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Abstract. Recently, Mneimneh proved the remarkable identity

n
∑

k=0

Hk

(

n

k

)

pk(1− p)n−k =

n
∑

i=1

1− (1− p)i

i
(p ∈ [0, 1])

as the main result of a 2023 Discrete Mathematics paper, where Hk :=
∑k

i=1
1/i is the classical

k-th harmonic number. Thereafter, Campbell provided several other proofs of Mneimneh’s
formula as above in a note published in Discrete Mathematics in 2023. Moreover, Campbell
also considered how Mneimneh’s identity may be proved and generalized using the Mathematica
package Sigma. In particular, he found the generalized Mneimneh’s identity

n
∑

k=0

xkyn−k

(

n

k

)

Hk = (x+ y)n

(

Hn −
n
∑

i=1

yi(x+ y)−i

i

)

.

In this paper, we will prove a more generalization of Mneimneh’s identity involving Bell numbers
and some Mneimneh-type identities involving (alternating) harmonic numbers by using a few
results of our previous papers.

Keywords: Mneimneh’s identity; harmonic numbers; Binomial coefficients and sums; (un-
signed) Stirling numbers; Bell polynomials; Bell numbers.

AMS Subject Classifications (2020): 11M32, 11M99.

1 Introduction

Let N = {1, 2, 3, . . .} be the set of natural numbers, and N0 := N ∪ {0}. In his recent paper [7],
Mneimneh used the method of probabilistic analysis to establish the following binomial sum
identity involving harmonic numbers

n
∑

k=0

Hk

(

n

k

)

pk(1− p)n−k =

n
∑

i=1

1− (1− p)i

i
(p ∈ [0, 1]), (1.1)
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where Hk is the classical k-th harmonic number defined by

Hk :=

k
∑

i=1

1

i
and H0 := 0.

Quite recently, Campbell [1] gave two new proofs of (1.1) by using Zeilberger’s algorithm and
beta-type integral formula. Further, using the Sigma package for the Mathematica Computer
Algebra System, Campbell gave the more general Mneimneh’s identity

n
∑

k=0

xkyn−k

(

n

k

)

Hk = (x+ y)n

(

Hn −
n
∑

i=1

yi(x+ y)−i

i

)

. (1.2)

Clearly, setting (x, y) = (p, 1− p) in (1.2) gives (1.1). Moreover, Campbell also emphasized that
this approach may also be used to derive identities for expressions such as

n
∑

k=0

xkyn−k

(

n

k

)

H2
k .

In a 2024 Discrete Mathematics article [6], Komatsu and Wang extended Mneimneh’s formula
to the generalized hyperharmonic numbers. Genčev [4] studied of the binomial sum

n
∑

k=0

(

n

k

)





k
∑

j=1

zj

j



 pk(1− p)k (r ∈ N, p, z ∈ R, p 6= 1)

and established explicit formula, see [4, Thm. 2.1].
In this paper, using the method of integrals of natural logarithms, we will establish the

explicit formulas of the following general Mneimneh-type binomial sums involving Bell numbers
and some Mneimneh-type binomial sums involving (alternating) harmonic numbers.

Theorem 1.1. For any reals x, y with x/(x+ y) ≥ 0 and n, p ∈ N, we have

n
∑

k=0

xkyn−k

(

n

k

)

Yp(k) = (−1)p−1p!(x+ y)n
n
∑

j=1

(

1−
( y

x+ y

)j
) p−1
∑

i=0

(−1)i
Yi(n)

i!

s(j, p − i)

j!
,

(1.3)

where s(n, k) and Yk(n) stand for the (unsigned) Stirling numbers of the first kind and Bell
numbers (see Section 2), respectively.

Remark 1.2. All Stirling numbers s(n, k) and Bell numbers Yk(n) can be expressed in terms
of a linear combination of products of harmonic numbers.

