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OPERATOR ALGEBRAS OVER THE p-ADIC INTEGERS

ALCIDES BUSS, LUIZ FELIPE GARCIA, AND DEVARSHI MUKHERJEE

Abstract. We introduce p-adic operator algebras, which are nonarchimedean
analogues of C∗-algebras. We demonstrate that various classical examples of
operator algebras - such as group(oid) C∗-algebras - have nonarchimedean
counterparts. The category of p-adic operator algebras exhibits similar prop-
erties to those of the category of real and complex C∗-algebras, featuring lim-
its, colimits, tensor products, crossed products and an enveloping construction
permitting us to construct p-adic operator algebras from involutive algebras
over Zp. In several cases of interest, the enveloping algebra construction re-
covers the p-adic completion of the underlying Zp-algebra. Finally, we discuss
an analogue of topological K-theory for Banach Zp-algebras, and compute it
in basic examples such as the p-adic Cuntz algebra and rotation algebras.
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1. Introduction

The theory of commutative Banach algebras over nonarchimedean valued fields has
been extensively developed in the works of Tate, Berkovich ([9]) and Huber ([22])
in the study of nonarchimedean analytic geometry. Briefly, quotients of p-adic
completions of polynomial rings with coefficients in the p-adic numbers provide local
models for rigid analytic spaces. Recent work by Ben-Bassat-Kremnizer ([7]) and
Scholze-Clausen ([41]) interpret and unify various forms of analytic geometry (both
complex and nonarchimedean) within their respective frameworks of bornological
and condensed mathematics. Related to these approaches to analytic geometry
is the work of Bambozzi-Mihara ([5]), where the authors use commutative Banach
algebras of continuous functions valued in an arbitrary Banach ring to topologise the
category of compact Hausdorff spaces, with a view towards a theory of topological
stacks. Now while the developments in the commutative world have been exciting,
there has been essentially no progress in the (noncommutative) operator algebraic
realm in the nonarchimedean setting to match the role played by C∗-algebras in
complex and real noncommutative geometry and topology. Indeed, the pursuit of
such a theory goes at least as far back as the 1970s ([45]), where after developing
the basic results on commutative Banach algebras and their Gelfand spectra, the
author poses the problem of developing a theory analogous to C∗-algebras in the
p-adic setting. This is the paradigm of this article.

There are several factors that have motivated us to study this class of algebras. We
list some of these below:

Noncommutative analytic geometry. One of several important ideas in Connes’
noncommutative different geometry is the desingularisation of a “bad quotient” us-
ing a noncommutative operator algebra, such as a von Neumann or a C∗-algebra.
More concretely, the orbit space X/G of the action of a topological group G on
a locally compact Hausdorff space (or a smooth manifold) X is in general badly
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behaved as a topological space, as a consequence of which the commutative alge-
bras of continuous (or smooth) functions on X/G are no longer the correct objects
of study. Instead, one considers a noncommutative algebra, namely, the crossed

product C∗-algebra C0(X)⋊G, which is Morita equivalent to C0(X/G) in case the
original properties of the space X are inherited by the orbit space, as happens when
the action is free and proper. In the nonarchimedean world, one could consider the
action of a finite group G on an affine variety X = Spec(A) over Fp and obtain an
Fp-algebra A ⋊ G - the algebraic crossed product of the action of G on the ring
of regular functions on the variety. Such algebras can be lifted to noncommuta-
tive Banach algebras of the form R ⋊ G, where R is the p-adic completion of a
smooth Zp-algebra lifting A. Likewise, one could consider the action of a p-adic Lie
group acting on a rigid analytic space or a totally disconnected compact Hausdorff
space. If one views rigid analytic or totally disconnected spaces as classical spaces
in the nonarchimedean world, the quotient spaces just described are noncommu-

tative analytic spaces, whose function algebras should be suitable analogues of the
C∗-algebraic crossed product algebra.

Idempotent conjectures. Kaplansky’s idempotent conjecture states that for any
ring R and a torsionfree group G, the group algebra R[G] contains no nontrivial
idempotents. In the complex case, this conjecture is known to be true for a large
class of groups (including word-hyperbolic groups and reductive p-adic groups).
The proof uses a formulation of the conjecture in terms of the Baum-Connes as-
sembly map into the topological K-theory or local cyclic homology of the reduced

group C∗-algebra, and the latter contains the same information on idempotents as
the group ring. When R = Fp or Zp, the conjecture is still open for a general
group G. This was one of the main motivations for Anton Claußnitzer and Andreas
Thom [13] to introduce separable p-adic Hilbert spaces, which they used to define
an analogue of the reduced group C∗-algebra over Zp for countable groups. Fur-
thermore, in his thesis [12], Classnitzer showed that idempotents in the Fp-algebra
Fp[G] lift to idempotents in the resulting p-adic group C∗-algebra over Zp. As a
consequence of these idempotent lifting results, together with with appropriate ver-
sions of topologicalK-theory and local cyclic homology for Banach Zp-algebras, one
may formulate a version of the Baum-Connes assembly map. In forthcoming work,
this will be used to investigate idempotent conjectures in the mixed characteristic
setting.

From operator algebras to their reduction mod p. In what we have described
so far, the general approach is to “lift” a geometric or algebraic property (such as
smoothness and idempotence) over the residue field Fp to Zp, and use operator
algebraic techniques on some resulting topologically complete Zp-algebra. It turns
out that several properties of topological Zp-algebras - which are manifestly analytic
in nature - can be studied using their reduction mod p, which is purely algebraic.
For instance, the analogues of topological K-theory and local cyclic homology in
the nonarchimedean world depend only on their reduction mod p, that is, we have
weak equivalences

KHan(R̂) ≃ KH(R/p), HL(R̂) ≃ HA(R/p). (1)

In forthcoming work, we relate the simplicity of the rationalised p-adic operator
algebras Op(G) ⊗ Qp associated to ample groupoids G to the simplicity of the
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Steinberg algebra Op(G)/p = S(G,Fp), which in turn is equivalent to the groupoid
being minimal and effective [43, Theorem 3.5].

We now briefly highlight our approach. Recall that a C∗-algebra can be charac-
terised as a Banach ∗-algebra that can be isometrically represented in the space of
bounded operators on a Hilbert space. This characterisation is taken as a definition
for Banach algebras acting on Lq-spaces, where q ∈ [1,∞), in what now constitutes
the Lq-operator algebras. Our definition of a p-adic operator algebra takes a morally
similar route as that taken in the study of Lq-operator algebras. Of course, this
already requires clarification as the simple-minded definition of a Qp-vector space
with a sesquilinear form valued in Qp does not in general yield a self-dual topologi-
cal vector space. In [12] and [13], a definition of a p-adic Hilbert space is proposed,
enabling the definition of p-adic operator algebras as p-adic Banach algebras with
an involution that can be represented in the space of bounded operators on this
p-adic Hilbert space. More precisely, given a countable set X , a Zp-module Qp(X)
consisting of a certain space of functions X → Qp is constructed, and this serves
as a model for a “separable” p-adic Hilbert space. However, the countability on
X imposed in [12] significantly restricts the types of p-adic algebras that can be
represented, which includes most of the algebras discussed in the motivating ex-
amples. In this article, we remove this cardinality constraint, which enables us to
import several examples from the complex to the nonarchimedean setting, includ-
ing groupoid algebras, crossed products, tensor products. In particular we obtain
operator algebraic p-adic versions of some of the most important C∗-algebras, like
graph algebras – including in particular Cuntz algebras – and rotation algebras.
We also treat natural examples such as the Iwasawa algebra of a profinite group as
an operator algebra.

Using (1) we provide sample computations of analyticK-theory (the nonarchimedean
analogue of topological K-theory) of some of our algebras, including the Cuntz al-
gebras and rotation algebras. For the Cuntz algebras we get, as expected, the same
invariant as the corresponding Leavitt path algebras of Fp. And for the rotation
algebras we get quite different results in comparison with K-theory for the rotation
C∗-algebras. In particular our computations show that the p-adic rotation algebras
are not homotopic equivalent and have different invariants; this is expected as the
p-adic rotation algebras should be viewed as noncommutative versions of a “dis-
connected p-adic torus”, and a “disconnected p-adic circle” prevents a homotopy to
exist.

This article is organised as follows.

In Section 2, we recall some preliminary material on nonarchimedean functional
analysis. In Section 3, we discuss the p-adic Hilbert spaces Qp(X) and the algebra
of bounded operators on them. We show that every operator has an adjoint, which
permits us to give a very simple description of the algebra of bounded operators
with a norm less than or equal to 1.

B≤1(Qp(X)) =
{
T : Qp(X)→ Qp(X) : there exists an adjoint T ∗ and ‖T ‖ ≤ 1

}

In Section 4 we study the space of operators over the p-adic Hilbert space. Each
p-adic operator has an associated matrix; this matrix is unique for each operator,
and its entries satisfy a convergence criterion that is useful for doing calculations
and the construction of tensor products and crossed products.
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Section 5 presents the main definition of the text, the p-adic operator algebras.
We show that several examples such as group algebras, étale groupoid algebras,
matrix algebras and algebras of continuous functions are p-adic operator algebras
in a natural way.

In Section 6, we show some categorical properties of the category of p-adic oper-
ator algebras concerning limits, colimits, subobjects, and the construction of the
enveloping operator algebra of a p-adic ∗-algebra A. This enveloping operator al-
gebra, denoted as Au, is the p-adic operator algebra that best approximates A in
a precise sense. In Section 7, we construct the maximal tensor product, which we
compare with the spatial tensor product, studied previously by Anton Claußnitzer
in [12]. These two tensor products coincide for a large class of algebras, which we
call bornological Banach algebras.

In Section 8, we construct the crossed product. We present three different incar-
nations of the crossed product and prove some results regarding the relationship
between these constructions. We also talk about the twisted group algebra that
permits us to talk about the p-adic analogue of the rotation algebras.

Finally, in Section 9, we compute the K-theory of Leavitt path algebras and of
rotation algebras. As mentioned previously, the computation of these invariants
reduce to computations of known invariants over the residue field, and we use the
latter to provide complete computations.

2. Preliminaries on nonarchimedean analysis

In this section, we provide some background material on analysis over the p-adic
integers to ensure that the article is reasonably self-contained to the operator alge-
braist. Throughout this article, p will denote a fixed prime number, Qp the field of
p-adic numbers, which is constructed by completing the field of rationals Q in the
p-adic norm

|x|p =
1

pl
,

for x ∈ Q\{0}, where l is the integer satisfying x = m
n p

l, with m and n not divisible
by p. The resulting object is a nonarchimedean Banach field, where the qualifier
“nonarchimedean” refers to the strict triangle inequality |x+ y|p ≤ max{|x|p ,|y|p}
for all x, y ∈ Q. It turns out that the strict triangle inequality leads to a vastly
different theory, starting with the observation that the p-adic topology on Qp is
totally disconnected.

Our main objects of study are actually topological modules and algebras over the
complete discrete valuation ring Zp = {x ∈ Qp :|x|p ≤ 1}, rather than Qp - this
mixed characteristic nature of analysis is another difference from the archimedean
case. The topological ring Zp is an example of a (nonarchimedean) Banach ring,
that is, a ring with a nonarchimedean norm, with respect to which it is complete.

Definition 2.1. A nonarchimedean semi-normed Zp-module M is a Zp-module
together with a function ‖−‖ : M → R≥0 such that:

• ‖λ · x‖ = |λ|p‖x‖ for all x ∈M and λ ∈ Zp;

• ‖x+ y‖ ≤ max{‖x‖ ,‖y‖} for all x, y ∈M .
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A nonarchimedean semi-norm is called a norm if ‖x‖ = 0 if and only if x = 0.
Finally, if the norm on M is complete, we say that M is a nonarchimedean Banach

Zp-module.

Note that the definition above makes sense for any complete discrete valuation ring
in place of Zp. Furthermore, it might appear to be a redundancy to talk about
nonarchimedean semi-norms when the base ring is nonarchimedean, but we point
out that this is additional data. In ongoing work (see [8], for instance) on derived
analytic geometry, the authors make the distinction and consider archimedean mod-
ules over nonarchimedean Banach rings (and vice versa). In this article we will only
study nonarchimedean normed Zp-modules. Having made this clarification, we will
drop the prefix “nonarchimedean”, unless specifically warranted.

Example 2.2. Let M be a flat (or equivalently, p-torsionfree) Zp-module. Addi-
tionally suppose that ⋂

n∈N

pnM = {0}

such Zp-modules are called p-adically separated. Taking its p-adic completion

M̂ = lim
←−
m

M/pmM,

we get a torsionfree, p-adically complete Zp-module. Consider the function νp(x) =
sup{n ∈ N :x ∈ pnM} on M ; this is called the p-adic valuation of M . Then the
assignment

‖·‖p : M̂ → R≥0, ‖x‖ =
1

pνp(x)

is a nonarchimedean norm, which we call the canonical p-adic norm. Since M̂ is
p-adically complete, (M̂,‖·‖p) is a Banach Zp-module. Conversely, if M is a flat
Zp-module that is complete in the canonical norm, then M is p-adically complete.

Example 2.2 yields an algorithm to generate examples of Banach Zp-modules. Fur-
thermore, notice that the requirement that a seminorm on a Zp-module be a norm
necessitates that we rule out Fp-vector spaces (and Fp-algebras) from the domain
of our interest.

There are two possible categories, or morphisms, one could consider between Banach
Zp-modules. We call a Zp-linear map T : M → N bounded if

∥∥T (x)
∥∥ ≤ C‖x‖ for

all x ∈ M and some C > 0. A bounded Zp-linear map is said to be contractive

if
∥∥T (x)

∥∥ ≤ ‖x‖ for all x ∈ M . We denote the former and the latter category by

BanZp
and Ban

≤1
Zp

. In the complex case, one usually works in the category BanC
of complex Banach spaces - particularly if C∗-algebras are their primary concern.
This is because the contractive category of Banach spaces is not additive, and ∗-
homomorphisms of C∗-algebras are automatically contracting - the latter implying
the existence of all limits and colimits of C∗-algebras. In other words, the automatic
contraction property means that one can stay within the additive category BanC,
while at the same time using the existence of arbitrary limits and colimits in Ban

≤1
C

to get a rich category of C∗-algebras. Herein lies another key difference in the
nonarchimedean setting - the ultrametric property implies that the category Ban

≤1
Zp

is additive, and still has all limits and coproducts. However, as we are working over
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Zp (rather than Qp), quotients are badly behaved as they create torsion. Indeed,
in the simplest case, the (algebraic) cokernel of the map

Zp
p
→ Zp

is Fp, which can never be a Banach Zp-module for any norm.

We now discuss symmetric monoidal structures on BanZp
. Let M and N be two

Banach spaces. Their completed projective tensor product ([40]) ⊗π is given by
the completion of the algebraic tensor product M ⊗alg N in the norm defined by

‖x‖ = inf

{
max{‖mi‖‖ni‖ : i = 1, . . . , n} : x =

n∑

i=1

mi ⊗ ni

}
.

This bifunctor −⊗π− : BanZp
×BanZp

→ BanZp
yields a closed symmetric monoidal

structure on BanZp
as well as on Ban

≤1
Zp

. A Banach Zp-algebra is an algebra object in

the category Ban
≤1
Zp

. The p-adic operator algebras that we will define in this article
will be a certain subcategory of these Banach algebras that can be represented on
a p-adic analogue of a Hilbert space, that we will define in the next section.

We end this section by introducing another subcategory of Banach Zp-algebras in
which our algebras will often lie. Recall from Example 2.2 that starting with a flat,
p-adically separated Zp-module M , one can take its p-adic completion M̂ , which
is a Banach module with respect to the canonical p-adic norm. If one considers a
different seminorm (M,‖−‖). Then writing x ∈ M as x = pmy for some m ∈ N,
and y ∈ M \ pM , we have ‖x‖ = ‖x‖p‖y‖. Thus, if ‖−‖ is bounded (which will
always be the case in our theory), then the identity map (M,‖−‖p)→ (M,‖−‖) is
bounded. The identity map (M,‖−‖)→ (M,‖−‖p) need not, however, be bounded.
In what follows, we provide several equivalent criteria for when this happens to be
the case:

Lemma 2.3. [14, Example 2.11] Let M be a p-adically separated Zp-module with
a bounded seminorm. The following are equivalent:

(1) The identity map (M,‖−‖)→ (M,‖−‖p) is bounded;

(2) The seminorm ‖−‖ is equivalent to the canonical p-adic seminorm on each
closed ball Bρ = {x ∈M :‖x‖ ≤ ρ} for ρ > 0;

(3) There is a δ > 0 such that Bδ ⊂ pM , that is, pM is open in the norm
topology on M .

Definition 2.4. A p-adically complete Zp-module with a bounded norm satisfy-
ing any of the equivalent conditions of Lemma 2.3 is called a bornological Banach

module.

Remark 2.5. In [12], a related notion of d-complete Zp-modules is discussed. More
concretely, in [12, Definition 2.3.2] the author says that a seminormed Zp-module
(M,‖−‖) is b-ultra-seminormed if its norm is discretely valued, that is, the val-
ues

∥∥M \ {0}
∥∥ of the seminorm lie in p−N ∪ {0}. And a b-ultraseminormed Zp-

module is called d-complete if B1/p ⊆ pM . In particular, by Lemma 2.3 d-complete
Zp-modules that are complete in their norm are bornological Banach Zp-modules.



8 ALCIDES BUSS, LUIZ FELIPE GARCIA, AND DEVARSHI MUKHERJEE

3. The p-adic analogue of a Hilbert space

In this section, we recall the notion of a p-adic Hilbert space developed by Claußnitzer
and Thom in [12, 13]. Briefly, their construction associates to a countable set X a
self-dual topological abelian group Qp(X) that has the structure of a Zp-module
(and not in general a Qp-vector space). Our main examples, however, necessitate
that the Thom-Claußnitzer construction be extended to uncountable sets X . This
poses some technical challenges, whose resolution is the content of this section.

Definition 3.1 (The space Qp(X)). Let X be an arbitrary nonempty set. Define

Qp(X) =
{
ξ : X → Qp | ξ(x) ∈ Zp for all but finitelly many x ∈ X

}
.

