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Abstract

By employing a weighted Frobenius norm with a positive matrix ω, we introduce

natural generalizations of the famous Böttcher-Wenzel (BW) inequality. Based

on the combination of the weighted Frobenius norm ∥A∥ω :=
√

tr(A∗Aω) and

the standard Frobenius norm ∥A∥ :=
√

tr(A∗A), there are exactly five possible

generalizations, labeled (i) through (v), for the bounds on the norms of the

commutator [A,B] := AB−BA. In this paper, we establish the tight bounds for

cases (iii) and (v), and propose conjectures regarding the tight bounds for cases

(i) and (ii). Additionally, the tight bound for case (iv) is derived as a corollary of

case (i). All these bounds (i)-(v) serve as generalizations of the BW inequality.

The conjectured bounds for cases (i) and (ii) (and thus also (iv)) are numerically

supported for matrices up to size n = 15. Proofs are provided for n = 2 and

certain special cases. Interestingly, we find applications of these bounds in

quantum physics, particularly in the contexts of the uncertainty relation and

open quantum dynamics.
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1. Introduction

The seminal Böttcher-Wenzel (BW) inequality [1, 2, 3] provides the bound

of the norm of the commutator [A,B] := AB − BA of n× n complex matrices

A,B ∈Mn(C) in the form

∥[A,B]∥ ≤
√
2∥A∥∥B∥, (1)

where ∥A∥ :=
√
tr(A∗A) is the Frobenius norm. Here trA and A∗ are the trace

and the Hermitian conjugate of the matrix A, respectively. The bound (1) is

tight in the sense that there exist non-zero matrices A,B that attain the equality.

This inequality was then generalized in several directions, e.g., with Schatten

p-norm, Ky Fan (p, k) norm [4, 5, 6], or with the q-deformed commutator [7, 8].

In this paper we consider generalizations of BW inequality by replacing the

Frobenius norm defined in terms of the Hilbert Schmidt inner product ⟨A|B⟩ :=

tr(A∗B), i.e. ∥A∥2 = ⟨A|A⟩, by ∥A∥2ω := ⟨A|A⟩ω, where the new inner product

is defined as follows ⟨A|B⟩ω := tr(A∗Bω) and ω ∈Mn(C) is a positive (definite)

matrix. In what follows we call ω-weighted Frobenius norm

∥A∥ω :=
√

tr(A∗Aω) (2)

the ω-norm. The ω-norm satisfies the axioms of the norm and provides a gener-

alization of the Frobenius norm when ω is the identity matrix I. In the following

discussion, ω is always assumed to be a positive matrix.

Depending on the combinations of the ω-norm and the Frobenius norm, there

are exactly six types of bounds to be considered, including the BW inequality

itself1: For positive constants ci(ω) (i = 1, . . . , 6), dependent on ω, it holds that,

1Note that the norm of the commutator [A,B] exhibits symmetry between A and B, hence

interchanging the ω-norm and the Frobenius norm for A and B in the right-hand side of (3)

does not yield new types of bounds.
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for any A,B ∈Mn(C),

(i) ∥[A,B]∥ω ≤ c1(ω)∥A∥ω∥B∥ω, (3i)

(ii) ∥[A,B]∥ω ≤ c2(ω)∥A∥ω∥B∥, (3ii)

(iii) ∥[A,B]∥ω ≤ c3(ω)∥A∥∥B∥, (3iii)

(iv) ∥[A,B]∥ ≤ c4(ω)∥A∥ω∥B∥ω, (3iv)

(v) ∥[A,B]∥ ≤ c5(ω)∥A∥ω∥B∥, (3v)

(vi) ∥[A,B]∥ ≤ c6(ω)∥A∥∥B∥. (3vi)