In particular, letting p = 1, 2 in Theorem 1.1 and noting the facts that s(n, 1) = (n− 1)!, s(n, 2) =

(n− 1)!Hn−1, Y0(n) = 1, Y1(n) = Hn, Y2(n) = H2
n +H

(2)
n , we also obtain (1.2) and

n
∑

k=0

xkyn−k

(

n

k

)

(

H2
k +H

(2)
k

)

= 2(x+ y)n
n
∑

j=1

(

1−
( y

x+ y

)j
)

Hn −Hj−1

j
. (1.4)
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Theorem 1.3. For any reals x, y and z ∈ (−∞, 1) with x/(x+ y) ≥ 0 and n ∈ N, we have

n
∑

k=0

xkyn−k

(

n

k

)





k
∑

j=1

zj

j



 =

n
∑

j=1

(y + zx)j − yj

j
(x+ y)n−j. (1.5)

Obviously, letting z → 1 in (1.5) gives (1.2). Setting z = −1 in Theorem 1.3 yields the
following corollary.

Corollary 1.4. For any reals x, y with x/(x+ y) ≥ 0 and n ∈ N, we have

n
∑

k=0

xkyn−k

(

n

k

)

H̄k =

n
∑

j=1

yj − (y − x)j

j
(x+ y)n−j , (1.6)

where H̄k is the alternating k-th harmonic number defined by

H̄k :=

k
∑

j=1

(−1)j−1

j
and H̄0 := 0. (1.7)

Specially, setting (x, y) = (p, 1− p) (p ∈ [0, 1]) in (1.6) yields the following Mneimneh-type
identity

n
∑

k=0

H̄k

(

n

k

)

pk(1− p)n−k =
n
∑

j=1

(1− p)j − (1− 2p)j

j
. (1.8)

From equation (1.4) and Theorem 1.3, we can also obtain the following corollary.

Corollary 1.5. For any reals x, y with x/(x+ y) ≥ 0 and n ∈ N, we have

n
∑

k=0

xkyn−k

(

n

k

)

H
(2)
k = (x+ y)n







n
∑

j=1

yj(x+ y)−j

j

j
∑

i=1

y−i(x+ y)i

i
−

n
∑

j=1

yj(x+ y)−j

j
Hj







,

(1.9)

n
∑

k=0

xkyn−k

(

n

k

)

H2
k = (x+ y)n



























H2
n +H

(2)
n − 2

n
∑

j=1

yj(x+ y)−j

j2
− 2Hn

n
∑

j=1

yj(x+ y)−j

j

+3

n
∑

j=1

yj(x+ y)−j

j
Hj −

n
∑

j=1

yj(x+ y)−j

j

j
∑

i=1

y−i(x+ y)i

i



























.

(1.10)

We will prove Theorem 1.1 in Section 3, and Theorem 1.3 and Corollary 1.5 in Section 4.

Conjecture 1.6. The Theorems 1.1 and 1.3 hold for any reals x, y and z.

3



2 Preliminaries and lemmas

2.1 (unsigned) Stirling number of the first kind

We recall the definition of (unsigned) Stirling number of the first kind. Let s(n, k) denote the
(unsigned) Stirling number of the first kind, which is defined by [2, 3]

n!x (1 + x)
(

1 +
x

2

)

· · ·
(

1 +
x

n

)

=

n
∑

k=0

s(n+ 1, k + 1)xk+1, (2.1)

with s(n, k) := 0 if n < k, and s(n, 0) = s(0, k) := 0, s(0, 0) := 1, or equivalently, by the
generating function:

logk(1− x) = (−1)kk!
∞
∑

n=1

s(n, k)
xn

n!
(x ∈ [−1, 1)).

The Stirling numbers s (n, k) of the first kind satisfy a recurrence relation in the form

s(n, k) = s(n− 1, k − 1) + (n− 1) s(n− 1, k) (n, k ∈ N).

Obviously, s (n, k) can be expressed in terms of a linear combinations of products of harmonic
numbers (see (2.5)). In particular,

s(n, 1) = (n− 1)!,

s (n, 2) = (n− 1)!Hn−1,

s(n, 3) =
(n− 1)!

2

[

H2
n−1 −H

(2)
n−1

]

,

s(n, 4) =
(n− 1)!

6

[

H3
n−1 − 3Hn−1H

(2)
n−1 + 2H

(3)
n−1

]

,

s(n, 5) =
(n− 1)!