Note that Qp(X) can be written as a filtered union of the spaces

Qp(X) =
⋃

P⊆X
P finite subset

∏

x∈P

Qp ×
∏

x 6∈P

Zp.

We equip Qp(X) with the colimit topology of this union, where each
∏

x∈P Qp ×∏
x 6∈P Zp carries the product topology. Explicitly, U ⊆ Qp(X) is an open subset if

and only if for every finite subset P ⊆ X , the intersection

U ∩


∏

x∈P

Qp ×
∏

x 6∈P

Zp




is open in the product topology on
∏

x∈P Qp×
∏

x 6∈P Zp. This topology is similar in
spirit to the restricted product topology on the adeles. In particular, the topology
on Qp(X) is locally compact. We denote this topology by τ . When X is a finite set
of cardinality n, Qp(X) coincides with the product space Qn

p . However, in general
Qp(X) is only a Zp-module.

We may also consider Qp(X) with the topology induced by the supremum norm

‖ξ‖∞ := sup
x∈X

∣∣ξ(x)
∣∣
p

for ξ ∈ Qp(X).

Lemma 3.2. The Zp-module Qp(X) with the norm above is complete, that is, it
is a Banach Zp-module.

Proof. The proof of [12, Lemma 1.5.3] works mutatis-mutandis. �

Although the τ -topology is less convenient to work with than the norm topology,
it is the more structurally significant one, as it turns Qp(X) into a self-dual locally
compact abelian group (see Proposition 3.6 below), which will be relevant later on.
We now provide a useful criterion for convergence of sequences in the τ -topology.

Lemma 3.3 (Sequential convergence criterion). Let X be a nonempty set. A se-
quence (ξn)n in Qp(X) with the τ -topology converges to ξ if and only if it converges
entrywise to ξ, and if the set

{
x ∈ X | ∃n ∈ N : |ξn(x)| > 1

}
is finite.
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Proof. Suppose that limn ξn = ξ in the τ -topology. Let

P :=
{
x ∈ X | |ξ(x)| > 1

}

Note that P is finite as ξ ∈ Qp(X). Let x ∈ X arbitrary. Define for every m ∈
N \ {0} the open neighborhood of ξ

Vx,m := B(ξ(x),
1

m+ 1
)×

∏

y∈P\{x}

B(ξ(y), 1)×
∏

x∈P c\{x}

Zp

where B(a, r) is the open ball with center a and radius r in Qp. As limn ξn = ξ, for
each m, there exists a n0 ∈ N, such that ξn ∈ Vx,m for n > n0. Varying m ∈ N, we
see that ξn converges to ξ in the x entry, and since x was arbitrary it follows that
(ξn) converges pointwise to ξ.

For the second part, fix P ⊆ X a finite subset such that ξ ∈
∏

x∈P Qp ×
∏

x 6∈P Zp.
Note that

∏
x∈P Qp ×

∏
x 6∈P Zp is a open neighborhood of ξ, therefore, there is an

n0 ∈ N, such that for n > n0 we have ξn ∈
∏

x∈P Qp ×
∏

x 6∈P Zp. Consequently,
the set {

x ∈ X | ∃n > n0 : |ξn(x)| > 1
}
⊆ P

and is hence finite. As we have finitely many options, the set
{
x ∈ X | ∃n ≤ n0 : |ξn(x)| > 1

}

is also finite, proving the claim that
{
x ∈ X | ∃n ∈ N : |ξn(x)| > 1

}

is finite.

Conversely, suppose we are given a sequence (ξn) converging entrywise to ξ, and
that the set

P0 :=
{
x ∈ X | ∃n ∈ N : |ξn(x)| > 1

}

is finite. Note that for every n ∈ N we have

ξ, ξn ∈
∏

x∈P0

Qp ×
∏

x 6∈P0

Zp.

Let U ⊆ Qp(X) be an open set containing ξ. Since ξ ∈
∏

x∈P0
Qp ×

∏
x 6∈P0

Zp we
can choose U ⊆

∏
x∈P0

Qp ×
∏

x 6∈P0
Zp. Therefore U is of the form

U = Ux1
× · · · × Uxn

× Vy1
× · · · × Vym

×
∏

x∈X\{x1,...,xn,y1,...,ym}

Zp (2)

for some Uxi
open subset of Qp, Vyi

open subset of Zp where xi ∈ P0 and yi ∈ X\P0.
Hence, as ξn converges entrywise to ξ, it is easy to see from 2 that there exists n0 ∈ N
such that for n > n0 we have ξn ∈ U . Showing that ξn converges to ξ. �

Similar to complex or real Hilbert spaces, the topological Zp-module Qp(X) comes
with a natural pairing induced by an isomorphism of locally compact abelian groups

Qp(X) ∼= Q̂p(X) (see 3.6 below), where Q̂p(X) := Hom(Qp(X),T) is the Pontryagin
dual of Qp(X), where T = S1 ⊆ C denotes the unit circle. This pairing plays the
role of an inner product in the nonarchimedean setting.
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Definition 3.4 (Pairing). Let X be a nomempty set. There is a natural pairing

〈·, ·〉 : Qp(X)×Qp(X)→
Qp

Zp

∼=
Q

Z
⊆ T

defined by

〈ξ, η〉 :=
∑

x∈X

(ξ(x)η(x) + Zp).

Note that this sum is finite as only finitely many terms of this sum are not in Zp.

Proposition 3.5. The pairing described above is Zp-bilinear, symmetric and jointly
continuous.

Proof. The bilinearity and symmetry are clear from the definition. We now verify
continuity where the set Qp/Zp is equipped with the discrete topology. Let b = 〈·, ·〉,
and let a+Zp ∈ Qp/Zp be arbitrary. We need to show that b−1(a+Zp) is an open
subset. To this end, let (ξ0, η0) ∈ b

−1(a+ Zp) and let

ε := min

{
1

2
max

{
‖ξ0‖

−1
∞ , ‖η0‖

−1
∞

}
, 1

}
.

Consider the finite sets

S :=
{
x ∈ X | |ξ0(x)| > 1

}

T :=
{
x ∈ X | |η0(x)| > 1

}

and the open subsets

U :=
∏

x∈S∪T

B(ξ0(x), ε)×
∏

x 6∈S∪T

Zp

V :=
∏

x∈S∪T

B(η0(x), ε)×
∏

x 6∈S∪T

Zp
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Therefore U ×V is an open neighborhood of (ξ0, η0). Now for any (ξ1, η1) ∈ U ×V ,
we have

〈ξ1, η1〉 =
∑

x∈X

(ξ1(x)η1(x) + Zp)

=
∑

x∈X

(((ξ1(x) − ξ0(x)) + ξ0(x))((η1(x)− η0) + η0) + Zp)

=


∑

x∈X

((ξ1(x) − ξ0(x))(η1(x)− η0) + Zp)




+


∑

x∈X

((ξ1(x) − ξ0(x))η0(x) + Zp)




+


∑

x∈X

ξ0(x)(η1(x) − η0(x)) + Zp)




+


∑

x∈X

(ξ0(x)η0(x) + Zp)


 .

By the choice of ε above, every term in the first three sums are in Zp, so that
the only sum that remains is the fourth one, which equals a+ Zp, completing the
proof. �

The following is an analogue of the Riesz Representation Theorem:

Proposition 3.6. As a topological group (Qp(X), τ) is self-dual, that is, there is
an isomorphism of topological groups

Qp(X) ∼= Hom(Qp(X),T)

ξ 7→ 〈ξ,−〉

Proof. See [36, Remark 5] or [21, 23.33]. �

Continuing the analogy with Hilbert spaces, we now discuss operators and their
adjoints on Qp(X). Here, by an operator we mean a Zp-linear continuous map
Qp(X)→ Qp(X).

Lemma 3.7. If A : Qp(X) → Qp(X) is a continuous group homomorphism, then
A is Zp-linear.

Proof. One can easily prove this fact using the fact that Z is dense in Zp. �

The following results relate the τ -topology with the norm topology on Qp(X).

Lemma 3.8. If K ⊆ Qp(X) is compact in the τ -topology, then K is norm bounded.
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Proof. Let K be a compact subset of Qp(X) in the τ -topology. We have

K ⊆ Qp(X) =
⋃

P⊆X
P finite subset

∏

x∈P

Qp ×
∏

x 6∈P

Zp.

Therefore we can find a finite subset F ⊆ X such that

K ⊆
∏

x∈F

Qp ×
∏

x 6∈F

Zp.

For every n ∈ N write

Un =
∏

x∈F

B(0, n)×
∏

x 6∈F

Zp

where B(0, n) is the open ball with center 0 and radius n. Note that Un is open
and

K ⊆
∏

x∈F

Qp ×
∏

x 6∈F

Zp =
⋃

n∈N

Un

As K is compact, there is a n ∈ N such that K ⊆ Un. Hence K is bounded. �

Lemma 3.9. Let T : Qp(X) → Qp(X) be a Zp-linear function. Then T is norm-
continuous if and only if it is norm-bounded.

Proof. By Lemma 3.2, the space Qp(X) is a Banach Zp-module. Now use that
continuity and boundedness are equivalent on Banach modules. �

Corollary 3.10. If T : Qp(X) → Qp(X) is Zp-linear and τ -continuous operator,
then T is norm-continuous.

Proof. By Lemma 3.9, it suffices to show that T is norm-bounded. Let B be
the closed unit ball centered at 0, that is, B = Zp(X) =

∏
x∈X Zp. As B is a

cartesian product of compact spaces, then B is compact in the τ -topology. As
T is τ -continuous and the continuous image of a compact set is compact, T (B)
is compact in the τ -topology. Using Lemma 3.8 we conclude that T (B) is norm-
bounded, and therefore T is norm-continuous. �

We now generalise a result of Claußnitzer-Thom in [12, Theorem 1.4.4] to case the
where X is uncountable. We have weaken the statement of the theorem because
for an uncountable set X , the space Qp(X) is not Polish.

Theorem 3.11 (Claußnitzer - Thom). Let σ : Qp(X)×Qp(X)→ T be a biadditive
form that is separately continuous in each entry. Then there exists an unique Zp-
linear map A : Qp(X)→ Qp(X) such that for all ξ, η ∈ Qp(X) we have

〈Aξ, η〉 = σ(ξ, η)

Proof. For each ξ ∈ Qp(X), define

τξ : Qp(X)→ T

η 7→ σ(ξ, η).
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As Qp(X) is self-dual by Proposition 3.6, there exists a unique A(ξ) ∈ Qp(X) such
that for all η ∈ Qp(X), we have

〈A(ξ), η〉 = σ(ξ, η),

which defines a map

A : Qp(X)→ Qp(X)

ξ 7→ A(ξ).

For every η, ξ, ξ′ ∈ Qp(X) we have

〈A(ξ + ξ′), η〉 = σ(ξ + ξ′, η)

= σ(ξ, η) + σ(ξ′, η)

= 〈A(ξ), η〉 + 〈A(ξ′), η〉

= 〈A(ξ) +A(ξ′), η〉,

yielding additivity.

Using a similar argument one shows that A(αξ) = αA(ξ) for ξ ∈ Qp(X) and
α ∈ Zp. �

When X is countable, the above result already yields that the map A is continuous,
using that Qp(X) is Polish. We however need the following more general result:

Proposition 3.12. Let G be a self-dual locally compact abelian group, with self-
duality given by a bi-additive pairing G×G → T, (x, y) 7→ 〈x |y〉. Let T : G → G
be an endomorphism which is adjointable in the sense that there is a (necessarily
unique) map S := T ∗ : G→ G satisfying

〈T (x) |y〉 = 〈x |S(y)〉.

Then S is an endomorphism with S∗ = T , and T is continuous if and only if S is
continuous. Moreover, T (and hence also S) is continuous whenever S = T ∗ exists
and is bounded, meaning that it sends compact subsets K ⊆ G to precompact1

subsets S(K) ⊆ G.

Proof. The first assertion follows from the bi-additivity of the pairing. Let us
now assume that S exists and is bounded and prove that T is continuous. By
assumption, the pairing induces an isomorphism of topological groups (i.e. a bi-
continuous, bijective homomorphism)

φ : G
∼
−→ Ĝ

given by φ(x)(y) := 〈x | y〉. Now we recall that the topology on Ĝ ∼= G is the
topology of pointwise uniform convergence on compact subsets: this means that a
net (xi) converges to x in G if and only if for every ǫ > 0 and every compact subset
K ⊆ G, there is i0 with

|〈xi |y〉 − 〈x |y〉| < ǫ ∀y ∈ K, i ≥ i0.

Now, since S is assumed to be bounded, S(K) is precompact, that is, its closure
L := S(K) ⊆ G is compact. Since xi → x, we have 〈xi | S(y)〉 → 〈x | S(y)〉

uniformly for y ∈ K by the above characterisation of the topology on Ĝ ∼= G. But

1A precompact set is a subset whose closure is a compact set.
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this means that 〈T (xi) |y〉 → 〈T (x) |y〉 uniformly for y ∈ K, and again by the above
characterisation, this implies T (xi)→ T (x), and therefore T is continuous. �

We are going to apply the above result for the canonical self-duality pairing of the
additive abelian topological group G = Qp(X). This pairing is even symmetric,
meaning that 〈x |y〉 = 〈y |x〉, but this assumption was not need above.

We can now finally prove the existence of the adjoint of a continuous operator.

Corollary 3.13. Any Zp-linear, τ -continuous operator T : Qp(X) → Qp(X) is
adjointable.

Proof. For a fixed η ∈ Qp(X), we have a continuous group homomorphismQp(X)→
T, ξ 7→ σ(T (ξ), η). By the duality isomorphism of Theorem 3.11, there is a T ∗(η)
such that σ(T (ξ), η) = 〈ξ, T ∗(η)〉. Finally, by Proposition 3.12 the adjoint is Zp-
linear and continuous. �

Using adjoints one can get a very simple description of the space of bounded op-
erator on Qp(X). This description will make a lot easier to explicitly construct
representation on those spaces.

There is a simple characterisation of the compact subsets of Qp(X) in the τ -
topology. Using this characterisation together with Proposition 3.12 will lead to an
equivalent definition of the space of bounded operators.

Proposition 3.14. A subset K ⊂ Qp(X) is compact in the τ -topology if and only
if K is norm-bounded, τ -closed and there exists a finite subset F ⊆ X such that

K ⊆
∏

x∈F

Qp ×
∏

x∈X\F

Zp

Proof. Let K ⊂ Qp(X) be a τ -compact subset. By Lemma 3.8, we know that K
is norm-bounded. As Qp(X) is Hausdorff for the τ -topology, we know that K is
τ -closed. For the third property, we can cover

K ⊆
⋃

F⊆X
finite

∏

x∈F

Qp ×
∏

x∈X\F

Zp.

As this is an open cover and K is compact, there is a finite subcover, and a finite
union of sets of the form

∏
x∈F Qp ×

∏
x∈X\F Zp , is of this form.

Now suppose that K is norm-bounded, τ -closed and exist a finite subset F ⊆ X
such that

K ⊆
∏

x∈F

Qp ×
∏

x∈X\F

Zp.

Note that K has the subspace topology of the product
∏

x∈F Qp×
∏

x∈X\F Zp. As
K is τ -closed, because of the product topology we can write

K =
∏

x∈F

Cx ×
∏

y∈X\F

Cy
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where the Cx and Cy are closed subspaces of Qp and Zp. As K is norm-bounded,
each of these closed subsets are compact and K is product of compact subsets, so,
by the Tychonoff Theorem, K is compact. �

The next proposition is essential for later computations and constructions. The
proof of this result is taken from the proof of [12, Theorem 2.1.2].

Proposition 3.15. Let X be a infinite set. Let T : Qp(X)→ Qp(X) be a Zp-linear
function. Let y ∈ X be an element and δy : X → Qp be the function that values 1
on y and 0 otherwise. Then

lim
x→∞

T (δy)(x) = 0

Meaning that for every ε > 0, there exists a finite subset F ⊆ X such that for
x ∈ X \ F we have

|T (δy)(x)| < ε

Proof. Suppose by contradiction that there exist y ∈ X such that

lim
x→∞

T (δy)(x) 6= 0

this means that there exists an ε > 0 such that

|T (δy)(x)| > ε

for infinitely many x ∈ X . Choose λ ∈ Qp such that

|λ|ε > 1

λδy ∈ Qp(X), hence T (λδy) ∈ Qp(X), therefore |T (λδy)(x)| > 1 for a finite number
of x ∈ Y , but this is not what is happening, note that

|T (λδy)(x)| = |λT (δy)(x)| = |λ||T (δy)(x)| > |λ|ε > 1

for infinitely many x ∈ Y , which is a contradiction because T (λδy) ∈ Qp(X). �

Proposition 3.16. Let T : Qp(X) → Qp(X) be a norm-continuous Zp-linear op-
erator with ‖T ‖ ≤ 1. If K ⊂ Qp(X) is compact, then T (K) is precompact.

Proof. We will use the fact that K ⊆ Qp(X) is τ -compact if and only if K is
norm-bounded, τ -closed and that there is a finite set S ⊆ X with

K ⊂
∏

x∈S

Qp ×
∏

x∈X\S

Zp.

As K is norm-bounded and T is norm-continuous and Zp-linear, T (K) is norm-
bounded. Let ξ ∈ T (K) and Pξ =

{
x ∈ X | |ξ(x)| > 1

}
. Then

Bξ =
∏

x∈Pξ

B(ξ(x), 1) ×
∏

x 6∈Pξ

Zp

is an open neighborhood of ξ. Let η ∈ Bξ ∩ T (K) 6= ∅. Writing

ξ = η + (ξ − η),

we have ‖ξ − η‖ ≤ 1, using that η ∈ T (K).
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We just proved that every element of T (K) can be writen as an element of T (K)

plus an element of norm less or equal than 1. Therefore, as T (K) is bounded, T (K)

is bounded. It is clear that T (K) is closed.

Now it only remains to show that T (K) ⊆
∏

x∈F Qp ×
∏

x∈X\F Zp for some finite
subset F ⊆ X . As

∏
x∈F Qp ×

∏
x∈X\F Zp is closed in Qp(X) in the τ -topology, it

is enough to show that T (K) ⊆
∏

x∈F Qp ×
∏

x∈X\F Zp.

