
Diffusive entanglement growth in a monitored harmonic chain

Thomas Young,1, 2 Dimitri M. Gangardt,1 and Curt von Keyserlingk2

1School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
2Department of Physics, King’s College London, Strand WC2R 2LS, UK

(Dated: March 8, 2024)

We study entanglement growth in a harmonic oscillator chain subjected to the weak measurement
of observables which have been smeared-out over a length scale R. We find that entanglement grows
diffusively (S ∼ t1/2) for a large class of initial Gaussian states provided the measurement scale R
is sufficiently large. At late times t ≳ O(L2) the entropy relaxes towards an area-law value which
we compute exactly. We propose a modified quasi-particle picture which accounts for all of these
main features and agrees quantitatively well with our essentially exact numerical results. The
quasiparticles are associated with the modes of a non-Hermitian effective Hamiltonian. At small
wave-vector k, the quasiparticles transport entropy with a finite velocity, but have a lifetime scaling
as 1/k2; the concurrence of these two conditions leads directly to the observed t1/2 growth.

Introduction.— The dynamics of entanglement in
many-body quantum systems is a topic of experimental
[1–4] and theoretical interest, the study of which has led
to new insights into how many-body systems come to (or
fail to come to) equilibrium [5–12]. More recently there
has been a significant study of entanglement dynamics
in measured systems [13–16]. In this context, measure-
ments tend to reduce entanglement as opposed to unitary
dynamics which increase it; the resulting competition can
lead to a sharp transition in the late-time entanglement.

The ‘quasiparticle (QP) picture’ is a powerful heuristic
which accounts for the growth of entanglement in inte-
grable unitary (not measured) systems; in this cartoon
picture of many-body systems, entanglement grows due
to the ballistic separation of EPR-correlated quasiparti-
cle pairs. This picture initially appeared as a simplified
description of exact CFT and free-fermion calculations
[17, 18], but also provides a good quantitative description
of more general integrable systems [19]. The connection
between entanglement growth and the quasiparticle pic-
ture has since been made rigorous in specific cases [20].

It is natural to ask how measurements modify entangle-
ment growth and the QP picture. Previous work [21, 22]
showed that in the case of free fermions with local den-
sity measurements, the growth of entanglement is de-
scribed well by a modified QP picture which employs
an ansatz: the action of measurements is to randomly

FIG. 1. Cartoon picture of the setup for coarse-grained mea-
surements of range R = 3. The red bubbles define blocks/unit
cells in which the corresponding coarse-grained observable for
the block has uniform support over all sites contained within.

‘reset’ the EPR pairs according to a Poisson process.
Here we study a non-interacting chain of harmonic os-
cillators subject to continuous weak monitoring of linear
observables, starting from an unentangled Gaussian pure
state. The measured observables are coarse-grained over
R adjacent lattice sites, so that as R is increased indi-
vidual measurements reveal less about the local correla-
tions in the state. The resulting model can be solved
semi-analytically by significantly extending the methods
in [15, 23]. We propose a QP picture for entanglement
growth in this model which differs considerably in its
spirit and predictions from the ‘resetting’ ansatz, and
which we can justify semi-rigorously using the standard
QP picture. We verify this picture with essentially exact
numerical and semi-analytical calculations.

For small measurement range (R = 1), the model
agrees with one already studied [15], giving a brief pe-
riod of entanglement growth that rapidly saturates to an
area law. However, a prediction of our picture is that the
growth of entanglement is extremely sensitive to the spa-
tial extent of the measured observables: We explain why
when the measurement range is large enough (R > 2),
entanglement grows sub-ballistically as

√
t in our model.

The underlying intuition is that sufficiently coarse mea-
surements allow for the existence of long-lived ballisti-
cally propagating quasiparticles. These quasi-particles
are indexed by a wavevector k, and at small k they de-
cay at a rate O(k2). These observations imply that their
net contribution to the entanglement at time t goes as
∼ vte−Γk2t. Summing over contributions from small k
gives rise to the claimed

√
t growth.

In the following we introduce the effective Hamilto-
nian formalism to solve the weakly measured oscillator
chain. We then derive approximate expressions for the
correlation functions of (small-k) slowly-relaxing modes
that govern the long time dynamics. The dynamics of
the slowly relaxing modes are used to motivate a modi-
fied quasiparticle description of entanglement spreading,
which explains the diffusive growth of entanglement for
sufficiently coarse measurements.
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Effective Hamiltonian formalism.— A pure state
density matrix ρ̂(t) = |ψ(t)⟩⟨ψ(t)| subject to Hamilto-
nian Ĥ dynamics, and weak continuous measurement of
observables {Ôb}, evolves according to the quantum mas-
ter equation [24]

dρ̂(t) = dt
(
− i
[
Ĥ, ρ̂(t)

]
− γ

2

∑

b

[
Ôb,

[
Ôb, ρ̂(t)

]])

+
∑

b

dWb

{
M̂b,t, ρ̂(t)

}
.

(1)

Here dWb are independent Gaussian random variables
with zero mean and variance γdt, and γ ≥ 0 is the mea-
surement strength. The measurement operators are de-
fined M̂b,t ≡ Ôb − Tr(ρ̂(t)Ôb). Eq. (1) is therefore non-
linear in ρ̂, and not generally solvable. However, when
the Hamiltonian is quadratic and the measured observ-
ables are linear, states that are initially Gaussian remain
so under Eq. (1), and this allows for a partial solution of
the dynamics.

Consider the harmonic chain in 1D with continuous
monitoring of linear combinations of the local oscillator
positions x̂j (Fig. 1); the oscillators have corresponding
momenta p̂j . We are interested in how entanglement
grows, starting from an unentangled Gaussian state.
This question can be solved as follows. For the specific
measured dynamics we consider, the entanglement en-
tropy at a given time t can be obtained entirely from
the equal-time 2-point connected correlation functions
between positions and momenta (computed at the same
time t). These in turn, evolve according a set of deter-
ministic but non-linear equations, which are numerically
tractable, and can be approximated analytically in cer-
tain limits.

A straightforward but long calculation shows [25] that
the time-dependent 2-point correlation functions are cap-
tured exactly if we evolve the density matrix with a non-

Hermitian Hamiltonian ρ̂(t) = e−iĤefftρ̂(0)eiĤ
†
efft, where

Ĥeff = Ĥ − iγ
∑

ij

Mij x̂ix̂j . (2)

where Ĥ =
∑

ij (Vij x̂ix̂j + δij p̂ip̂j) is the Hamiltonian of
the unmonitored dynamics. For the harmonic chain we
have Vij = −∇2

ij +m2δij and the matrix M is a positive
matrix that depends on the specific set of observables
measured. The coarse observables we monitor take the
form Ôb = x̂bR+1 + · · · + x̂(b+1)R; their support does
not overlap and they span the entire lattice of L sites
(see Fig.1). In this case Mij = 1 if sites i, j lie inside the
same block, andMij = 0 otherwise. It turns out that our
results do not change qualitatively even if we allow these
blocks defining the observables to overlap, so long as the
underlying lattice translational symmetry is preserved.