In particular, we are interested in the tightest bounds c̃i(ω) (i = 1, . . . , 6),

which are the minimum values of ci(ω) (i = 1, . . . , 6) for which each inequality

in Eqs. (3) is satisfied. Alternatively, c̃i(ω) can be characterized by the following

optimization problems:

c̃1(ω) = max
A,B ̸=0∈Mn(C)

∥[A,B]∥ω
∥A∥ω∥B∥ω

, (4i)

c̃2(ω) = max
A,B ̸=0∈Mn(C)

∥[A,B]∥ω
∥A∥ω∥B∥

, (4ii)

c̃3(ω) = max
A,B ̸=0∈Mn(C)

∥[A,B]∥ω
∥A∥∥B∥

, (4iii)

c̃4(ω) = max
A,B ̸=0∈Mn(C)

∥[A,B]∥
∥A∥ω∥B∥ω

, (4iv)

c̃5(ω) = max
A,B ̸=0∈Mn(C)

∥[A,B]∥
∥A∥ω∥B∥

, (4v)

c̃6(ω) = max
A,B ̸=0∈Mn(C)

∥[A,B]∥
∥A∥∥B∥

. (4vi)

Note that, given inequalities (3), the tightness can be also shown by providing

non-zero matrices A,B such that the equalities are attained.

We remark that type (vi) corresponds to BW bound (1), so that we already

know

c̃6(ω) =
√
2. (5)

In this paper, we first show that the tight bounds for cases (iii) and (v) are give
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by

c̃3(ω) =
√

2λM, c̃5(ω) =

√
2

λm
, (6)

where λM and λm are the largest and the smallest eigenvalues of ω. Second, we

give conjectures for cases (i) and (ii) that the tight bounds are given respectively

by

c̃1(ω) =

√
λm + λsm
λmλsm

(7)

and

c̃2(ω) =

√
λm + λM
λm

, (8)

where λsm is the second smallest eigenvalue of ω. Third, the tight bound for

case (iv) is then given, as a corollary of conjecture (7), by

c̃4(ω) =

√
λm + λsm
λ2mλsm

. (9)

Note that all these tight bounds for cases (i)-(v) generalize the BW inequality

by setting ω = I, since the eigenvalues of I are all 1, allowing (6), (7), (8), and

(9) to recover the BW bound (5).

To summarize, the logical relations between the tight bounds for cases (i)-

(vi) are as follows:

In this regard, it becomes evidence that the verification of conjectures (i) and

(ii) holds considerable importance. Furthermore, besides the intrinsic math-

ematical interest in the norm bounds of the commutator, we find that there

are direct applications of both (i) and (ii) in the filed of quantum physics. By

applying a quantum state, i.e., a density operator as ω, we demonstrate that

the conjectured bounds for type (i) and type (ii) respectively introduce a novel
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uncertainty relation between observables A and B, and impose a non-trivial

constraint on relaxation rates in the general quantum Markovian dynamics.

In the following discussion, we will frequently use the Dirac notation, as

commonly used in the field of quantum physics2: a vector in Cn is denoted

by a ket vector, e.g., |ψ⟩; For vectors |ψ⟩ = (xi)
n
i=1, |ϕ⟩ = (yi)

n
i=1 ∈ Cn, the

symbol ⟨ψ|ϕ⟩ :=
∑

i xiyi denote the (complex Euclidean) inner product, while

the symbol |ψ⟩⟨ϕ| := [xiyj ]i,j denotes the matrix in Mn(C) such that its action

to a vector is given by: |ψ⟩⟨ϕ| |ξ⟩ = ⟨ϕ|ξ⟩ |ψ⟩.

The structure of this paper is as follows: In Sec. 2 (and also in Appendix),

we explore several generalizations of the BW inequality, each characterized by

a combination of the ω-norm and the Frobenius norm. Sec. 3 demonstrates the

practical applications of our conjectures within the realm of quantum physics.

The paper concludes with Sec. 4.

2. Six types of bounds of the commutators with respect to ω-norm

To derive bounds for types (i) through (v) in (3), we start with a simple

observation about the relationship between the ω-norm and the Frobenius norm.