Since K ⊂ Qp(X) is compact, there is a finite set F ′ ⊆ X such that

K ⊆
∏

x∈F ′

Qp ×
∏

x∈X\F ′

Zp.

For each ξ ∈ K, define

ξ0 :=

{
ξ(x), for x ∈ X \ F ′

0, otherwise.

and

ξ1(x) :=

{
ξ(x), for x ∈ F ′

0, otherwise.

Then T (ξ) = T (ξ0) + T (ξ1), and as ‖ξ0‖ ≤ 1 and ‖T ‖ ≤ 1, we have T (ξ0) ∈∏
x∈X Zp. As ξ1 has finite support we can write

T (ξ1) = T


∑

y∈F ′

ξ(y)δy




=
∑

y∈F ′

ξ(y)T (δy).

Also, as K is compact, it is also norm-bounded by Proposition 3.14. Then, there
exists an r ∈ R such that ‖η‖ < r for all η ∈ K. Using Proposition 3.15, for every
y ∈ F ′, there exists a finite subset Py ⊆ X , such that if x ∈ X \ Py we have

|T (δy)(x)| < r−1

Hence, if x ∈ X \
⋃

y∈F ′ Py we got

|T (ξ1)(x)| ≤ max
y∈F ′

|ξ(y)‖T (δy)(x)| ≤ r · r
−1 = 1

Let F =
⋃

y∈F ′ Py which is a finite set since F ′ and Py are finite. Consequently,
for an arbitrary ξ ∈ K, we have T (ξ) ∈

∏
x∈F Qp ×

∏
x∈X\F Zp, as required. That

T (K) is precompact now follows from the characterisation of Proposition 3.14. �

4. Bounded operators on p-adic Hilbert spaces

Finally, we can define one of the main objects of this article - the space of bounded
operators B(Qp(X)) on Qp(X). But instead of considering all bounded operators,
we will work with the unit ball B≤1(Qp(X)). There are several reasons for do-
ing this. First, most of the examples we deal with can already be represented on
B≤1(Qp(X)). Second, B≤1(Qp(X)) has a straightforward description in terms of
adjoints, making it very easy to construct examples. Third, the category of (con-
tracting) Banach algebras that can be isometrically represented on B≤1(Qp(X))
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is much better behaved categorically, having all limits, colimits, tensor products,
crossed products and the enveloping algebra construction as we are going to see
later in the text.

Definition 4.1 (Bounded Operators). For a nonempty set X , we define the Zp-
algebra

B(Qp(X)) :=
{
T : Qp(X)→ Qp(X) : T is Zp-linear and τ -continuous functions

}

and equip it with the natural operator norm:

‖T ‖ := sup
‖ξ‖≤1

‖T (ξ)‖.

We also equip its closed unit ball

B≤1(Qp(X)) :=
{
T ∈ B(Qp(X)) : ‖T ‖ ≤ 1

}

with the same norm topology.

Proposition 4.2. The algebra B(Qp(X) is complete in the operator norm. More-
over, the operator norm and the canonical p-adic norm 2.2 on B≤1(Qp(X)) coincide,
so that B≤1(Qp(X)) is a bornological Banach Zp-algebra.

The easiest way to prove Proposition 4.2 is by representing an operator A ∈
B(Qp(X)) by a matrix MA = (Ax,y), and showing that the operator norm co-
incides with the matrix norm ‖A‖ = maxx,y∈X

∣∣Ax,y

∣∣
p
= ‖MA‖. This will follow

from Corollary 4.12 below.

Proposition 4.2 vastly simplifies analysis in the p-adic operator algebraic setting. In
several situations that we demonstrate more concretely in the next section, we have
a subalgebra A ⊆ B≤1(Qp(X)). Then the operator-norm closure of A is equivalent
to the p-adic closure, which in turn is simply its p-adic completion.

In what follows, we provide an alternative and simpler description of the unit ball
of B(Qp(X):

Theorem 4.3. We have

B≤1(Qp(X)) =
{
T : Qp(X)→ Qp(X) : there exists an adjoint and ‖T ‖ ≤ 1

}
.

Proof. The inclusion ⊆ is immediate. To prove the reverse inclusion, let T be a
function Qp(X)→ Qp(X) with an adjoint and ‖T ‖ ≤ 1. To see that T is Zp-linear,
let ξ, η, ζ ∈ Qp(X) and a ∈ Zp. Since the pairing is Zp-linear in each entry, we have

〈T (ξ + aη), ζ〉 = 〈ξ + aη, T ∗(ζ)〉

= 〈ξ, T ∗(ζ)〉 + a〈η, T ∗(ζ)〉

= 〈T (ξ), ζ〉+ a〈T (η), ζ〉

= 〈T (ξ) + aT (η), ζ〉.

Since ζ is arbitrary, we get that

T (ξ + aη) = T (ξ) + aT (η)

yielding Zp-linearity. Moreover ‖T ‖ ≤ 1 so by Lemma 3.8, T is norm contin-
uous. Therefore, by Proposition 3.16, T sends compact sets into precompact
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ones, hence T is τ -continuous by Proposition 3.12. This completes the proof that
T ∈ B≤1(Qp(X)). �

The reader may wonder how our contractive operators on p-adic Hilbert spaces
relate to operators on general Banach Qp-vector spaces considered, for instance,
in [40]. For a non-empty set X , consider the Banach Qp-vector space c0(X,Qp) =
{ξ ∈ Qp(X) : lim|ξ|p = 0} with the supremum norm. This is the largest Banach Qp-
subspace of Qp(X) as for any k ∈ c0(X,Qp) ⊆ K ⊂ Qp(X), being a Qp-subspace
means that for each n ∈ N, p−nK ⊆ K, so that K = c0(X,Qp). Furthermore,
it is easy to see that any operator in B≤1(Qp(X)) restricts to a bounded linear
operator on c0(X,Qp). Conversely, if T : c0(X,Qp) → c0(X,Qp) is a bounded,
contractive Qp-linear operator with an adjoint T ∗ for the canonical bilinear pair-
ing 〈ξ, η〉 =

∑
x∈X ξ(x)η(x), ξ, η ∈ c0(X,Qp), then it extends to a Zp-linear,

adjointable, contractive map Qp(X) by the following density result:

Proposition 4.4. The Banach space c0(X,Qp) is dense in Qp(X) in the τ -topology.

Proof. Let ξ ∈ Qp(X) be an arbitrary function. By the definition of Qp(X), there
exists a finite subset F ⊆ X such that ξ ∈

∏
x∈F Qp ×

∏
x∈X\F Zp. Let U be

an open neighborhood of ξ. Without loss of generality, we can suppose that U ⊆∏
x∈F Qp ×

∏
x∈X\F Zp. By definition of the product topology, U is of the form

U =
∏

x∈F

Ux ×
∏

x∈F ′

Vx ×
∏

x∈X\(F∪F ′)

Zp

where F and F ′ are disjoint finite subsets of X , each Ux is an open subset of Qp,
and each Vx is an open subset of Zp. Consider the element ξ0 =

∑
x∈F∪F ′ ξ(x)δx,

then ξ0 ∈ U ∩c0(X,Qp). This concludes the claim that c0(X,Qp) is dense in Qp(X)
with respect to the τ -topology. �

By the paragraph preceding Proposition 4.4, we have the following:

Corollary 4.5. For a non-empty set X , we have

B≤1(Qp(X)) = {T : c0(X,Qp)→ c0(X,Qp) :T is Zp-linear, adjointable, ‖T ‖ ≤ 1}.

The main reason for working with operators on the Zp-module Qp(X) rather than
on the more classically studied Banach Qp-spaces c0(X,Qp) is that the latter is not
self-dual for the canonical pairing.

4.1. Matrices of Operators. In this section, we extend the results of [12] to
study matrix representations of operators T ∈ B(Qp(X)) in the non-separable case.
Studying the matrix entries of an operator will give us several results that will help
us with calculations involving p-adic operators in the next sections. We first have
the following simple lemma:

Lemma 4.6. Let T ∈ B(Qp(X)). Let ξ ∈ Qp(X) and λ ∈ Qp such that λξ ∈
Qp(X), then

T (λξ) = λT (ξ)

Proof. Clear. �
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Definition 4.7 (Matrix). Let T ∈ B(Qp(X)) be a bounded operator. For x, y ∈ X
we define the entries of T by

Tx,y = T (δy)(x).

We first record the expected result that the adjoint of the matrix of an operator is
really the transpose:

Proposition 4.8 (The adjoint is the transpose). We have

(T ∗)x,y = Ty,x

Proof. For every λ ∈ Qp, for every x, y ∈ X using Lemma 4.6

〈T (λδx), δy〉 = 〈λT (δx), δy〉 =
∑

z∈X

λT (δx)(z)δy(z) + Zp = λTy,x + Zp.

On the other hand

〈T (λδx), δy〉 = 〈λδx, T
∗(δy)〉 =

∑

z∈X

λδx(z)T
∗(δy)(z) + Zp = λ(T ∗)x,y + Zp

Therefore for every n ∈ N, choosing λ = p−n, we get p−n(Ty,x − (T ∗)x,y) ∈ Zp, so
that the difference Ty,x − (T ∗)x,y ∈ p

nZp for all n ∈ N, concluding the proof. �

The second interesting fact about the entries of an operator is that if we fix the row
and move through the column, the entries tend toward 0, and vice versa. This is a
very important fact that will imply various convergence results in the next sections.
This is the B≤1(Qp(X)) version of [12, Theorem 2.1.2].

Proposition 4.9. Let T ∈ B≤1(Qp(X)). Then

lim
x→∞

Tx,y = 0

lim
y→∞

Tx,y = 0

Conversely, if (Tx,y)x,y is a square matrix indexed by X with coefficients in Zp

satisfying the two above limits, then, there is a p-adic operator T whose entries are
the entries of this matrix.

Proof. To see that the entries of an operator satisfy the limits of the proposition,
just use 3.15 and 4.8. Now, given a matrix (Tx,y)x,y satisfying that

lim
x→∞

Tx,y = 0

lim
y→∞

Tx,y = 0

For every ξ ∈ Qp(X) define

T (ξ)(x) :=
∑

y∈X

Tx,yξ(y)

One easily checks that T is a well-defined operator with the desired entries. �

Lemma 4.10 (Entries of a product). Let S, T ∈ B≤1(Qp(X)) and x, y ∈ X , then

(ST )x,y =
∑

z∈X

Sx,zTz,y
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Proof. As limx→∞ Tx,y = 0 we can write

T (δy) =
∑

z∈X

Tz,yδz

Applying S and evaluating on x

S(T (δy))(x) =
∑

z∈X

Tz,yS(δz)(x)

=
∑

z∈X

Tz,ySx,z,

concluding the proof. �

Proposition 4.11. Let T ∈ B≤1(Qp(X)) be a operator. For every ξ ∈ Qp(X) and
every x ∈ X , we have

T (ξ)(x) =
∑

y∈X

Tx,yξ(y)

In particular, two operators with the same entries are equal.

Proof. Define the operator T̃ by the formula

T̃ (ξ)(x) =
∑

y∈X

Tx,yξ(y)

Note that T̃x,y = Tx,y, so if ξ has finite support, then T̃ (ξ) = T (ξ).

Also note that if ‖ξ‖ ≤ 1 and ‖η‖ ≤ 1, then 〈ξ, η〉 = 0 + Zp.

Given ζ ∈ Qp(X), we can decompose it as ζ = ζ0 + ζ1 with ζ1 finitely supported,
where

ζ0(x, y) :=

{
ζ(x, y), if |ζ(x, y)| ≤ 1

0, otherwise.

and

ζ1(x, y) :=

{
ζ(x, y), if |ζ(x, y)| > 1

0, otherwise.

Now we are ready to complete the proof. Since ‖T ‖ ≤ 1, we have ‖T (ζ0)‖ ≤ 1. For
every ξ and η in Qp(X) one has

〈Tη, ξ〉 = 〈T (η0 + η1), ξ0 + ξ1〉

= 〈Tη1, ξ1〉+ 〈Tη1, ξ0〉+ 〈Tη0, ξ1〉+ 〈Tη0, ξ0〉

= 〈Tη1, ξ1〉+ 〈Tη1, ξ0〉+ 〈Tη0, ξ1〉

= 〈T̃ η1, ξ1〉+ 〈T̃ η1, ξ0〉+ 〈η0, T
∗ξ1〉

= 〈T̃ η1, ξ〉+ 〈η0, T̃
∗ξ1〉

= 〈T̃ η1, ξ〉+ 〈T̃ η0, ξ1〉+ 〈T̃ η0, ξ0〉

= 〈T̃ η, ξ〉

therefore T = T̃ . �
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Corollary 4.12. For every T ∈ B≤1(Qp(X)), we have

(1) ‖T ‖ = maxx,y∈X |Tx,y|;

(2) ‖T ∗‖ = ‖T ‖, that is, the involution is isometric on B≤1(Qp(X)).

Proof. It is clear that |Tx,y| = |T (δy)(x)| ≤ ‖T ‖ for all x, y ∈ X , and the reverse
inequality follows from Proposition 4.11. This proves the first item. And the second
item follows from the first because the matrix of T ∗ is just the transposed matrix
of T . �

At this point a natural question appears, whether the C∗-identity:

‖a∗a‖ = ‖a‖2

holds for an operator a on a p-adic Hilbert space. By Corollary 4.12 the involution
is isometric so that we always have the inequality ‖a∗a‖ ≤ ‖a‖2. But the equality
might, indeed, fail even in the case of finite 2× 2-matrices:

Example 4.13. Consider Qp = Q2 the 2-adic numbers. Let

a =

(
1 1
1 1

)
∈ M2(Zp) = B≤1(Qp(X)),

where X = {1, 2} is the set with two elements. Then a is a self-adjoint matrix as it
is symmetric. Note that a2 = 2a. Computing the 2-adic norm, we get 1 = ‖a‖2 6=
‖a2‖ = 1

2 . This behaviour is very different from what we are used in the classical
theory of C∗-algebras and shows that, in particular, the C∗-identity ‖a∗a‖ = ‖a‖2

does not hold, even for self-adjoint elements a = a∗.

Even worse, we may have a non-zero operator a with a∗a = 0. To see an example
of this type, consider a matrix of the form

a =

(
α β
−β α

)
∈ M2(Zp) = B≤1(Qp(X)),

with α, β ∈ Zp satisfying α2 + β2 = 0. This equation has non-zero solutions: one
might take here, for instance, β = 1 and an appropriate prime p so that −1 admits
a square root in Zp. This can be done by Hensel’s Lemma (see [33, Lemma 4.6]).
Then

a∗a =

(
α2 + β2 0

0 α2 + β2

)
∈ M2(Zp) = B≤1(Qp(X)).

so that a∗a = 0 although a 6= 0. We would like to thank Andreas Thom for bringing
this example to our attention.

Before we end this section, we want to shortly introduce unitary operators:

Definition 4.14. By a unitary operator on a p-adic Hilbert space we mean an
operator U ∈ B≤1(Qp(X)) for some set X satisfying the relation U∗U = UU∗ = 1,
that is, U is invertible with U−1 = U∗. The set of all unitary operators on Qp(X)
will be denoted by U(Qp(X)).
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Therefore U(Qp(X)) is a subgroup of the multiplicative semigroup B≤1(Qp(X)).
Notice that unitary operators automatically have norm 1, that is, U(Qp(X)) is
contained in the unit sphere of B(Qp(X)). Indeed, we have 1 = ‖U∗U‖ ≤ ‖U‖2 ≤ 1
because ‖U‖ ≤ 1 by assumption, so that ‖U‖ = 1.

We can also define projections and, more generally, partial isometries: a projection

is a self-adjoint idempotent p ∈ B≤1(Qp(X)). A partial isometry is an operator
T ∈ B≤1(Qp(X)) satisfying TT ∗T = T . It is an isometry if T ∗T = 1, and a co-
isometry if TT ∗ = 1. All these operators satisfy ‖T ‖ = 1 unless they are zero.
Indeed, the equation TT ∗T = T implies ‖T ‖ = ‖TT ∗T ‖ ≤ ‖T ‖3. If T 6= 0, then we
get 1 ≤ ‖T ‖2 and since ‖T ‖ ≤ 1 by assumption, this forces ‖T ‖ = 1.

Example 4.15. One simple way to produce partial isometries is via partial bi-
jections of X : if f : U → V is a bijection between subsets U, V ⊆ X , then we
can define Tf (δx) := δf(x) if x ∈ U and zero otherwise. This extends to a partial
isometry Tf ∈ B≤1(Qp(X)) given by the formula Tf (ξ)(x) = ξ(f−1(x)) if x ∈ V
and zero otherwise. We have T ∗f = Tf−1, where f−1 : V → U is the inverse partial
bijection. We also have TfTg = Tf◦g, where f ◦g denotes the composition of partial
bijections, that is, the composition on the largest domain where it makes sense. In
particular, if f : X → X is a bijection, then Tf is a unitary operator.

4.2. Continuous functional calculus. In this subsection, we briefly describe a
notion of functional calculus in our setting. In the case where X is countable, this
already appears in [13]. For x ∈ Zp and n ∈ N, consider the binomial coefficient

(
x

n

)
:=

x(x − 1) · · · (x − (n− 1))

n!
,

which lies in Zp. Then Mahler’s Theorem states that:

Theorem 4.16 ([13, Theorem 2.19]). Every element f ∈ C(Zp,Zp) has a unique
representation of the form

f(x) =

∞∑

n=0

cn(f)

(
x

n

)
,

where cn(f) ∈ c0(N,Zp). Conversely, any such series converges uniformly to a
continuous function, and we have ‖f‖ = max

∣∣cn(f)
∣∣. Consequently, we have an

explicit isometric isomorphism

C(Zp,Zp)→ c0(N,Zp), f 7→ (cn)n∈N.

For an arbitrary set X , an operator A ∈ B≤1(Qp(X)) is called a normal contraction

if for all n ∈ N, ∥∥A(A − 1) . . . (A− (n− 1))
∥∥ ≤|n!|p .

Examples of normal contractions include contractive diagonal operators on Qp(X).

