banks sharing the same model parameters each subject to an idiosyncratic
shock and a common noise. The common noise in each case can be viewed as the common impact
of the market environment at a macro level on the banks. In this setting, the banks are correlated
due to being impacted by the common noise as presented in Section 5.2.1. In addition, although
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independent of each other, the idiosyncratic and the common shocks will affect the banks by the
same factor ρ. Consequently, the interplay between these shocks has a combined effect on the
log-reserve of an individual bank and the market.

In this section, we begin by presenting an optimization problem in the context of interbank
transactions. We consider first the model parameters, presented in Section 2 and 3, as in Table
1. As we are in a homogeneous setting, we consider the same σ as part of the multiplier for
both individual and market shock. Then, we provide an interpretation for each parameter based

General model Ak Fk Bk Hk ηk Q̂k Qk Sk Rk σ0 σk

Interbank market model −a a 1 1 0 q̂ q ξ 1 σρ σ
√
1− ρ2

Table 1: Model parameters in the interbank market model.

on Carmona et al. (2015b) and Chang et al. (2023). Next, we introduce the solution to the
problem based on the theorems presented in Section 4. We solve the system of control coefficients
numerically and provide an analytical solution for a simpler case. Subsequently, we define the total
and conditional default probability and proceed to address it utilizing respectively the classical and
stochastic Fokker-Planck equations, drawing inspirations from Ding and Rangarajan (2004) and
Carmona et al. (2015b), by considering the first hitting time of the market and agent state falling
below a default threshold. Next, we employ the forward explicit finite differences method to tackle
the probability of default concerning both the individual bank and the entire market. Then, we
examine the influence of parameter variations on the probabilities of default. Notably, we consider
the effects of the common factor ρ, risk-sensitivity, and liquidity parameters on the reserve of
the bank and of the market at equilibrium. In the end, a comprehensive analysis of the bank’s
conditional probability of default will follow, considering the presence of two distinct trajectories
of common noise.

The terminology employed in this section pertains to interbank transactions. Specifically, the
concepts of lending and borrowing from the central bank correspond to the acquisition and sale,
respectively, of government-issued bonds. Moreover, the transaction rate denotes the controlled
measures that a bank undertakes in this process to effectively manage reserve prerequisites, enhance
liquidity, and fulfill regulatory mandates.

Remark that despite our efforts to obtain data for parameter calibration, we were unable to
access the necessary information due to the confidentiality protocols regarding monetary reserves
held by various institutions. Consequently, we will assign values to parameters inspired from
Carmona et al. (2015b) in the application sections.

5.1. Finite-Population Model

5.1.1. Dynamics

On the probability space (Ω,FFF , (F [N ]
t )t∈T,P), for bank i, i ∈ N, the finite population dynamics

is given as
dxi

t = {a(x[N ]
t − xi

t) + ui
t + b(t)}dt+ σ

√
1− ρ2dwi

t + σρdw0
t (125)

where t ∈ T. We denote the variable xi
t ∈ R as the log-reserve of the bank at the time t. The

transaction rate ui
t ∈ R represents the money that the bank lends to or borrows from the central

bank during the market activity at each time t. As in the general model, the market shock is
characterized by w0

t ∈ R which is independent of the shock received by the bank wi
t ∈ R through

t ∈ T.The average log-reserve of all the banks in the market at the time t represents the market
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state and is captured by x
[N ]
t ∈ R with dynamics

dx
[N ]
t = (u

[N ]
t + b(t))dt+

σ
√
1− ρ2

N

∑
i∈I

dwi
t + σρdw0

t (126)

x
[N ]
t =

1

N

∑
i∈I

xi
t, u

[N ]
t =

1

N

∑
i∈I

ui
t. (127)

In addition, the parameter a ∈ R is the mean reversion rate of the bank’s reserve towards the
market state. The liquidity of the bank before market activity at each time t is represented by
b(t). The volatility of the log-reserve of the bank with respect to its own local shock (underlying
uncertainty source) is denoted by σρ ∈ R. The volatility of the log-reserve with respect to the global
shock that affects the market (i.e. the macroeconomic factors), is characterized by σ

√
1− ρ2 ∈ R.

As can be seen from above equation, an instantaneous coefficient 0 ≤ ρ ≤ 1 is a common multiplier
factor for the shock delivered by the bank itself and by the environment.

In addition, the equivalent assumptions and σ-fields as for the general model in Section 2 are
considered.

5.1.2. Cost Functional

The operational cost of a representative bank to be minimized is modeled by the functional

J i,[N ] = γ logE
{
exp

(
1

γ

(
g(xi

T , x
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T ) +

∫ T

0

f(xi, x
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t)dt
))}

(128)

where

g(xi
T , x̄T ) =

1

2
(x

[N ]
T − xi

T )
2q̂ (129)

f(xi, x
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t , ui

t) =
1

2

{
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2q − 2(x

[N ]
t − xi

t)ξu
i
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t)
2
}

(130)

with q̂, q, ξ ∈ R.
The costs specified for the bank are composed of the terminal g(xi

T , x
[N ]
T ) and running f(xi, x

[N ]
t , ui

t)
costs. The degree of risk-sensitivity for bank-i is represented by 1

γ
∈ (0,∞) and models a risk-

averse behaviour. Specifically, the larger 1
γ
, the more risk-averse is the bank. In the limit, where

1
γ
→ 0, the cost functional reduces to a risk-neutral one. The terminal cost consists of only a

quadratic term associated with the risk undertaken in connection with the market state at the
time T . There are three running cost components associated with the state of the bank and the
market state as well as the control action at time t. When the log-reserve of the bank significantly
differs from the market state, the penalty for deviation is conveyed through the quadratic cost
(x

[N ]
t − xi

t)
2q. The bank’s incentive to borrow from or lend to the central bank in relation to the

market state is modeled by −2(x
[N ]
t − xi

t)ξu
i
t. Remark that ξ > 0 represents the bank’s borrowing

or lending fees for the adjustments in the monetary reserve, guided by the control ui
t. In other

words, if x
[N ]
t > xi

t, the bank wishes to have ui
t > 0 (i.e. borrowing money). Then, the borrowing

cost will be added to the running cost (i.e. −2(x
[N ]
t − xi

t)ξu
i
t > 0). If x

[N ]
t < xi

t, the bank wishes to
have ui

t < 0 (i.e. lending money). Subsequently, the gain from lending will be deduced from the

running cost (i.e. −2(x
[N ]
t − xi

t)ξu
i
t < 0). The transaction cost or market friction is modeled by

the quadratic term (ui
t)

