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1 Introduction

It is well-known that the Virasoro algebra, denoted V̂ir, is an infinite dimensional Lie algebra

with basis {Li, c | i ∈ Z} satisfying

[Li, Lj ] = (j − i)Li+j + δi+j,0
i3 − i

12
c, [Li, c] = 0.

Here c is the center of V̂ir. We denote by Vir the centerless Virasoro algebra. Clearly, Vir is

a Z-graded Lie algebra with Cartan subalgebra hVir = CL0. The representation theories of V̂ir

and Vir have been extensively and deeply studied due to its importance in mathematics and

physics, see, e.g., the survey in [9]. One of the most important work in weigh module theory is

the well-known Mathieu’s theorem [13] on classification of Harish-Chandra modules, which was

conjectured earlier by Kac [10].

Recently, an interesting non-weight module problem for a Lie algebra g, defined by an “oppo-

site condition” relative to weight modules, was proposed by Nilsson [14, 15]. Let h be the Cartan

subalgebra of g. Denote by U(h) the universal enveloping algebra of h. This kind of non-weight

modules, referred to as free U(h)-modules since the action of h is required to be free, was con-

structed first for sln by Nilsson [14] and independently by Tan and Zhao [22]. In another paper,

Tan and Zhao [21] proved that any free U(hVir)-module of rank one over Vir is isomorphic to

ΩVir(λ, α) (cf. (2.1)) for some λ ∈ C
∗ and α ∈ C. Following [14, 15, 21, 22], free U(h)-modules,

especially for finitely graded Lie algebras containing Virasoro subalgebra, have been extensively

∗Corresponding author: chgxia@cumt.edu.cn (C. Xia).
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studied in recent years, see, e.g., [1–3, 7, 8, 24] and the references therein. It has been realized

that interesting free U(h)-module results will appear under the assumption that h is not a Cartan

subalgebra (e.g., [1, 7, 16]). The latest work in this direction is Nilsson’s work [16], where he

chose h to be the nilradical of a maximal parabolic subalgebra of sln.

Let ǫ = ±1. In this paper, we focus on a class of not-finitely graded Lie algebras W(ǫ) with

basis {Li,m | i ∈ Z,m ∈ Z+} and relations

[Li,m, Lj,n] = (j − i)Li+j,m+n + ǫ(m− n)Li+j,m+n−ǫ. (1.1)

Note that the subspace spanned by {Li,0 ∈ W(ǫ) | i ∈ Z} is isomorphic to the centerless Virasoro

algebra Vir. For simplicity, we refer to W(ǫ) as not-finitely graded Virasoro algebras. The case

for ǫ = 1 was first constructed in [20, 25] as the simple Lie algebra W (0, 1, 0;Z) of Witt type.

The case for ǫ = −1 was naturally realized in [4] as the non-simple Lie algebra W (Z) consisting of

smooth function Li,m := −(1+t)−me−it ∈ C∞
[0,+∞) under bracket [f, g] = fg′−f ′g for f, g ∈ W (Z).

For not-finitely graded Lie algebras with Virasoro subalgebra, motivated by Mathieu’s work

[13], it is natural to consider the classification of the so-called quasifinite modules, such as the

W -infinity algebra W1+∞ [11], Lie algebras of Weyl type [17], Lie algebras of Block type [18, 19]

and so on. However, for the Lie algebra W(ǫ), although it admits a natural principal Z-gradation

W(ǫ) = ⊕i∈ZW(ǫ)i with W(ǫ)i = span{Li,m |m ∈ Z+}, the zero-graded part W(ǫ)0 is not a

commutative subalgebra and more worse it does not contain Cartan subalgebra. This leads to

that one cannot cope with the quasifinite modules over W(ǫ). Fortunately, in this paper, we

find that one can develop the representation theory of W(ǫ) by studying free U(h)-modules with

h = CL0,0 (although it is not a Cartan subalgebra). To best of our knowledge, up to now, there

are few work on free U(h)-modules over not-finitely graded Lie algebras, see [5, 6, 23] for some

attempt on loop Virasoro algebra and some Lie algebras of Block type.

We surprisingly find that the module structures of W(ǫ) are much more complicated than

that of the Virasoro algebra [21], and rather different from those of other not-finitely graded Lie

algebras [5, 6, 23]. Our first main result for W(1) is Theorem 3.2, in the proof of which the

following combinatoric formula: for m < n,

(
n− 1

m

)
+

(
n− 1

m− 1

)
=

(
n

m

)
(1.2)

will be used frequently. Our second main result for W(−1) is Theorem 4.2, for which we need

more technical analysis. We also would like to point out that our techniques used here may be

applied to analogous problems of not-finitely graded Lie algebras which are closely related to

W(ǫ). This is also our motivation for writing this paper.