Theorem 4.17 (Continuous functional calculus). Let A ∈ B≤1(Qp(X)) be a nor-
mal contraction. Then there is a natural contractive homomorphism of Banach
Zp-algebras

C(Zp,Zp)→ B≤1(Qp(X)), idZp
7→ A.
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Proof. The proof of [13, Theorem 2.21] remains unchanged even if we allow X to
be uncountable. �

5. p-adic Operator Algebras

In the complex setting, the GNS construction shows that an abstract C∗-algebra
can be concretely realised as a closed involutive subalgebra of bounded operators
on a Hilbert space. This perspective is used to define more general classes of oper-
ator algebras, such as Lq-operator algebras for q ∈ [1,∞) a real number, which are
closed subalgebras of bounded operators on Banach spaces of the form Lq(X,µ),
where (X,µ) is a measure space. Our strategy for defining what would consti-
tute a “C∗-algebra” in the p-adic world draws inspiration from these alternative,
representation-theoretic approaches to operator algebras.

Definition 5.1. A p-adic operator algebra is a Banach Zp-algebra A together with
a Zp-linear involution ∗ : A→ A, turning it into a Banach ∗-algebra and such that
there exists an isometric ∗-algebra isomorphism from A onto a closed ∗-subalgebra
of B≤1(Qp(X)) for some set X .

We define a morphism φ : A → B of p-adic operator algebras to be a contracting
∗-homomorphism between the underlying Banach algebras A and B. That is, the
morphisms are those of the category Ban

≤1
Zp

of contracting Banach Zp-modules.
The p-adic operator algebras and morphisms just defined form a category that we
denote by OpeAlgp.

We equip the algebra Zp with the trivial (that is, identity) involution. A key differ-
ence to the complex case is the lack of an analogue of the complex conjugation. We
briefly remark about this in Section 5.1. In particular notice that the involution on
A induces an isometric ∗-isomorphism A ∼= Aop, the opposite algebra of A, mean-
ing that Aop carries the same Banach Zp-module structure, only the multiplication
is reversed, so all our algebras are “self-opposite”; this is not true for (complex)
C∗-algebras, see for instance [35].

We now present several examples of p-adic operator algebras.

Example 5.2 (Matrix algebras). Let X be a finite set of cardinality n. Then
B(Qp(X)) and the p-adic operator algebra B≤1(Qp(X)) can be identified with the
matrix algebras Mn(Qp) and Mn(Zp), respectively. Notice that between these, only
Mn(Zp) is a p-adic operator algebra in our sense.

Example 5.3 (Algebras of continuous functions). Let X be any topological space.
Then the space C0(X,Zp) of all continuous functions f : X → Zp vanishing at
infinity (meaning that {x ∈ X : |f(x)| ≥ ǫ} is compact for all ǫ > 0) is a com-

mutative p-adic operator algebra with respect the pointwise product of functions,
the trivial involution (f∗ = f for all f ∈ C0(X,Zp)) and the supremum norm
‖f‖∞ := supx∈X |f(x)|, which coincides with the canonical p-adic norm, using that
the supremum norm is discretely valued, so that ‖f‖∞ =

∣∣f(x0)
∣∣ for some x0 ∈ X .

To represent it on a p-adic Hilbert space, just consider the usual representation
M : C0(X,Zp)→ B≤1(Qp(X)) by multiplication operators: Mf(ξ)(x) := f(x)ξ(x).
It is easy to see that this is an isometric representation.
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A similar reasoning shows that the algebra Cb(X,Zp) of all (necessarily bounded)
continuous functions X → Zp is a p-adic operator algebra with respect to the same
pointwise operations, the trivial involution, and the supremum norm: the represen-
tation by multiplication operator makes sense and is still isometric on Cb(X,Zp).

If X carries the discrete topology, we use the notations c0(X,Zp) = C0(X,Zp) and
ℓ∞(X,Zp) = Cb(X,Zp).

Remark 5.4. As in the case of C∗-algebras, we should restrict to nice spaces X
in order to get enough C0-functions and therefore interesting algebras of the form
C0(X,Zp). For this reason, we usually only consider locally compact Hausdorff
spaces here. Moreover, since Zp is totally disconnected as a topological space, the
algebras C0(X,Zp) will only “see” a certain quotient of X related to the connected
components of X : indeed, notice that a continuous function f : X → Zp is constant
on the connected components of X . So for instance, for a connected space like X =
R or the circleX = T, we get the trivial algebras C0(R,Zp) = 0 and C0(T,Zp) = Zp.

In [45, Chapter 6], the author refers to Banach algebras of the form C0(X,K),
where X is a totally disconnected space and K a non-archimedean complete field
as analogues of commutative C∗-algebras, which they call C-algebras. For K = Qp,
we could call these p-adic C-algebras. In is shown in [45, Corollary 6.8] that these are
exactly the Banach algebras for which the Gelfand transform induces an isometric
isomorphism A ∼= C0(Sp(A),Qp), where Sp is the Gelfand spectrum of A. One
could also use the same strategy in order to describe Banach algebras of the form
C0(X,Zp) as these are exactly the unit balls of p-adic C-algebras. However, this
definition of a nonarchimedean commutative C∗-algebra is rather ad-hoc, as it does
not relate the categories of topological spaces with any subcategory of Banach
algebras. A more elegant approach appears in recent work ([6]), where for a totally
disconnected compact Hausdorff space X , the authors define a functor

ΓX : CH/X → C∗X

from the category of compact Hausdorff spaces over X to the subcategory of Ba-
nach C(X,Zp)-algebras generated by algebras of the form C(Y,Zp). The functor
is defined by assigning to a space Y ∈ CH/X the commutative algebra C(Y,Zp)
with the induced action C(X,Zp) → C(Y,Zp). By [6, Lemma 3.8], this functor
is part of an equivalence between the category CH/X and the essential image of
the inclusion C∗X → AlgZp

(C(X,Zp)). Example 5.3 shows that our p-adic operator
algebras include these examples of commutative C∗-algebras in the sense of [6].

We now describe p-adic convolution algebras associated to groups.

Example 5.5 (Group algebras). Let G be a (discrete) group and consider the
Banach Zp-module c0(G,Zp) of functions G → Zp vanishing at infinity, endowed
with supremum norm, which also coincides with the p-adic norm. It is an involutive
algebra with respect to the usual convolution product and involution defined by

(φ ∗ ψ)(h) =
∑

g∈G

φ(g)ψ(g−1h), φ∗(g) = φ(g−1).

Note that if φ ∈ c0(G,Zp), then its support supp(φ) = {g ∈ G : φ(g) 6= 0} is
countable as the norm on Zp is discretely valued (it only assumes the values p−n
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with n ∈ N or zero). This ensures that the convolution product is well defined in
c0(G,Zp). Hence we may view c0(G,Zp) as the completion of the group ring Zp[G],
viewed as the ∗-subalgebra generated by delta functions δg ∈ c0(G,Zp).

Notice that the elements δg are unitary with δg ∗ δh = δgh and δ∗g = δg−1 . And
every element φ ∈ c0(G,Zp) can be written as φ =

∑
g∈G φ(g)δg.

We now represent the convolution algebra c0(G,Zp) on the p-adic Hilbert space
Qp(G), considering the left regular representation

λ : G→ B≤1(Qp(G)), λg(ξ)(h) = ξ(g−1h),

for g, h ∈ G and ξ ∈ Qp(G). In other words, λg is implemented by the multiplication
on G, which is a bijection. Hence λg is unitary (in particular

∥∥λg
∥∥ ≤ 1) and

adjointable with λ∗g = λg−1 . By the universal property of the group ring Zp, the left
regular representation has a unique extension to a ∗-homomorphism, still denoted
by

λ : Zp[G]→ B≤1(Qp(G)), λ(δg) = λg.

Indeed, the extension is given by the convolution λ(φ)ξ = φ ∗ ξ, which still makes
sense for φ ∈ Zp[G] viewed as a function with finite support G→ Zp and ξ ∈ Qp(X).
Moreover, for h ∈ G we get

|λ(φ)(ξ)(h)| =

∣∣∣∣∣∣
∑

g∈G

φ(g)ξ(g−1h)

∣∣∣∣∣∣
≤ max

g∈G
|φ(g)ξ(g−1h)| ≤ max

g∈G

∣∣φ(g)
∣∣ =‖φ‖ .

This shows
∥∥λφ

∥∥ ≤ ‖φ‖. On the other hand, choosing g0 ∈ G with
∣∣φ(g0)

∣∣ = ‖φ‖,
we obtain

‖φ‖ = |φ(g0)| = |(φ ∗ δg−1

0

)(e)| ≤ sup
‖ξ‖≤1

max
h∈G
|(φ ∗ ξ)(h)| = ‖λφ‖.

This shows that λ is an isometric, so it extends to an isometric ∗-homomorphism

λ : c0(G,Zp)→ B≤1(Qp(G)), φ 7→ λφ

and therefore c0(G,Zp) is a p-adic operator algebra. Notice that λφ(ξ) = φ ∗ ξ, as
the convolution product still makes sense for φ ∈ c0(G,Zp) and ξ ∈ Qp(X).

In what follows we shall denote by Op(G) ⊆ B≤1(Qp(G)) the image of λ : c0(G,Zp)→
B≤1(Qp(X)), and call it the p-adic operator algebra of the group G. As λ is an
isometric ∗-isomorphism, we usually also use it to identify Op(G) ∼= c0(G,Zp) as
Banach ∗-algebras over Zp.

Example 5.6. Let us relate Example 4.13 to p-adic group algebras: consider the
group G = {1, g} ∼= Z/2 with two elements. Then Qp(G) ∼= Q2

p, and using the
canonical identification B≤1(Qp(G)) ∼= M2(Zp) given by the (ordered) basis (δ1, δg)
of Qp(G), we get the operators

λ1 =

(
1 0
0 1

)
, λg =

(
0 1
1 0

)
.

We see that a = λ1 + λg and, therefore, the Zp-subalgebra Op(a, 1) of B≤1(Qp(G))
generated by a and the identity matrix 1 is precisely the p-adic group algebra
Zp[G] ∼= Op(G). This is a commutative p-adic operator algebra. The involution
is trivial (all elements are self-adjoint). In particular this shows that this algebra
cannot be represented as a commutative algebra of functions C0(X,Zp) with the
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supremum norm as in Example 5.3, because in such algebras we do have the relation
‖fn‖ = ‖f‖n for all f ∈ C0(G,Zp), n ∈ N. This example therefore shows that there
is no obvious “Gelfand representation” for commutative p-adic operator algebras.

We now define the p-adic operator algebra of an étale groupoid. Recall that a
groupoid is a small category with inverses. We shall usually use the notation G

for a groupoid, which we shall use to also abusively denote its set of arrows. We
write G0 for its objects and usually view this as a subset of G via the unit map.
We also use s, r : G → G0 as notations for the source and range maps, and write
G2 := {(g, h) ∈ G×G : s(g) = r(h)} for the set of composable pairs. We are mostly
interested in topological étale groupoids. This means that G carries a topology in
which all structure maps (including multiplication and inversion) are continuous.
It is étale if G0 is a locally compact Hausdorff space and the source and (hence
also) range maps are local homeomorphisms. We refer the reader to [19] for the
basic theory of étale groupoids and their C∗-algebras.

Let G be an étale groupoid. These groupoids are better described in terms of
their bisections. Recall that an open subset U ⊆ G is said to be a bisection if s|U
and r|U are injective. Those subsets are homeomorphic (via either s or r) to an
open subspace of G0, hence are automatically locally compact and Hausdorff. Let
Bis(G) be the set of all bisection of G. This is canonically an inverse semigroup
with respect to the operations:

U−1 =
{
u−1 | u ∈ U

}

UV =
{
uv | u ∈ U, v ∈ V, r(v) = s(u)

}
,

see [19] for further details. Since G is étale, Bis(G) forms a basis for its topology.

Example 5.7 (Étale groupoid algebras). Let G be an étale groupoid. Given U ∈
Bis(G), let Cc(U,Zp) be the space of continuous maps φ : U → Zp with compact
support. Each Cc(U,Zp) is contained in the space of all functions G → Zp simply
extending the function sending every point outside of U to 0. Let Cc(G,Zp) be the
linear span of the collection of all spaces Cc(U,Zp) inside of the space of functions. If
G is Hausdorff (which is mostly the only case we shall consider in this paper), this
is the same as the space Cc(G,Zp) of compactly supported continuous functions
G → Zp. But if G is not Hausdorff, the space Cc(G,Zp) will generally contain
non-continuous functions G→ Zp.

Given φ, ψ ∈ Cc(G,Zp), we define their convolution product :

(φ ∗ ψ)(h) =
∑

g∈G
r(g)=r(h)

φ(g)ψ(g−1h) (3)

This is a well-defined finite sum by the same reason it does in the archimedean
case, see [19, Proposition 3.11]. Moreover, if φ ∈ Cc(U,Zp) and ψ ∈ Cc(V,Zp) for
bisections U, V ⊆ G, then the same formula as in [19, Equation (3.11.1)] applies:

(φ ∗ ψ)(k) = φ(g)ψ(h)

if k = gh with g ∈ U and h ∈ V , and it is zero otherwise. Also, the same arguments
as in the complex case show that Cc(G,Zp) is an associative Zp-algebra with the
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above defined convolution product. Moreover, it is also a ∗-algebra with respect
the involution

φ∗(g) := φ(g−1).

We conclude that Cc(G,Zp) is an involutive Zp-algebra. Endowing it with the
supremum norm: ‖φ‖∞ := supg∈G |φ(g)|, it follows from the ultra-metric inequality
that Cc(G,Zp) is a norm ∗-algebra over Zp, and therefore its completion

C0(G,Zp) := Cc(G,Zp)
‖·‖∞

is a Banach ∗-algebra over Zp. Notice that the completion C0(G,Zp) can be realized
as the closure of Cc(G,Zp) in the Banach Zp-module ℓ∞(G,Zp), so that we can view
it as a concrete space of functions G → Zp. Moreover, all functions φ ∈ C0(G,Zp)
vanish at infinity, although they might be not continuous. Using this, it is easy
that the norm‖−‖∞ on C0(G,Zp) again coincides with the canonical norm. If G is
Hausdorff, then C0(G,Zp) = C0(G,Zp), the ordinary space of C0-functions G→ Zp.

Next we show that C0(G,Zp) is a p-adic operator algebra, by representing it iso-
metrically on a p-adic Hilbert space. Let φ ∈ Cc(G,Zp). Then the convolution
product φ∗ξ is still a well-defined finite sum for any other function ξ : G→ Qp (not
necessarily in Cc(G,Zp)) and the result is a new function φ∗ ξ : G→ Qp. Moreover,
if φ ∈ Qp(X), then so is φ ∗ ψ ∈ Qp(X). Hence, for every φ ∈ Cc(G,Zp) we obtain
the map

λφ : Qp(G)→ Qp(G)

ξ 7→ φ ∗ ξ.

As the convolution product is bilinear, λφ is a Zp-module morphism . Next we
show that λφ is adjointable by computing its adjoint λ∗φ = λφ∗ . To this end, let
φ ∈ Cc(G) and ξ, η ∈ Qp(G). Then

〈λφ(ξ), η〉 =
∑

l∈G

(φ ∗ ξ)(l)η(l) + Zp

=
∑

l∈G

∑

k∈G
r(k)=r(l)

φ(k)ξ(k−1l)η(l) + Zp

Note that this is a finite sum as almost all terms are in Zp. Changing variables, we
then have

〈λφ(ξ), η〉 =
∑

g∈G

∑

h∈G
r(h)=r(g)

φ(h−1)ξ(g)η(h−1g) + Zp

=
∑

g∈G

ξ(g)
∑

h∈G
r(h)=r(g)

φ∗(h)η(h−1g) + Zp

=
∑

g∈G

ξ(g)(φ∗ ∗ η)(g) + Zp

= 〈ξ, λφ∗(η)〉,

proving the claim.
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It is easy to see that the assignment φ 7→ λφ is a Zp-algebra homomorphism. To
see that it is an isometry, we first observe that

‖λφ‖ = sup
‖ξ‖≤1

‖φ ∗ ξ‖

= sup
‖ξ‖≤1

max
h∈G
|(φ ∗ ξ)(h)| ≤‖φ‖ .

On the other hand we have the function

G→ {0} ∪
{
p−n | n ∈ N

}

g → |φ(g)|

indexed by the natural numbers, so the maximum is attained at some g0 ∈ G by
the well-ordering principle. Now consider the function

ξ0(γ) =

{
1, if γ = ids(g0)

0, otherwise.

Then

(φ ∗ ξ0)(g0) =
∑

r(g)=r(g0)

φ(g)ξ0(g
−1g0) = φ(g0)

concluding that

‖φ‖ = |φ(g0)| = |(φ ∗ ξ0)(ψ0)| ≤ sup
‖ξ‖≤1

max
h∈G
|φ ∗ ξ(h)| = ‖λφ‖

We conclude that λ is an isometric ∗-homomorphism λ : Cc(G,Zp)→ B≤1(Qp(G)).

Finally we define Op(G) to be the p-adic operator algebra generated by the image
of λ. Since λ is isometric, it extends to an isometric ∗-isomorphism of Banach
∗-algebras

λ : C0(G,Zp)
∼
−→ Op(G) ⊆ B≤1(Qp(G)).

Therefore C0(G,Zp) is a p-adic operator algebra. We shall usually use the above
map to identify Op(G) with C0(G,Zp). In particular, in the Hausdorff case we have

Op(G) ∼= C0(G,Zp).

Remark 5.8. For an étale groupoid G, one can build also the convolution ∗-algebra
Cc(G,C) and complete it with (in general) different C∗-norms, one of them is the
largest C∗-norm, leading to the universal completion C∗max(G), and the reduced
norm ‖ · ‖r via the regular representation that is defined as above via a complex
version of λ acting on the (complex) Hilbert space ℓ2(G), lead to the reduced
groupoid C∗-algebra C∗r (G), concretely represented in the C∗-algebra of bounded
operators B(ℓ2(G)).

The p-adic operator algebra Op(G) should be viewed as a p-adic analogue of the
C∗-algebra C∗r (G). Later we are going to also define universal p-adic enveloping
operator algebras and will also have a p-adic version of C∗max(G). However, as
should be expected, in the p-adic setting, many completions collapse, and we are
indeed going to show, at least in the Hausdorff totally disconnected case, that
the universal p-adic groupoid operator algebra coincides with Op(G), showing that
non-amenability phenomena cannot be detected by the p-adic operator norm.
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Having access to groupoids, we can now build several important examples of p-adic
operator algebras. We shall use this now to construct algebras of graphs.