24

[

H4
n−1 − 6H

(4)
n−1 − 6H2

n−1H
(2)
n−1 + 3(H

(2)
n−1)

2 + 8Hn−1H
(3)
n−1

]

.

In [9, Thm 2.5], we proved

s (n, k) = (n− 1)!ζn−1({1}k−1) (k, n ∈ N), (2.2)

where ζn({1}k) is a special multiple harmonic sum defined by ({l}r denotes the sequence obtained
by repeating l exactly r times)

ζn({1}r) :=
∑

n≥n1>n2>···>nr>0

1

n1n2 · · · nr

. (2.3)

For k = (k1, . . . , kr) ∈ N
r and positive integer n, the generalized multiple harmonic sums (MHSs)

are defined by

ζn(k) ≡ ζn(k1, . . . , kr) :=
∑

n≥n1>···>nr>0

1

nk1
1 · · ·n

kr
r

. (2.4)

We set ζn(∅) := 1 if k = ∅ and ζn(k) := 0 if n < r. For k = (k) ∈ N,

ζn(k) ≡ H(k)
n =

n
∑

j=1

1

jk
(2.5)
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is the n-th generalized harmonic number of order k, and furthermore, if k = 1 then Hn ≡ H
(1)
n is

the classical n-th harmonic number. When taking the limit n→∞ in (2.4) we get the so-called
classical multiple zeta values (MZVs) (see [5, 12]),

ζ(k) := lim
n→∞

ζn(k),

defined for k ∈ N
r and k1 > 1 to ensure convergence of the series.

2.2 Bell polynomials

Define the exponential partial Bell polynomials Bn,k by

1

k!

(

∞
∑

n=1

xn
tn

n!

)k

=
∞
∑

n=k

Bn,k(x1, x2, . . . , xn)
tn

n!
, k = 0, 1, 2, . . . ,

and the exponential complete Bell polynomials Yn by

Yn(x1, x2, . . . , xn) :=
n
∑

k=0

Bn,k(x1, x2, . . . , xn)

(see [2, Section 3.3]). According to [8, Eq. (2.44)], the complete Bell polynomials Yn satisfy the
recurrence

Y0 = 1 , Yn(x1, x2, . . . , xn) =

n−1
∑

j=0

(

n− 1

j

)

xn−jYj(x1, x2, . . . , xj) , n ≥ 1 ,

from which, the first few polynomials can be obtained immediately:

Y0 = 1 , Y1(x1) = x1 , Y2(x1, x2) = x21 + x2 , Y3(x1, x2, x3) = x31 + 3x1x2 + x3 ,

Y4(x1, x2, x3, x4) = x41 + 6x21x2 + 4x1x3 + 3x22 + x4 .

Define the Bell number Yk(n) by

Yk(n) := Yk(Hn, 1!H
(2)
n , 2!H(3)

n , · · · , (k − 1)!H(k)
n ). (2.6)

Clearly, the Bell number Yk(n) is a rational linear combination of products of harmonic numbers.
We have

Y1(n) = Hn,

Y2(n) = H2
n +H(2)

n ,

Y3(n) = H3
n + 3HnH

(2)
n + 2H(3)

n ,

Y4(n) = H4
n + 8HnH

(3)
n + 6H2

nH
(2)
n + 3(H(2)

n )2 + 6H(4)
n ,

Y5(n) = H5
n + 10H3

nH
(2)
n + 20H2

nH
(3)
n + 15Hn(H

(2)
n )2 + 30HnH

(4)
n + 20H(2)

n H(3)
n + 24H(5)

n .

In [9, Eq. (2.9)], we showed

ζ⋆n ({1}m) =
1

m!
Ym (n) (n,m ∈ N0), (2.7)
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where ζ⋆n({1}r) is a special multiple harmonic star sum defined by

ζ⋆n({1}r) :=
∑

n≥n1≥n2≥···≥nr>0

1

n1n2 · · · nr

.