2.
In short, through the trading horizon T, a representative bank wants to minimize its expected

cost (128) while being risk-averse and its log-reserve is governed by (125).
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5.2. Infinite-Population Model

5.2.1. Dynamics

In the infinite population limit, where N → ∞ (see Section 3), the log-reserve of the bank
i ∈ N at the time t satisfies

dxi
t = {a(x̄t − xi

t) + ui
t + b(t)}dt+ σ

√
1− ρ2dwi

t + σρdw0
t (131)

where the mean field, x̄t = limN→∞
1
N

∑
i∈I x

i
t, represents the limiting market state satisfying

dx̄t = (ūt + b(t))dt+ σρdw0
t (132)

with

ūt = lim
N→∞

1

N

∑
i∈I

ui
t. (133)

From this point forward, we will refer the state x̄t as the market state. Other coefficients and
variables are the same as the ones defined in Section 5.1.1.

Remark that for two banks in the market, bank-i and bank-j with i, j ∈ N such that i ̸= j. As
the Brownian motions wi

t, w
j
t and w0

t are independent of each other but the bank states xi
t and xj

t

are influenced by the same common noise w0
t , corr(x

i
t, x

j
t) = (σρ)2. In other words, the banks are

correlated. In addition, for any bank-i, i ∈ N, corr(xi
t, x̄t) = (σρ)2.

The same assumptions and σ-fields as for the general model in Section 3 in dimension-reduced
form are considered.

5.2.2. Cost Functional

The operational cost of a representative bank that needs to be minimized is structured using
the identical parameters and variables as described in 5.1.2. The only alteration is the substitution
of the state x

[N ]
t with the market one x̄t to account for the scenario involving an infinite population

of small banks. This cost is represented by the functional

J i,∞ = γ logE
{
exp

(
1

γ

(
g(xi

T , x̄T ) +

∫ T

0

f(xi, x̄t, u
i
t)dt
))}

(134)

where

g(xi
T , x̄T ) =

1

2
(x̄T − xi

T )
2q̂ (135)

f(xi, x̄t, u
i
t) =

1

2

{
(x̄t − xi

t)
2q − 2(x̄t − xi

t)ξu
i
t + (ui

t)
2
}
. (136)

In order to ensure the convexity of the cost functional, we impose the equivalent conditions as
in Assumption 3, i.e.

q̂ ≥ 0, q − ξ2 ≥ 0. (137)

5.3. Optimal Transaction Rate for Infinite-Population Model

From Theorem 4 and the model described by (125), (132) and (134), the optimal transaction
rates {ui,∗, i = 1, 2, . . . } for individual banks achieving a Nash equilibrium are characterized by

ui,∗
t = −

[
(Πt + ξ)xi

t + (Λt − ξ)x̄t +Υt

]
, i ∈ N (138)
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where 
dΠt =

{(
1− σ2

γ

)
Π2

t +
(
2a+ 2ξ − 2

γ
(σρ)2Λt

)
Πt

− 1
γ
(σρ)2(Λt)

2 + ξ2 − q
}
dt

ΠT = q̂

(139)


dΛt =

{
(1− 1

γ
(σρ)2)Λ2

t +
(
a+ 2Πt + ξ − σ2

γ
Πt − 1

γ
(σρ)2∆t

)
Λt

−
(
ξ + a+ 1

γ
(σρ)2∆t

)
Πt + q − ξ2

}
dt

ΛT = −q̂

(140)


dΥt =

{(
Πt + Λt + a+ ξ − σ2

γ
Πt − 1

γ
(σρ)2Λt

)
Υt − ( 1

γ
(σρ)2Γt + b(t))Πt

−( 1
γ
(σρ)2Γt + b(t))Λt

}
dt

ΥT = 0

(141)


d∆t =

{
− 1

γ
(σρ)2∆2

t − 2(Πt + Λt +
1
γ
(σρ)2Λt)∆t + (1− σ2

γ
)Λ2

t

−2(ξ + a)Λt − q + ξ2
}
dt

∆T = −ΛT

(142)


dΓt =

{(
Πt + Λt − 1

γ
(σρ)2(Λt +∆t)

)
Γt +

(
Υt − b(t)− σ2

γ
Υt

)
Λt

+
(
−ξ − a+∆t − 1

γ
(σρ)2∆t

)
Υt − b(t)∆t

}
dt

ΓT = 0

(143)


dΨt =

{(
1− σ2

γ

)
Υ2

t − 1
γ
(σρ)2Γ2

t − σ2Πt − 2(σρ)2Λt

+2
(
Γt − 1

γ
(σρ)2Γt − b(t)

)
Υt − (σρ)2∆t − 2b(t)Γt

}
dt

ΨT = 0.

(144)

The resulting market transaction rate ū∗
t in the infinite-population model is given by

ū∗
t = − [(Πt + ξ)x̄t + (Λt − ξ)x̄t +Υt] . (145)

Consequently, the following dynamics for individual banks and the market state emerge

dxi
t = {(a− Λt + ξ) x̄t − (a+Πt + ξ)xi

t −Υt + b(t)}dt+ σ
√

1− ρ2dwi
t + σρdw0

t (146)

dx̄t = (Ātx̄t + m̄t)dt+ σρdw0
t (147)

where

Āt = −Πt − Λt (148)

m̄t = b(t)−Υt. (149)

We provide an example of a simplified optimization problem and provide analytically the op-
timal transaction rate of the bank and of the market.

29



5.3.1. Analytical Solutions for a Specific Scenario

It is interesting to explore the analytical solution to a special case of the model under consid-
eration. We will give an example there. Consider the question with parameters of value 1 except
a = 10 and we are interested in the analytical solution of the optimal transaction rate of the bank
and of the market.