Example 5.9 (Graph algebras). Let E = (s, r : E1 → E0) be a graph, consisting
of a set of vertices E0, the set of edges E1 and two maps (source and range) s, r
from E1 to E0. It is well known that to E we can attach an étale groupoid GE .
Up to certain “singular” vertices, this is essentially the Deaconu-Renault groupoid
([42]) of the shift map on the infinity path space E∞ of E. The groupoid GE is
always locally compact Hausdorff and totally disconnected, that is, it is an ample

(Hausdorff) groupoid. We refer to [37] and references therein for more details on
the construction of GE . It is proved in [37, Theorem 3.14] that the Leavitt path

algebra LR(E) of E over a commutative unital ring R is isomorphic to the Steinberg
algebra SR(GE) = Cc(GE , R) of GE , where we endow R with the discrete topology.
Of course, we are interested here in the ring R = Zp of p-adic integers. We define

Op(E) := Op(GE).

Example 5.10 (Discrete groupoids). The discrete groupoids are particular exam-
ples of étale Hausdorff groupoids. In this case we have

Op(G) = c0(G,Zp) =

{
φ : G→ Zp | lim

g→∞
|φ(g)| = 0

}
,

which is the p-adic completion of the algebraic groupoid algebra Zp[G]. The matrix
algebras from Example 5.2, and more generally algebras of compact operators are
special cases of discrete groupoid algebras, see Example 6.18. Of course, also the
group algebras from Example 5.5 are special cases of these.

5.1. A remark on involutions. We now make a remark on involutions in the
p-adic setting. As the reader may have noticed, the formulae for involutions on,
for instance, the group convolution algebra differs from its complex analogue by a
complex conjugation. Unfortunately, the only reasonable involution on Qp or Zp is
the trivial involution. To understand this conceptually, recall that the Galois group
Gal(C/R) of the extension C over R comprises of the identity on C and complex
conjugation C→ C, z 7→ z̄. The (absolute) Galois group G(Qp) of Qp is however far
more complicated - it is a profinite group, whose structure has recently been studied
in [24]. The representation theory of profinite groups on Banach Qp-vector spaces
is very rich. In a future article, we will explore p-adic operator algebras equipped
with an action of G(Qp), analogous to the theory of G-C∗-algebras. This additional
structure will play the role of the complex conjugation in the p-adic setting.

6. The category of p-adic operator algebras

In this section, we discuss the completeness properties of the category of p-adic
operator algebras. We will show that this category has all limits and colimits, which
enables us to carry out several universal constructions, including in particular the
enveloping p-adic operator algebra construction.

One thing that is different from the classical theory of operator algebras and even
the theory of real C∗-algebras and Lq-operator algebras for q ∈ [1,∞), is that all
of our algebras are contained in the unit ball of B(Qp(X)). This is a crucial fact
that enables us to build limits and colimits.
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We first take the case of limits. Denote by Alg∗(Ban≤1
Zp

) the category of involu-
tive Banach Zp-algebras with contractive, involution preserving algebra homomor-
phisms as morphisms.

To see that OpeAlgp has limits, it is enough to show that it has products and
equalisers. Suppose (Ai)i∈I is a family of p-adic operator algebras, then its product
is the algebraic product A =

∏
i∈I Ai with the norm

∥∥(ai)
∥∥ = supi∈I‖ai‖. The

representing p-adic Hilbert space is Qp(
⊔

i∈I Xi), where Ai → B≤1(Qp(Xi)) for
each i.

For equalisers, we first note that if B is a closed subalgebra of a p-adic operator
algebra A, then B is also a p-adic operator algebra. Now for a parallel pair of
morphisms f, g : A ⇒ B, the subalgebra E = {a ∈ A : f(a) = g(a)} is closed,
and hence is a p-adic operator algebra. It satisfies the universal property of the
equalisers as can be checked in the category of Banach algebras.

Hence the category of p-adic operator algebras has all limits, and since the category
OpeAlgp has the same morphisms as Alg∗(Ban≤1

Zp
), we have a fully faithful functor

OpeAlgp → Alg∗(Ban≤1
Zp

).

As the product and the equalizers in both categories are the same, their limits also
match.

We now provide an example of a p-adic operator algebra that naturally arises as a
limit.

Example 6.1. A profinite group is a topological group G that can be written as
an inverse limit

G = lim
←−
i∈I

Gi

of finite discrete groups Gi. For each i ∈ I, we may form the p-adic operator algebra
c0(Gi,Zp) = Zp[Gi] of Example 5.5. It is easy to see that the given inverse system
of groups yields an inverse system

Iop → OpeAlgp, i 7→ Zp[Gi]

of p-adic operator algebras. Taking limits,

Λ[G] := lim
←−
i∈I

Zp[Gi],

we get a number-theoretically important p-adic operator algebra called the Iwasawa

algebra. Note here that since the groups Gi are finite, Zp[Gi] is already p-adically
complete. And since Zp is compact, the topological rings Zp[Gi] and hence Λ[G]
are compact and p-adically complete.

Colimits of p-adic operator algebras are a bit more complicated. As mentioned in
Section 2, the issue already arises at the level of Banach Zp-modules due to torsion
phenomena: the algebraic cokernel of a morphism between Banach Zp-modules need
not any longer remain torsionfree, and therefore cannot be a normed Zp-module.

We consequently need a construction that kills all “bad quotients”. To this effect,
we introduce a new construction, called the enveloping p-adic operator algebra of a
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∗-algebraA, which is in some sense the best approximation of A to a p-adic operator
algebra. More precisely, we construct a functor

(−)u :
{
∗-algebras over Zp

}
→ OpeAlgp

A 7→ Au

that is the left adjoint to the inclusion functor OpeAlgp →
{
∗-algebras over Zp

}
.

So to build colimits of p-adic operator algebras, we take the colimit in the category
of ∗-algebras over Zp, and then take its envelope.

6.1. Enveloping p-adic operator algebra. We now show that every ∗-algebra
over Zp admits an enveloping p-adic operator algebra.

Definition 6.2. Let A be a ∗-algebra over Zp. We call a function ϕ : A →
R+ a p-adic operator algebra seminorm if there is a ∗-homomorphism π : A →
B≤1(Qp(X)) such that

ϕ(a) = ‖π(a)‖ for all a ∈ A.

Notice that a ϕ as above is, indeed, a seminorm in the usual sense, and it satisfies
the ultra-metric property ϕ(a + b) ≤ max{ϕ(a), ϕ(b)}. Also, since the operator
norm is discretely valued, so are all p-adic operator algebra seminorms, that is, the
non-zero values ϕ are only negative powers p−n of p, with n ∈ N.

Given a p-adic operator seminorm on A, we define its nucleus as

Nϕ : = {a ∈ A : ϕ(a) = 0}.

Notice that this is always a ∗-ideal of A; and if ϕ is represented by ϕ(a) = ‖π(a)‖,
then Nϕ = ker(π). In particular, ϕ is a norm if and only if π is injective on A.
Moreover, the seminorm always induces a norm on the quotient ∗-algebra

ϕ̃ : Ã := A/Nϕ → R+, ϕ̃(a+ Nϕ) := ϕ(a),

and this is a p-adic operator norm that is represented by ϕ̃(a) = ‖π̃(a)‖, where π̃
is the induced injective ∗-homomorphism

π̃ : Ã→ B≤1(Qp(X)), π̃(a+ Nϕ) := π(a).

The completion Aϕ of Ã with respect to the norm ϕ̃ is a Banach ∗-algebra over Zp

and π̃, being isometric, extends to an isometric ∗-isomorphism

Aϕ ∼
−→ π̃(A) = π(A) ⊆ B≤1(Qp(X)),

turning Aϕ into a p-adic operator algebra.

Lemma 6.3. If (ϕi)i∈I is any family of p-adic operator algebra seminorms on A,
then

ϕ(a) := sup
i∈I

ϕi(a)

is also a p-adic operator seminorm.

Proof. Suppose ϕi is represented by ϕi(a) = ‖πi(a)‖ for ∗-representations πi : A→
B≤1(Qp(Xi)) for certain sets Xi with i ∈ I. Then ϕ is represented by the direct
sum π = ⊕iπi : A→ B≤1(Qp(X)) with X = ⊔i∈IXi the disjoint union of the Xi:

(π(a)f)(x, i) := (πi(a)f |Xi
)(x, i), x ∈ Xi.
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It is then clear that ‖π(a)‖ = supi∈I ‖πi(a)‖ for all a ∈ A, as desired. �

Definition 6.4. Let A be ∗-algebra over Zp. Let SNp(A) be the set of all p-adic
operator algebra seminorms ϕ : A → R+. The universal p-adic operator algebra

seminorm of A is defined by

‖a‖u := sup
ϕ∈SNp(A)

ϕ(a)

The Hausdorff completion Au := A‖·‖u = A/N‖·‖u of A with respect to ‖ · ‖u will
be called the enveloping p-adic operator algebra of A.

Notice that, by Lemma 6.3, Au is indeed a p-adic operator algebra, that is, it can
be isometrically represented into B≤1(Qp(X)) for some set X . By construction,
Au can be determined, up to isometric ∗-isomorphism, by the following universal
property:

Proposition 6.5 (Universal property of enveloping p-adic operator algebras).
Given a ∗-algebra A over Zp, its enveloping p-adic operator algebra Au admits
a ∗-homomorphism ι : A → Au with dense image, and has the following universal
property: for every ∗-homomorphism σ : A → B into a p-adic operator algebra
B, there is a unique morphism of p-adic operator algeras σu : Au → B such that
πu ◦ ι = π. In other words, the functor A 7→ Au from the category of ∗-algebras
over Zp to OpeAlgp is left adjoint to the inclusion functor.

Proof. By construction, we have a canonical ∗-homomorphism ι : A → A/N‖·‖u ⊆
Au with dense image. And given a ∗-homomorphism σ : A → B into a p-adic
operator algebra, choose an isometric ∗-representation π : B → B≤1(Qp(X)) for
some set X . Then the composition ι ◦ π : A→ B≤1(Qp(X)) is a ∗-homomorphism
and its associated p-adic seminorm is

‖π(a)‖ = ‖ι(π(a))‖ ≤ ‖a‖u.

This implies that ker(π) ⊇ N‖·‖u so that π : A → B factors through a contrac-
tive ∗-homomorphism A/Nu → B that, therefore, extends to a contractive ∗-
homomorphism πu : Au → B which has the desired property by construction. �

Remark 6.6. If A is a ∗-algebra over the residue field Fp, viewed as an involutive
Zp-algebra via the quotient map, then Au = 0 as there are no nontrivial represen-
tations of such algebras on B≤1(Qp(X)) for any X . This is of course needed as
although colimits create torsion, the enveloping algebra construction collapses all
such algebras to the zero Banach algebra.

Remark 6.7. If A is already a p-adic operator algebra then, by the universal prop-
erty of Au, the identity map induces a contractive (surjective) ∗-homomorphism
σ : Au → A satisfying σ(ι(a)) = a for all a ∈ A. In particular canonical ∗-homo-
morphism ι : A → Au is injective in this case. But it need not be contractive (see
Example 6.9). Indeed, it will be contractive if and only if Au = A, meaning that
‖ · ‖A = ‖ · ‖u is the universal enveloping norm.

We now show that if A is already a p-adic operator algebra and its norm is the
canonical p-adic norm (Example 2.2), then Au ∼= A as a p-adic operator algebras.
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In particular this applies if the underlying Banach algebra of A is the unit ball of
a Banach Qp-algebra, it coincides with its enveloping algebra.

Proposition 6.8. Let A be a ∗-subalgebra of B≤1(Qp(X)) for some X . Suppose
further that the induced p-adic operator algebra norm on A coincides with its
canonical p-adic norm. Then its p-adic completion Â with the canonical p-adic
norm is isometrically ∗-isomorphic to Au. In particular, if A is a p-adic operator
algebra whose underlying norm is the canonical p-adic norm, then A ∼= Au.

Proof. Let ι : A→ B≤1(Qp(X)) denote the embedding ∗-homomorphism. We first
observe that the p-adic norm on B≤1(Qp(X)) restricts to one on A, so that ‖a‖p =∥∥ι(a)

∥∥
p
≤‖a‖u. For the other implication, let φ : A→ B≤1(Qp(Y )) be an arbitrary

∗-homomorphism. Writing an arbitrary element in A as a = upνp(a) for u ∈ A of
unit norm, we have

∥∥φ(a)
∥∥ =

∥∥∥φ(pνp(a)u)
∥∥∥ = p−νp(a)

∥∥φ(u)
∥∥ ≤ p−νp(a) =

∥∥ι(a)
∥∥ =‖a‖p ,

so that the maximal norm is bounded by the p-adic norm of a. �

Most p-adic operator algebras we construct satisfy the assumption from Proposi-
tion 6.8. That is, we take a torsionfree Zp-algebra admitting a p-adic Hilbert space
representation, and then take its p-adic completion inside B≤1(Qp(X)). In partic-
ular, the underlying Banach algebra of the enveloping operator algebra in this case
is automatically a bornological Banach Zp-algebra.

Example 6.9. The norm of a p-adic operator algebra is, in general, not the canon-
ical p-adic norm. Indeed, consider the principal ideal pZp E Zp; this is a p-adic
operator algebra because it is a closed ∗-subalgebra of Zp. Note that the element p
is not divisible by p inside pZp because 1 6∈ pZp. Consequently, νp(p) = 0 inside of
pZp, and thus the p-adic norm ‖ · ‖p of pZp differs from the norm induced from Zp.

Indeed, we can describe Au for A = pZp and show that Au and A are not isomorphic
as p-adic operator algebras. To see this, consider the matrix a ∈ Mp(Zp) with all
entries aij = 1; for p = 2 this is the matrix appearing in Example 4.13. Then a2 =
pa and there exists a unique ∗-homomorphism A→ Mp(Zp) sending p 7→ a. Since
Mp(Zp) is a p-adic operator algebra with ‖a‖ = 1, this implies ‖p‖u = 1 = ‖p‖p, the
p-adic norm of p in A = pZp. By induction it follows ‖pn+1‖u = 1/pn = ‖pn+1‖p
and therefore ‖ · ‖u = ‖ · ‖p. We conclude that Au equals A = pZp but with the
different norm ‖ · ‖u = ‖ · ‖p 6= ‖ · ‖A.

Remark 6.10. We see from the above example that the property Au = A, meaning
that ‖·‖u = ‖·‖A for A a p-adic operator algebra does not pass to (closed, two-sided)
∗-ideals. In particular this implies that not every representation J → B≤1(Qp(X))
from an ideal J E A extends to a representation A→ B≤1(Qp(X)). The analogue
of this extension property is known to hold in the category of C∗-algebras, see
[18, Proposition 2.10.4] or [4, Section 1.3].

We also see from the above example that for an isometric embedding A →֒ B
of p-adic operator algebras, the induced morphism Au → Bu is not isometric in
general, even if A is an ideal of B. This means that for a ∈ A, we have ‖a‖Bu ≤
‖a‖Au but the inequality might be strict.
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Proposition 6.8 provides a recipe for several natural examples of p-adic operator
algebras. We describe in what follows some concrete examples.

Example 6.11 (Toeplitz algebra). Consider the unilateral right-shift operator
T : Qp(N) → Qp(N) that takes (x0, x1, . . . , ) 7→ (0, x0, x1, . . . ); this appears in
[12, Section 5.2]. The adjoint operator is given by the left-shift T ∗ : Qp(N)→ Qp(N),
(x0, x1, . . . , ) 7→ (x1, x2, . . . , ), and we have T ∗T = 1, that is, T is an isometry. Then
the Zp-algebra Zp〈T, T

∗〉 generated by T and T ∗ is a ∗-subalgebra of B≤1(Qp(N)),
and a simple computation shows that for any x =

∑l
j,k=0 λj,kT

j(T ∗)k, we have
‖x‖p = maxj,k

∣∣λj,k
∣∣
p
= ‖x‖. By Proposition 6.8, its p-adic completion is the en-

veloping algebra Tp of Zp〈T, T
∗〉 which we think of as the p-adic analogue of the

Toeplitz algebra. This is justified by a result of Jacobson [23, Theorem 4], which spe-
cialises to the fact that Zp〈T, T

∗〉 is the universal Zp-algebra generated by a proper
isometry. Consequently, we deduce that the Toeplitz algebra T (as defined in [12])
is the universal p-adic operator algebra generated by a proper isometry, which should
be viewed as a p-adic analogue of Coburn’s Theorem ([32, Theorem 3.5.18]).

Example 6.12 (Twisted group algebras). Let G be a group and let ω : G×G→ Z×p
be a (normalized) 2-cocycle on G with values in the multiplicative group Z×p of
invertible elements of Zp. This means that ω satisfies the relations

ω(g, 1) = ω(1, h) = 1, ω(g, h)ω(gh, k) = ω(g, hk)ω(h, k). (4)

The twisted group algebra is the ∗-algebra Zp[G,ω] = Cc(G,Zp) over Zp consisting
of finitely supported functionsG→ Zp endowed with ω-twisted convolution product
and involution given by the formulas

(ϕ ∗ω ψ)(g) :=
∑

h∈G

ϕ(h)ψ(h−1g)ω(h, h−1g), ϕ∗,ω(g) := ω(g−1, g)ϕ(g−1).

On the generators (i.e. δ-functions), this reads as

δg ∗ω δh = ω(g, h)δgh, δ∗,ωg = ω(g−1, g)δg−1 . (5)

It is well know and easily verified that these operations turn Zp[G,ω] into an in-
volutive Zp-algebra. The cocycle condition (4) is exactly what one needs for the
twisted convolution to be associative.

As in the untwisted group algebra case (Example 5.5), we can represent Zp[G,ω]
faithfully into B≤1(Qp(G)) via the ω-twisted left regular representation given by

λωg (ξ)(h) := ω(g, g−1h)ξ(g−1h).