The effective Hamiltonian is translation invariant with
size R unit cell, hence can be block-diagonalised by first

giving the local operators 2 indices (x̂i, p̂i → x̂b,j , p̂b,j)
denoting the block and sub-lattice, then Fourier trans-
forming over the first index

Ĥeff =
1

2

∑

k

Ψ̂†(k)H(k)Ψ̂(k) (3)

(Ψ̂†HΨ̂ =
∑

n,m Ψ̂∗
nHnmΨ̂m) where k ∈ (−π, π]. We

have defined spinors, Ψ̂(k) =
(
â∗k â−k

)T
in terms of

the vector of ladder operators âk =
(
âk,0 · · · âk,R−1

)
,

that are related to the Fourier components of the canoni-
cal position/momentum operators that appear in Eq. (2)
via âk,j = (x̂k,j + ip̂−k,j)/

√
2. The canonical commu-

tation relations are encoded by the matrix C, defined
[Ψ̂∗(k)n, Ψ̂(k)m] = Cnm, with C = diag(I,−I).
The matrices H(k) are in general non-Hermitian and

cannot be made diagonal via a canonical transformation.
However, we can construct a canonical transformation
Ψ̂(k) = WkΦ̂(k) that brings the effective Hamiltonian
into form [25]

Ĥeff =
∑

k

Φ̂†(k)Z(k)Φ̂(k), (4)

where Φ̂(k) =
(
b̂∗
k b̂−k

)T
and with Z(k) upper tri-

angular. The diagonal elements of Z(k) are denoted[
E0(k), · · · , ER−1(k), E0(−k), · · · , ER−1(−k)

]
. We refer

to the Ej(k) as the complex bandstructure of the effective
Hamiltonian.
Even though the matrix Z(k) is non-diagonal, so con-

tains more than just the bandstructure, we will show that
the long time entanglement dynamics is in fact captured
by keeping only the diagonal elements of Z(k). Thus the
properties of the bandstructure are vital for character-
ising the long time dynamics. Moreover, the Ej(k) will
later be interpreted as a complex dispersion relation for
quasi-particles.
Bandstructure properties.— The long-time dynamics

of correlation functions is governed by the bandstruc-
ture Ej(k) of the non-hermitian effective Hamiltonian,
in particular the imaginary part sets the rate at which
these correlation functions relax towards their steady-
state values. For momenta k = 0 we have an exact for-
mula for the quasiparticle energies for the different bands,

Ej(0) = 2
√
4 sin2

(
πj
R

)
+m2 − iγRδj,0.

It is only the j = 0 “gapped band” that has an imag-
inary part at k = 0, which will correspond to an expo-
nential decay (rate γ ) of the corresponding j = 0 cor-
relations, and implies they only contribute to short-time
transient dynamics. We focus then on the j > 0 “gap-
less” bands, which have real eigenvalues at k = 0, but
which develop imaginary O(k2) components at nonzero
k

Ej(k) = Ej + vjk +
1

2
δjk

2 − iΓjk
2 + · · · (5)
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for real parameters Ej , vj , δj and Γj [25]. It is these
small-k modes in the gapless bands that govern the long-
time entanglement growth. In the following section we
will write down the equation of motion for the correla-
tion functions of these modes, and derive an approximate
solution in the long-time limit. In the process we will jus-
tify interpreting Ej(k) as a quasiparticle dispersion. We
will then semi-rigorously derive a modified quasiparticle
picture in terms of this complex dispersion whereby the
real part sets the velocity of the quasiparticles whilst the
imaginary part governs the rate at which they decay.

Dynamics of correlation functions.— Assume that
the initial state has the same translation symmetry as the
effective Hamiltonian (translation symmetry with unit-
cell of size R). Then all 2-point connected correlations
are encoded by

σ(k, t)nm =
tr
(
1
2

{
Φ̂(k)n, Φ̂

∗(k)m
}
ρ̂(t)

)

tr
(
ρ̂(t)

) , (6)

where ρ̂(t) = e−iĤefftρ̂(0)eiĤ
†
efft. σ is a square matrix of

size 2R, as each of the R bands appears once for +k and
once for −k. Taking the time derivative of Eq. (6) yields
a non-linear Riccati matrix evolution equation

∂tσs(k, t) = iCXσs − iσsXC − 2σsY σs − {σs, Y }, (7)

where it is convenient to write the equation in terms of
σs ≡ σ − I/2; this makes it clear that σ = I/2 is a
steady-state. In deriving this equation, we have used
Wick’s theorem to re-write 4-point correlators in terms of
products of 2-point correlators. Moreover, the matrices
X,Y are Hermitian and defined through Z(k) = X(k)−
iY (k). We have kept implicit the k dependence of the
r.h.s. of Eq. (7) for brevity.

In the following we will deduce the entanglement dy-
namics by approximating Eq. (7), and we check our ap-
proximations with direct numerical integration (see [25]).
To begin we analyse the Riccati equation at small k.
The terms in Eq. (7) involving the matrix X gener-
ate phase oscillations in the correlation functions, whilst
terms involving Y cause exponential relaxation towards
the steady state (i.e., σ = I/2 for each k). This exponen-
tial relaxation occurs on a short τ = O(1) timescale for
those elements of σs involving at least one mode in the
gapped band (j = 0), whilst all other correlation func-
tions relax much slower on an O(1/k2) timescale. This
follows from our earlier observation that Ej(k) has an
imaginary gap at small k precisely for j = 0.
Therefore, once t ≳ τ , it is a good approximation

to ignore correlations involving the gapped bands. Op-
erationally, this means setting the 0th/Rth rows and
columns of σs to zero. This yields an approximate equa-
tion of motion for the remaining components of σs

∂tσs = i [X0C, σs] + ik [X1C, σs]

+ ik2 (CX2σs − σsX2C)− k2 ({σs, Y2}+ 2σsY2σs) .

(8)

Note that we have performed a formal expansion of ma-
trices X,Y (e.g. X(k) = X0+kX1+k

2X2+ · · · ) keeping
terms up to O(k2).
The matrices X0,1 are in fact diagonal and encode the

O(1),O(k) components of the bandstructure for the gap-
less bands, and generate phase oscillations in the corre-
lation matrix at a rate of at least O(k). The remaining
terms in Eq. (8) generate changes in σs at a much slower
O(k2) rate. This separation of scales (similar to that un-
derlying a Magnus expansion) suggests that we may ap-
proximate the matrices X2, Y2 by their components that
commute with X0,1, which is their diagonal part.

This diagonal approximation should capture the time-
averaged evolution of correlation functions at small k.
Moreover, in the same limit, it is equivalent to the evo-
lution generated by an effective Hamiltonian

Ĥeff =
∑

k

R−1∑

j=1

[
Ej(k)b̂

†
k,j b̂k,j + Ej(−k)b̂†−k,j b̂−k,j

]

= ĤU − iĤD,

(9)

which is formed by keeping only the diagonal part of
Z in Eq. (4), and ignoring the gapped bands. At this

point we recognise the operators b̂†k,j , b̂k,j as the cre-
ation/annihilation operators for the ‘quasiparticles’ of
the effective theory at long times, with Ej(k) correspond-
ing to their complex energy.
ĤU,D are both Hermitian, are defined through Eq. (9),

and commute with one another. Under these simplified
dynamics, the time evolution for the normalised density
matrix can be considered the composition of a dissipative
quantum map followed by a unitary evolution

ρ̂(0) → ρ̂′ =
e−ĤDtρ̂(0)e−ĤDt

tr
(
e−ĤDtρ̂(0)e−ĤDt

)

ρ̂′ → Û(t)ρ̂′Û(t)†,

(10)

where Û(t) = e−iĤU t. In [25] we write down the corre-
sponding transformation for the correlation matrix under
these maps, which when combined together gives us the
exact solution