This paper is organized as follows. In Section 2, we recall the classification of free U(hVir)-

modules of rank one over Vir, and present an elementary result on a number sequence. In Sections

3 and 4, we classify the free U(h)-modules of rank one over W(1) and W(−1), respectively. Along

the way, we also determine the simplicity and isomorphism classes of these modules.
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2 Preliminaries

Throughout this paper, we use Z, Z+, C and C
∗ to denote the sets of integers, nonnegative

integers, complex numbers and nonzero complex numbers, respectively. We work over the complex

field C. In this section, we recall the classification of the free U(hVir)-modules of rank one over

the centerless Virasoro algebra Vir. We also present an elementary result on a number sequence,

which will be used in Section 4.

2.1 Free U(hVir)-modules of rank one over Vir

Recall that hVir = CL0 is the Cartan subalgebra of Vir. Let λ ∈ C
∗ and α ∈ C. If we define

the action of Vir on the vector space of polynomials in one variable

ΩVir(λ, α) := C[t]

by

Li · f(t) = λi(t− iα)f(t− i), (2.1)

where i ∈ Z, f(t) ∈ C[t], then ΩVir(λ, α) becomes a Vir-module. Equivalently, we can rewrite

(2.1) in a more simple form by restricting the action of Li on monomials:

Li · t
k = λi(t− iα)(t − i)k. (2.2)

These modules firstly appeared in [12] as quotient modules of fraction Virasoro modules. From

(2.2), we see that ΩVir(λ, α) is free of rank one when restricted to hVir. In fact, we have the

following classification result [21].

Lemma 2.1 Any free U(hVir)-module of rank one over Vir is isomorphic to ΩVir(λ, α) defined by

(2.2) for some λ ∈ C
∗ and α ∈ C.

The simplicity and isomorphism classification of ΩVir(λ, α) are as follows [21].

Lemma 2.2 (1) ΩVir(λ, α) is simple if and only if α 6= 0.

(2) ΩVir(λ, 0) has a unique proper submodule tΩVir(λ, 0) ∼= ΩVir(λ, 1), and ΩVir(λ, 0)/tΩVir(λ, 0)

is a one-dimensional trivial Vir-module.

(3) ΩVir(λ1, α1) ∼= ΩVir(λ2, α2) if and only if λ1 = λ2 and α1 = α2.

2.2 An elementary result

Lemma 2.3 Let {βm |m ∈ Z+} be a sequence of complex numbers satisfying β0 = 1 and

βm+n + (n−m)βm+n+1 = βnβm + nβmβn+1 −mβnβm+1. (2.3)

Then βm = βm, where β = β1.
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Proof. We prove this lemma by induction on m. First, the cases for m = 0, 1 are clear. Taking

(m,n) = (1, 1) in (2.3), we immediately see that β2 = β2
1 . Then, taking (m,n) = (1, 2) and (2, 1)

respectively in (2.3), we have

β3 + β4 = β3
1 + 2β1β3 − β2

2 ,

β3 − β4 = β3
1 + β2

2 − 2β1β3.

Adding the above two equations, we see that β3 = β3
1 .

Let m ≥ 4. Assume that the lemma holds for k ≤ m − 1. Namely, we assume βk = βk
1 for

k ≤ m− 1. Next, we consider the case for m. Taking (m,n) → (m− 2, 1) in (2.3), we have

βm−1 + (3−m)βm = β1βm−2 + βm−2β2 − (m− 2)β1βm−1.

A direct computation shows that βm = βm
1 . This completes the proof. �

3 Free U(h)-modules of rank one over W(1)

Note that the Lie algebra W(1) is Z×Z+-graded, and recall that h = CL0,0 is the (0, 0)-graded

part. In this section, we completely classify the free U(h)-modules of rank one over W(1).

3.1 Construction of free U(h)-modules of rank one over W(1)

Let λ ∈ C
∗ and α, β ∈ C. Define the action of W(1) on the vector space of polynomials in

one variable
ΩW(1)(λ, α, β) := C[t]

by

Li,m · tk =

min{m, k}∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s−1((m− s)α− iαβ + βt)(t− i)k−s, (3.1)

where i ∈ Z,m ∈ Z+ and tk ∈ C[t]. It is important to note here that we allow β = 0: if β = 0

and s = m in the sum of (3.1), although βm−s−1 = β−1 formally appears, we view

βm−s−1((m− s)α− iαβ + βt) = t− iα

as a whole, and thus (3.1) still make sense. Note further that if we take i = m = 0 in (3.1),

then we have L0,0 · t
k = tk+1. Hence, ΩW(1)(λ, α, β) is a U(h)-module, which is free of rank one.

Furthermore, we find that ΩW(1)(λ, α, β) is in fact a W(1)-module.

Proposition 3.1 The space ΩW(1)(λ, α, β) is a W(1)-module under the action (3.1).
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Proof. Taking k = 0 in (3.1), we have

Li,m · 1 = λiβm−1(mα− iαβ + βt). (3.2)

By (3.2), we can rewrite (3.1) as

Li,m · tk =

min{m, k}∑

s=0

s!