In what follows, we denote by λi > 0 (i = 1, . . . , n) the eigenvalues of a positive

matrix ω ∈Mn(C), arranged in ascending order: λ1 ≤ λ2 ≤ · · · ≤ λn, so that

λm = λ1, λsm = λ2 and λM = λn.

The corresponding unit eigenvectors are denoted by |λi⟩ (i = 1, . . . , n), i.e.,

ω |λi⟩ = λi |λi⟩ and ⟨λi|λi⟩ = 1. Considering the expressions ∥A∥2ω = tr(A∗Aω) =∑n
i=1 λi⟨λi|A∗Aλi⟩ and ∥A∥2 = tr(A∗A) =

∑n
i=1⟨λi|A∗Aλi⟩, it follows that

λm∥A∥2 ≤ ∥A∥2ω ≤ λM∥A∥2. (10)

By utilizing these inequalities, we derive that

∥[A,B]∥2ω ≤ λM∥[A,B]∥2 ≤ 2λM∥A∥2∥B∥2 ≤ 2λM
λm

∥A∥2ω∥B∥2 ≤ 2λM
λ2m

∥A∥2ω∥B∥2ω,

2For a detailed explanation of the Dirac notation, see, e.g., [9].
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where we have used the BW inequality (1) to estimate the second inequality.

Now the inequalities clearly imply bounds (i)-(v) in (3) for

c1(ω) =

√
2λM
λm

, c2(ω) =

√
2λM
λm

, c3(ω) =
√
2λM, c4(ω) =

√
2

λm
, c5(ω) =

√
2

λm
.

(11)

It turns out that this simple observation yields the tight bounds for cases (iii)

and (v), since there are non-zero matrices A,B that attain the equalities of (3iii)

and (3v) with c3(ω) and c5(ω) in (11). Examples of such matrices include, for

instance, A = |λ1⟩⟨λn| and B = 1√
2
(|λn⟩⟨λn|−|λ1⟩⟨λ1|) for (3iii) and A = |λn⟩⟨λ1|

and B = |λ1⟩⟨λn| for (3v).

Put differently, we have shown the following:

Proposition 1. Let ω ∈Mn(C) be a positive matrix. For any matrices A,B ∈

Mn(C),

∥[A,B]∥ω ≤
√
2λM∥A∥∥B∥ (12)

and

∥[A,B]∥ ≤
√

2

λm
∥A∥ω∥B∥, (13)

where λM, λm are the largest and the smallest eigenvalues of ω. Both bounds

are tight, i.e., there are non-zero matrices A and B that attain the equalities.

Meanwhile, we have conducted numerical optimizations of (4) for cases (i), (ii),

and (iv), and the results suggest that the bounds c1(ω), c2(ω) and c4(ω) in (11)

are not tight (See dashed lines in Fig. 1). Instead, we conjecture for the tight

bounds as specified in (7), (8), and (9). In other words, our conjectures for cases

(i), (ii) and (iv) read:

Conjecture 1. For any matrices A,B ∈Mn(C),

∥[A,B]∥ω ≤
√
λm + λsm
λmλsm

∥A∥ω∥B∥ω, (14)

∥[A,B]∥ω ≤
√
λm + λM
λm

∥A∥ω∥B∥, (15)
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and (as a corollary of (14))

∥[A,B]∥ ≤

√
λm + λsm
λ2mλsm

∥A∥ω∥B∥ω. (16)

All bounds are tight, i.e., there are non-zero matrices A and B that attain the

equalities.