For k = (k1, . . . , kr) ∈ N
r and positive integer n, the generalized multiple harmonic star sums

(MHSSs) are defined by

ζ⋆n(k) ≡ ζ⋆n(k1, . . . , kr) :=
∑

n≥n1≥···≥nr>0

1

nk1
1 · · ·n

kr
r

. (2.8)

Similarly, we set ζ⋆n(∅) := 1 if k = ∅ .

2.3 Some Lemmas

Next, we present some lemmas, which are useful in the development of our main theorems.

Lemma 2.1. ( [10, Thm. 2.9] ) For n ∈ N and p ∈ N0, we have

1
∫

0

tn−1logp(1− t)dt = (−1)p
Yp (n)

n
. (2.9)

Lemma 2.2. ( [9, Thm. 2.2]) For n,m ∈ N and x ∈ (−∞, 1), we have

x
∫

0

tn−1logm (1− t)dt = m!
(−1)m

n
ζ⋆n({1}m;x)

+
1

n

m−1
∑

j=0

(−1)jj!

(

m

j

)

logm−j (1− x)
(

ζ⋆n({1}j ;x)− ζ⋆n({1}j)
)

, (2.10)

where ζ⋆n({1}r) (r ∈ N0) is defined by

ζ⋆n({1}r;x) :=
∑

n≥n1≥n2≥···≥nr>0

xnr

n1n2 · · ·nr

and ζ⋆n(∅;x) := xn.

(Note that in [9, Thm. 2.2], the range of values for x is x ∈ [−1, 1), but in fact, the above
equation also holds for x ∈ (−∞,−1].)

Lemma 2.3. ( [11, Thm. 4.3]) For k = (k1, . . . , kr) ∈ N
r and l ∈ N0, n ∈ N, we have

∑

n≥n1≥n2≥···≥nr>0

r
∏

j=1

1

(nj + l)kj
= (−1)r

r
∑

j=0

(−1)jζ⋆n+l(
−→
kj)ζl(

←−
kj+1), (2.11)

where
−→
kj := (k1, . . . , kj) and

←−
kj := (kr, . . . , kj) for all 1 ≤ j ≤ r.
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3 Proof of Theorem 1.1

For x/(x+ y) = 0, namely x = 0, (1.3) is obviously holds. For x/(x+ y) > 0, applying Lemma
2.1, the left hand side of (1.3) can be rewritten as

n
∑

k=0

xkyn−k

(

n

k

)

Yp(k) = (−1)p
n
∑

k=1

xkyn−k

(

n

k

)

k

∫ 1

0
tk−1 logp(1− t)dt

= (−1)p
∫ 1

0
logp(1− t)

n
∑

k=1

xkyn−k

(

n

k

)

ktk−1dt

= (−1)p
∫ 1

0
logp(1− t)

n−1
∑

k=0

xk+1yn−k−1

(

n

k + 1

)

(k + 1)tkdt

= (−1)p
∫ 1

0
logp(1− t)

n−1
∑

k=0

xk+1yn−k−1n

(

n− 1

k

)

tkdt

= (−1)pnx

∫ 1

0
logp(1− t)

n−1
∑

k=0

(xt)kyn−k−1

(

n− 1

k

)

dt

= (−1)pnx

∫ 1

0
logp(1− t)(tx+ y)n−1dt (letting u = tx+ y)

= (−1)pn

∫ x+y

y

un−1 logp
(x+ y − u

x

)

du

= (−1)pn

∫ x+y

y

un−1

{

log
(x+ y

x

)

+ log
(

1−
u

x+ y

)

}p

du

= (−1)pn

p
∑

l=0

(

p

l

)

logp−l
(x+ y

x

)

∫ x+y

y

un−1 logl
(

1−
u

x+ y

)

du

= (−1)pn

p
∑

l=1

(

p

l

)

logp−l
(x+ y

x

)

∫ x+y

y

un−1 logl
(

1−
u

x+ y

)

du

+ (−1)p
(

(x+ y)n − yn
)

logp
(x+ y

x

)

(letting u = v(x+ y))

= (−1)pn(x+ y)n
p
∑

l=1

(

p

l

)

logp−l
(x+ y

x

)

∫ 1

y(x+y)−1

vn−1 logl
(

1− v
)

dv

+ (−1)p
(

(x+ y)n − yn
)

logp
(x+ y

x

)

. (3.1)

(In order to utilize Lemmas 2.1 and 2.2, the integration in the second to last row of the above
equation needs to satisfy y(x+ y)−1 < 1, namely x/(x+ y) > 0) Using Lemmas 2.1 and 2.2, by
an elementary calculation, the (3.1) is equal to

n
∑

k=0

xkyn−k

(

n

k

)

Yp(k) = (x+ y)n
∑

1≤i≤l≤p

(−1)l−ii!