(
m

s

)(
k

s

)
(t− i)k−sLi,m−s · 1. (3.3)

This in particular implies that the action of Li,m on the base element tk of ΩW(1)(λ, α, β) is a

linear combination of the actions of Li,j (m − min{m,k} ≤ j ≤ m) on 1. Hence, to prove this

proposition, we only need to check the action of Li,m on 1. In fact, on the one hand, by (1.1) and

(3.2), we have

1

λi+j
[Li,m, Lj,n] · 1 =

1

λi+j
(j − i)Li+j,m+n · 1 +

1

λi+j
(m− n)Li+j,m+n−1 · 1

= (i2 − j2)αβm+n + (2nj − 2mi)αβm+n−1 + (m2 −m− n2 + n)αβm+n−2

+(j − i)βm+nt+ (m− n)βm+n−1t.

On the other hand, we have

1

λi+j
Li,m · Lj,n · 1 =

1

λi
Li,m · (nαβn−1 − jαβn + βnt)

= ijα2βm+n − (mj + ni)α2βm+n−1 +mnα2βm+n−2 + i2αβm+n

−2miαβm+n−1 +m(m− 1)αβm+n−2 − (i+ j)αβm+nt

+(n+m)αβm+n−1t− iβm+nt+mβm+n−1t+ βm+nt2,

and thus

1

λi+j
(Li,m · Lj,n · 1− Lj,n · Li,m · 1) = (i2 − j2)αβm+n + (2nj − 2mi)αβm+n−1

+(m2 −m− n2 + n)αβm+n−2 + (j − i)βm+nt

+(m− n)βm+n−1t.

Hence we have [Li,m, Lj,n] · 1 = Li,m · Lj,n · 1− Lj,n · Li,m · 1. This completes the proof. �

3.2 Classification of free U(h)-modules of rank one over W(1)

Now we show that ΩW(1)(λ, α, β) constructed in (3.1) in fact exhaust all free U(h)-modules of

rank one over W(1). This is our first main result.

Theorem 3.2 Any free U(h)-module of rank one over W(1) is isomorphic to ΩW(1)(λ, α, β) de-

fined by (3.1) for some λ ∈ C
∗ and α, β ∈ C.
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Proof. Let M be a free U(h)-module of rank one over W(1). By viewing M as a Vir-module,

from Lemma 2.1, we may assume that M = C[t] and there exist some λ ∈ C
∗ and α ∈ C such

that the action of Vir ⊆ W(1) on M is as follows

Li,0 · t
k = λi(t− iα)(t− i)k. (3.4)

We reduce the remaining proof to the following Lemma 3.3 and Lemma 3.4. �

Lemma 3.3 The action of Li,m on tk is a linear combination of the actions of Li,j (m −

min{m,k} ≤ j ≤ m) on 1, and more precisely we have (cf. (3.3))

Li,m · tk =

min{m, k}∑

s=0

s!

(
m

s

)(
k

s

)
(t− i)k−sLi,m−s · 1. (3.5)

Proof. We shall prove (3.5) by induction on k. First, by (1.1), we have

Li,m · t = Li,m · L0,0 · 1 = (t− i)Li,m · 1 +mLi,m−1 · 1,

which implies that (3.5) holds for k = 1. Let k ≥ 2. Assume that (3.5) holds for k − 1, namely

we have

Li,m · tk−1 =

min{m, k−1}∑

s=0

s!

(
m

s

)(
k − 1

s

)
(t− i)k−s−1Li,m−s · 1. (3.6)

Next, we prove that (3.5) holds for k in two cases.

Case 1: m < k. In this case, by (3.6), we have

Li,m · tk = Li,m · L0,0 · t
k−1 = (t− i)Li,m · tk−1 +mLi,m−1 · t

k−1

= (t− i)

min{m, k−1}∑

s=0

s!

(
m

s

)(
k − 1

s

)
(t− i)k−s−1Li,m−s · 1

+m

min{m−1, k−1}∑

s=0

s!

(
m− 1

s

)(
k − 1

s

)
(t− i)k−s−1Li,m−s−1 · 1

= (t− i)kLi,m · 1 +

m∑

s=1

s!

(
m

s

)(
k − 1

s

)
(t− i)k−sLi,m−s · 1

+m

m−1∑

s=0

s!

(
m− 1

s

)(
k − 1

s

)
(t− i)k−s−1Li,m−s−1 · 1

= (t− i)kLi,m · 1 +

m∑

s=1

s!

(
m

s

)(
k − 1

s

)
(t− i)k−sLi,m−s · 1

+
m∑

s=1

s!

(
m

s

)(
k − 1

s− 1

)
(t− i)k−sLi,m−s · 1

=
m∑

s=0

s!

(
m

s

)(
k

s

)
(t− i)k−sLi,m−s · 1.
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Here we have used the combinatoric formula (cf. (1.2))

(
k − 1

s

)
+

(
k − 1

s− 1

)
=

(
k

s

)

in the last equality.

Case 2: m ≥ k. Similarly, in this case, we have

Li,m · tk = Li,m · L0,0 · t
k−1 = (t− i)Li,m · tk−1 +mLi,m−1 · t

k−1

= (t− i)

min{m, k−1}∑

s=0

s!

(
m

s

)(
k − 1

s

)
(t− i)k−s−1Li,m−s · 1

+m

min{m−1, k−1}∑

s=0

s!