Consider the dynamics of the bank as

dxi
t = {10(x̄t − xi

t) + ui
t + 1}dt+ dw0

t (150)

dx̄t = (ūt + 1)dt+ dw0
t (151)

where

x̄t =
1

N

∑
i∈I

xi
t ∈ R, ūt =

1

N

∑
i∈I

ui
t ∈ R. (152)

Moreover, consider the cost functional is given by

lim
N→∞

J i,[N ] = logE
{
exp

((
g(xi

T , x̄T ) +

∫ T

0

f(xi, x̄t, u
i
t)dt
))}

(153)

where

g(xi
T , x̄T ) =

1

2
(x̄T − xi

T )
2 (154)

f(xi, x̄t, u
i
t) =

1

2

{
(x̄t − xi

t)
2 − 2(x̄t − xi

t)u
i
t + (ui

t)
2
}
. (155)

Proposition 6. The optimal control of the LQG risk-sensitive system with the dynamics (150)
and the cost functional (153) is given by

ui,∗
t =

(
1− 22 exp (22t)

exp (22t)− 23 exp (22)

)
(x̄t − xi

t). (156)

Proof. Considering the optimal control of the bank based on the equation (138) with defined
parameters, namely

ui,∗
t = −

[
(Πt + 1)xi

t + (Λt − 1)x̄t +Υt

]
. (157)

Based on the Section 4 and the parameters defined in this specific case, for the system of ordinary
differential equations (ODES) for control coefficients Πt,Λt,Υt,∆t,Γt and Ψt, we can see that
Πt = −Λt leading {

dΠt = −dΛt = 22Πt +Π2
tdt

ΠT = −ΛT = 1.
(158)

By solving this ODE,

Πt =
−22 exp (22c1 + 22t)

exp (22c1 + 22t)− 1
, c1 ∈ R. (159)

We can then solve c1 by considering the terminal condition

ΠT =
−22 exp (22c1 + 22T )

exp (22c1 + 22T )− 1
= 1. (160)

30



We obtain

Πt =
−22 exp (22t)

exp (22t)− 23 exp (22)
. (161)

For Υt, {
dΥt = 11Υtdt

ΥT = 0.
(162)

However, when solving the above ODE, we obtain

Υt = c2 exp (11t), c2 ∈ R (163)

which at terminal time, T , is equal to

ΥT = c2 exp (11T ) = 0. (164)

Thus, c2 = 0 and Υt = 0.
As a result, the optimal control is

ui,∗
t = (Πt + 1)(x̄t − xi

t)

=

(
1− 22 exp (22t)

exp (22t)− 23 exp (22)

)
(x̄t − xi

t). (165)

The rest of the paper delves into the analysis of the likelihood of default concerning both the
bank’s and the market’s log-reserve in the equilibrium which we refer thereby as the individual
and systemic defaults. The interdependence of the banks is articulated in the Section 5.2.1. The
correlation between banks imposes a risk to the entire market, identified as the systemic risk.
Namely, the systemic risk refers to the probability of the market default given such relationship
between banks. This scrutiny is supplemented by analyzing the effects of various model parameters
on the default probability. Additionally, the influence of particular trajectories of common noise
on default is showcased.

5.4. Individual Default and Systemic Risk

In this section, we investigate the default probability of a representative bank i ∈ N and the
systemic risk. We first define these notions by the likelihood of the respective states dipping below
a specific threshold based on Carmona et al. (2015b). We first derive the Fokker-Planck equation
that the respective probability density function satisfies in each case based on E et al. (2019) and
Carmona et al. (2015b). Then, to compute the default probabilities, we use the analysis of first
hitting time and the obtained Fokker-Planck equations. We refer to Ding and Rangarajan (2004)
for the calculation of the default probability of a general diffusion process using this method.
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5.4.1. Definition of Default Probability and First Hitting Time

The default event can be interpreted as an occurrence wherein either the market or the agent
fails to fulfill the minimum reserve requirements stipulated by the regulator or the conditions
necessary to sustain the functionality of daily operations. As Carmona et al. (2015b), we consider
the same constant default threshold for both the market and the agent. In this context, the market
default can also be seen as the default of a representative bank that holds the limiting average of
the log-reserves of all banks.

We define the probability of a systemic default event as the likelihood of the minimum market
state, governed by the dynamics described in equation (147), falling below the default threshold θ
over the time horizon T as

P( min
0≤t≤T

x̄t ≤ θ). (166)

We define the probability of the default event of bank-i as the likelihood of the bank’s log-reserve,
governed by the dynamics described in equation (146), falling below the default threshold θ over
the time horizon T as

P( min
0≤t≤T

xi
t ≤ θ). (167)

We define the conditional probability of the default event of bank-i as the likelihood of the bank’s
log-reserve, governed by the dynamics described in equation (146), falling below the default thresh-
old θ over the time horizon T given (F0

t )t∈T as

P( min
0≤t≤T

x̄t ≤ θ|F0
t ). (168)

In this scenario, we will conduct an in-depth analysis of the individual default probability while
considering a specific trajectory of common noise. This probability provides a clearer insight into
the default event of bank-i within the context of observed market shocks.

Over the time horizon T, the event that the minimum of the set of states governed by the
corresponding dynamics falls below the threshold θ is equivalent to the first hitting time of the
state when it reaches the predefined threshold θ (Ding and Rangarajan, 2004). Let us define the
first hitting time for bank-i as t∗xi := minxi

t=θ t. Then, we have

P( min
0≤t≤T

xi
t ≤ θ) = P(t∗x̄ ≤ T ). (169)

Similarly, we define the first hitting time for the mean-field as t∗x̄ := minx̄t=θ t. The equivalent
probability for the systemic event is then given by

P( min
0≤t≤T

x̄t ≤ θ) = P(t∗x ≤ T ). (170)

The conditional default probability of a representative bank given (F0
t )t∈T is equvalently expressed

as in
P( min

0≤t≤T
xi
t ≤ θ|F0

T ) = P(t
∗
xi
t
≤ T |F0

T ). (171)

5.4.2. Fokker-Planck Equation for Systemic Risk

The probability of market default is considered first, and then a similar approach is applied to
analyze the probability of default for the individual bank. The analysis begins by investigating
through the time horizon T the event of the minimum market state reaching a certain value at a
specific time to determine the probability of the first hitting time. If the minimum market state
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reaches the predetermined threshold, the default event occurs. The probability of the default may
be computed from the survival probability density function p̄(x̄, t) which captures the event in
which the market default is not occurred through out the time horizon T. In order to find p̄(x̄, t),
as x̄t is stochastic we employ the Fokker-Planck method based on Ding and Rangarajan (2004),
where this method is used to calculate the probability of default of a diffusion process.