(

l

i

)(

p

l

)

logp−i
( x

x+ y

)

×
(

ζ⋆n({1}i)− ζ⋆n

(

{1}i; y(x+ y)−1
))

= (x+ y)n
∑

1≤i≤l≤p

(−1)l−ii!

(

l

i

)(

p

l

)

logp−i
( x

x+ y

)

7



×
∑

n≥k1≥···≥ki≥1

1−
( y

x+ y

)ki

k1 · · · ki
. (3.2)

Noting the fact that the (3.2) can be rewritten as

n
∑

k=0

xkyn−k

(

n

k

)

Yp(k) = (x+ y)n
p
∑

i=1

(−1)ii! logp−i
( x

x+ y

)

∑

n≥k1≥···≥ki≥1

1−
( y

x+ y

)ki

k1 · · · ki

×

p
∑

l=i

(−1)l
(

l

i

)(

p

l

)

(3.3)

and
p
∑

l=i

(−1)l
(

l

i

)(

p

l

)

=

{

(−1)p, (p = i),
0, (otherwise),

we obtain

n
∑

k=0

xkyn−k

(

n

k

)

Yp(k) = p!(x+ y)n
∑

n≥k1≥···≥kp≥1

1−
( y

x+ y

)kp

k1 · · · kp
. (3.4)

In Lemma 2.3, replacing n by n − j + 1 and letting r = p − 1, (k1, . . . , kr) = ({1}p−1) and
l = j − 1, we easily obtain

∑

n−j+1≥i1≥···≥ip−1≥1

1

(i1 + j − 1) · · · (ip−1 + j − 1)

= (−1)p−1
p−1
∑

i=0

(−1)iζ⋆n({1}i)ζj−1({1}p−1−i). (3.5)

Hence,

∑

n≥k1≥···≥kp≥1

1−
( y

x+ y

)kp

k1 · · · kp
=

n
∑

j=1

1−
( y

x+ y

)j

j

∑

n≥k1≥···≥kp−1≥j

1

k1 · · · kp−1

=

n
∑

j=1

1−
( y

x+ y

)j

j

∑

n−j+1≥i1≥···≥ip−1≥1

1

(i1 + j − 1) · · · (ip−1 + j − 1)

= (−1)p−1
n
∑

j=1

1−
( y

x+ y

)j

j

p−1
∑

i=0

(−1)iζ⋆n({1}i)ζj−1({1}p−1−i)

= (−1)p−1
n
∑

j=1

(

1−
( y

x+ y

)j
) p−1
∑

i=0

(−1)i
Yi(n)

i!

s(j, p − i)

j!
, (3.6)

where we used the equations (2.2) and (2.7).
Finally, substituting (3.6) into (3.4) yields the desired evaluation (1.3). Thus, this concludes

the proof of Theorem 1.1.
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4 Proofs of Theorem 1.3 and Corollary 1.5

For x/(x + y) = 0, namely x = 0, Theorem 1.3 and Corollary 1.5 are obviously hold. For
x/(x+ y) > 0, in (2.10), setting m = 1 and replacing x by z gives

∫ z

0
tn−1 log(1− t)dt =

1

n







xn log(1− z)−
n
∑

j=1

zj

j
− log(1− z)







. (4.1)

Hence,

n
∑

j=1

zj

j
= (zn − 1) log(1− z)− n

∫ z

0
tn−1 log(1− t)dt.