Some remarks are in order: First, these conjectures are strongly supported

by numerical evidence: For randomly generated positive matrices ω, we have

confirmed that numerical optimizations of (4) for cases (i), (ii), and (iv) per-

fectly match the conjectured bounds (7), (8), and (9) up to size n = 15. For

illustration, consider a one parameterized matrix

ω(p) = diag[sin(2p), sin
(
2p2
)
, sin

(
2p3
)
, sin

(
2p4
)
, sin

(
2p5
)
] ∈M5(C)

with parameter p ∈ (0, 1] as a positive matrix ω. (This matrix is just one exam-

ple of ω, but note that due to the positivity of ω, it can always be diagonalized,

so considering ω as a diagonal matrix does not result in any loss of generality.)

Figure 1 illustrates the comparisons between numerical optimizations (dotted

points, red in the online version) and the conjectured bounds (solid lines), as

well as the loose bounds (dashed lines) given in (11). Second, one can find non-

zero matrices A,B that attain equalities in (14), (15), and (16): For type (i),

let, for instance, A = |λm⟩⟨λsm| and B = A∗. Then, it holds that ∥[A,B]∥2ω =

λm + λsm, ∥A∥2ω = λsm, ∥B∥2ω = λm and the equality in (14) is attained. Simi-

larly, attainability can be shown by setting, for type (ii), A = |λM⟩⟨λm|, B = A∗,

and for type (iv), A = λm |λsm⟩⟨λsm|−λsm |λm⟩⟨λm| , B = |λsm⟩⟨λm|, respectively.

These facts imply that the proofs of the part concerning the tightness of the

bounds are complete. Third, (16) can be obtained as a corollary of (14) by using

the left inequality in (10) for the commutator part. Forth, we provide proofs

of the conjectures for some special cases (see Appendix A); At the end of this

section, we give proofs for case n = 2. Last but not least, we emphasize that

the forms of our conjectures are far from trivial. For instance, the fact that the

tight bounds depend solely on the eigenvalues of ω, and more specifically, on
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Figure 1: As an illustration, using for a 5 × 5 positive matrix ω(p) =

diag[sin(2p), sin
(
2p2

)
, sin

(
2p3

)
, sin

(
2p4

)
, sin

(
2p5

)
] for p ∈ (0, 1], we compare numerical opti-

mizations (dotted points/red online) with our conjectures. In graphs (i), (ii), (iv), conjectured

bounds (7), (8), and (9) are plotted with solid lines, while bounds given in (11) are plotted

with dashed lines. For references, in graphs (iii) and (v), the tight bounds given in (11) are

plotted with dashed lines.

its largest, smallest, or second smallest eigenvalues, as presented in forms (7),

(8), (9), was completely beyond our initial expectations. We arrived at these

conjectured forms only after conducting numerous numerical experiments and

trials.

2.1. Proofs of Conjecture 1 for n = 2

Here we prove inequalities (14) and (15), hence Conjecture 1, for the case

n = 2. Before addressing the specific case of n = 2, we begin with several

general observations applicable to matrices of any size n. First, in order to

prove the conjecture for types (i) and (ii) (indeed also for all other cases),

we note that, without loss of generality, ω can be assumed to be a diagonal

matrix with unit trace. This follows from the facts that, for any unitary ma-

trix U , ∥UAU∗∥UωU∗ = ∥A∥ω (thus ∥UAU∗∥ = ∥A∥) and [UAU∗, UBU∗] =

U [A,B]U∗. Moreover, for any positive constant p, ∥A∥pω =
√
p∥A∥ω, and
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therefore
√
pc̃1(pω) = c̃1(ω) and c̃2(pω) = c̃2(ω) for (7) and (8). Note that these

are also true for (4i) and (4ii).

Second, note that Mn(C) constitutes an inner product space with respect

to the ω-inner product, defined as ⟨A|B⟩ω := tr(A∗Bω), where the ω-norm is

induced from it. As the identity matrix is a unit vector if ω has a unit trace,

we have

∥A∥2ω ≥ ∥A− ⟨I|A⟩ωI∥2ω = ∥A− tr(Aω)I∥2ω. (17)

Applying ω = I /n, we also have

∥A∥2 ≥ ∥A− tr(A)

n
I∥2. (18)

Considering these observations, we now proceed to prove (14) and (15) in

the case where n = 2. In what follows, let ω = diag[λ1, λ2] with λ1 + λ2 = 1

and λ1 ≤ λ2, and A = [aij ]i,j , B = [bij ]i,j ∈M2(C).