(
m− 1

s

)(
k − 1

s

)
(t− i)k−s−1Li,m−s−1 · 1

= (t− i)kLi,m · 1 +
k−1∑

s=1

s!

(
m

s

)(
k − 1

s

)
(t− i)k−sLi,m−s · 1

+m

k−2∑

s=0

s!

(
m− 1

s

)(
k − 1

s

)
(t− i)k−s−1Li,m−s−1 · 1 +m(k − 1)!

(
m− 1

k − 1

)
Li,m−k · 1

= (t− i)kLi,m · 1 +

k−1∑

s=1

s!

(
m

s

)(
k − 1

s

)
(t− i)k−sLi,m−s · 1

+
k−1∑

s=1

s!

(
m

s

)(
k − 1

s− 1

)
(t− i)k−sLi,m−s · 1 +m(k − 1)!

(
m− 1

k − 1

)
Li,m−k · 1

=

k∑

s=0

s!

(
m

s

)(
k

s

)
(t− i)k−sLi,m−s · 1.

This completes the proof. �

Lemma 3.4 There exists some β ∈ C such that Li,m · 1 = λiβm−1(mα− iαβ + βt).

Proof. Denote Fi,m(t) = Li,m · 1. We determine Fi,m(t) by induction on m.

The case for m = 0 has been given by (3.4) with k = 0 (note that, as before, if m = β = 0 in

this lemma, we have viewed β−1(mα− iαβ + βt) = t− iα as a whole).

Let us first determine Fi,1(t). Applying

[L0,1, Li,0] = iLi,1 + Li,0, [L−i,0, Li,1] = 2iL0,1 − L0,0

respectively on 1, by (3.4), we obtain

iFi,1(t) = λi(t− iα)F0,1(t)− λi(t− iα)F0,1(t− i) + λiiα, (3.7)

2iF0,1(t) = λ−i(t+ iα)Fi,1(t+ i)− λ−i(t+ iα− i)Fi,1(t) + iα. (3.8)

7



Multiplying (3.8) by i, and then using the relation (3.7), we can derive that

2i2α = 2(t2 − i2α2 + i2α+ i2)F0,1(t)− (t2 + it− i2α2 + i2α)F0,1(t+ i)

−(t2 − it− i2α2 + i2α)F0,1(t− i). (3.9)

If F0,1(t) = 0, then by (3.7) and (3.9), we see that Fi,1(t) = 0 for all i ∈ Z. This proves this

lemma for the case (α, β) = (0, 0). If F0,1(t) 6= 0, we let degF0,1(t) = K, and assume that

F0,1(t) =
K∑

r=0

art
r, where ar ∈ C and aK 6= 0. (3.10)

If K = 0, then F0,1(t) = a0. By (3.9) with i = 1, we have a0 = α, and thus F0,1(t) = α (6= 0).

If K = 1, then F0,1(t) = a0 + a1t. By (3.9), one can also derive that a0 = α. Redenote a1 by

β, we have F0,1(t) = α + βt. If K ≥ 2, substituting (3.10) into (3.9) with i = 1 and comparing

the coefficients of tK on both sides, we obtain (K2 +K − 2)aK = 0, a contradiction. Hence, in

general, we have F0,1(t) = α + βt. Then, by (3.7), we obtain Fi,1(t) = λi(α − iαβ + βt). This

proves this lemma for the case (α, β) 6= (0, 0).

Let m ≥ 1. Assume that this lemma holds for 0 ≤ k ≤ m− 1, namely,

Fi,k(t) = λiβk−1(kα− iαβ + βt), 0 ≤ k ≤ m− 1. (3.11)

Next, we determine Fi,m(t). Using the same arguments as for the case Fi,1(t), by relations

[L0,m, Li,0] = iLi,m +mLi,m−1, [L−i,0, Li,m] = 2iL0,m −mL0,m−1

and (3.11), one can derive that Fi,m(t) = λi(mαβm−1 − iαbm + bmt) for some bm ∈ C. Then,

applying

[L1,1, L0,m−1] = −L1,m − (m− 2)L1,m−1

on 1, we obtain bm = βm, and thus Fi,m(t) = λiβm−1(mα− iαβ + βt). This completes the proof.

�

3.3 Simplicity and isomorphism classification of W(1)-modules

Next, we determine the simplicity of ΩW(1)(λ, α, β). One will see that although the results are

similar to Lemmas 2.2(1) and (2), the proofs, especially for Theorem 3.5(2), are rather non-trivial.

Theorem 3.5 (1) ΩW(1)(λ, α, β) is simple if and only if α 6= 0.

(2) ΩW(1)(λ, 0, β) has a unique proper submodule tΩW(1)(λ, 0, β) ∼= ΩW(1)(λ, 1, β), and the quo-

tient ΩW(1)(λ, 0, β)/tΩW(1)(λ, 0, β) is a one-dimensional trivial W(1)-module.
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Proof. (1) Let M = ΩW(1)(λ, α, β). If α 6= 0, by viewing M as a Vir-module, from Lemma 2.2(1),

we see that M is simple. If α = 0, one can easily see that tM is a submodule of M .