This is a ω-representation meaning that it satisfies λωg λ
ω
h = ω(g, h)λωgh for all

g, h ∈ G. One proves, as in the untwisted case, one gets that ‖λω(ξ)‖ = ‖ξ‖∞,
the supremum norm of ξ. Therefore Op(G,ω) := c0(G,Zp) is a p-adic operator
algebra with respect to the above operations, and it is isometrically embedded as
a ∗-subalgebra of B≤1(Qp(G)) via λω. Notice that the twisted convolution and
involution make sense on c0(G,Zp).

Proposition 6.8 implies that Op(G,ω) = Op(G,ω)
u = Zp[G,ω]

u is the enveloping
p-adic operator algebra of Zp[G,ω]. In other words, this is the universal (unital)
p-adic operator algebra generated by (unitaries) δg for g ∈ G with product and
involution satisfying (5).
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Example 6.13 (Rotation algebras). As a special case of the previous example,
consider the additive abelian group G = Z2 = Z× Z. Given any z ∈ Z×p , we get a
2-cocycle ωz by the formula

ωz((k, l), (m,n)) := zlm.

The twisted group algebra Zp[Z2, ωz] is the universal unital ∗-algebra over Zp gen-
erated by two unitaries U = δ(0,1) and V = δ(1,0) satisfying the relations

UV = zV U.

Therefore Op(Z
2, ωz) ∼= c0(Z

2,Zp) is the universal unital p-adic operator algebra
generated by two unitaries satisfying the same relation. We view this as a p-adic
version of the rotation C∗-algebras C∗(Tθ) that can be realized in a similar way as
twisted group C∗-algebras C∗(Z2, ωθ) for ωθ((k, l), (m,n)) = e2πiθlm = zlmθ , where
zθ = e2πiθ ∈ T, see [20].

Notice that the p-adic operator algebra Op(Z2, ωz) can be represented isometrically
into B≤1(Qp(Z2)) via λωz . This gives the concrete representation of this algebra as
the p-adic operator subalgebra of B≤1(Qp(Z2)) generated by the unitary operators
U := λωz

(0,1) and V := λωz

(1,0), which are given on the standard basis (δm,n)(m,n)∈Z2 ⊆

Qp(Z) by the formulas

U(δm,n) = zmδm,n+1, V (δm,n) = δm+1,n.

Proposition 6.14. Let G be an ample (i.e étale totally disconnected) Hausdorff
groupoid and consider its p-adic operator algebra Op(G) as in Example 5.7. Then
Sp(G)u = Op(G), where Sp(G) is the Steinberg algebra of G defined by

Sp(G) :=
{
φ : G→ Zp : φ is locally constant and compactly supported

}

and viewed as a ∗-subalgebra of the convolution ∗-algebra Cc(G,Zp) ⊆ Op(G).

Proof. The space Sp(G) consists of Zp-linear combinations of characteristic func-
tions of compact open subsets. In particular this space separates points of G and
therefore it forms a dense subalgebra of C0(G,Zp) = Op(G) with the supremum
norm by Kaplansky’s non-archimedean version of Stone-Weierstraß’ Theorem [25].

Let B be a p-adic operator algebra. Let π : Sp(G) → B be an arbitrary ∗-homo-
morphism of ∗-algebras. Let φ ∈ Sp(G). Using proposition 1.19 of [46], we know
there are mutually disjoint bisections U1, . . . , Un and scalars α1, . . . , αn ∈ Zp such
that

φ =

n∑

k=1

αkχUk

Thus

‖π(φ)‖ =
∥∥∥

n∑

k=1

αkπ(χUk
)
∥∥∥ ≤ max

1≤k≤n
|αk|‖π(χUk

)‖ ≤ max
1≤k≤n

|αk| = ‖φ‖

Here we are considering the supremum norm in Sp(G). From this, we see that
π is contractive. As Sp(G) is dense in Op(G), there exists a unique contractive
∗-homomorphism Op(G)→ B extending π. Therefore Op(G) satisfies the universal
property of the enveloping of Sp(G) concluding that Sp(G)u = Op(G). �
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In particular for algebras associated to graphs, we get the following consequence:

Corollary 6.15. Let E = (s, r : E1 → E0) be a directed graph. Then Op(E) is
the universal p-adic operator algebra generated by pairwise orthogonal projections
v with v ∈ E0 and partial isometries e with e ∈ E1 satisfying the following relations:

(1) vw = δv,wv for all v, w ∈ E0;

(2) s(e)e = e = er(e) for all e ∈ E1;

(3) e∗f = δe,f r(e) for all e, f ∈ E1;

(4)
∑

s(e)=v ee
∗ = v for all v ∈ E0 whenever s−1(v) is finite and non-empty.

Proof. This follows from the fact that Op(E) = Sp(GE)
u and that the Steinberg

algebra Sp(GE) is isomorphic to the Leavitt path algebra LZp
(E), which is the

universal involutive Zp-algebra generated by v ∈ E0 and e ∈ E1 satisfying the
same relations as in the statement, see e.g. [1]. �

Example 6.16. The above in particular gives us access to p-adic operator algebras
versions of the classical Cuntz-Krieger algebras. Taking, for instance, the graph En

with a single vertex and n loops, we get the p-adic version of the Cuntz algebra
Op,n := Op(En). This is the universal unital p-adic operator algebra generated by
n-isometries s1, . . . , sn satisfying s∗i sj = δi,j1 and the Cuntz relation

s1s
∗
1 + . . .+ sns

∗
n = 1.

6.2. Colimits. We are now ready to prove that OpeAlgp has colimits. Let I be
a small category, and let F : I → OpeAlgp be a functor. Also, let U : OpeAlgp →{
∗-algebras over Zp

}
be the forgetful functor. The category of ∗-algebras over Zp

has all colimits; hence, we can define C = colimU ◦ F .

We claim that Cu = colimF . To see this, let B be a cocone over the diagram
F ; then, U(B) is a cocone over the diagram U ◦ F . Consequently, there is a
unique map C → B making the diagram commute. Since (−)u is the left adjoint
of U , there exists a unique map Cu → B making the diagram commute. Thus,
Cu = colimU ◦ F .

Corollary 6.17. The category OpeAlgp has all colimits.

Example 6.18 (Compact operators). We now construct the compact operators
as an inductive limit in the category of p-adic operator algebras of finite matrix
algebras. Recall from Example 5.2 that finite sets X yield matrix algebras Mn(Zp),
where n is the cardinality of the set X . Now consider the inductive system

M1(Zp)→M2(Zp)→M3(Zp)→ · · · ,

where the structure maps are the usual block inclusions a 7→

(
a 0
0 0

)
. The induc-

tive limit is the enveloping algebra of the direct union M∞(Zp) =
⋃

n Mn(Zp) of

matrix algebras, which by Proposition 6.8 is the p-adic completion M̂∞(Zp) with



OPERATOR ALGEBRAS OVER THE p-ADIC INTEGERS 37

the canonical norm. By [15, Example 6.4], this inductive limit can be identified with
the algebra of matrices with entries converging to zero at infinity, which coincides
with the algebra of contractive compact operators on Qp(N) by [12, Lemma 2.2].

This example can also be approached via groupoids: if we consider the pair groupoid
G = X × X of a set X , endowed with the discrete topology, then Sp(G) =
cc(G,Zp) ∼= M∞(Zp), see [37, Proposition 1.28]. And then by Proposition 6.14,

M∞(Zp)
u ∼= Op(G) ∼= c0(G,Zp) ∼= K≤1(Qp(X)).

7. Tensor products

The category of p-adic operator algebras admits at least two natural tensor prod-
ucts, namely the maximal and the spatial tensor products, similar to the category
of C∗-algebras. In the next sections we present the definitions and some basic ex-
amples for these tensor products and show that for many p-adic operator algebras
both tensor products coincide. Moreover, we show that the spatial tensor product
of p-adic operator algebras coincides with their projective tensor product whenever
the operator algebras involved carry the p-adic norm.

7.1. The maximal tensor product. Given two ∗-algebras A and B over Zp, we
shall write A ⊗alg B for the algebraic tensor product (over Zp). This is viewed as
another ∗-algebra over Zp in the usual way:

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′, (a⊗ b)∗ = a∗ ⊗ b∗.

Definition 7.1. Given two p-adic operator algebras A and B, we define the max-

imal tensor product

A⊗max B := (A⊗B)u

as the enveloping algebra of A⊗alg B.

We now formulate the universal property of the maximal tensor product:

Proposition 7.2 (Universal property of the maximal tensor product). Let A, B
and C be p-adic operator algebras. Let φ : A → C and ψ : B → C be two (not
necessarily contractive) ∗-homomorphisms satisfying φ(a)ψ(b) = ψ(b)φ(a) for all
a ∈ A, b ∈ B. Then there exists a unique morphism π : A⊗max B → C such that

π(a⊗ b) = φ(a)ψ(b) for all a ∈ A, b ∈ B.

Proof. Consider the map

φ× ψ : A×B → C

(a, b) 7→ φ(a)ψ(b)

by the universal property of the algebraic tensor product, there is a unique Zp-linear
morphism

φ⊗ ψ : A⊗B → C

a⊗ b 7→ φ(a)ψ(b)

One easily checks that this is a ∗-algebra morphism, hence the universal property
of the enveloping algebra yields a unique continuous ∗-morphism A ⊗max B → C
with the desired properties. �



38 ALCIDES BUSS, LUIZ FELIPE GARCIA, AND DEVARSHI MUKHERJEE

Remark 7.3. If B is unital, we get a canonical ∗-homomorphism ιA : A→ A⊗maxB
given by ιA(a) = a ⊗ 1B. If, in addition, A is unital, then so is A ⊗alg B and
therefore also A ⊗max B with unit 1A ⊗ 1B, and in this case we also have a ∗-
homomorphism ιB : B → A⊗max B. Both ιA and ιB are unital ∗-homomorphisms
and have commuting ranges as in the above proposition, that is, ιA(a)ιB(b) =
ιB(b)ιA(a) for all a ∈ A, b ∈ B. The induced morphism A ⊗max B → A ⊗max B
is the identity map. But the homomorphisms ιA, ιB need not be contractive,
in general. For example, taking B = Zp, we get A ⊗alg Zp = A and therefore
A ⊗max Zp = Au and ιA represents the canonical homomorphism A → Au, which
is contractive if and only if ‖ · ‖A = ‖ · ‖Au , and this is not always the case, see
Example 6.9.

Proposition 7.4. Let A and B be unital ∗-algebras over Zp. Then we have a
canonical isomorphism of p-adic operator algebras

(A⊗alg B)u ∼= Au ⊗max B
u.

Proof. Given a ∗-homomorphism ρ : A ⊗alg B → C for C a p-adic operator al-
gebra, we get ∗-homomorphisms π : A → C, π(a) := ρ(a ⊗ 1B) and σ : B → C,
σ(b) := ρ(1A ⊗ b). By the universal properties of the envelope, we obtain unique
extensions of these to morphisms πu : Au → C and ρu : Bu → C, and these still com-
mute pointwise by density and continuity. By Proposition 7.2 we obtain a unique
morphism of p-adic operator algebras ρu : (A ⊗alg B)u → C satisfying ρu(a⊗ b) =
πu(a)σu(b) = π(a)σ(b) = ρ(a ⊗ b). This shows that Au ⊗max B

u has the desired
universal property of (A⊗alg B)u and therefore Au ⊗max B

u ∼= (A⊗alg B)u. �

We can apply the above to p-adic operator algebras in order to get:

Corollary 7.5. Let A and B be unital p-adic operator algebras. Then

A⊗max B ∼= Au ⊗max B
u.

7.2. The spatial tensor product. As in the archimedean case, there is also a
spatial tensor product that was already studied in [12]. We recall this construction:
let X and Y be nonempty sets. Define Qp(X) ⊗ Qp(Y ) := Qp(X × Y ), and for
ξ ∈ Qp(X) and η ∈ Qp(Y ), we define

ξ ⊗ η(x, y) := ξ(x)η(y)

for all x ∈ X and y ∈ Y . Then for operators U ∈ B≤1(Qp(X)) and V ∈
B≤1(Qp(Y )), we define

(U ⊗ V )(δx ⊗ δy) := U(δx)⊗ V (δy)

for x ∈ X and y ∈ Y . Note that this is one justification for working with the
unit balls of bounded operators on Hilbert spaces instead of the entire algebra of
operators.

Definition 7.6. Let π : A →֒ B≤1(Qp(X)) and σ : B →֒ B≤1(Qp(Y )) be two p-adic
operator algebras. Their spatial tensor product A⊗B is defined as the completion
of the Zp-algebra generated by {π(a)⊗σ(b) : a ∈ A, b ∈ B} in B≤1(Qp(X)⊗Qp(Y ))
in the induced norm.
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A priori, the spatial norm depends on the choice of the representations π and σ
and this should be remembered in our notation by something like A⊗π,σ B. This
dependence, however, disappears for all algebras of our interest by Proposition 7.7,
hence we just use the simpler notation A⊗B in what follows.

Recall that there is another tensor product of Banach algebras, namely, the com-
pleted projective tensor product. As a module, this represents bounded bilinear
maps between Banach Zp-modules. More explicitly, given two Banach Zp-modules
V and W , their completed projective tensor product is given by the completion of
the algebraic tensor product V ⊗W in the norm defined by

‖u‖π := inf

{
max
1≤i≤r

‖ai‖‖bi‖ : u =

r∑

i=1

ai ⊗ bi, ai ∈ V, bi ∈W

}
.

In another difference to the archimedean C∗-algebraic case, the completed pro-
jective tensor product of two p-adically complete Banach Zp-algebras is a p-adic
operator algebra as the following result demonstrates:

Proposition 7.7. Let A and B be p-adic operator algebras whose underlying
Banach modules have the p-adic norm. Then the Banach Zp-algebras A ⊗ B and
A⊗π B are isometrically isomorphic.

Proof. This is essentially [12, Lemma 5.1.4], but we briefly sketch the proof for the
convenience of the reader. Let a ∈ A and b ∈ B be two elements in two p-adic
operator algebras, represented on p-adic Hilbert spaces Qp(X) and Qp(Y ). Then
it is easy to see using the definition of the tensor product of operators and the
multiplicativity of the p-adic norm that ‖a⊗ b‖ = ‖a‖‖b‖ = ‖a⊗ b‖π, where the
latter equality is the definition of the completed projective tensor product. Now
consider a specific representation u =

∑r
i=1 ai ⊗ bi, where ai ∈ A and bi ∈ B. By

[12, Lemma 2.3.5], we may arrange that the collection (ai) is an orthogonal system,
so that

∥∥∑r
i=0 λiai

∥∥ = max‖λiai‖. Consequently by the computation in the proof
of [12, Lemma 5.1.5], we have

‖u‖ = max
s,x∈X,t,y∈Y

∣∣∣∣∣∣

r∑

i=1

(ai ⊗ bi)(δs ⊗ δt)(x ⊗ y)

∣∣∣∣∣∣
= max

1≤i≤r
‖ai‖‖bi‖ .

Finally, varying the representations u =
∑r

i=1 ai ⊗ bi =
∑l

j=1 pj ⊗ qj and taking
their infimum shows that the projective and the operator norms coincide on the
dense subspace A⊗alg B, which concludes the result. �

Note that for Banach Zp-modules, the completed projective tensor product coin-
cides with the p-adic completion of the algebraic tensor product. Furthermore,
in what is a particular nice feature of the nonarchimedean setting, the completed
projective tensor product is particularly well-behaved for inclusions:

Corollary 7.8. Let A → B be an injective, bounded ∗-homomorphism of p-adic
operator algebras, whose underlying norms are the canonical p-adic norm. Then
for any p-adic operator algebra D with respect to the canonical p-adic norm, we
have an injective, bounded ∗-homomorphism f ⊗ idD : A ⊗D → B ⊗D of p-adic
operator algebras.
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Proof. Specialise [28, Lemma 2.7] and use Proposition 7.7. �

At this point it is of course a natural question when all the tensor products defined
so far coincide. As in the C∗-algebraic case, this happens for a large class of p-adic
operator algebras:

Theorem 7.9. Let A → B≤1(Qp(X)) and B → B≤1(Qp(Y )) be two p-adic op-
erator algebras with the p-adic norm, such that the induced norm on A ⊗alg B ⊆
B≤1(Qp(X)⊗Qp(Y )) is the p-adic norm. Then

A⊗max B ∼= A⊗B ∼= A⊗π B.

Proof. The hypotheses on A and B guarantee that A ⊗alg B ⊆ A ⊗π B, and the
latter by Proposition 7.7 is the same as A⊗B ⊆ B≤1(Qp(X)⊗Qp(Y )). The result
now follows from Proposition 6.8. �

As a consequence of Theorem 7.9, we get that the maximal and spatial tensor
products coincide for large classes of p-adic operator algebras, beginning with:

Corollary 7.10. For any two sets X and Y , we have

B≤1(Qp(X))⊗max B≤1(Qp(Y )) = B≤1(Qp(X))⊗ B≤1(Qp(Y ))

= B≤1(Qp(X))⊗π B≤1(Qp(Y )).

Proof. Follows from Proposition 4.2 and Theorem 7.9 �

The above result is in sharp contrast with the theory of C∗-algebras as for the C∗-al-
gebra B(ℓ2N) of bounded operators on the (complex) Hilbert space ℓ2N, Theorem 6
in [34] shows that B(ℓ2N)⊗alg B(ℓ2N) has a continuum of C∗-norms!

Next we apply our results to p-adic operator algebras of (ample) groupoids and
show that also there all tensor products coincide:

Corollary 7.11. Let G and H be ample Hausdorff groupoids. Then

Op(G) ⊗max Op(H) ∼= Op(G)⊗π Op(H) ∼= Op(G)⊗Op(H) ∼= Op(G×H) (6)

with G×H denoting the direct product (ample) groupoid.

Proof. From the main result of [38], we have a canonical ∗-isomorphism of Steinberg
algebras

Sp(G)⊗alg Sp(H) ∼= Sp(G×H)

that sends an elementary tensor φ⊗ ψ in Sp(G) ⊗alg Sp(H) to [(g, h) 7→ φ(g)ψ(h)]
in Sp(G×H). The result now follows from Proposition 6.14 and Theorem 7.9. �

The above result applies, in particular, for group algebras, but also for many other
algebras. Indeed, most algebras considered in this paper are groupoid algebras.