[Proof of (14)] Note that inequality (17) along with the fact [A+α I, B+β I] =

[A,B] for any α, β ∈ C allows us to assume that A and B take the forms

A − tr(Aω)I and B − tr(Bω)I, respectively. This is equivalent to assuming

a22 = −λ1

λ2
a11 and b22 = −λ1

λ2
b11. The direct computation then yields the

identity

λm + λsm
λmλsm

∥A∥2ω∥B∥2ω − ∥[A,B]∥2ω =

∣∣∣∣∣ 1λ2
√
λ1
λ2
a11b̄11 +

√
λ1
λ2
a21b̄21 +

√
λ2
λ1
a12b̄12

∣∣∣∣∣
2

,

(19)

where we have used λm = λ1, λsm = λ2 and λ1 + λ2 = 1. This clearly implies

inequality (14).

[Proof of (15)] We may assume B to take the form B − tr(B)
n I by using

(18), while A retains the form A− tr(Aω)I as above. Thus, a22 = −λ1

λ2
a11 and

b22 = −b11. Noting that λm = λ1, λM = λ2, λ1 + λ2 = 1 and λ2 ≥ 1
2 ≥ λ1, we
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have

λM + λm
λm

∥A∥2ω∥B∥2 − ∥[A,B]∥2ω =
2

λ2
|a11|2|b11|2 + |a21|2|b21|2 +

λ2
λ1

|a12|2|b12|2

+
λ2 − λ1
λ1

|a12|2|b21|2 + 2(1− 2λ1)|a21|2|b11|2 +
λ2 − λ1
λ22

|a11|2|b21|2 +
2λ2(1− 2λ1)

λ1
|a12|2|b11|2

+ 2Rea12ā21b̄12b21 +
4λ1
λ2

Rea11ā21b̄11b21 + 4Rea11ā12b̄11b12

≥ 2

λ2
|a11|2|b11|2 + |a21|2|b21|2 +

λ2
λ1

|a12|2|b12|2

+ 2Rea12ā21b̄12b21 +
4λ1
λ2

Rea11ā21b̄11b21 + 4Rea11ā12b̄11b12

≥ 4λ1
λ2

|a11|2|b11|2 +
λ1
λ2

|a21|2|b21|2 +
λ2
λ1

|a12|2|b12|2

+ 2Rea12ā21b̄12b21 +
4λ1
λ2

Rea11ā21b̄11b21 + 4Rea11ā12b̄11b12

=

∣∣∣∣∣2
√
λ1
λ2
a11b̄11 +

√
λ1
λ2
a21b̄21 +

√
λ2
λ1
a12b̄12

∣∣∣∣∣
2

which implies inequality (15).

3. Applications to quantum physics

This section is dedicated to exploring how both conjectures (14) and (15)

can be effectively applied in the realm of quantum physics, demonstrating their

utility and relevance. In Sec. 3.1, we will see that conjecture (14) unveils a new

type of uncertainty relation for quantum observables, and in Sec. 3.2, we will

discuss how conjecture (15) provides a constraint on relaxation rates in quantum

Markovian dynamics.

3.1. Application of Conjecture (14)

Our primary motivation for introducing the ω-norm was to apply BW in-

equality to the uncertainty relations in quantum physics. In the context of a

n-level quantum system Cn, physical quantities (observables) are represented

by Hermitian matrices A,B, where a quantum state is represented by a density

matrix ρ, a positive semidefinite matrix with a unit trace. Under a state ρ, the
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expectation value of A is given by E(A)ρ = tr ρA, and the variance of A is given

by

V (A)ρ = tr ρA2 − (tr ρA)2 = tr ρ(A− (trAρ) I)2. (20)

The famous Robertson uncertainty relation is

V (A)ρV (B)ρ ≥ 1

4
| tr ρ[A,B]|2. (21)

Therefore, in the field of quantum physics, it is understood that the non-

commutativity of physical quantities results in a trade-off between their un-

certainties.