(2) From definition, one can easily see that tΩW(1)(λ, 0, β) is the unique proper submodule of

ΩW(1)(λ, 0, β). Next, we prove tΩW(1)(λ, 0, β) ∼= ΩW(1)(λ, 1, β) by comparing the actions of W(1)

on these two modules.

First, we consider the action of W(1) on tΩW(1)(λ, 0, β). For k ≥ 0, by (3.1), we have

Li,m · (t · tk) = t




min{m, k+1}∑

s=0

s!

(
m

s

)(
k + 1

s

)
λiβm−s(t− i)k−s+1


 . (3.12)

Next, we consider the action of W(1) on ΩW(1)(λ, 1, β) in two cases. Let k ≥ 0.

Case 1: m ≤ k. In this case, by (3.1), we have

Li,m · tk =

m∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s−1(β(t− i) + (m− s))(t− i)k−s

=
m∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s(t− i)k−s+1 +

m∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s−1(m− s)(t− i)k−s

= λiβm(t− i)k+1 +
m∑

s=1

s!

(
m

s

)(
k

s

)
λiβm−s(t− i)k−s+1

+

m−1∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s−1(m− s)(t− i)k−s

= λiβm(t− i)k+1 +

m∑

s=1

s!

(
m

s

)(
k

s

)
λiβm−s(t− i)k−s+1

+

m∑

s=1

(s− 1)!

(
m

s− 1

)(
k

s− 1

)
λiβm−s(m− s+ 1)(t − i)k−s+1

= λiβm(t− i)k+1 +

m∑

s=1

s!

(
m

s

)(
k

s

)
λiβm−s(t− i)k−s+1

+

m∑

s=1

s!

(
m

s

)(
k

s− 1

)
λiβm−s(t− i)k−s+1

=

m∑

s=0

s!

(
m

s

)(
k + 1

s

)
λiβm−s(t− i)k−s+1.

Here, we have again used the combinatoric formula (1.2) in the last equality.
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Case 2: m > k. Similarly, in this case, we have

Li,m · tk =
k∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s−1(β(t− i) + (m− s))(t− i)k−s

=

k∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s(t− i)k−s+1 +

k∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s−1(m− s)(t− i)k−s

= λiβm(t− i)k+1 +
k∑

s=1

s!

(
m

s

)(
k

s

)
λiβm−s(t− i)k−s+1

+

k−1∑

s=0

s!

(
m

s

)(
k

s

)
λiβm−s−1(m− s)(t− i)k−s + k!

(
m

k

)
λiβm−k−1(m− k)

= λiβm(t− i)k+1 +

k∑

s=1

s!

(
m

s

)(
k

s

)
λiβm−s(t− i)k−s+1

+
k∑

s=1

(s− 1)!

(
m

s− 1

)(
k

s− 1

)
λiβm−s(m− s+ 1)(t − i)k−s+1

+(k + 1)!

(
m

k + 1

)
λiβm−k−1

= λiβm(t− i)k+1 +

k∑

s=1

s!

(
m

s

)(
k

s

)
λiβm−s(t− i)k−s+1

+
k∑

s=1

s!

(
m

s

)(
k

s− 1

)
λiβm−s(t− i)k−s+1 + (k + 1)!

(
m

k + 1

)
λiβm−k−1

=

k+1∑

s=0

s!

(
m

s

)(
k + 1

s

)
λiβm−s(t− i)k−s+1.

Summarizing the above two cases, we have

Li,m · tk =

min{m, k+1}∑

s=0

s!

(
m

s

)(
k + 1

s

)
λiβm−s(t− i)k−s+1. (3.13)

Comparing (3.12) with (3.13), we see that tΩW(1)(λ, 0, β) ∼= ΩW(1)(λ, 1, β).

At last, it is clear that the quotient ΩW(1)(λ, 0, β)/tΩW(1)(λ, 0, β) is a one-dimensional trivial

W(1)-module. This completes the proof. �

The isomorphism classification of ΩW(1)(λ, α, β) is as follows.

Theorem 3.6 ΩW(1)(λ1, α1, β1) ∼= ΩW(1)(λ2, α2, β2) if and only if λ1 = λ2, α1 = α2 and β1 = β2.
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Proof. Suppose that ϕ is a module isomorphism from ΩW(1)(λ1, α1, β1) to ΩW(1)(λ2, α2, β2).

Denote by ϕ−1 the inverse of ϕ. Let f(t) = ϕ−1(1). Since L0,0 · t
k = tk+1, we have

1 = ϕ(f(t)) = ϕ(f(L0,0) · 1) = f(L0,0) · ϕ(1) = f(t)ϕ(1).

Hence, ϕ(1) ∈ C
∗. Computing ϕ(Li,0 · 1), we have

ϕ(Li,0 · 1) = ϕ(λi
1(t− iα1)) = ϕ(λi

1(L0,0 − iα1) · 1) = λi
1(L0,0 − iα1) · ϕ(1) = λi

1(t− iα1)ϕ(1).

On the other hand, we have (note that ϕ(1) ∈ C
∗)

ϕ(Li,0 · 1) = Li,0 · ϕ(1) = λi
2(t− iα2)ϕ(1).