σ(k, t) = A−B[eiϵkCtσ(k, 0)e−iϵkCt +A]−1B. (11)

where A ≡ coth(Λkt)/2, and B ≡ cosech(Λkt)/2.
We define these objects and the correlation matrix in
terms of the Hermitian, diagonal matrices ϵk,Λk that
encode the gapless quasiparticle energies, ϵk − iΛk =
diag(E1(k), · · · , ER−1(k), E1(−k), · · · , ER−1(−k)).
The long time limit yields exponential relaxation to-

wards the steady state σ → 1
2I as expected. The separa-

tion of the unitary and dissipative evolutions in Eq. (10)
leads to a modification of the quasiparticle picture that
we now describe.
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FIG. 2. Half-chain entanglement entropy for a system of size
L = 3000 for measurements of range R = 4, using periodic
boundary conditions. The solid lines represents the quasipar-
ticle picture predictions, while points are the result of directly
integrating Eq. (7). The inset depicts a scaling collapse where
we have fitted the SA(t) curves to the function a + b

√
t and

then plotted the shifted re-scaled entropy S̃A = (SA − a)/b.

Quasiparticle picture.— The standard quasiparticle
picture for entanglement growth relies on the existence
of stable and ballistically propagating quasiparticles as-
sociated with the densities nj(k) = ⟨b̂†k,j b̂k,j⟩, which are
exactly conserved in closed systems. In our simple modi-
fication of this picture the quasiparticles have the complex
dispersion Eq. (5); they still propagate ballistically, but
have a finite lifetime scaling as O(1/k2) .

To derive this picture, recall that the small-k dynamics
can be split into dissipative/unitary parts Eq. (10). The
dissipative part of the evolution results in the decay of
the quasiparticle densities

nj(k, t) =
nj(k, 0)e

−4Γjk
2t

1 + nj(k, 0)(1− e−4Γjk2t)
, (12)

which follows from Eq. (11) for initial states σ(k, t = 0)
having no inter-band correlations (a qualitatively accu-
rate assumption discussed in [25]). Γj derives from the
leading imaginary contribution to Ej(k) (Eq. (5)).

The only difference from the usual quasiparticle pic-
ture is that the initial densities are set by Eq. (12) (which
note depends on t). Under the unitary part of the dy-
namics, the quasiparticles spread ballistically and gen-
erate entanglement according to the usual quasiparti-
cle picture: at each value of k, the quasiparticles form
counterpropagating EPR pairs with velocities ±vj(k) =
±R× Re(∂kEj(k)).

First consider the bipartite entanglement in an infinite
system. The standard quasiparticle picture predicts that

entropy grows as [19]

SA(t) =
1

R

∑

j>0

∫ π

−π

dk

2π
2|vj(k)|t×

[
− nj(k, t) log nj(k, t)

+ (nj(k, t) + 1) log (nj(k, t) + 1)
]
.

(13)

The interpretation of Eq. (13) forms our modified quasi-
particle picture: the EPR pairs still transport entropy
balistically at a rate set by their group velocity, however
the quasiparticles forming these pairs have a finite life-
time set by the imaginary part of their complex energy
(In our measured system, the nj(k, t) are no longer con-
served but evolve according to Eq. (12)). Plugging these
expressions into Eq. (13) gives an integral dominated by
|k| ≲ 1/

√
Γt with a result

SA(t) ∼ t1/2
R−1∑

j>0

vj√
Γj

g(νj) (14)

Here g ≥ 0 is a non-linear function of the conserved
charge densities νj ≡ nj(0, 0). Eq. (14) predicts

√
t

growth of the entropy provided: i) R > 1 and ii)
vjg(νj) ̸= 0 for some j > 0. It turns out that ii) is
false when R = 2, but generically true once R > 2 [25].
Eq. (14) agrees well with the numerics obtained by direct
integration of the Riccati equations (Fig. 2).
The above analysis assumed at various points that the

quasiparticle bands are decoupled. This approximation
is quantitatively good for initial states with translation
symmetry (e.g., the state used for Fig. 2), and appears
to also be qualitatively good (see [25, 26]).
In a finite system of size L, quasiparticle pairs tra-

verse the system and reunite on a timescale tL = L
2|vj(k)| .

This leads to oscillatory behavior in the bipartite entan-
glement [27, 28]. To account for this, we must modify
Eq. (13): replace the factor of |vj(k)|t in Eq. (13) by
fj(k, L, t) ≡ min(2|vj(k)|t, L − 2|vj(k)|t), expressed in
terms of the time modulo tL [29] . The result is that the
entanglement entropy grows diffusively up until a time
O(L) before relaxing to the area-law steady state value
as S ∼ L/

√
t on a timescale O(L2).

Discussion.— We examined a harmonic chain sub-
jected to unitary dynamics and the weak monitoring of
coarse-grained observables. We found a semi-analytical
solution to the dynamics Eq. (11), by performing a novel
long-wavelength analysis of the (Riccati) equations of
motion for correlation functions.
Using that, we show that when the measurements are

sufficiently coarse, it allows for the existence of long-lived
mode which lead to an unusual entanglement growth,
qualitatively much different than in the cases where the
measured observables are finely-resolved, or in the ab-
sence of measurements. Specifically, we find that en-
tanglement grows as ∼

√
t when the measurements are
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smeared over R > 2 sites. We confirm these results nu-
merically by directly integrating the Riccati equations.
We explain our numerics with a novel quasiparticle pic-
ture: Diffusive entropy growth follows from the fact that
(small k) quasiparticle modes transport entropy ballisti-
cally, but decay at a slow O(k2) rate.

The new quasiparticle picture predicts the asymptotic
entanglement growth (Eq. (14)) in terms of an O(R)
number of coefficients {vj ,Γj , νj}, which capture the per-
tinent features of the initial state and the non-Hermitian
quasiparticle dispersion. Eq. (14) often agrees quantita-
tively well with numerical simulations.

Our specific methods are limited to the study of mea-
sured dynamics which preserve Gaussianity, however the
quasiparticle picture can be applied to more general in-
teracting integrable models [19]. The effect of weak
monitoring on integrable systems has to our knowledge
not been studied; it would be interesting to investigate
whether our modified quasiparticle picture can apply in
this more general context.
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tanglement rényi entropies from ballistic fluctuation the-
ory: the free fermionic case,” (2023), arXiv:2301.02326
[quant-ph].

[21] X. Cao, A. Tilloy, and A. D. Luca, SciPost Phys. 7, 024
(2019).

[22] X. Turkeshi, M. Dalmonte, R. Fazio, and M. Schirò
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EFFECTIVE HAMILTONIAN DESCRIPTION

We are interested in calculating the evolution of the 2-point connected correlation functions

σ̃ij = tr

(
1

2
{r̂i, r̂j} ρ̂

)
− tr (r̂iρ̂) tr (r̂j ρ̂) (1)

where r̂ =
(
x̂1, · · · , x̂L, p̂1, · · · , p̂L

)
. In [1] the introduction of 2 replica’s of the density matrix was used to derive an

effective Hamiltonian that was used to calculate the steady state entanglement in a system of free fermions with local
density measurements. For completeness we include our modified version of their derivation which is applicable when
the state is Gaussian.