We end this section with the nonarchimedean analogue of the well-known O2-
stability problem in C∗ and Lq-operator algebra theory. Recall that the Cuntz
C∗-algebras O2 = C∗(E2) on two generators as well as the Cuntz C∗-algebra
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O∞ = C∗(E∞) on countably infinite generators have the self-absorption property
for C∗-tensor products:

O2 ⊗O2
∼= O2 and O∞ ⊗O∞ ∼= O∞. (7)

Indeed, these isomorphisms can even be chosen to be “strongly absorbing”, see [44].
Here ⊗ denotes the spatial (i.e. minimal) tensor product of C∗-algebras – the Cuntz
algebras are nuclear, so the above also coincides with the maximal tensor product.
The above self-absorption property of the Cuntz algebras (and other C∗-algebras,
like the Jiang-Su algebra) is a very important feature in connection with Elliott’s
classification program of C∗-algebras, see e.g. [39, 49].

On the other hand, in the realm of uncompleted algebras, the situation changes
completely: it is shown in [3] that for the Leavitt path algebra L2,k over a field k,
there is no isomorphism L2,k ⊗alg L2,k

∼= L2,k, and a similar result holds for L∞,k.

We finish this section with a simple application of our results showing that a p-adic
analogue of self-absorption does not hold for the Cuntz algebras Op,2 and Op,∞.

Corollary 7.12. For every prime number p, the p-adic Cuntz algebras Op,2 :=
Op(E2) and Op,∞ := Op(E∞) are not self-absorbing in the sense that

Op,2 ⊗Op,2 ≇ Op,2 and Op,∞ ⊗Op,∞ ≇ Op,∞,

where ⊗ denotes either one of the tensor products ⊗max, ⊗, ⊗π.

Proof. By Proposition 7.11, all tensor products coincide for the Cuntz algebras and
we just write ⊗ for them. Suppose we have an isomorphism O2,p ⊗ Op,2

∼= O2,p.
Taking reduction mod p, this induces an isomorphism

(O2,p ⊗Op,2)/p ∼= (Op,2/p)⊗ (Op,2/p) ∼= LFp
(E2)⊗ LFp

(E2) ∼= LFp
(E2),

but this is a contradiction to [3, Theorem 5.1]. Similarly, using [3, Proposition 5.3]
we get the result for Op,∞. �

Remark 7.13. Using a similar strategy as in the above proof, [3, Theorem 5.1]
actually gives a stronger result for the p-adic Cuntz algebra Op,2: for m,n ∈ N, we
have an isomorphism of p-adic operator algebras

Op,2 ⊗ · · · ⊗Op,2︸ ︷︷ ︸
m

∼= Op,2 ⊗ · · · ⊗Op,2︸ ︷︷ ︸
n

if and only if m = n. A similar result is proved in [11] for Lq-operator algebras.

8. Crossed Products

Another construction that we can carry from the archimedean to the nonarchimedean
world is the crossed product. Just like the case with the tensor product, there are
two reasonable ways to construct the crossed product: one direct way by explicitly
representing it, and one indirect way by using the enveloping algebra construction.
We are going to see that in good cases, these two constructions coincide.
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8.1. The reduced crossed product. We first consider the reduced crossed prod-

uct that arises naturally as the completion of the algebraic crossed product with the
supremum norm, and can be represented on a p-adic Hilbert space via an analogue
of the regular representation construction from the archimedean case.

Let A be a p-adic operator algebra. Let G be a group acting on A, that is, we
have a group homomorphism α : G → Aut(A) : g → αg such that each αg is an
automorphism.

Define

A⋊α,r G := c0(G,A) =

{
φ : G→ A | lim

g→∞
‖φ(g)‖ = 0

}

with usual sum and multiplication given by the convolution product

(φ ∗ ψ)(h) =
∑

g∈G

φ(g)αg(ψ(g
−1h)).

It is routine to check that the convolution is well-defined and associative. The
involution on c0(G,A) is defined by the formula

(φ∗)(g) := αg(φ(g
−1)∗)

turning it into a Banach ∗-algebra over Zp. To represent it on a p-adic Hilbert
space, we use the representation π : A → B≤1(Qp(X)) of A. Using π, we may
construct the following representation: for ξ ∈ Qp(X ×G) and a ∈ A, define

π̃(a)(ξ) : X ×G→ Qp

(y, h) 7→ π(α−1h (a))(ξ(·, h))(y)

where ξ(·, h) is the function that sends x 7→ ξ(x, h). To see that this assignment is
well defined, that is, π̃(ξ) ∈ Qp(X ×G), we write ξ = ξ0 + ξ1 where

ξ0(y, h) =

{
ξ(y, h), if |ξ(y, h)| ≤ 1

0, otherwise

and

ξ1(y, h) =

{
ξ(y, h), if |ξ(y, h)| > 1

0, otherwise.

Then naturally π̃(ξ0) ∈ Qp(X×G), so we only need to show that π̃(ξ1) ∈ Qp(X×G).
Note that ξ1 has finite support, so we may write

ξ1 =
∑

(x,g)∈X×G

δxδgξ1(x, g),

so that ξ1(·, h) =
∑

x∈X δxξ1(x, h). Consequently, we have

π(α−1h (a))y,xξ1(x, h)

As the support of ξ1 is finite, there are finitely many h ∈ G such that ξ1(x, h) 6= 0
for some x ∈ X . Let h0, h1, . . . , hn be all such h. Fix some k ∈ {0, 1, . . . , n}. Let
x1, . . . , xm ∈ X such that ξ1(xl, hk) 6= 0. Write

π̃(a)(ξ)(y, hk) = π(α−1hk
(a))y,x1

ξ1(x1, hk) + · · ·+ π(α−1hk
(a))y,xm

ξ1(xm, hk)
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For each l ∈ {0, 1, . . . ,m}, using 4.9 we get

lim
z→∞

π(α−1hk
(a))z,xl

= 0,

so that there exists a finite subset Fl ⊆ X such that for y ∈ X \ Fl we have

|π(α−1hk
(a))y,xl

| < ‖ξ1‖
−1.

Therefore, for y ∈ X \
⋃

0≤l≤m Fl

|π̃(a)(ξ)(y, hk)| ≤ max
l
|π(α−1hk

(a))y,xl
ξ1(xl, hk)| ≤ ‖ξ1‖

−1 · ‖ξ1‖ = 1

concluding that |π̃(a)(ξ)(y, h)| > 1 for finitely many (y, h) ∈ X ×G.

To see what the adjoint of π̃(a) is, for ξ, η ∈ Qp(X ×G) we have

〈π̃(a)(ξ), η〉 =
∑

(y,h)∈X×G

π̃(a)(ξ)(y, h)η(y, h) + Zp

=
∑

(y,h)∈X×G

π(α−1h (a))(ξ(·, h))(y)η(y, h) + Zp

=
∑

h∈G

∑

y∈X

π(α−1h (a))(ξ(·, h))(y)η(y, h) + Zp

=
∑

h∈G

〈π(α−1h (a))(ξ(·, h)), η(·, h)〉

=
∑

h∈G

〈ξ(·, h), π(α−1h (a∗))(η(·, h))〉

=
∑

h∈G

∑

y∈X

ξ(y, h), π(α−1h (a∗))(η(·, h))(y) + Zp

=
∑

(y,h)∈X×G

ξ(y, h), π(α−1h (a∗))(η(·, h))(y) + Zp

=
∑

(y,h)∈X×G

ξ(y, h)π̃(a∗)(η)(y, h) + Zp

= 〈ξ, π̃(a∗)(η)〉,

proving that π̃(a) is adjointable with π̃(a)∗ = π̃(a∗). Thus, π̃ preserves the involu-
tion.

It is easy to see that π̃ is Zp-linear and a routine computation shows that it is also
multiplicative. Finally, to see that π̃ is an isometry, for a ∈ A we have

‖π̃(a)‖ = sup
‖ξ‖≤1

‖π̃(a)(ξ)‖ = sup
‖ξ‖≤1

max
(y,h)∈X×G

|π̃(a)(ξ)(y, h)|

= sup
‖ξ‖≤1

max
(y,h)∈X×G

|π(α−1h (a))(ξ(·, h))(y)|.

We want to show that the above supremum is equal to

sup
‖η‖≤1

max
(y,h)∈X×G

|π(α−1h (a))(η)(y)|
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To see this, note that the sets

S0 :=
{
|π(α−1h (a))(ξ(·, h))(y)| : (y, h) ∈ X ×G and ‖ξ‖ ≤ 1

}

S1 :=
{
|π(α−1h (a))(η)(y)| : (y, h) ∈ X ×G and ‖η‖ ≤ 1

}

are equal: the inclusion S0 ⊆ S1 is immediate. Now let |π(α−1h (a))(η)(y)| ∈ S1. For
every x ∈ X define ξ(x, g) = η(x) if g = h and ξ(x, g) = 0 otherwise. Then

|π(α−1h (a))(η)(y)| = |π(α−1h (a))(ξ(·, h))(y)| ∈ S0

Therefore the supremum of S0 and S1 are equal and using that π◦α−1h is an isometry

‖π̃(a)‖ = sup
‖η‖≤1

max
(y,h)∈X×G

|π(α−1h (a))(η)(y)|

= max
h∈G
‖π(α−1h (a))‖

= ‖a‖

concluding the claim that π̃ is an isometric representation.

Now consider the morphism

λ̃ : G→ B≤1(Qp(X ×G))

defined by the formula

λ̃g(ξ)(y, h) := ξ(y, g−1h).

Define the map

ρ := π̃ ⋊ λ̃ : c0(G,A)→ B≤1(Qp(X ×G)).

given by

ρ(φ) :=
∑

g∈G

π̃(φ(g))λ̃g (8)

The above sum is well defined because φ is a c0-function. For ξ ∈ Qp(X ×G) and
(y, h) ∈ X ×G we have

ρ(φ)(ξ)(y, h) =
∑

g∈G

π̃(φ(g))(λ̃g(ξ))(y, h)

=
∑

g∈G

π(α−1h (φ(g)))(ξ(·, g−1h))(y).

Let g0 ∈ G be an element such that ‖φ(g0)‖ = ‖φ‖. Consider the set S of the
functions ξ ∈ Qp(X × G) with ξ(z, k) 6= 0 if and only if k = e and ‖ξ‖ ≤ 1. The
supremum indexed by a set is at least the supremum over some subset, so that

sup
ξ∈S

max
y∈X
|ρ(φ)(ξ)(y, g0)| ≤ sup

‖ξ‖≤1

max
(y,h)∈X×G

|ρ(φ)(ξ)(y, h)| = ‖ρ(φ)‖.

Consequently, we have

sup
ξ∈S

max
y∈X
|π(α−1g0 (φ(g0)))(ξ(·, e))(y) ≤ ‖ρ(φ)‖,

which yields that supξ∈S ‖π(α
−1
g0 (φ(g0)))(ξ(·, e))‖ ≤ ‖ρ(φ)‖, or

‖π(α−1g0 (φ(g0)))‖ ≤ ‖ρ(φ)‖ =⇒ ‖φ‖ = ‖φ(g0)‖ ≤ ‖ρ(φ)‖.
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The inequality ‖ρ(φ)‖ ≤ ‖φ‖ is a simple consequence of the formula 8 and the
ultrametric inequality. This shows that the map ρ is isometric. It is clear from
the formula that ρ is Zp-linear and preserves involution, and it is again a routine
verification that it is multiplicative. Hence the reduced crossed product A ⋊α,r G
is a p-adic operator algebra.

8.2. The maximal crossed product. A natural way to construct p-adic operator
algebras is to consider the purely algebraic version of the ∗-algebra that we want and
then apply the enveloping functor. We shall carry out this process for the algebraic
crossed product, and call the resulting p-adic operator algebra the maximal crossed

product.

Let α : G→ Aut(A) be an action of a (discrete) group G on a ∗-algebra A over Zp

by ∗-automorphisms αg : A→ A. Consider the Zp-module

A⋊α,alg G = cc(G,A) =
{
φ : G→ A | φ has finite support

}

with usual sum, the multiplication by convolution and involution given by

(φ ∗ ψ)(h) =
∑

g∈G

φ(g)αg(ψ(g
−1h)), φ∗(g) = αg(φ(g

−1)∗).

Straightforward computations show that A⋊α,algG is a ∗-algebra over Zp with these
operations. Given a ∈ A and g ∈ G, we write aδg for the element of A ⋊α,alg G
that, as a function G→ A takes the value a at g ∈ G and is zero otherwise. Notice
that these elements span the entire algebra. And on these generators, the algebraic
operations defined above read as

(aδg) · (bδh) = aαg(b)δgh, (aδg)
∗ = αg−1(a∗)δg−1 . (9)

Indeed, we may view A⋊α,algG as the universal ∗-algebra over Zp generated by aδg
with a ∈ A, g ∈ G, satisfying the above relations. Notice that ιA : A→ A⋊α,alg G,
a 7→ aδ1 is a ∗-homomorphism.

If A is unital, then so is A⋊α,alg G with 1Aδ1 playing the role of the unit. In this
case A ⋊α,alg G is the universal unital ∗-algebra over Zp generated by a copy of
A via a unital ∗-homomorphism ιA : A → A ⋊α,alg G, ιA(a) = aδ1 and a unitary
representation ιG : G→ U(A⋊α,algG) that forms a covariant pair in the sense that

ιA(αg(a)) = ιG(g)ιA(a)ιG(g)
∗ for all a ∈ A, g ∈ G. (10)

Definition 8.1. Given an action α : G→ Aut(A) of a discrete group G on a p-adic
operator algebra A, we define its maximal crossed product by setting

A⋊α,max G = (A⋊α,alg G)
u

Hence, A ⋊α,max G is the universal p-adic operator algebra generated by aδg with
a ∈ A, g ∈ G satisfying the relations (9). And if A is unital, it is the universal
unital p-adic operator algebra generated by a covariant pair (ιA, ιG) with ιA : A→
A ⋊α,max G a unital ∗-homomorphism and ιG : G → U(A ⋊α,max G) a unitary
representation satisfying (10).

Remark 8.2. The canonical ∗-homomorphism ιA : A → A ⋊α,max G need not be
contractive. Indeed, if G is the trivial group, this homomorphism reduces to the
canonical homomorphism ι : A→ Au, which is contractive if and only if ‖·‖A = ‖·‖u,
so that A = Au.
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Proposition 8.3. If A is a unital p-adic operator algebra, and α : G→ Aut(A) is
an action, then

A⋊α,max G = Au ⋊αu,max G = Au ⋊αu,r G

where αu is the action on Au induced from α and the functoriality of A 7→ Au.

Proof. Take ρ : A⋊α,algG→ B be a ∗-homomorphism to a p-adic operator algebra
B. Then ρ = π ⋊ u for a covariant pair (π, v) : (A,G) → B with π : A → B
and v : G → B ∗-homomorphisms. In particular, notice that each vg is a partial
isometry, so that ‖vg‖ ≤ 1. We have

ρ(φ) =
∑

g∈G

π(φ(g))vg for all φ ∈ A⋊α,alg G. (11)

In particular, π : A → B is a ∗-homomorphism, so it extends to a contractive ∗-
homomorphism πu : Au → B. By density and continuity, the pair (πu, v) : (Au, G)→
B is still covariant. Moreover, setting ρu := πu ⋊ v : Au ⋊αu,alg G → B, then (11)
still holds with ρu and πu in place of ρ and π, respectively. Hence

‖ρu(φ)‖ ≤ max
g∈G
‖πu(φ(g))‖ ≤ max

g∈G
‖φ(g)‖u = ‖φ‖Au⋊α,rG,

where ‖·‖u denotes the norm from Au. The above estimate implies that ρu extends
(uniquely) to a ∗-homomorphism Au ⋊α,r G → B. This argument shows that
Au⋊α,rG has the same universal properties as those of A⋊α,maxG andAu⋊αu,maxG,
and therefore the result follows. �

Corollary 8.4. If A is a unital p-adic operator algebra with Au = A, then for
every action α : G→ Aut(A), we have

A⋊α,max G ∼= A⋊α,r G.

Recall that the property A = Au happens when A is a p-adic operator algebra with
the canonical p-adic norm. Indeed, in this case, we can prove the same conclusion
of the above corollary even without assuming that A is unital:

Proposition 8.5. If A is a p-adic operator algebra that carries the canonical p-adic
norm, then for every action α : G→ Aut(A), we have

A⋊α,max G = A⋊α,r G

Proof. We show that A⋊α G has the universal property of the enveloping algebra
of A⋊α,alg G. For this we consider A⋊α,alg G with the supremum norm, so that it
becomes a dense ∗-subalgebra of A ⋊α,r G = c0(G,A). Let f : A ⋊α,alg G → B be
a continuous ∗-homomorphism into a p-adic operator algebra B. For an arbitrary
φ ∈ A⋊α,alg G, note that

‖φ‖ = max
g∈G
‖φ(g)‖ = max

g∈G
‖φ(g)‖p = ‖φ‖p

Assuming φ 6= 0, we can write it as φ = pnφ′ with ‖φ′‖ = 1, so that

‖f(φ)‖ = ‖f(pnφ′)‖ = |pn|‖f(φ′)‖ ≤ |pn| = ‖φ‖
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Thus f is continuous (contractive). As A⋊α,algG is a dense subalgebra of A⋊αG,
it follows that f has an unique continuous extension A ⋊α,r G → B making the
following diagram commute

A⋊α,alg G B

A⋊α,r G

f

This shows that A⋊α,r G satisfies the desired universal property of the enveloping
of A⋊α,alg G and concludes the proof. �

Example 8.6 (Trivial actions). Suppose A is a unital p-adic operator algebra and
id : G → Aut(A) denotes the trivial action, that is, idg = idA for all g ∈ G. Then
A⋊id,alg G = A⊗alg Zp[G]. By Proposition 7.4 and Corollary 8.4,

A⋊id,max G = Au ⋊idu,max G = Au ⊗max Op(G)

= A⋊idu,r G = Au ⊗Op(G).

If A is not necessarily unital, but carries the p-adic norm, so that Au = A, then
Propositions7.4 and 8.5 yield

A⋊id,max G = A⋊idu,r G = A⊗max Op(G) = A⊗Op(G).