Hence, by a similar argument as in the proof of (3.1) gives

n
∑

k=0

xkyn−k

(

n

k

)





k
∑

j=1

zj

j



 = −nx

∫ z

0
log(1− t)(xt+ y)n−1dt+ log(1− z) ((xz + y)n − (x+ y)n)

= −n

∫ xz+y

y

un−1 log

(

x+ y − u

x

)

du+ log(1− z) ((xz + y)n − (x+ y)n)

= −n

∫ xz+y

y

un−1

{

log

(

x+ y

x

)

+ log

(

1−
u

x+ y

)}

du

+ log(1− z) ((xz + y)n − (x+ y)n)

= − log

(

x+ y

x

)

((xz + y)n − yn) + log(1− z) ((xz + y)n − (x+ y)n)

− n

∫ xz+y

y

un−1 log

(

1−
u

x+ y

)

du

= − log

(

x+ y

x

)

((xz + y)n − yn) + log(1− z) ((xz + y)n − (x+ y)n)

− n(x+ y)n
∫ (xz+y)(y+x)−1

y(x+y)−1

vn−1 log(1− v)dv. (4.2)

Therefore, applying (4.1), by a direct calculation, we deduce

n
∑

k=0

xkyn−k

(

n

k

)





k
∑

j=1

zj

j



 = (x+ y)n
n
∑

j=1

(

xz + y

y + x

)j

−

(

y

y + x

)j

j
. (4.3)

This completes the proof of Theorem 1.3 (Noting that from x/(x+y) > 0 and z ∈ (−∞, 1) gives
(xz + y)(x+ y)−1 < 1).

Multiplying (1.5) by 1/z and integrating over the interval (0,1), we have

n
∑

k=0

xkyn−k

(

n

k

)

H
(2)
k

=
n
∑

j=1

(x+ y)n−j

j

∫ 1

0

(xz + y)j − yj

z
dz
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=

n
∑

j=1

(x+ y)n−j

j
yj

j
∑

i=1

∫ 1

0

(xz

y
+ 1
)i−1

d
xz

y

= (x+ y)n







n
∑

j=1

yj(x+ y)−j

j

j
∑

i=1

y−i(x+ y)i

i
−

n
∑

j=1

yj(x+ y)−j

j
Hj







.

(4.4)

Then, applying the well-known identity

n
∑

j=1

Hj

j
= ζ⋆n(1, 1) =

1

2
Y2(n) =

H2
n +H

(2)
n

2

and substituting (4.4) into (1.4) yields (1.10). Thus, we complete the proof of Corollary 1.5.

5 Conclusion

We presented the explicit formulas of the following Mneimneh-type binomial sum of (alternating)
harmonic numbers

n
∑

k=0

xkyn−k

(

n

k

)

Yp(k),

n
∑

k=0

xkyn−k

(

n

k

)

H̄k,

n
∑

k=0

xkyn−k

(

n

k

)

H
(2)
k and

n
∑

k=0

xkyn−k

(

n

k

)

H2
k .

It is possible that some of other Mneimneh-type binomial sums can be obtained using techniques
of the present paper. For example, multiplying (1.5) by logp−1(z)/z (p ∈ N) and integrating
over the interval (0,1), we have

n
∑

k=0

xkyn−k

(

n

k

)

H
(p+1)
k

=
(−1)p−1

(p− 1)!

n
∑

j=1

(x+ y)n−j

j

∫ 1

0
logp−1(z)

(xz + y)j − yj

z
dz. (5.1)

Hence, if the evaluation of the integral on the right hand of above can be established, we can
obtain the explicit formula of Mneimneh-type binomial sums on the left hand of above. We leave
the detail to the interested reader. It should be emphasized that Komatsu-Wang [6, Eq. (4)]
gave an evaluation of (5.1) with x = 1− q and y = q, where q is a real number. Genčev [4, Thm.
2.1] established a generalization of Mneimneh summation formula

n
∑

k=0

(

n

k

)





k
∑

j=1

zj

jr



 pk(1− p)k =
∑

n≥n1≥···nr≥1

(1− p)n1

((

1 +
zp

1− p

)nr

− 1

)

n1 · · ·nr

, (5.2)

where r ∈ N, p, z ∈ R and p 6= 1.
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