We see that this correlation function is in fact non-linear in the density matrix ρ̂, however it is in fact linear in the
2-replica density matrix ρ̂(R2) = ρ̂⊗ ρ̂

σij =
1

4
tr
({
r̂
(1)
i − r̂

(2)
i , r̂

(1)
j − r̂

(2)
j

}
ρ̂(R2)

)
(2)

where we have given the canonical operators replica indices, i.e. r̂
(1)
i = r̂i ⊗ Î , r̂

(2)
i = Î ⊗ r̂j .

The 2-point connected correlation functions are functions only of the replica anti symmetric canonical operators

r̂
(−)
i defined through

r̂
(±)
i =

r̂
(1)
i ± r̂

(2)
i√

2
. (3)

For Gaussian states, the density matrix ρ̂ is a Gaussian function of the canonical operators r̂j which leads to the
following

ρ̂(R2) = ρ̂(+)ρ̂(−). (4)

We construct the following evolution equation for the 2-replica density matrix

dρ̂(R2) = dρ̂⊗ ρ̂+ ρ̂⊗ dρ̂+ dρ̂⊗ dρ̂ (5)

which leads to the following (remembering the Itô rule dWidWj = γdtδij)

dρ̂(R2) = dt
(
L(1) + L(2)

)
ρ̂(R2) + γdt

∑

b

{
M̂

(1)
b,t ,

{
M̂

(2)
b,t , ρ̂

(R2)
}}

+
∑

b

dWb

{
M̂

(1)
b,t + M̂

(2)
b,t , ρ̂

(R2)
}

(6)

where

L ≡ −i
[
Ĥ, •

]
− γ

2

∑

b

[
Ôb,

[
Ôb, •

]]
. (7)

In terms of the replica symmetric/anti-symmetric operators this evolution equation takes the form

d
(
ρ̂(+)ρ̂(−)

)
= dt

(
L(+) + L(−)

)
ρ̂(+)ρ̂(−) +

γ

2
dt
∑

b

{
M̂

(+)
b,t ,

{
M̂

(+)
b,t , ρ̂

(+)ρ̂(−)
}}

− γ

2

∑

b

{
Ô

(−)
b ,

{
Ô

(−)
b , ρ̂(+)ρ̂(−)

}}

+
√
2
∑

b

dWb

{
M̂

(+)
b,t , ρ̂

(+)ρ̂(−)
}

(8)
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where we have used the fact that replica symmetry implies tr
(
Ô

(−)
b ρ̂(+)ρ̂(−)

)
= 0 meaning that M̂

(−)
b,t = Ô

(−)
b .

We notice that the product structure of the 2-replica density matrix is preserved by the evolution equation, hence
we can consider the components ρ̂(±) to evolve separately according to their own individual master equations. These
separate master equations do not preserve the traces of the individual components, however the trace of their product
is preserved tr

(
ρ̂(+)ρ̂(−)

)
= tr

(
ρ̂(+)

)
tr
(
ρ̂(−)

)
= 1. This means that the 2-point connected correlation functions can be

expressed in terms of the replica anti-symmetric part of the 2-replica density matrix only

σij =
tr
(
1
2

{
r̂
(−)
i , r̂

(−)
j

}
ρ̂(−)

)

tr
(
ρ̂(−)

) . (9)

Finally, we write down the evolution equation for this part for ρ̂(−)

∂tρ̂
(−) = −i

[
Ĥ(−), ρ̂(−)

]
− γ

2

∑

b

[
Ô

(−)
b ,

[
Ô

(−)
b , ρ̂(−)

]]
− γ

2

∑

b

{
Ô

(−)
b ,

{
Ô

(−)
b , ρ̂(−)

}}

= −i
[
Ĥ(−), ρ̂(−)

]
− γ

∑

b

{
Ô

(−)
b Ô

(−)
b , ρ̂(−)

} (10)

from which we obtain the effective non-hermitian Hamiltonian in the main text.

TRANSFORMING THE EFFECTIVE HAMILTONIAN INTO UPPER TRIANGULAR FORM

We wish to construct the canonical transformation Wk that makes the matrix W †
kH

(k)Wk upper triangular. To
start we consider the generalized eigenvalue equation for H(k)

Hej = λjCej (11)

where we have dropped the index k everywhere for brevity. We can construct the columns for the matrix Wk using a
generalized Gram-Schmidt procedure. These column vectors xj must satisfy

x†iHxj = 0 i > j

x†iCxj = Cij

(12)

where the second condition ensures that the basis transformation is canonical. The matrix H has the following
properties that we will make use of

Re
(
x†Hx

)
≥ 0

Im
(
x†Hx

)
≤ 0.

(13)

The matrices H,C are square with dimension 2R and we choose the first R vectors ej to satisfy e†jCej = 1 and the

others to satisfy e†jCej = −1.

The transformation matrix Wk is parameterised by columns xj

Wk =
(
x1 · · · x2R

)
(14)

The first column, x1 ≡ e1 is chosen to be one of the generalized eigenvectors. We require that the second column
satisfies

x†2Cx1 = 0 (15)

which can be achieved for

x2 = e2 −
x†1Ce2
x†1Cx1

x1. (16)
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This vector is then normalised such that x†2Cx2 = C22. This procedure is repeated to generate all of the columns of
the matrix Wk via the general formula

xj = ej −
∑

i<j

x†iCej

x†iCxi
xi (17)

with appropriate normalisation of the new column vector xj generated each step.

This procedure generates a set of column vectors for the transformation matrix that satisfy x†iCxj = Cij . These
vectors are related to the generalized eigenvectors of H via

xi = αijxj (18)

with the matrix α upper triangular. This gives the following expression for the matrix elements of H in the new basis

x†iHxj =
j∑

n=1

n∑

m=1

αnjα
−1
nmλnx

†
iCxm

=

j∑

n=1

n∑

m=1

αnjα
−1
nmλnCim

(19)

where we have used the fact that the matrix α−1 is also upper triangular. The RHS is zero for i > j since the only
terms in the sum that give non-zero contributions are m = i however m is bounded from above by j. This means
that the matrix W †

kH
(k)Wk is indeed upper triangular. It’s diagonal elements are given by

x†iHxi = αii(α
−1)iiλiCii

= λiCii

(20)

where we have used the fact that the eigenvalues of a triangular matrix are it’s diagonal elements. The RHS of (20)
is the quasiparticle energy.

QUASIPARTICLE BANDSTRUCTURE

The bandstructure Ej(k) is obtained simply from the generalized eigenvalues

H(k)ej = λj(k)Cej . (21)

The matrix H(k) has the block form

H(k) =

(
V (k) + I − iγM V (k) − I − iγM
V (k) − I − iγM V (k) + I − iγM

)
(22)

in terms of the (R×R) matrices

V (k) =




2 −1 0 · · · 0 −e−ik

−1 2 −1 · · · 0 0
...

...
...

. . .
...

...
−eik 0 0 · · · −1 2


+m2I (23)

M =




1 1 1 · · · 1 1
1 1 1 · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · 1 1


 . (24)

Using this block structure, the generalized eigenvalue equation can be re-expressed

(
V (k) − iγM

)
x̃j =

λj(k)
2

4
x̃j (25)
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from which we conclude that λj(k)
2 are the eigenvalues of the matrix 4(V (k) − iγM).

The bandstructure Ej(k) is thus the eigenvalues of the matrices 2
√
V (k) − iγM where the square root returns the

root with positive real part. For the special case of k = 0 the matrices V (k) andM commute as they’re both circulant,
from which the formula in the main text can be simply obtained.