On the other hand, it is straightforward to observe that the BW inequality

offers a comparable uncertainty relation for observables when a quantum system

is in the maximally mixed state, denoted as ρmax = I
n . Specifically, for this state,

the variances can be represented through the Frobenius norm by

V (A)ρmax
=

1

n
∥A− trA

n
I ∥2, V (B)ρmax

=
1

n
∥B − trB

n
I ∥2.

Thus, noting that [A − trA
n I, B − trB

n I] = [A,B], the BW inequality provides

the following uncertainty relation:

V (A)ρmax
V (B)ρmax

≥ 1

2n2
∥[A,B]∥2. (22)

Applying the maximally mixed state to the Robertson relation (21), the bound

on the right-hand side is given by 1
4n2 | tr[A,B]|2. Consequently, Eq. (22) yields

a similar, yet distinct, uncertainty relation. As an example, consider A = σx

and B = σy, where σx =

0 1

1 0

, σy =

0 −i

i 0

, and σz =

1 0

0 −1

 are

the Pauli matrices for a two-level quantum system. Since [σx, σy] = 2iσz and

trσz = 0 the Robertson bound yields a trivial bound 0, while the bound in (22)

is 1.

Unfortunately, the relation (22) is only valid for the maximally mixed state.

To extend this to an arbitrary state, the ω-norm becomes essential: By defining

Ã := A − (tr ρA) I and B̃ := B − (tr ρB) I, the variance of A and B under a
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state ρ can be represented by

V (A)ρ = ∥Ã∥2ρ, V (B)ρ = ∥B̃∥2ρ. (23)

Thus, type (i) bound (Eq. (3i)) — as well as type (iv) — introduces another

uncertainty principle that is valid for any quantum state ρ. Notably, conjecture

(14) leads to a novel form of the uncertainty relation: For any faithful quantum

state ρ (i.e., a positive definite matrix with unit trace) and for any observables

A and B,

V (A)ρV (B)ρ ≥ λmλsm
λm + λsm

∥[A,B]∥2ρ, (24)

where λm and λsm denote the smallest and the second smallest eigenvalues of

ρ, respectively. For comparison, if we use a bound c1 (which is already proven)

given in (11), we have the looser uncertainty relation:

V (A)ρV (B)ρ ≥ λ2m
2λM

∥[A,B]∥2ρ. (25)

As illustrations, let’s consider A = σx and B = σy again and a quantum state

which is a probabilistic mixture of the maximally mixed state and the eigenstate

|0⟩ of σz corresponding to the eigenvalue 1, i.e., ρ(p) = p I
2 + (1− p) |0⟩⟨0| (p ∈

(0, 1]). Simple computations shows that the bounds in (21), (24) and (25)

are given respectively by (1 − p)2, p(2 − p), and p2

2−p . Therefore, the bound

(24) outperforms the Robertson bound (21) if p > (2 −
√
2)/2 ≃ 0.293 (See

Fig. 2). Interestingly, even the looser bound (25) surpasses the Robertson bound

if p ≳ 0.547. In [10], we conduct a comprehensive comparison of these new

uncertainty relations with the standard ones, including not only the Robertson

relation but also the Schrödinger relation. It is demonstrated that the bounds

in (24) and (25) unveil entirely new types of trade-offs in quantum uncertainty

that were previously undetected by the standard relations, particularly in cases

where the state exhibits a higher degree of mixedness.