We solve first the Fokker-Planck partial differential equation (PDE) with respective boundaries
for the probability of the systemic survival described as

∂p̄(x̄, t)

∂t
= − ∂

∂x̄
[(Ātx̄+ b(t)−Υt)p̄(x̄, t)] +

(σρ)2

2

∂2p̄(x̄, t)

∂x̄2

= −Āt
∂

∂x̄
[p̄(x̄, t)]− (Ātx̄+ b(t)−Υt)

∂

∂x̄
[p̄(x̄, t)] +

(σρ)2

2

∂2p̄(x̄, t)

∂x̄2
. (172)

We consider the absorbing boundaries allowing p(x̄, t) to vanish if it breaks the threshold.
Moreover, we impose P(x̄ = ∞) = 0 almost surely. In addition, we define the boundary condition
at initial time t = 0 according to a standard normal distribution, denoted as N (0, 1). Hence, the
boundaries are

p̄(θ, t) = 0, p̄(∞, t) = 0, p̄(x̄, 0) ∼ N (0, 1) with x̄ ∈ (θ,∞). (173)

It should be noted that the existence of the probability density function p(x̄t, t) assumes that
the market state does not break the threshold at time t. Therefore, the probability of the event
that the first hitting time is beyond T can be determined by integrating p(x̄t, T ) over all possible
x̄ within the boundary of existence. Hence,

P(t∗x̄ > T ) =

∫ ∞

a

p̄(x̄, T )dx̄. (174)

Hence, the probability of the event that the first hitting time is within the time interval T is
given by

P(t∗x̄ ≤ T ) = 1−
∫ ∞

a

p̄(x̄, T )dx̄. (175)

5.4.3. Fokker-Planck Equation for Individual Default Probability

The probability of default of a representative bank can be solved in a similar way. We consider
the event of the bank’s state reaching a certain value at a specific time to determine the probability
of the first hitting time. To keep notation concise, we adopt a matrix representation. The joint
dynamics of bank i, (146)-(147), and the market state (147) is given by

dXXX i
t =

[
υυυ1

υυυ2

]
+ΣΣΣdWWW i

t (176)

where [
υυυ1

υυυ2

]
=

[
−Πt − a− ξ −Λt + a+ ξ

0 −Πt − Λt

] [
xi

x̄

]
+

[
b(t)−Υt

b(t)−Υt

]
(177)

ΣΣΣ =

[
σ
√

(1− ρ2) σρ
0 σρ

]
, WWW i

t =

[
wi

t

w0
t

]
. (178)

The analysis begins by examining the joint state of bank-i and the market, denoted by XXX i,
reaching a certain set of values at a specific time to determine the probability of the first hitting
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time. The distribution of this state is described by the survival probability density function p(XXX i, t)
satisfying the Fokker-Planck equation

∂p(XXX i, t)

∂t
= −∂υυυ1p(XXX

i, t)

∂xi
− ∂υυυ2p(XXX

i, t)

∂x̄

+
1

2

{
σ2∂

2p(XXX i, t)

∂(xi)2
+ σ2ρ2

∂2p(XXX i, t)

∂(xi)(x̄)
+ σ2ρ2

∂2p(XXX i, t)

∂(x̄)(xi)
+ σ2ρ2

∂2p(XXX i, t)

∂x̄2

}
(179)

subject to the boundary conditions

p

([
θ
x̄

]
, t

)
= 0, p

([
∞
∞

]
, t

)
= 0,

p(XXX, 0) ∼ N
([

0
0

]
,

[
1 0
0 1

])
with (x, x̄) ∈ (θ,∞)× (−∞,∞). (180)

We consider the absorbing boundaries make p(XXX i, t) vanish if it breaks the threshold. Moreover,
we impose P(XXX i = ∞) = 0 almost surely. The boundary condition at initial time, t = 0, is defined
according to a bivariate standard normal distribution with a zero correlation matrix.

We note that the existence of the probability density function p(XXX i, t) assumes that XXX i does
not break the threshold at time t. Therefore, the probability of the bank’s survival given a specific
market state at time T can be determined by integrating p(XXX i, T ) over all possible x̄ within the
boundary of existence. Hence,

p(xi, T ) =

∫ ∞

−∞
p(XXX i, T )dx̄. (181)

Following a similar procedure as used for determining the market default probability, we can
determine the probability of the bank experiencing default within the time interval T as

P(t∗xi ≤ T ) = 1−
∫ ∞

a

p(xi, T )dxi. (182)

5.4.4. Stochastic Fokker-Planck Equation for Individual Default Probability under Specific Com-
mon Shock

The conditional probability of default of a representative bank consists of analyzing the default
event given the common noise. The distribution of the conditional default of the bank may
be calculated using the survival probability density function p(xi, t|w0

t ), which, in turn, can be
computed using the Fokker-Planck method as in the previous section. However, rather than
examining a classical PDE as discussed in the previous section, our focus now shifts to solving a
stochastic PDE to take the filtration (F0

t )t∈T into consideration.
For the agent’s dynamics (146) with the optimal control (138), the stochastic Fokker-Planck

equation generating p(xi, t|w0
t ) is given by

∂p(xi, t|F0
t ) =

{
− ∂{(−ξ − a− Πt)x

i + (a− Λt + ξ)x̄t + b(t)−Υt}p(xi, t|F0
t )

∂xi
t

+
σ2(1− ρ2)

2

∂2p(xi, t|F0
t )

∂(xi
t)

2

}
dt− σ2ρ2

∂p(xi, t|F0
t )

∂xi
dw0

t (183)
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with the boundary conditions

p(θ, t|F0
t ) = 0, p(∞, t|F0

t ) = 0, p(xi, 0|F0
0 ) ∼ N (0, 1) with x ∈ (θ,∞). (184)

Following a similar procedure as in previous sections, the conditional probability of the bank
being defaulted within the time interval T is computed via

P(t∗xi ≤ T |F0
T ) = 1−

∫ ∞

a

p(xi, T |F0
T )dx

i. (185)

5.5. Numerical Experiments

Given the complexity inherent in specifying the probability of default based on the Fokker-
Plack equations, we employ numerical techniques to adeptly tackle various aspects. Thisincludes
solving the system of ODEs that the coefficients of optimal control satisfy and discerning both
systemic and bank-specific conditional and unconditional defaults. We use numerical solutions to
find the probability of default using the Fokker-Planck equations. Additionally, we carry out a
sensitivity analysis by integrating coefficient values into the equation.