The expansion of the bandstructure around k = 0 can be obtained using perturbation theory to write a perturbative
expansion for the eigenvalues of V (k)− iγM , in the momenta k. The unperturbed eigenvectors are fourier modes since
V (0),M are circulant. The perturbation can be expressed

δV =




0 0 0 · · · 0 1− e−ik

0 0 0 · · · 0 0
...

...
...

. . .
...

...
1− eik 0 0 · · · 0 0


 (26)

which is in an inconvenient form since the matrix is not linear in the expansion parameter k. However, the parameters
vj ,Γj can be obtained by keeping only the part of the perturbation that is linear in k. In terms of this linear
perturbation, the coefficient vj is obtained from the 1st order correction whilst Γj is obtained from the imaginary
part of the 2nd order correction. Applying perturbation theory for this linearised perturbation yields the following

vj =
4 sin

(
2πj
R

)

Ej(0)R
(27)

Γj =
8 sin2

(
πj
R

)

Ej(0)R2

γR

(γR)2 +
(
4 sin2

(
πj
R

))2 (28)

with Ej(0) being given in the main text.

Notice that if we set R = 2 then the group velocity for the only gapless band (j = 1) is in fact zero which means that
our modified quasiparticle picture would predict that there is no long time entanglement growth. This is consistent
with our numerical simulation of the dynamics.

For R > 2 we find that the long time entanglement growth is diffusive. A natural question to ask is what is the
timescale on which this diffusive behavior emerges. To answer this question we look at the quasiparticle picture
formula for the entropy growth

SA(t) =
1

R

∑

j>0

∫ π

−π

dk

2π
2|vj(k)|t×

[
(nj(k, t) + 1) log (nj(k, t) + 1)− nj(k, t) log nj(k, t)

]
(29)

and make a change of variables q = k
√

Γjt

SA(t) = t1/2
∑

j>0

2vj

R
√
Γj

∫ π
√

Γjt

−π
√

Γjt

dq

2π

[
(nj(q) + 1) log (nj(q) + 1)− nj(q) log nj(q)

]

= t1/2
∑

j>0

vj√
Γj

(
g(νj) +O(

√
te−4π2Γjt)

) (30)

keeping only the leading order terms in t. We conclude that the diffusive behaviour emerges on a timescale O(1/Γj)
which is in qualitative agreement with the figure in the main text. This timescale diverges in the limit of no mea-
surements (γ → 0) as we would expect since the entanglement growth under unitary dynamics is in general linear
in time. This timescale also diverges in the limit γ → ∞, the interpretation of which is not so obvious. In this
limit the monitored observables are measured projectively every time step which leads to the quantum zeno effect.
However, since only a fraction 1/R of the degrees of freedom of the system are measured we find that this quantum
zeno effect is only partial, meaning that the remaining degrees of freedom evolve under effective unitary dynamics for
which we would expect the entanglement growth generated to be linear in time. We find excellent agreement between
the numerical simulations of strongly monitored dynamics and simulations for the effective unitary evolution of the
un-monitored degrees of freedom, with the entanglement growing linearly in time.
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RICCATI EQUATION EXPANSION

In the main text we perform a formal expansion of the hermitian matricesX(k), Y (k) that define the hermitian/anti-
hermitian parts of our transformed effective Hamiltonian

W †
kH

(k)Wk ≡ Z(k) = X(k)− iY (k). (31)

The canonical transformation, Wk, as well as the matrix H(k) have formal expansions

Wk =W0 + kW1 + k2W2 + · · ·
H(k) = H(0) + kH(1) + k2H(2) + · · ·

(32)

where importantly only the matrix H(0) in the second expansion is non-hermitian. Another important property that
we will utilise is that the matrix Z(k) is upper triangular at all orders in k.

We now define the ’fast/slow’ subspaces which are the rows/columns of our matrices associated with the j = 0/j > 0
band operators.

The zero-order term in the full expansion has the following ’block diagonal’ form

W †
0H

(0)W0 = Zf ⊕ Zs (33)

with respect to these subspaces, where Zs is hermitian (since the quasiparticle energies for the j > 0 bands have
gapless imaginary parts) thus diagonal. This results in the matrix X0 appearing in the main text being diagonal.
This is because the columns of W0 associated with the ’slow’ subspace lie in the kernel of the non-hermitian part of
H(0).

The first order term in the perturbative expansion takes the form

Z(1) =W †
0H

(1)W0 +W †
1H

(0)W0 +W †
0H

(0)W1 (34)

where the first term is hermitian. The non-hermitian part of this perturbation is associated with the non-hermitian
part of H(0). Thus in the block form of Z(1)

Z(1) =

(
Z

(1)
f Z

(1)
fs

Z
(1)
sf Z

(1)
s

)
(35)

the sub-matrix Z
(1)
s is also in fact hermitian thus diagonal. This results in the matrix X1 appearing in the main text

being diagonal.

The fact that the matrices Z
(0)
s , Z

(1)
s are hermitian also implies that in the expansion of Z(k)s, non-hermiticity

appears first at 2nd order hence there are no Y0, Y1 terms in our Riccati equation expansion.

DERIVING THE RICCATI EQUATION

To derive the Riccati equation in the main text we start with the master equation for the density matrix

∂tρ̂ = −i
[
Φ̂†

kXΦ̂k, ρ̂
]
−
{
Φ̂†

kY Φ̂k, ρ̂
}
. (36)

In terms of this density matrix, the correlation functions are defined

σ(k, t)nm =
tr
(
1
2

{
Φ̂(k)n, Φ̂

∗(k)m
}
ρ̂(t)

)

tr
(
ρ̂(t)

) . (37)

Taking the time derivative yields

∂tσ(k, t)nm =
tr
(
1
2

{
Φ̂(k)n, Φ̂

∗(k)m
}
∂tρ̂(t)

)

tr
(
ρ̂(t)

) − tr
(
1
2

{
Φ̂(k)n, Φ̂

∗(k)m
}
ρ̂(t)

)

tr
(
ρ̂(t)

)2 tr
(
∂tρ̂
)
. (38)
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To begin to tackle the above expression we first derive a very important property of the anti-hermitian term in the
effective Hamiltonian, using the defining property of the canonical transformation, W †

kCWk = C, to obtain

tr
(
CY

)
∝ tr

(
CW †

k1Wk

)

= tr
(
W−1

k C1Wk

)

= tr
(
C1
)

= 0

(39)

where 1ij = 1. From this point onwards we will leave the k, t arguments implicit for brevity.
We examine the first term in the equation of motion

tr
(1
2

{
Φ̂n, Φ̂

∗
m

}
∂tρ̂
)
= −i tr

( [1
2

{
Φ̂n, Φ̂

∗
m

}
, Φ̂†XΦ̂

]
ρ̂
)

− tr
({1

2

{
Φ̂n, Φ̂

∗
m

}
, Φ̂†Y Φ̂

}
ρ̂
) (40)

and notice that the 2nd part will require the use of Wick’s theorem, for which we first need to put the quartic term
in a more symmetrical form. We start by using the identity