Comparing the above two formulas, we must have λ1 = λ2 and α1 = α2. Similarly, computing

ϕ(Li,1 · 1), one can derive that

λi
1(α1 − iα1β1 + β1t)ϕ(1) = λi

2(α2 − iα2β2 + β2t)ϕ(1),

which implies that β1 = β2. This completes the proof. �

4 Free U(h)-modules of rank one over W(−1)

Recall that h = CL0,0. In this section, we completely classify the free U(h)-modules of rank

one over W(−1). Comparing with Section 3, one will see that the problem becomes more difficult,

especially when determining the actions on 1 (one can compare the following Lemma 4.4 with

Lemma 3.4). Thus we need more technical analysis.

4.1 Construction of free U(h)-modules of rank one over W(−1)

Let λ ∈ C∗ and α, β ∈ C. We define the action of W(−1) on the vector space of polynomials

in one variable
ΩW(−1)(λ, α, β) := C[t]

by

Li,m · tk =
k∑

s=0

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
λiβm+s(t− iα− (m+ s)αβ)(t− i)k−s, (4.1)

where i ∈ Z, m ∈ Z+ and tk ∈ C[t]. It should note here that
(−1

0

)
= 1 and

(
n−1
n

)
= 0 if n > 0.

This guarantees that ΩW(−1)(λ, α, β) is a U(h)-module, which is free of rank one. Similar to

Proposition 3.1, one can further prove that ΩW(−1)(λ, α, β) is a W(−1)-module; the details are

omitted.

Proposition 4.1 The space ΩW(−1)(λ, α, β) is a W(−1)-module under the action (4.1).

11



4.2 Classification of free U(h)-modules of rank one over W(−1)

The following is our second main result, which states that ΩW(−1)(λ, α, β) exhausts all free

U(h)-modules of rank one over W(−1).

Theorem 4.2 Any free U(h)-module of rank one over W(−1) is isomorphic to ΩW(−1)(λ, α, β)

defined by (4.1) for some λ ∈ C
∗ and α, β ∈ C.

Proof. Let M be a free U(h)-module of rank one over W(−1). By viewing M as an Vir-module,

from Lemma 2.1, we may assume that M = C[t] and there exist some λ ∈ C
∗ and α ∈ C such

that the action of Vir ⊆ W(−1) on M is as follows

Li,0 · t
k = λi(t− iα)(t− i)k. (4.2)

We reduce the remaining proof to the following Lemma 4.3 and Lemma 4.4. �

Lemma 4.3 The action of Li,m on tk is a linear combination of the actions of Li,j (m ≤ j ≤

m+ k) on 1, and more precisely we have

Li,m · tk =
k∑

s=0

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
(t− i)k−sLi,m+s · 1. (4.3)

Proof. The proof is similar to that of Lemma 3.3 and is omitted. �

Lemma 4.4 There exists some β ∈ C such that Li,m · 1 = λiβm(t− iα−mαβ).

Proof. Denote Gi,m(t) = Li,m · 1. Since the Lie structure of W(−1) is essentially different from

that of W(1), one cannot prove this lemma by induction on m as in Lemma 3.4. In fact, the

situation becomes more difficult, and thus we need more technical analysis. To simplify the proof,

we shall use the shifted notation Yi,m(t) = λ−iGi,m(t).

Let Ni = deg Yi,1(t), i ∈ Z. Assume that

Yi,1(t) =

Ni∑

r=0

a(i)r tr, where a(i)r ∈ C and a
(i)
Ni

6= 0. (4.4)

Let f(x1, x2, . . . , xn) ∈ C[x1, x2, . . . , xn] be a polynomial in n variables. In the following, we shall

use the notation Coefff(x1,x2,...,xn)x
i
r to denote the coefficient of xir in f(x1, x2, . . . , xn) ∈ C[xr].

In particular, if i = 0, we use it to denote the constant term.

Claim 1 We have Ni = N0 and a
(i)
Ni

= a
(0)
N0

for all i ∈ Z. We shall simply denote N0 by N , and

a
(0)
N0

by aN .

12



Applying

[Lj,1, Li−j,0] = (i− 2j)Li,1 − Li,2, [L−j,0, Lj,1] = 2jL0,1 + L0,2 (4.5)

respectively on 1, by (4.2), we obtain

(t−j − (i−j)α)Yj,1(t)−(t− (i−j)α)Yj,1(t− i+ j)−Yj,2(t) = (i− 2j)Yi,1(t)− Yi,2(t), (4.6)

(t+ jα)Yj,1(t+ j)− (t− j + jα)Yj,1(t) + Yj,2(t) = 2jY0,1(t) + Y0,2(t). (4.7)

Taking j = 0 in (4.6), we have

(t− iα)Y0,1(t)− (t− iα)Y0,1(t− i)− Y0,2(t) = iYi,1(t)− Yi,2(t). (4.8)

Computing (4.6) + (4.7)− (4.8), we obtain

(t+ jα)Yj,1(t+ j) − iαYj,1(t)− (t− (i− j)α)Yj,1(t− i+ j) + 2jYi,1(t)

= (t− iα+ 2j)Y0,1(t)− (t− iα)Y0,1(t− i). (4.9)

Taking j = i in (4.9), we have

(t+ iα)Yi,1(t+ i)− (t+ iα− 2i)Yi,1(t) = (t− iα+ 2i)Y0,1(t)− (t− iα)Y0,1(t− i). (4.10)

Let L1(t) and R1(t) denote respectively the left- and right-hand sides of (4.10). Considering the

coefficients of the highest degree terms, we have

CoeffL1(t)t
Ni = (Ni + 2)ia

(i)
Ni
, CoeffR1(t)t

N0 = (N0 + 2)ia
(0)
N0

.