5.5.1. Numerical Method for Control Coefficients

To achive this goal, we utilize the discretization of the time interval T into smaller segments
∆t∆t∆t. Then, for each coefficient of the optimal control (i.e. Πt,Λt,Υt,∆t,Γt and Ψt), we discretize
the respective ODE (i.e. (139)-(144)). For example, the discretization of the ODE that Πt satisfy
is given by{

Π∆(t+1)∆(t+1)∆(t+1)−Π∆t∆t∆t

∆t∆t∆t
=
(
1− σ2

γ

)
Π2

∆t∆t∆t +
(
2a+ 2ξ − 2

γ
(σρ)2Λ∆t∆t∆t

)
Π∆t∆t∆t − 1

γ
(σρ)2(Λ∆t∆t∆t)

2 + ξ2 − q

ΠT = q̂.
(186)

As the six ODEs, that the control coefficients satisfy, are coupled with each other, we solve a
system of six ODEs to Πt,Λt,Υt,∆t,Γt,Ψt. Specifically, we use backward differentiation with
Python library solve ivp in scipy.integrate.

5.5.2. Numerical Method for Fokker-Planck Equations

In order to solve the partial differential equations (172), (179) and (183), we need to first
discretize them. To this purpose, we employ the forward explicit finite differences method. The
probability of default is then calculated using numerical methods for integration.

1. Systemic Risk

To solve for the probability of the market default (166) using the finite differences method, we
employ a two-dimensional grid defined over the underlying variables time t and market state
x̄. We discretize these variables within ranges [t0 = 0,∆t∆t∆t, 2∆t∆t∆t, . . . , T ] and [θ, θ+∆x̄∆x̄∆x̄, . . . , θ+
M̄∆x̄M̄∆x̄M̄∆x̄], respectively, where M̄̄M̄M ∈ N is chosen to be sufficiently large and the discretization of
the variables t and x̄ are sufficiently small. At each grid point, we denote the probability as
p̄iiijjj, where iii ∈ N indicates the time position iii∆t∆t∆t and jjj ∈ N denotes the market state position
jjj∆x̄∆x̄∆x̄. Consider the Fokker-Planck equation for the systemic survival (172), its respective
discretization is

p̄iiijjj = p̄iii−1
jjj +∆t∆t∆t

{(
−Āiii−1(1 + x̄jjj)− biii−1 +Υiii−1

)( p̄iii−1
jjj+1 − p̄iii−1

jjj−1

2∆x̄∆x̄∆x̄

)

+
(σρ)2

2

(
p̄iii−1
jjj+1 − 2p̄iii−1

jjj + p̄iii−1
jjj−1

∆x̄∆x̄∆x̄2

)}
(187)
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where Āiii = −Πiii − Λiii. Remark that Ā depends only on time. The forward method begins
with the initial point p̄0jjj which follows a standard normal distribution N (0, 1) restricted on

the space generated by the market state (θ, θ + M̄∆x̄M̄∆x̄M̄∆x̄]. Remark that in order to satisfy the
absorbing condition at the threshold, we consider p̄iiiθ = 0 for all iii, representing condition
p̄(θ, t) = 0. Then, the probability p̄ is incremented at each time and market state step up to
the end of the time horizon T .

2. Default Probability of Bank-i

To simplify the notation, the individual bank state will be denoted as x. To solve for the
probability of the individual bank default (167) using the finite differences method, we employ
a three-dimensional grid defined over the underlying variables time t, bank state x and market
state x̄. We discretize these variables within their respective as [t0 = 0,∆t∆t∆t, 2∆t∆t∆t, . . . , T ],
[θ, θ+∆x∆x∆x, . . . , θ+Nx∆xNx∆xNx∆x] and the last one [−M̄∆x̄M̄∆x̄M̄∆x̄, (−(M̄ + 1)∆x̄(M̄ + 1)∆x̄(M̄ + 1)∆x̄, . . . , M̄∆x̄M̄∆x̄M̄∆x̄], whereNxNxNx, M̄̄M̄M ∈
N are chosen to be sufficiently large the discretization of the variables t, x and x̄ are sufficiently
small. At each grid point, we denote the probability as piiijjj,mmm, where iii indicates the time
position iii∆t∆t∆t, jjj ∈ N denotes the bank state position jjj∆x∆x∆x and mmm denotes the market state
positionmmm∆x̄∆x̄∆x̄. Subsequently, the discretization of the Fokker-Planck equation (179) that the
default probability of an individual bank satisfies is given by

piiijjj,mmm = piii−1
jjj,mmm +∆t∆t∆t

{((
Πiii−1 + a+ ξ

)
(1 + xjjj) +

(
Λiii−1 − a− ξ

)
x̄mmm − biii−1 +Υiii−1

)
×

(
piii−1
jjj+1,mmm − piii−1

jjj−1,mmm

2∆x̄∆x̄∆x̄

)
+
(
−Āiii−1(1 + x̄mmm)− biii−1 +Υiii−1

)(piii−1
jjj,mmm+1 − piii−1

jjj,mmm−1

2∆x̄∆x̄∆x̄

)