{
Φ̂nΦ̂

∗
m, Φ̂

∗
aΦ̂b

}
=

1

2

([[
Φ̂nΦ̂

∗
m, Φ̂

∗
a

]
, Φ̂b

])
+

1

2

({{
Φ̂nΦ̂

∗
m, Φ̂

∗
a

}
, Φ̂b

})
+ CabΦ̂nΦ̂

∗
m

=
1

2

({{
Φ̂nΦ̂

∗
m, Φ̂

∗
a

}
, Φ̂b

})
− 1

2
CnaCmb + CabΦ̂nΦ̂

∗
m

(41)

alongside the identity proved above (tr
(
CY

)
= 0) to obtain

tr
({1

2

{
Φ̂n, Φ̂

∗
m

}
, Φ̂†Y Φ̂

}
ρ̂
)
= −1

2
CnaYabCmbtr

(
ρ̂
)
+

1

2
tr

({{
1

2

{
Φ̂n, Φ̂

∗
m

}
, Φ̂∗

a

}
, Φ̂b

}
ρ̂

)
Yab (42)

which is in a nice form since the operators appear in a more symmetric way so Wick’s theorem can be more easily
utilised

1

4

tr
({{{

Φ̂n, Φ̂
∗
m

}
, Φ̂∗

a

}
, Φ̂b

}
ρ̂
)

tr
(
ρ̂
) Yab = 2

(
σnaσbm + σnm(σba +

1

2
Cab)

)
Yab (43)

where we have used the fact that

tr
(
Φ̂aΦ̂bρ̂

)
= 0. (44)

We next focus on the 2nd term in Eq. (38)

tr
(
1
2

{
Φ̂n, Φ̂

∗
m

}
ρ̂
)

tr
(
ρ̂
)2 tr

(
∂tρ̂
)
= −σnm

tr
({

Φ̂∗
aΦ̂b, ρ̂

})

tr
(
ρ̂
) Yab

= −2σnm
(
σba +

1

2
Cab

)
Yab

(45)

which we see exactly cancels the 2nd term in Eq. (43) which it should since the correlation matrix is invariant upon
changes in the norm of the density matrix.

Finally we look at the term associated with the hermitian part of the effective Hamiltonian (first term in Eq. (40))

tr
( [1

2

{
Φ̂n, Φ̂

∗
m

}
, Φ̂†XΦ̂

]
ρ̂
)
= −CanXabtr

(1
2

{
Φ̂b, Φ̂

∗
m

}
ρ̂
)
+ CmbXabtr

(1
2

{
Φ̂n, Φ̂

∗
a

}
ρ̂
)
. (46)

Combining all of the results together yields

∂tσ(k, t)nm = iCnaXabσbm − iσnaXabCbm − 2σnaYabσbm +
1

2
CnaYabCbm (47)

which is the Riccati equation in the main text.
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RICCATI EQUATION SOLUTION

We wish to calculate the time dependent correlation matrix σs(k, t) that corresponds to the transformation of the
density matrix under the quantum map

ρ̂k(0) →
e−ĤD(k)tρ̂k(0)e

−ĤD(k)t

tr
(
e−ĤD(k)tρ̂ke−ĤD(k)t

)

→ Û(k, t)ρ̂k(0)Û(k, t)†.

(48)

To do so we first introduce the characteristic function representation of a quantum operator. For an N mode
bosonic quantum system we have a set of creation/annihilation operators defined by the commutation relations

[
âi, â

†
j

]
= δij

[âi, âj ] = 0.
(49)

Any operator, Ô on the Hilbert space omits the following fourier esque decomposition

Ô =

∫
d2Nz χ(−z)D̂(z) (50)

in terms of the displacement operator D̂(z) = exp
(
ziâ

†
i − ziâi

)
and the characteristic function χ(z) = Tr

(
ÔD̂(z)

)
.

The special feature of Gaussian operators is that their characteristic function is also Gaussian

χ(z) ∝ exp

(
−1

2

(
z, z
)
CσC

(
z
z

))
(51)

where σ is the symmetrically ordered correlation matrix for operators âi, â
†
i , and C =

(
I 0
0 −I

)
.

The goal is to calculate the transformation of the correlation matrix under the quantum map

ρ̂→ M̂ρ̂M̂

tr
(
M̂ρ̂M̂

) (52)

with

M̂ ∝ exp


−

∑

j

λj â
†
j âj


 (53)

for λj ≥ 0. The transformation represents the dissipative part of the evolution in the main text. This operator is
Gaussian hence has a Gaussian characteristic function of the form (51) with

σ =
1

2
coth

(
λ

2

)
≡ σM (54)

where λ = diag (λ1, · · · , λN ).
The normalisation of the density matrix is not important for the calculation of the resulting correlation matrix.

The transformed density matrix has the characteristic function representation

M̂ρ̂M̂ =

∫
d2Nz1d

2Nz2d
2Nz3 χM (z1)χρ(z2)χM (z3)D̂(z1)D̂(z2)D̂(z3). (55)

The transformed correlator can be calculated as follows; the operator exponentials are combined to give a single
operator exponential, using the Baker-Campbell Hausdorff formula. The variables {z1, z2, z3} are transformed to a
new basis in which only one of them appears in the operator exponential. The other 2 combinations are now ’dummy
variables’ since they do not appear in the operator exponential. These dummy variables can be removed by integrating
over them, which can be done exactly since the integrand is Gaussian in these variables. Finally, we are left with an
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expression of the form (50) where we can read off the transformed correlation matrix since we know that the operator
M̂ρ̂M̂ is Gaussian.

The displacement operators can be combined using

D̂(z1)D̂(z2)D̂(z3) = D̂(z1 + z2 + z3)

× exp

(
1

2

(
z2 z2

)
C

(
z3 − z1
z3 − z1

)
+

1

2

(
z1 z1

)
C

(
z3
z3

))
(56)

whilst the Gaussian integration over the dummy variables can be done using the formulae

∫
d2Nz exp

(
−
(
z z

)
A

(
z
z

)
+
(
z z

)(w
w

)
±
(
w w

)(z
z

))

∝ exp

(
±
(
w w

)
A−1

(
w
w

))
.

(57)

Following a straightforward but tedious calculation, the correlation matrix of the transformed density matrix can
be read off, yielding the result in the main text once we set λ = Λkt and account for the unitary part of the dynamics
which is a known result σ → eiϵkCtσe−iϵkCt.

LONG TIME AREA LAW STATE

As mentioned in the main text we find the infinite time steady state values for the correlation matrix

lim
t→∞

σ(k, t) =
1

2
I (58)

which holds for all k except k = 0, π as there exists conserved quantities at these momenta that are decoupled from
the dissipation so do not exhibit relaxation dynamics. We consider entanglement growth starting from initial states
in which the conserved charge densities are finite in the thermodynamics limit.

Even though the effective Hamiltonian Ĥeff is not diagonalizable, the upper triangular form in the quasiparticle
basis means that the quasiparticle vacuum state |ψD⟩ satisfies

: Ĥeff : |ψD⟩ = 0 (59)

where : : denotes normal ordering.
We consider first the entanglement entropy of this vacuum state who’s correlation matrix is σ(k) = 1

2I ∀ k. From the
fact that the canonical transformations Wk are smooth in the momenta k we can infer that the real space correlation
functions decay exponentially hence the state |ψD⟩ has area-law entanglement.