3.2. Application of Conjecture (15)

Although conjecture (15) employs an asymmetric combination of the ω-norm

and the Frobenius norm, making it appear artificial and pedantic, it finds direct

application in the field of open quantum dynamics.
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Figure 2: The Robertson bound (21) and our bound (24) between observables σx and σy

under a qubit state ρ(p) = p I
2
+ (1 − p) |0⟩⟨0| (p ∈ (0, 1]) are plotted with dashed and solid

lines, respectively. For comparison, the looser bound, using c1 in (11) is also plotted with

dot-dashed line.

In the field of open quantum system, it is widely recognized that general

quantum Markovian dynamics is described by a completely positive (CP) dy-

namical semigroup:
dρt
dt

= L ρt,

where ρt is a quantum state at time t and L is the generator of time evolution.

One of the seminal works in this area is the representation theorem of the

generator: L qualifies as a generator for a CP dynamical semigroup if and only

if it has the form

L(ρ) = −i[H, ρ] + 1

2

∑
k

γk(2LkρL
†
k − L†

kLkρ− ρL†
kLk), (26)

where γk ≥ 0 and jump operators Lk are normalized as ∥Lk∥ = 1. Since this

was independently discovered by Gorini, Kossakowski, Sudarshan [11] and by

Lindblad [12], the generator is now referred to as the GKLS (or GKSL) generator

(See also [13]).

Letting L‡ be the dual of L via tr(X L(Y )) = tr
(
L‡(X)Y

)
and ℓα and Yα be

an eigenvalue and an eigenvector of L‡: L‡(Yα) = ℓαYα. Note that a relaxation

rate Γα is given by the real part of the eigenvalue ℓα. Let ω be a faithful
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stationary state, i.e., L(ω) = 0. In [14], a relaxation rate Γα for any GKLS

generator has been characterized by

Γα =
1

2∥Yα∥2ω

∑
k

γk∥[Lk, Yα]∥2ω. (27)

Now, by applying conjecture (15) and recalling that ∥Lk∥ = 1, we have

Γα ≤ 1

2

(
1 +

λM
λm

)∑
k

γk,

where λM and λm are the maximal and the minimal eigenvalues of the stationary

state ω. On the other hand, as we have
∑

k γk = 1
n

∑n2−1
β=1 Γβ [15, 16], we obtain

the following constraints on relaxation rates for GKLS master equation:

Γα ≤ 1

2n

(
1 +

λM
λm

) n2−1∑
β=1

Γβ . (28)

Note that relaxation rates are observable in experiments, the above constraint

can be directly tested in experimental setups.

4. Concluding remarks

In this paper, we investigated generalizations of the BW inequality, utilizing

combinations of the ω-norm and the Frobenius norm. There are six types of

generalization, types (i)-(vi), with type (vi) being the BW inequality itself. We

have established the tight bounds for types (iii) and (v), and offered conjectures

for the tight bounds of types (i) and (ii), with type (iv) emerging as a corollary

of type (i). Both conjectures for types (i) and (ii) are backed by numerical

evidence and have been validated for matrices of size n = 2 and certain special

cases for general n. Additionally, we showed that both types (i) and (ii) have

direct applications to quantum physics. The type (i) bound introduces a novel

uncertainty relation that reveals a previously undetected trade-off in the un-

certainties between non-commuting observables. The type (ii) bound imposes

a significant constraint on relaxation rates within general quantum Markovian

dynamics, offering a directly testable prediction in experimental settings.

14



We hope that our results open a new direction of generalizations of BW

inequality, enriching both the mathematical and physical perspectives on the

subject.
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Appendix A. Proofs of conjectures for special cases

In this appendix, we give proofs of (14) and (15) in some restricted cases.

[The case where A is normal and commutes with ω]

Here we give proofs of (14) and (15) in the case where A is normal and

commutes with ω. In this case, we can assume that both A and ω are diagonal:

Let A = diag[a1, . . . , an] (ai ∈ C) and ω = diag[λ1, . . . , λn] (λ1 ≤ λ2 ≤ · · · ≤ λn)

and B = [bij ] ∈Mn(C).