8.3. Action groupoid algebras as crossed products. In this section we con-
sider some special types of crossed products that can be written as groupoid alge-
bras.

Let X be a locally compact Hausdorff topological space and suppose a groupH acts
on X by homeomorphisms via a (left) action written as H×X → X , (h, x) 7→ h ·x.
From this data we get a locally compact Hausdorff étale groupoid G = X ⋊ H ,
called the action groupoid, which as a topological space is just the cartesian product
G = H × X endowed with the product topology. Its unit space is G(0) = X ∼=
{e}×X ⊆ G. The source and range maps are s(h, x) := x and r(h, x) := h · x, and
composition is given by (g, y) ◦ (h, x) = (gh, x) for y = h · x. Finally, the inverse
operation is (h, x)−1 = (h−1, h · x).

We can then form Cc(G,Zp), this is going to be the sum of Zp-modules of the form
Cc({h} × U, ,Zp) with U ⊆ X open set, we view Cc(G, ,Zp) inside of the space of
functions G→ Zp. If φ, ψ ∈ Cc(G, ,Zp) and (h, x) ∈ G, then

(φ ∗ ψ)(h, x) =
∑

g∈H

φ(g, (g−1h) · x)ψ(g−1h, x)

and Op(G) is the completion of this algebra.

The relationship with the algebra of the action groupoid and the reduced crossed
product is analogous to what happens in the archimedean case.

Proposition 8.7. Let X be a locally compact Hausdorff topological space. Let H
be a group with an action a : H → Aut(X). The action a induces an action α of H
on Cc(X,Zp) by αh(φ) = φ ◦ a−1h and there exists a canonical isomorphism

C0(X,Zp)⋊α,max H = C0(X,Zp)⋊α,r H ∼= Op(X ⋊H).
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Proof. We consider the algebraic crossed product Cc(X,Zp)⋊α,algH = cc(H,Cc(X,Zp)).
Every element of cc(H,Cc(X,Zp)) can be written as a finite sum of the form

φ =
∑

g∈H

φgδg

with φg ∈ Cc(X,Zp). On the generators φgδg we define

ρ(φgδg)(h, x) :=

{
φg(ag(x)), if g = h

0, otherwise.

This gives an element of Cc(X ⋊a H,Zp) and an argument as in [10, Theorem 3.2]
shows that the above linearly extends to a ∗-isomorphism

ρ : Cc(X,Zp)⋊α,alg H
∼
−→ Cc(X ⋊a H,Zp).

Since the p-adic operator algebra C0(X,Zp) carries the p-adic norm, Proposi-
tion 8.5 implies that both maximal and reduce crossed products coincide. More-
over, ρ is isometric for the supremum norms, which are the norms in both algebras
Cc(X,Zp)⋊α,alg H ⊆ C0(X,Zp)⋊α,r H and Cc(X ⋊a H,Zp) ⊆ C0(X ⋊a H,Zp) =
Op(X ⋊a H). Indeed, for an element of the form φgδg we have ‖ρ̃(φgδg)‖ = ‖φg‖
which implies ‖ρ(φ)‖∞ = ‖φ‖∞. The desired result follows. �

Example 8.8 (Bunce-Deddens Algebra). A supernatural number is a formal prod-
uct

S =
∏

p prime

pvp(S), vp(S) ∈ N ∪ {∞}

Given two supernatural numbers S and T , we say that S divides T if vp(S) ≤ vp(T )
for every prime p. A supernatural number S is finite if

∑
p vp(S) <∞, we identify

a finite supernatural number with its correspondent natural number. Let S be a
supernatural number, define

Div(S) =
{
k ∈ N | k divides S

}

Given k, l ∈ Div(S), say that k ≤ l if k divides l, turning Div(S) into a directed
set. Note that if k ≤ l, then there is a canonical ring morphism

Z/lZ→ Z/kZ

x mod l 7→ x mod k

We can take the inverse limit inside the category of topological groups with each
Z/kZ carrying the discrete topology

Z

SZ
:= lim

←−
k∈Div(S)

Z

kZ
=



(ak) ∈

∏

k∈Div(S)

Z

kZ
| k ≤ l =⇒ al ≡ ak mod k





For example, if S = p∞, then Z/p∞Z = Zp the p-adic integers. If S =
∏

p p
∞, then

Z/SZ = Ẑ, known as the profinite completion of Z.
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The topological group Z/SZ is compact, Hausdorff and totally disconnected. There
is a natural injection

i : Z→
Z

SZ
a 7→ (a mod k)k∈Div(S)

with dense image. Define the successor function

s :
Z

SZ
→

Z

SZ
x 7→ x+ i(1)

the map s is a homeomorphism and induces an action

α : Z→ Homeo(Z/SZ)

n 7→ sn

Notice that this action is minimal, i.e., orbits are dense.

As above, we can form the action groupoid Z/SZ ⋊ Z, which is an étale (ample)
Hausdorff group, and hence its p-adic operator algebra Op(Z/SZ ⋊ Z). By Propo-
sition 8.7,

Op(Z/SZ⋊ Z) = C(Z/SZ,Zp)⋊ Z

These algebras are p-adic versions of the Bunce-Deddens C∗-algebras, see [26].

Example 8.9 (Rotation algebras as crossed products). Fix z ∈ Z×p . Consider
the automorphism αz ∈ Aut(Op(Z)) given on the generator U := δ1 ∈ Op(Z)
by αz(U) := zU . To see that this indeed gives an automorphism, we can use
that Op(Z) is the universal unital p-adic operator algebra generated by a unitary
U . Alternatively, realizing Op(Z) ∼= c0(Z,Zp), the automorphism αz is given by
αz(f)(n) = znf(n).

The automorphism αz induces an action of Z on Op(Z) by n 7→ αn
z . Consider

the crossed product Az
p := Op(Z) ⋊α Z. We can take here either the maximal or

the reduced crossed product as they are isomorphic by Proposition 8.5. Viewing
Az

p as the maximal crossed product and using its universal property via covariant
representations, we get that Az

p is the universal p-adic operator algebra generated
by two unitaries U, V , with U corresponding to the generator 1 ∈ Z → U(Op(Z))
and V corresponding the generator V ∈ Op(Z) ⊆ Az

p. The covariance condition
means then the relation

UV U∗ = αz(U) = zU, that is, UV = zV U.

Therefore Az
p coincides (up to isomorphism) with the rotation algebra introduced

in Example 6.13.

9. Analytic K-theory and some simple computations

In this section, we take a look at an appropriate version of topological K-theory for
p-adic operator algebras. As in the case of the complex numbers, we define such
a functor in the generality of bornological Zp-algebras. More precisely, in [31], we
define a functor

KHan
n : AlgZp

→ Ab
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on the category of complete, torsionfree bornological Zp-algebras, for each n ∈ Z.
The properties of this functor are summarised by the following:

Theorem 9.1. [31, Theorem 6.3, 6.8] For each n ∈ Z, the functor KHan
n : AlgZp

→
Ab satisfies the following properties:

(1) Additivity;

(2) Homotopy invariance: KHan
n (A) ∼= KHan

n (A ⊗π Ẑp[t]) with respect to the

closed unit disc Ẑp[t] = {
∑∞

n−0 cnt
n : lim cn = 0};

(3) Stability with respect to the Banach algebra Mcont = M̂∞(Zp) of compact
operators, that is, KHan

n (A) ∼= KHan
n (A⊗π Mcont);

(4) Excision with respect to semi-split extensions of complete, torsionfree Zp-
algebras;

(5) For a bornological Banach Zp-algebra A, we have KHan
n (A) ∼= KHn(A/p),

where the right hand side denotes Weibel’s homotopy algebraic K-theory.

The fifth property of Theorem 9.1 is particularly interesting as it says that the K-
theory of Banach Zp-algebras only depends on the reduction mod p of the algebra
- the latter is a purely algebraic object. We also remark that the same result holds
for local cyclic homology defined in [29], where the following quasi-isomorphism is
shown:

HL(A) ≃ HA(A/p)

between the local cyclic homology complex of a Banach algebra A and the analytic
cyclic complex of the reduction mod p. This behaviour is manifestly specific to
the p-adic setting. We end this article with two prototypical computations of the
homotopy analyticK-theories of p-adic operator algebras. By virtue of the last part
of Theorem 9.1, these computations essentially reduce to Quillen’s computation of
algebraic K-theory of Fp:

Km(Fp) ∼=





Z/(pi − 1) m = 2i− 1, i ≥ 1,

0 m = 2i, i ≥ 1,

Z m = 0

0 m < 0

(12)

9.1. Leavitt path algebras. Recall from Example 5.9, that the Leavitt path al-
gebra of a graph E = (E0, E1, s, r) is specific case of a Steinberg algebra of a
groupoid, whose enveloping algebra Op(E) yields a p-adic operator algebra. This
in turn coincides with the p-adic completion of the underlying Leavitt path algebra
LZp

(E). Now for any graph E, consider the matrix NE whose entries are defined
as

NE : E0 × reg(E)→ Z, (v, w) 7→ δv,w −
∣∣∣s−1({w}) ∩ r−1({v})

∣∣∣ ,

where reg(E) is the set of regular vertices of E. We then have the following:
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Theorem 9.2. Let E be a directed graph. Then the analytic K-theory is given as
follows:

KHan
n (Op(E)) ≃ KHn(LFp

(E)) ∼= πn(cofib(K(Fp)
(reg(E)) Nt

E→ K(Fp)
(E0)))

for each n ∈ Z.

Proof. By Theorem 9.1, the computation of the analytic K-theory of Op(E) is
equivalent that of the homotopy algebraic K-theory groups KHn(LFp

(E)) for each
n ∈ Z. Now by [17, Theorem 5.4], there is a distinguished triangle

KH(Fp)
(reg(E)) Nt

E→ KH(Fp)
(E0) → KH(LFp

(E))

in the homotopy category of spectra. Since Fp is a field, the homotopy algebraic K-
theory spectrum is equivalent to the algebraic K-theory spectrum, as desired. �

Example 9.3. As an example, consider the graph En with a single vertex and n
loops for n ≥ 1. The associated p-adic operator algebra Op(En) = Op,n, the p-adic
Cuntz algebra. Notice that for n = 1 we get Op,1

∼= Op(Z), the p-adic operator

algebra of the integers; this can be also viewed as Zp[t, t
−1]u = ̂Zp[t, t−1], the

universal (or p-adic) completion of the Zp-algebra of Laurent polynomials Z[t, t−1].

The matrix NE of E = En is (the 1 × 1-matrix) 1 − n ∈ Z. By Theorem 9.2,
to compute KHan

m (Op(E)), one computes the homotopy cofibre via the long exact
sequence

. . .→ Km(Fp)
1−n
→ Km(Fp)→ KHm(LFp

(En))→ Km−1(Fp)
1−n
→ Km−1(Fp)→ . . .

for each m ∈ Z. Using 12, if m < 0, we have KHan
m (Op(En)) = 0. Furthermore, if

n− 1 is invertible in Fp, then by [2, Example 8.6] we have

KHm(LFp
(En)) ∼= Km(Fp,Z/(n− 1)).

By the Universal Coefficient Theorem, we may compute the mod (n−1) algebraic
K-theory groups by the short exact sequences

0→ Km(Fp)⊗Z/(n−1)→ K−m(Fp,Z/(n−1))→ Tor1(Km−1(Fp),Z/(n−1))→ 0

for each m, which splits if n− 3 is not divisible by 4 ([47, Proposition 1.6, Remark
1.6.1]). In particular, for m = 0, we have KHan

0 (Op(En)) ∼= Z/(n− 1), and for all
other even m,

KHan
1 (Op(En)) ∼= Z/gcd(pi − 1, n− 1).

If m is odd, then Km(Fp,Z/n − 1) ∼= Z/gcd(pi − 1, n − 1), where m = 2i − 1 for
i ≥ 1. Therefore, if n− 1 divides p− 1, we have KHan

m (Op(En)) ∼= Z/(n− 1) for all
m ≥ 0.

9.2. p-adic noncommutative tori. We now compute the homotopy analytic K-
theory of the p-adic noncommutative torus. The computation uses tools from bi-
variant algebraic K-theory, just as in the complex case. Furthermore, as we have
seen in the previous example, to preserve torsion information (that naturally arises
from K1(Fp)), one must work integrally. In the context of the noncommutative
torus, we shall see that unlike in the C∗-algebraic case, the K-theory groups de-
pend on the rotation algebra parameter z ∈ Z×p . The reason for this is the fact that
in the C∗-algebraic case, different rotational algebras are all homotopic, using the



52 ALCIDES BUSS, LUIZ FELIPE GARCIA, AND DEVARSHI MUKHERJEE

connectedness of the circle, which allows one to construct a continuous homotopy.
This of course fails in the p-adic setting.

To set up the computation, we first recall from [16] the Pimsner-Voiculescu sequence
in bivariant algebraic K-theory (specialised to our setting):

Theorem 9.4. [16, Theorem 7.4.1] Let A be an Fp-algebra and α : A → A an
algebra automorphism. Then there is an exact triangle

A
1−α
→ A

ι
→ A⋊α Z→ ΣA

in bivariant algebraic K-theory.

We shall apply this to the reduction mod p of the p-adic noncommutative torus Az
p,

which is given by the crossed product algebra of the action α : Fp[t, t
−1]→ Fp[t, t

−1]
defined by α(t) := λt for λ ∈ F×p . Denote this crossed product algebra by Aλ. By
the Bass Fundamental Theorem [16, Theorem 7.3.1] in bivariant K-theory, the
algebra Fp[t, t

−1 is kk-equivalent to σFp ⊕ Fp, where σFp = ker(Fp[t, t
−1]

ev1→ Fp) =
(t− 1)Fp[t, t

−1]. Note also that we have a split-extension

σFp → Fp[t, t
−1]→ Fp,

where the splitting is given by the canonical map 1 7→ t. Under this kk-equivalence,
the map α : Fp[t, t

−1 → Fp[t, t
−1], t 7→ λt restricts to the identity on Fp, and is given

by the map

σFp → σFp ⊕ Fp, t 7→ (λt, 1) ∈ σFp ⊕ Fp.

Consequently, the exact triangle of Theorem 9.4 is equivalent to the triangle

σFp ⊕ Fp





0 0
λ−1 0





→ σFp ⊕ Fp → Aλ → σFp. (13)

The map

(
0 0
λ−1 0

)
can be replaced with the diagonal matrix

(
0 0
0 λ−1

)
upon

composition with

(
0 1
0 0

)
, so that triangle in Equation 13 splits into a direct sum

of the triangles

ΣFp
λ−1

→ Fp → Cλ → Σ2Fp and Fp
0
→ Fp → Fp[t, t

−1]→ ΣFp, (14)

where Cλ ⊕ Fp[t, t
−1] is kk-equivalent to Aλ. Consequently, the computation of

the homotopy algebraic K-theory (or any invariant satisfying homotopy invari-
ance, excision and matricial stability) reduces to the computation of KHn(Cλ) and
KH(Fp[t, t

−1]. Here the algebra Cλ is (t−λ)(t−1)Fp[t, t
−1], but we will ultimately

not need this:
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Lemma 9.5. We have

KHn(Cλ) =





0 n < 0

Z n = 0

F×p /〈λ
−1〉 n = 1

kZ when λ is a primitive k root of unity, and 0 otherwise , n = 2

0 for all other even n,

and for all odd n ≥ 3, we have short exact sequences

0→ Kn(Fp)→ KHn(Cλ)→ Kn−2(Fp)→ 0.

Proof. The exact triangle in Equation 14 induces a long exact sequence in homotopy
algebraic K-theory

. . .→ KHn−1(Fp)
λ∗

→ KHn(Fp)→ KHn(Cλ)→ KHn−2(Fp)
λ∗

→ KHn−1(Fp)→ . . . .

Since Fp is in particular a regular ring, homotopy algebraic K-theory and algebraic
K-theory coincide. The result now follows upon inspection of Equation 12. �

Note that the computation of homotopy algebraicK-theory for Laurent polynomials
F[t, t−1] is well known by the Bass Fundamental Theorem [47, Theorem 1.2 (iii)]:

KHn(Fp[t, t
−1]) =





0 n < 0,

Z n = 0,

Z⊕ Z/(p− 1), n = 1,

Z/(p− 1) n ≥ 2.

Combining the computations so far, and using the last part of Theorem 9.1, we
have:

Corollary 9.6. Let Az
p be the p-adic noncommutative torus and Aλ its reduction

mod p, where λ ∈ F×p
∼= Z/(p−1) is the image of z under the quotient map Zp → Fp.

We then have

KHan
n (Az

p)⊗Q ∼= KHn(Aλ)⊗Q =





0 n < 0

Q2 n = 0

Q n = 1

Q λ primitive root of unity, else 0, n = 2

0 all other n.

In particular, for z ∈ Z×p and θ ∈ R, we have KHan
0 (Az

p)
∼= Ktop

0 (Aθ). But as ex-
pected conceptually, we obtain different information in the other homotopy groups.

9.3. Some remarks on the K-theory of Steinberg algebras. The expert may
have noticed that the computations for Leavitt path algebras and noncommutative
tori are essentially only possible because they lie in the bootstrap category ([16,
Section 8.3]) of bivariant algebraic K-theory (over Fp). However, as this category
is not known to have arbitrary coproducts, the size of this bootstrap category
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is unclear. Consequently, the same techniques can no longer be used for more
complicated algebras such as group(oid) algebras. To this end, we point to Xin
Li’s recent work ([27]), which identifies the homotopy groups of algebraic K-theory
spectrum K(BG) of a certain permutative category BG associated to an ample
groupoid G with locally compact Hausdorff unit space, with the cohomology of
the groupoid. Conjecturally (due to Xin Li), one should be able to relate the K-
theory spectrum of the Steinberg algebra with the homology of the groupoid G
with coefficients in the K-theory spectrum K(R) via an analogue of the Farrel-
Jones assembly map. The C∗-algebraic version of this result appears in ([30]).
Now by part (5) of Theorem 9.1, we have KHan

∗ (S(G,Zp)) ∼= KH∗(S(G,Fp)), and
the latter should be related to the homology of a suitable ample groupoid with
coefficients in K(Fp) by the results of Li and Miller. This will be the subject of a
forthcoming article.
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