As mentioned in the main text, the presence of conserved charges that are completely decoupled from the dissipation
at long times means that the long time state of the system under the effective Hamiltonian dynamics is in fact not
the quasiparticle vacuum state

lim
t→∞

e−iĤefft|ψ(0)⟩√
⟨ψ(0)|eiĤ†

effte−iĤefft|ψ(0)⟩
̸= |ψD⟩ (60)

but has an O(1) density of quasiparticle excitations associated with the finite conserved charge densities. A conse-
quence of these excitations that have infinite lifetime is that strictly speaking the system does not reach a steady state
|ψD⟩ (unless the initial sate has a 0 expectation value for these conserved charges). As long as these conserved charge
densities are finite in the thermodynamic (L→ ∞) limit the long time entanglement scaling will still be area-law.

The presence of the finite conserved charge densities means that the momentum space correlation functions are no
longer smooth in k meaning that our previous explanation for the area-law entanglement scaling for the vacuum state
|ψD⟩ no longer applies. For example we consider the expectation value of the quasiparticle charge density

lim
t→∞

⟨ψ(t)|b̂†k,j b̂k,j |ψ(t)⟩
⟨ψ(t)|ψ(t)⟩ = νjδ(k) (61)
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where δ(k) = 1 for k = 0 and δ(k) = 0 otherwise, with νj being the expectation value of the conserved charge in
band j. We wish to quantify the effect that these discontinuities have on the entanglement entropy for which it is
convenient to define the following correlation matrices

σ
(AB)
ij =

1

2
⟨
{
Âi, B̂j

}
⟩ − ⟨Âi⟩⟨B̂j⟩ (62)

where Â, B̂ ∈ [x̂, p̂] and i, j denotes the lattice sites. Since the state has lattice translational symmetry with a unit
cell of size R, these matrices are block circulant

σ(AB) =




σ
(AB)
0 σ

(AB)
1 σ

(AB)
2 · · · σ(AB)

2 σ
(AB)
1

σ
(AB)
1 σ

(AB)
0 σ

(AB)
1 · · · σ(AB)

3 σ
(AB)
2

...
...

...
. . .

...
...

σ
(AB)
1 σ

(AB)
2 σ

(AB)
3 · · · σ(AB)

1 σ
(AB)
0




(63)

The effects of the finite conserved charge densities is additive at the level of the correlation functions, hence we can
write

σ(AB) = σ
(AB)
VAC + δσ(AB) (64)

where σ
(AB)
VAC is the correlation matrix for the area-law vacuum state |ψD⟩. Since the vacuum state has exponentially

decaying correlation functions in real space we have

(
σ
(AB)
VAC

)
x
≈ 0 {x≫ O(ζ)} (65)

for some correlation length ζ. To calculate the entanglement entropy between a region containing NA unit cells and
it’s complement in a systems comprised of N unit cells we do the following; define the reduced correlation matrices
that containing only correlations between sites restricted to the region A

σ(AB)(NA) =




σ
(AB)
0 σ

(AB)
1 σ

(AB)
2 · · · σ(AB)

NA−2 σ
(AB)
NA−1

σ
(AB)
1 σ

(AB)
0 σ

(AB)
1 · · · σ(AB)

NA−3 σ
(AB)
NA−2

...
...

...
. . .

...
...

σ
(AB)
NA−1 σ

(AB)
NA−2 σ

(AB)
NA−3 · · · σ

(AB)
1 σ

(AB)
0




(66)

calculate the eigenvalues of the following matrix

σ(xx)(NA)σ
(pp)(NA)− σ(xp)(NA)σ

(px)(NA) ≡ Λ(NA) (67)

which we denote as
{
λ21, · · · , λ2NA+1

}
.

The von-neumann entanglement entropy is calculated from the eigenvalues

S(NA) =

NA∑

j=1

[(
|λj |+

1

2

)
log

(
|λj |+

1

2

)
−
(
|λj | −

1

2

)
log

(
|λj | −

1

2

)]
. (68)

From the fact that the vacuum state has exponentially decaying correlation functions in real space, we would expect
contributions to the entanglement entropy from sites that are within an O(ζ) distance from the boundary of region
A. For NA ≫ ζ we would expect the eigenvalues λj calculated from the correlation functions between sites in the
bulk to be equal to 1

2 since these sites do not contribute to the entanglement entropy. This suggests the following
approximation for the matrix from which these eigenvalues are calculated

σ
(xx)
VAC(NA)σ

(pp)
VAC(NA)− σ

(xp)
VAC(NA)σ

(px)
VAC(NA) ≈ Λboundary ⊕

1

4
Ibulk(NA) (69)

where dim(Λboundary) = O(ζ), dim(Ibulk) = R(NA−O(ζ)). As a function of NA the subsystem entanglement entropy
plateaus for NA ≫ O(ζ) since contributions to the entanglement entropy only comes from sites near the boundary,
which does not grow with NA in this limit.
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We consider now the effect that the finite conserved charge density has on the subsystem entanglement scaling.
Firstly we consider the number of unit cells comprising the system, N , to be odd meaning that there are only conserved
charge densities at k = 0, each associated with one of the R− 1 gapless bands. This means that the perturbation to
the correlation matrices δσ(AB) are low rank, in particular

δσ(AB) =
1

N




δσ̃
(AB)
0 δσ̃

(AB)
0 · · · δσ̃(AB)

0

δσ̃
(AB)
0 δσ̃

(AB)
0 · · · δσ̃(AB)

0
...

...
. . .

...

δσ̃
(AB)
0 δσ̃

(AB)
0 · · · δσ̃(AB)

0




=
1

N
δσ̃

(AB)
0 ⊗ 1N (70)

where 1ij = 1 for 1 ≤ i, j ≤ N .
Using the fact that the correlations of |ψD⟩ are exponentially decaying in real space we make the following approx-

imation

O(ζ)∑

j=−O(ζ)

σ
(AB)
j ≈

N−1
2∑

j=−N−1
2

σ
(AB)
j ≡ σ̃

(AB)
0 (71)

from which we conclude that the bulk part of the perturbed matrix Λ(NA) takes the form

Λbulk(NA) =
1

4
Ibulk(NA) +

1

N
A0 ⊗ 1Nbulk

+
Nbulk

N2
B0 ⊗ 1Nbulk

(72)

where dim(1bulk) = NA −O(ζ) and the matrices A0, B0 are quadratic in δσ̃
(AB)
0 , σ̃

(AB)
0 .

From the fact that the state is pure before and after the perturbation, it can be shown that A0 +B0 = 0 hence we
simplify

Λbulk(NA) =
1

4
Ibulk(NA) +

1

N

(
1− Nbulk

N

)
A0 ⊗ 1Nbulk

. (73)

From this expression we see that most of the eigenvalues in the bulk part of Λ(NA) are unchanged, however a few
of the bulk eigenvalues do in fact change, and they correspond to the eigenvalues of the matrix

√
1

4
I +

Nbulk

N

(
1− Nbulk

N

)
A0 ≈

√
1

4
I +

NA

N

(
1− NA

N

)
A0 (74)

from which we conclude that the effect of the perturbation is to modify the entanglement entropy profile

S(NA) = SVAC(NA) + g

(
NA

N

(
1− NA

N

))
+O(1/N) (75)

for some function g(x). The O(1/N) term is a correction to the boundary contribution to the entropy (The boundary
part of the matrix Λ is perturbed by a matrix with eigenvalues O(1/N)). We would therefore expect that the presence
of the finite conserved charge densities in the long time state of the system results in the subsystem entanglement
profile having a parabolic like profile rather than a plateau for NA ≫ O(ζ). The entanglement scaling is still area-law
since the subsystem size appears in the entanglement entropy as the ratio NA/N .