+
1

2

{
σ2

(
piii−1
jjj+1,mmm − 2piii−1

jjj,mmm + piii−1
jjj−1,mmm

∆x̄∆x̄∆x̄2

)
+ σ2ρ2

(
piii−1
jjj,mmm+1 − 2piii−1

jjj,mmm + piii−1
jjj,mmm−1

∆x̄∆x̄∆x̄2

)

+ 2σ2ρ2

(
piii−1
jjj+1,mmm+1 − piii−1

jjj+1,mmm−1 − piii−1
jjj−1,mmm+1 + piii−1

jjj−1,mmm−1

4∆x̄∆x̄∆x̄∆x∆x∆x

)}}
(188)

where Āiii = −Πiii−Λiii. The forward method begins with the initial point p0jjj,mmm which follows a

standard bivariate normal distributionN
([

0
0

]
,

[
1 0
0 1

])
restricted on space generated by the

market and bank’s state, namely (θ, θ+∆x∆x∆x, . . . , θ+Nx∆xNx∆xNx∆x]×[−M̄∆x̄M̄∆x̄M̄∆x̄, (−M̄ + 1)∆x̄M̄ + 1)∆x̄M̄ + 1)∆x̄, . . . , M̄∆x̄M̄∆x̄M̄∆x̄].
Remark that in order to satisfy the absorbing condition at the threshold, we consider piiiθ,mmm = 0

for all iii and mmm, representing condition p(

[
θ
x̄

]
, t) = 0. Then, the probability p is incremented

at each time, bank state and market state step up to the end of the time horizon T .

3. Conditional Default Probability of Bank-i given a Specific Common Shock

To solve the probability of conditional bank default (168) using the finite differences method,
we employ a two-dimensional grid defined over the underlying variables time t and bank
state x under the filtration (F0

t )t∈T. We discretize these variables within ranges [t0 =
0,∆t∆t∆t, 2∆t∆t∆t, . . . , T ] and [θ, θ + ∆x∆x∆x, . . . , θ + Nx∆xNx∆xNx∆x] respectively, where NxNxNx ∈ N is chosen to
be sufficiently large and the discretization of the variables t and x are sufficiently small. At
each grid point, we denote the probability as (p|F0

iii
)iiijjj, where iii indicates the time position iii∆t∆t∆t
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and jjj denotes the bank state position jjj∆x∆x∆x. In this specific case, as the common noise w0
t ,

namely w0,iii∆t∆t∆t in the discretization, is known at time iii∆t∆t∆t, we consider the market state at
each time iii∆t∆t∆t for all xiii∆t∆t∆t from the discretization of its dynamics.

x̄iii∆t∆t∆t = x̄(iii−1)∆t∆t∆t + (Ā(iii−1)∆t∆t∆tx̄(iii−1)∆t∆t∆t + m̄(iii−1)∆t∆t∆t)∆t∆t∆t+ σρw0,∆t∆t∆t for all i (189)

where

Ā(iii−1)∆t∆t∆t = −Π(iii−1)∆t∆t∆t − Λ(iii−1)∆t∆t∆t (190)

m̄(iii−1)∆t∆t∆t = b(iii−1)∆t∆t∆t −Υ(iii−1)∆t∆t∆t (191)

with starting point x̄0. For simplicity, we denote x̄iii∆t∆t∆t as x̄iii in the following text. Consider the
Fokker-Planck equation for the conditional bank’s survival (183), its respective discretization
is

(p|F0
iii
)iiijjj = (p|F0

iii−1
)iii−1
jjj

+∆t∆t∆t

{((
Πiii−1 + a+ ξ

)
(1 + xjjj) +

(
Λiii−1 − a− ξ

)
x̄iii−1 − biii−1 +Υiii−1

)
×

(
(p|F0

iii−1
)iii−1
jjj+1 − (p|F0

iii−1
)iii−1
jjj−1

2∆x∆x∆x

)
− σ2ρ2

(p|F0
iii−1

)iii−1
jjj+1 − (p|F0

iii−1
)iii−1
jjj−1

2∆x∆x∆x
w0,∆t∆t∆t (192)

+
σ2(1− ρ2)

(
(p|F0

iii−1
)iii−1
jjj+1 − 2(p|F0

iii−1
)iii−1
jjj + (p|F0

iii−1
)iii−1
jjj−1

)
2∆x̄∆x̄∆x̄2

}
. (193)

The forward method begins with the initial point (p|F0
000
)000jjj which follows a standard normal

distribution N (0, 1) restricted on the space generated by bank’s state (θ, θ + ∆x∆x∆x, . . . , θ +
Nx∆xNx∆xNx∆x]. Remark that in order to satisfy the absorbing condition at the threshold, we consider
(p|F0

iii
)iiiθ = 0 for all iii, representing condition p(θ, t|F0

t ) = 0. Then, the probability (p|F0
iii
) is

incremented at each time and each bank’s state step up to the end of the time horizon T .

Note that the forward explicit finite differences method represents a straightforward yet in-
herently unstable approach for discretizing and solving PDEs. This instability arises from its
tendency to amplify small discretization errors as they propagate across the grid. Achieving reli-
able outcomes necessitates employing a finer grid. Especially, a more refined time discretization
is crucial. Consequently, emphasizing the significance of adopting a meticulously crafted grid
becomes paramount. Alternative numerical techniques, such as implicit finite differences or the
alternating directions implicit method, may be useful for enhancing the stability and accuracy of
implementations (Pichler et al., 2013).

The default probability for the three cases is calculated by evaluating the incremented prob-
ability at time T and employing the trapezoidal rule across the generated grid with respect to
the relevant variables with the use of numpy.trapz. The trapezoidal rule is a numerical method
to approximate the integral using left and right Riemann sums over the probability curve. The
default probability is retrieved at the end by performing a subtraction as described in equations
(175), (182) and (185).
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5.5.3. Results and Interpretations: Systemic and Individual Default Probability

In this section, we conduct a comprehensive analysis on the impact of various parameters on
systemic and individual default probabilities based on the outcomes generated by numerical meth-
ods. These tests specifically pertain to unconditional default probabilities defined in Section 5.4.1.
The baseline scenario is defined by the parameter values σ = 0.3, ρ = 0.4, ξ = 1, q = 10, γ =
0.2, a = 2.5, b(t) = 1, for all t, q̂ = 0, the default threshold θ = −0.7, and the time horizon
T = 0.25. Remark that due to the requirement of the appropriate grid as mentioned in Section
5.5.2, finding the probability given an extended time horizon requires a finer grid and thus higher
computational time. We choose this restrained time horizon to reduce the processing time. The
results presented in this subsection and the next one have been carefully selected through rigorous
testing of various parameters and grid settings, identifying the appropriate grid configuration for
the given parameters, and thereby ensuring the attainment of stable outputs. We present three
cases using the parameters of the baseline scenario in which we change one of the parameters for
the numerical analysis unless otherwise mentioned.