Now, a direct computation yields:

λm + λsm
λmλsm

∥A∥2ω∥B∥2ω − ∥[A,B]∥2ω

=
∑
i,j

|bij |2λj

(
λ1 + λ2
λ1λ2

∑
k

|ak|2λk − |ai − aj |2
)

≥
∑
i,j

|bij |2λj
((

λi
λ1

+
λi
λ2

− 1

)
|ai|2 + 2Re(aiāj) +

(
λj
λ1

+
λj
λ2

− 1

)
|aj |2

)
.

(A.1)

Note that T (i) := λi

λ1
+ λi

λ2
− 1 is larger than or equal to 1 when i ̸= 1, and

satisfies T (i)T (1) ≥ 1 for any 2 ≤ i ≤ n. This clearly shows that (A.1) is

non-negative, confirming (14).
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Similarly, (15) can also be demonstrated as

λM + λm
λm

∥A∥2ω∥B∥2 − ∥[A,B]∥2ω

=
∑
i,j

|bij |2
(
λn + λ1
λ1

∑
k

|ak|2λk − |ai − aj |2λj

)

≥
∑
i,j

|bij |2
((

λi +
λn
λ1
λi − λj

)
|ai|2 + 2Re(aiājλj) +

λn
λ1
λj |aj |2

)

≥
∑
i,j

|bij |2
(
λi|ai|2 + 2Re(aiājλj) +

λj
λi
λj |aj |2

)

=
∑
i,j

|bij |2
∣∣∣∣√λiai + λj√

λi
aj

∣∣∣∣2 ≥ 0. (A.2)

[The case where B commutes with ω]

When matrix B commutes with ω, conjecture (15) can be easy to show.

Moreover, the tight bound in this case coincides with BW bound, i.e., ∥[A,B]∥ω ≤
√
2∥A∥ω∥B∥. To show this, we use the relation:

∥A∥ω = ∥A
√
ω∥, (A.3)

which follows from the cyclic property of trace as ∥A∥2ω = trA∗Aω = tr
√
ωA∗A

√
ω =

tr(A
√
ω)

∗
A
√
ω = ∥A

√
ω∥2. Given that B commutes with ω, and therefore with

√
ω, the relation [B,A]

√
ω = [B,A

√
ω] is satisfied. By using (A.3) and BW

inequality, we have

∥[A,B]∥2ω = ∥[B,A]∥2ω = ∥[B,A]
√
ω∥2 = ∥[B,A

√
ω]∥2 ≤

√
2∥B∥2∥A

√
ω∥2 =

√
2∥A∥2ω∥B∥2.

[The case where B = |λ1⟩⟨λn|]

Our numerical experiments indicate that the optimal matrix B for achieving

the bound c̃2(ω), as specified in (4), invariably takes the form B = |λ1⟩⟨λn| (after

the normalization). Once we assume this fact, we can prove conjecture (15) as

follows. Denoting aij := ⟨λi|Aλj⟩, a direct computation yields ∥[A,B]∥2ω =

16



λn
∑

j |aj1|2−2λn Re(anna11)+
∑

j λj |anj |2 , ∥A∥2ω =
∑

j λj
∑

k |akj |2, ∥B∥2 =

1. Consequently, it follows that

(λm + λM)∥A∥2ω∥B∥2 − λm∥[A,B]∥2ω

=λ1
∑
j

k ̸=n

λj |akj |2 + λn
∑
j ̸=1
k

λj |akj |2 + 2λ1λn Re(anna11) (A.4)

=
∣∣∣λ1a11 + λnann

∣∣∣2 + λ21
∑

k ̸=1,n

|ak1|2 + λ1
∑
j ̸=1
k ̸=n

λj |akj |2 + λ2n
∑
k ̸=n

|akn|2 + λn
∑
j ̸=1,n

k

λj |akj |2 ≥ 0

(A.5)
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