This parabolic profile is indeed what we see in the numerical calculations of the long time subsystem entanglement
profile (Fig. 1)

In general determining the function g is difficult, however in the limit in which the perturbations (conserved charge
densities νj) are large it can be shown that the entropy scales as

S(NA) ≈
Rank(A0)

2
log

NA

N

(
1− NA

N

)
+

1

2
log pdet(A0) (76)

where pdet(A0) is the pseudo-determinant (product of non-zero eigenvalues) of A0. Here Rank(A0) is the number of
conserved charges, which is equal to R − 1, the number of gapless bands. We find excellent agreement between the
analytical formula and the numerics in the limit where the perturbation is large (Fig. 2). Strictly speaking by large
we mean that the increase in entanglement associated with these conserved charges is large compared to the vacuum
state entanglement.
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FIG. 1. Subsystem entanglement profile for the infinite time state for measurements of range 4 with γ = 0.5. The inset shows
that the curve for different system sizes do not line up exactly. The finite size correction is observed numerically to be O(1/N)
which is consistent with our prediction for the finite size effect.

FIG. 2. Subsystem entanglement profile for the infinite time state in the limit where the conserved charge densities are large.
We see excellent agreement with the analytical formula once the subsystem is large enough for the bulk/boundary separation
to apply.

DETAILS ON NUMERICAL SIMULATIONS

As discussed in the main text, the Gaussian property of the state can be used to express the dynamics of interest
in terms of a set of Riccati equations for the correlation matrix, which are non-linear first order ODE’s. The solution
to these ODE’s can be calculated using various numerical techniques, however one of the primary issues with such
methods is that the correlation matrix must remain ’normalized’ which complicates these methods.

The normalization condition arises since the quantum state is pure meaning that it has zero entanglement entropy.
For a state with correlation matrix

σij =
1

2
⟨{r̂i, r̂j}⟩ − ⟨r̂i⟩⟨r̂j⟩ (77)

with r̂ =
(
x̂1, · · · , x̂L, p̂1, · · · , p̂L

)
, the eigenvalues of the matrix Jσ are of the form ±iλ with λ ≥ 1

2 . The matrix J is
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known as the symplectic matrix and encodes the commutation relations between the operators

[r̂i, r̂j ] = iJij (78)

with J =

(
0 I
−I 0

)
. For Gaussian pure states, all of the symplectic eigenvalues for the full correlation matrix have

λ = 1
2 which is the aforementioned normalization constraint.

For our numerical simulations of the dynamics of the correlation matrix we devised a method that explicitly preserves
this normalization condition. To start we note that the pure state density matrix, used to calculate the correlation
matrix, evolves according to

ρ̂(t+ δt) = e−iĤeffδtρ̂(t)eiĤ
†
effδt (79)

The effective Hamiltonian can be naturally expressed in terms of it’s hermitian and anti-hermitian parts

Ĥeff = Ĥ − iγ
∑

b

Ô2
b

= Ĥ − iD̂.

Using the Baker-Campbell-Hausdorff formula, the evolution equation can be expressed

ρ̂(t+ δt) = e−iĤδte−D̂δtρ̂(t)e−D̂δteiĤδt +O(δt2). (80)

For sufficiently small time step δt the unitary and dissipative parts of the evolution can be treated separately. The
effect of the unitary part of the dynamics on the correlation matrix is a simple well know result (linear symplectic
transformation S(δt)) whilst the transformation of the correlation matrix under the dissipative part of the dynamics is
not. This non-linear transformation Fδt can be derived exactly using a very similar method presented earlier resulting
in a combined transformation of the form

σ(t+ δt) = S(δt)Fδt(σ(t))S(δt)
T (81)

which when expanded to first order in δt yields the correct Riccati equation whose general form has already been
derived in [1, 2]. To the best of our knowledge we are the first to calculate the non-linear transformation Fδt(σ(t)) .

For the figures in the main text a time step δt = 0.02 was used.
The system was initialised in the following translationally invariant product state

|ψ(0)⟩ =
∏

j

exp

(
α

2
â†j â

†
j −

α∗

2
âj âj

)
|VAC⟩ (82)

with âj |VAC⟩ = 0. Here the creation/annihilation operators are the local harmonic oscillator ladder operators,
âj =

1√
2
(x̂j + ip̂j). For the figures in the main text we set α = 0.1.

For initial states of this form, it can be shown that the effects of inter-band correlations on the entanglement growth
are sub-leading which is the reason as to why the quasiparticle picture described in the main text captures the leading
order behaviour so well.

The effective Hamiltonian is parameterised by mass m, measurement range R and the measurement strength γ.
Throughout this work we have fixedm = 1 however this does not have any qualitative effect on the results. For example
the usual distinction between m = 0,m ̸= 0 does not apply here since an effect of the measurements (non-hermitian
part of Ĥeff) is to create a gap in the real part of the quasiparticle spectrum if there is not already one.

FINITE SIZE EFFECTS

In a finite system the entanglement does not grow indefinitely. The quasiparticle picture predicts that the entan-
glement will exhibit ’revivals’ since the EPR pairs will reunite at multiples of the time tL = L

2|vj(k)| . We find that the

quasiparticle picture has excellent agreement with the numerics (Fig. 3) where we have included a higher order term
(δk2) in our expansion of the quasiparticle bandstructure in order to capture dispersion effects. The inclusion of this
higher order term leads to the pronounced curvature of the revival peaks/troughs.
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FIG. 3. Half chain entanglement for a system of size L = 400 for measurements of range 4 and strength γ = 1. We see
perfect agreement between the numerical simulations and the quasiparticle picture prediction. The t−1/2 decay was observed
numerically by plotting the decay of the entanglement revival peaks with time.

EFFECT OF INTER-BAND CORRELATIONS

In the main text we outlined the quasiparticle picture formalism for a multi-band model with no inter-band corre-
lations. The additional correlations between the bands complicates the quasiparticle picture slightly and has already
been studied in the context of free fermions under unitary dynamics [3]. Here they find that the unitary dynamics
still give rise to ballistic growth of entanglement entropy. In our case there is also additional dissipative dynamics
that can be treated separately. The correlation matrix has the general form for small k

σ(k, t) = U†(k, t)f(k2t)U(k, t) (83)

where U(k, t) = e−iϵkCt is a unitary matrix and f(k2t) is a matrix valued function. From this form we would still
expect diffusive growth of entanglement entropy, even in the presence of inter-band correlations.

We provide some numerics (Fig. 4) to show that the qualitative behaviour of the entanglement growth does not
change when there are inter-band correlation contributing at leading order. We consider the following initial state

|ψ(0)⟩ =
∏

b

exp


1

2

∑

j

[
αj â

†
b,j â

†
b,j − α∗

j âb,j âb,j

]

 |VAC⟩ (84)

where we have now introduced two indices for the local operators with b representing the unit cell and j representing the
position within the unit cell. States of this form with αj distinct have the desired inter-band correlations contributing
to the entanglement at leading order.
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FIG. 4. Half chain entanglement growth for a system of size L = 1600 for measurements of range 4 where there are inter-band
correlations at leading order. The entropy curves SA(t) are fitted to a curve f(t) = a + b

√
t from which we define S̃ = S−a

b
.

We see that the asymptotic entanglement growth is still diffusive even in the presence of these correlations.
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