Case 1 Impact of Correlation Coefficient ρ

The magnitude of the shocks that affect both the reserve of the market and bank-i, i ∈ N,
is expressed by σ. For the market reserve, this magnitude is multiplied by a factor of ρ. For
the bank-i reserve, the magnitude is multiplied by ρ for the common shocks and

√
1− ρ2

for the idiosyncratic shocks. As ρ increases, the impact of the common noise on the overall
market increases, leading to a higher probability of the market default. While this effect
on the market is present, the impact of the idiosyncratic shock on the bank decreases as
the associated multiplier of this shock is

√
1− ρ2. Thus, the common and the idiosyncratic

shocks affect the probability of individual default simultaneously and differently. In addition,
as demonstrated in Section 5.2.1, the correlation between banks is quantified by the factor
(σρ)2. On the one hand, as the parameter ρ is increasing while maintaining other parameters
constant, banks exhibit higher degrees of correlation among themselves. In consequence, the
default of one individual bank will lead to a more probable market default. On the other
hand, when ρ is large, the bank is subject to a lower individual risk but a higher systemic
risk. However, because of the strong correlation, this common market risk is shared more
extensively among banks. The current question revolves around determining the extent of
systemic risk that individual banks are exposed to after sharing. The key consideration is
whether the benefits of risk sharing outweigh the challenges posed by a potentially more
volatile market environment on banks. Based on the numerical analysis, we observe that
given other parameters as in the baseline scenario but with σ = 0.2, as ρ increases, the
probability of the systemic default increases while the bank’s default probability decreases
as shown in Figure 1. In this scenario, effective sharing of systemic risk among agents occurs
when the correlation coefficient ρ is high. Moreover, along with reduced individual risk, there
is a decrease in the likelihood of individual default. Finally, we observe that a higher risk-
aversion degree, i.e. 1

γ
= 80, reduces the systemic risk for any correlation strength among

agents.

Case 2 Impact of Risk-Sensitivity Degree 1
γ

The degree of risk sensitivity of a representative bank is expressed by 1
γ
. When 1

γ
> 0, the
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Figure 1: The impact of correlation coefficient ρ on individual and systemic default probabilities for two degrees of
risk sensitivity 1

γ = 0.2, 80, with the parameter values σ = 0.2, ρ = 0.4, ξ = 1, q = 10, γ = 0.2, a = 2.5, b(t) = 1,
for all t, q̂ = 0, the default threshold θ = −0.7, and the time horizon T = 0.25.

bank is risk-averse. In addition, the value of 1
γ
expresses the magnitude of the risk aversion.

Thus, a large 1
γ
characterizes the behavior of the bank as excessively risk averse. As shown

in Figure 2 simulated from the baseline scenario but with changing 1
γ
, the probability of

individual default diminishes when the bank exhibits a higher risk-aversion. As a result,
for the market setup under study, where the banks share the same risk-aversion degree, the
probability of systemic default follows a similar pattern and decreases by risk-aversion.

Case 3 Impact of Liquidity b(t)

We consider the case where the liquidity process, b(t) = b, is constant throughout time. As
all banks are homogeneous, by increasing b, both the bank and the system enhance their
liquidity positions, thereby reducing the level of risk they undertake. Conversely, reducing b
signifies a decrease in liquidity, introducing additional risk for both the bank and the market.
From Figure 3 generated from the baseline scenario but with changing b, we observe that
as b increases, the probabilities of both the individual bank and the market state decrease.
Furthermore, the effect of liquidity infusions on the systemic risk and individual default
probability becomes more pronounced with a higher level of risk aversion (e.g. 1

γ
= 80) in

the market.

5.5.4. Results and Interpretation: Conditional Default Probability under Specific Common Shocks

In this section, we analyze the conditional probability of default of a representative bank given
specific trajectories of the common noise (w0

t )t∈T as defined in section 5.4.1. The baseline scenario
is defined by the parameter values x̄0 = 0, σ = 1, ρ = 0.5, ξ = 1, q = 1, γ = 1, a = 1, b(t) = 1,
for all t, q̂ = 1, the default threshold θ = −0.7 and the time horizon T = 0.25. We consider two
trajectories for the common shock, respectively, denoted by (P1)t∈T and (P2)t∈T. Under trajectory
P2 the market state experiences a larger number of negative shocks compared to P1.

The equilibrium market state under trajectories P1 and P2 is depicted in Figure 4. From
(185), the time evolution of the conditional density function of the bank p(xi, t|F0

t ) within the
survival set (θ,∞) is illustrated in Figure 5. In other words, the figure depicts the conditional
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Figure 2: The impact of risk-aversion degree 1
γ on individual and systemic default probabilities with the parameter

values σ = 0.3, ρ = 0.4, ξ = 1, q = 10, γ = 0.2, a = 2.5, b(t) = 1, for all t, q̂ = 0, the default threshold θ = −0.7,
and the time horizon T = 0.25.

probability density of the bank that has not defaulted up to time t. We observe that as time
goes by, the respective cumulative distribution function decreases, indicating an increase in the
conditional probability of default. This observation is further demonstrated in Table 2 where we
present the associated conditional probability of individual default under trajectory P1 over time.
We observe that for the baseline setting, the conditional probability of individual default escalates
over the course of time. Furthermore, in Figure 4, we observe that a critical event happens around
t ∈ [0.05, 0.1], leading to the market state being closer to the default threshold. As the bank
aims to track the market state, this negative impact is also translated into the bank’s conditional
probability of default. This event is demonstrated in Table 2, where the conditional probability of
the bank’s default increases sharply around the same time.