By (4.10) with i 6= 0, we must have Ni = N0 and a
(i)
Ni

= a
(0)
N0

. Namely, Claim 1 holds.

Claim 2 The situation N ≥ 3 is impossible.

Let N ≥ 3. Taking j = 1 in (4.9), we have

Yi,1(t) =
1

2

(
(t− iα+ 2)Y0,1(t)− (t− iα)Y0,1(t− i)− (t+ α)Y1,1(t+ 1)

+iαY1,1(t) + (t− (i− 1)α)Y1,1(t− i+ 1)
)
. (4.11)

Note that if we substitute (4.11) into (4.9), then we obtain an equation on functions Y0,1 and

Y1,1, and both sides can be viewed as functions on i, j and t. Let L2(i, j, t) and R2(i, j, t) denote

respectively the left- and right-hand sides of (4.9). By Claim 1, a direct computation shows that

there always exist KN−2(i, j),K0(i, j) ∈ C[i, j] such that

CoeffL2(i,j,t)−R2(i,j,t)t
N−2 =

1

2
ijKN−2(i, j),

CoeffL2(i,j,t)−R2(i,j,t)t
0 =

1

2
ijαK0(i, j).

13



By (4.9), we have KN−2(i, j) = 0 if ij 6= 0, and K0(i, j) = 0 if ijα 6= 0. Through a more detailed

analysis, we observe that degKN−2(i, j) ≤ 1 and degK0(i, j) ≤ N − 1. Since one can first fix

i 6= 0 (resp., j 6= 0) and then let j → ∞ (resp., i → ∞), the above two observations imply that

(see Example 4.5 for concrete equations in the case of N = 3)

Case 1: α 6= 0.




CoeffKN−2(i,j)i = 0,

CoeffKN−2(i,j)j = 0,

CoeffK0(i,j)i
N−1 = 0,

CoeffK0(i,j)j
N−1 = 0;

Case 2: α = 0. 



CoeffKN−2(i,j)i
∣∣
α=0

= 0,

CoeffKN−2(i,j)j
∣∣
α=0

= 0.

In both cases, one can derive that aN = 0, which contradicts to our previous assumption (4.4).

Hence, Claim 2 holds.

Claim 3 The situation N = 2 is impossible.

Let N = 2. Recall Claim 1. In this case, we have

Yi,1(t) = a2t
2 + a

(i)
1 t+ a

(i)
0 ,

which is essentially derived from relations (4.5). Similarly, start from relations

[Lj,2, Li−j,0] = (i− 2j)Li,2 − 2Li,3, [L−j,0, Lj,2] = 2jL0,2 + 2L0,3, (4.12)

one can derive that

Yi,2(t) = b2t
2 + b

(i)
1 t+ b

(i)
0 .

By comparing the coefficients of t2 on both sides of (4.8) with i = 1, we can derive that a2 = 0,

a contradiction. Hence, Claim 3 holds.

Claim 4 If N ≤ 1, then Yi,m(t) = βm(t− iα) + γm, where βm, γm ∈ C and β0 = 1, γ0 = 0.

Let N ≤ 1. Recall Claim 1. In this case, we have

Yi,1(t) = a1t+ a
(i)
0 .

By (4.10), we can derive that a
(i)
0 = a

(0)
0 − iαa1. Redenote a1 by β1, and a

(0)
0 by γ1. The above

formula becomes
Yi,1(t) = β1(t− iα) + γ1.
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Generally, start from relations (cf. (4.5) for the case m = 1, and (4.12) for the case m = 2)

[Lj,m, Li−j,0] = (i− 2j)Li,m −mLi,m+1, [L−j,0, Lj,m] = 2jL0,m +mL0,m+1,

one can derive that Yi,m(t) = βm(t − iα) + γm for some βm, γm ∈ C. Finally, from (4.2) we see

that β0 = 1 and γ0 = 0. This completes the proof of Claim 4.

Claim 5 We have βm = βm and γm = −mαβm+1, where β ∈ C.

First, let us determine βm. By Claim 4, applying the relation

[L0,m, L1,n] = L1,m+n + (n −m)L1,m+n+1

on 1, one can obtain an equation on βm and γm. By comparing the coefficients of t on both sides

of this equation, we obtain

βm+n + (n−m)βm+n+1 = βmβn + nβmβn+1 −mβnβm+1.

Recall that β0 = 1 (by Claim 4). By Lemma 2.3, we have βm = βm, where β = β1.