Consider the economic environment under the common shock P2 characterized by a greater
magnitude of negative shocks at certain times, for which the market state is depicted in 4. We
observe that the market state under P2 moves more closely to the default threshold compared
to P1, capturing the amplified negative shocks in the market. From (185), the respective time
evolution of the conditional density function of the bank p(xi, t|F0

t ) within the survival set (θ,∞)
is presented in Figure 6. According to Table 2, we observe that as the bank is experiencing more
adversity under P2, the probability of default increases compared to P1. We also remark that in
both cases, from Figure 4, the market has not defaulted.

6. Conclusion

This paper delves into the exploration of LQG risk-sensitive MFGs where agents are influenced
by a common noise in their dynamics and wish to minimize an exponential cost functional. We
focus on a scenario where the number of agents approaches infinity. The optimal strategies of
agents, leading to a Nash equilibrium for the system, admit a linear feedback representation in
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Figure 3: The impact of liquidity parameter b on the individual and systemic default probabilities for two degrees
of risk sensitivity 1

γ = 0.2, 80, with the parameter values σ = 0.3, ρ = 0.4, ξ = 1, q = 10, a = 2.5, b(t) = 1, for all
t, q̂ = 0, the default threshold θ = −0.7, and the time horizon T = 0.25.

Time
Conditional Probability of
Individual Default under P1

Conditional Probability of
Individual Default under P2

0 0.2578 0.2578
0.05 0.6599 0.6610
0.1 0.8634 0.8675
0.15 0.9545 0.9588
0.2 0.9854 0.9883
0.25 0.9957 0.9971

Table 2: Probability of individual default over time with parameter values x̄0 = 0, σ = 1, ρ = 0.5, ξ = 1, q = 1, γ =
1, a = 1, b(t) = 1, for all t, q̂ = 1, the default threshold θ = −0.7 subject to the trajectories P1 and P2 described in
Section 5.5.4.

terms of the state and the mean field. Moreover, risk sensitivity degree, the covariance of the
common shock and the covariance of the idiosyncratic shock explicitly affect the coefficients of the
optimal strategy.

Applying this framework, we extend our investigation to an interbank transaction context. Our
study encompasses the analysis of individual and market default scenarios across various parameter
settings. Furthermore, an examination of individual default is conducted under specific trajectories
of the common market noise. Our investigation reveals insightful outcomes in the context of
interbank transactions, where agents, in this case banks, exhibit homogeneity and correlation,
as specified in Section 5. We observe that high correlation among these banks contributes to
diminished probability of individual default due to the benefits of risk-sharing yet heightened
market default probability as the default of one bank leads to a higher chance of the market
default. Additionally, banks with lower risk aversion are prone to experience an elevated individual
default risk. As a consequence in this homogeneous setting, the systemic risk increases as well.
However, higher degrees of risk-aversion shared by all banks, improve the systemic risk. Moreover,
introducing liquidity infusions within the institutions helps to mitigate systemic and individual
default risks, a factor that becomes more influential in the presence of higher levels of risk aversion.
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Figure 4: Market state over time under the trajectories P1 and P2 described in Section 5.5.4 with parameter values
x̄0 = 0, σ = 1, ρ = 0.5, ξ = 1, q = 1, γ = 1, a = 1, b(t) = 1, for all t, q̂ = 1, the default threshold θ = −0.7.

Finally, upon investigating the conditional probability of an individual bank default under the
influence of specific economic shocks, greater negative shocks exerted upon banks correspond to
elevated probabilities of default.

The significance of this research lies in its contribution to comprehending risk-sensitive decision-
making amid the presence of common noise. Through our analysis, we provide insights that
enhance the understanding of how agents’ optimal strategies adapt to a dynamic environment
characterized by risk aversion and interconnectedness.

Future studies can build upon the presented LQG risk-sensitive MFG model with common
noise, considering its limitations. Due to the variational approach taken for the analysis of the
optimal control, the considered cost functional needs to be convex with respect to its variables. This
characteristic is ensured by the imposed assumptions (i.e. Assumption 3 and the nonnegativity
of 1/γk implying the risk aversion of the agents). Further research could be valuable in exploring
conditions when agents exhibit risk-seeking behavior, that is, when 1/γk is negative. Additionally,
it could be intriguing to investigate the existence of an approximate Nash (ϵ-Nash) equilibrium in
the finite-population system in subsequent research.
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Féron, O., Tankov, P., and Tinsi, L. (2021). Price formation and optimal trading in intraday
electricity markets. Mathematics and Financial Economics, pages 1–33.

Firoozi, D. (2022). LQG mean field games with a major agent: Nash certainty equivalence versus
probabilistic approach. Automatica, 146:110559.

Firoozi, D. and Caines, P. E. (2017). The execution problem in finance with major and minor
traders: a mean field game formulation. In Apaloo, J. and Viscolani, B., editors, Advances in
Dynamic and Mean Field Games: Theory, Applications, and Numerical Methods, pages 107–130.
Springer International Publishing, Cham.

Firoozi, D. and Caines, P. E. (2021). ϵ-Nash Equilibria for Major–Minor LQG Mean Field Games
With Partial Observations of All Agents. IEEE Transactions on Automatic Control, 66(6):2778–
2786.

Firoozi, D., Jaimungal, S., and Caines, P. E. (2020). Convex analysis for LQG systems with appli-
cations to major–minor LQG mean–field game systems. Systems & Control Letters, 142:104734.

Firoozi, D., Pakniyat, A., and Caines, P. E. (2022). A class of hybrid LQG mean field games with
state-invariant switching and stopping strategies. Automatica, 141:110244.

Fu, G., Graewe, P., Horst, U., and Popier, A. (2018). A mean field game of optimal portfolio
liquidation. arXiv preprint arXiv:1804.04911.

Fujii, M. and Takahashi, A. (2022). A mean field game approach to equilibrium pricing with
market clearing condition. SIAM Journal on Control and Optimization, 60(1):259–279.
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Moon, J. and Başar, T. (2017). Linear quadratic risk-sensitive and robust mean field games. IEEE
Transactions on Automatic Control, 62(3):1062–1077.
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