Next, we determine γm. By Claim 4, applying the relation (i 6= 0)

[L0,m, Li,0] = iLi,m −mLi,m+1

on 1, one can easily obtain γm = −mαβm+1. This completes the proof of Claim 5.

Finally, from Claims 1–5 we see that this lemma holds. �

Example 4.5 For the convenience of the reader we explicitly write the systems of equations in

Cases 1 and 2 in Claim 2 under the assumption N = 3. If α 6= 0, the system of equations is





(1 + 2α)
(
2(a

(0)
2 − a

(1)
2 )− 3(1 + α)a

(0)
3

)
= 0,

(1 + 2α)(a
(0)
2 − a

(1)
2 )− (1 + 3α+ 8α2)a

(0)
3 = 0,

2(a
(0)
2 − a

(1)
2 )− 3(1 + α)a

(0)
3 = 0,

(1− α)(a
(0)
2 − a

(1)
2 )− a

(0)
3 = 0;

and if α = 0, the system of equations is




2(a

(0)
2 − a

(1)
2 )− 3a

(0)
3 = 0,

(a
(0)
2 − a

(1)
2 )− a

(0)
3 = 0.

It is straightforward to check that both cases yield a3 = a
(0)
3 = 0.
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4.3 Simplicity and isomorphism classification of W(−1)-modules

Similar to Theorem 3.5, we have the following result on the simplicity of ΩW(−1)(λ, α, β).

Theorem 4.6 (1) ΩW(−1)(λ, α, β) is simple if and only if α 6= 0.

(2) ΩW(−1)(λ, 0, β) has a unique proper submodule tΩW(−1)(λ, 0, β) ∼= ΩW(−1)(λ, 1, β), and the

quotient ΩW(−1)(λ, 0, β)/tΩW(−1)(λ, 0, β) is a one-dimensional trivial W(−1)-module.

Proof. (1) Let M = ΩW(−1)(λ, α, β). If α 6= 0, by viewingM as a Vir-module, from Lemma 2.2(1),

we see that M is simple. If α = 0, one can easily see that tM is a submodule of M .

(2) From definition, one can easily see that tΩW(−1)(λ, 0, β) is the unique proper submodule

of ΩW(−1)(λ, 0, β). Next, we prove tΩW(−1)(λ, 0, β) ∼= ΩW(−1)(λ, 1, β) by comparing the actions

of W(−1) on these two modules.

First, we consider the action of W(−1) on tΩW(−1)(λ, 0, β). For k ≥ 0, by (4.1), we have

Li,m · (t · tk) = t

(
k+1∑

s=0

(−1)ss!

(
m+ s− 1

s

)(
k + 1

s

)
λiβm+s(t− i)k−s+1

)
. (4.13)

Next, we consider the action of W(−1) on ΩW(−1)(λ, 1, β). Let k ≥ 0. By (4.1), we have

Li,m · tk =

k∑

s=0

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
λiβm+s(t− i− (m+ s)β)(t− i)k−s

=
k∑

s=0

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
λiβm+s(t− i)k−s+1

−

k∑

s=0

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
λiβm+s+1(m+ s)(t− i)k−s

= λiβm(t− i)k+1 +

k∑

s=1

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
λiβm+s(t− i)k−s+1

−
k−1∑

s=0

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
λiβm+s+1(m+ s)(t− i)k−s

−(−1)kk!

(
m+ k − 1

k

)
λiβm+k+1(m+ k)
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= λiβm(t− i)k+1 +
k∑

s=1

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
λiβm+s(t− i)k−s+1

+

k∑

s=1

(−1)s(s− 1)!

(
m+ s− 2

s− 1

)(
k

s− 1

)
λiβm+s(m+ s− 1)(t − i)k−s+1

+(−1)k+1(k + 1)!

(
m+ k

k + 1

)
λiβm+k+1

= λiβm(t− i)k+1 +

k∑

s=1

(−1)ss!

(
m+ s− 1

s

)(
k

s

)
λiβm+s(t− i)k−s+1

+
k∑

s=1

(−1)ss!

(
m+ s− 1

s

)(
k

s− 1

)
λiβm+s(t− i)k−s+1

+(−1)k+1(k + 1)!

(
m+ k

k + 1

)
λiβm+k+1

=

k+1∑

s=0

(−1)ss!

(
m+ s− 1

s

)(
k + 1

s

)
λiβm+s(t− i)k−s+1. (4.14)

Comparing (4.13) with (4.14), we see that tΩW(−1)(λ, 0, β) ∼= ΩW(−1)(λ, 1, β).

At last, it is clear that the quotient ΩW(−1)(λ, 0, β)/tΩW(−1)(λ, 0, β) is a one-dimensional

trivial W(−1)-module. This completes the proof. �

Similar to Theorem 3.6, one can also prove the following result on the isomorphism classifica-

tion of ΩW(−1)(λ, α, β); the details are omitted.

Theorem 4.7 ΩW(−1)(λ1, α1, β1) ∼= ΩW(−1)(λ2, α2, β2) if and only if λ1 = λ2, α1 = α2 and

β1 = β2.
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