Representations of not-finitely graded Lie algebras related to Virasoro algebra

Chunguang Xia^{*,†,‡}, Tianyu Ma[†], Xiao Dong[†], Mingjing Zhang[†]

[†]School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

[‡]School of Mathematical Sciences, Xiameng University, Xiameng 361005, China

E-mails: chgxia@cumt.edu.cn, tyma@cumt.edu.cn, xdong@cumt.edu.cn, zhangmj@nju.edu.cn

Abstract. In this paper, we study representations of not-finitely graded Lie algebras $\mathcal{W}(\epsilon)$ related to Virasoro algebra, where $\epsilon = \pm 1$. Precisely speaking, we completely classify the free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(\epsilon)$, and find that these module structures are rather different from those of other graded Lie algebras. We also determine the simplicity and isomorphism classes of these modules.

Key words: Virasoro algebra; not-finitely graded Lie algebras; free $\mathcal{U}(\mathfrak{h})$ -module; simplicity

Mathematics Subject Classification (2020): 17B10; 17B65; 17B68

1 Introduction

It is well-known that the Virasoro algebra, denoted $\widehat{\text{Vir}}$, is an infinite dimensional Lie algebra with basis $\{L_i, c \mid i \in \mathbb{Z}\}$ satisfying

$$[L_i, L_j] = (j-i)L_{i+j} + \delta_{i+j,0} \frac{i^3 - i}{12}c, \quad [L_i, c] = 0.$$

Here c is the center of $\widehat{\text{Vir}}$. We denote by Vir the centerless Virasoro algebra. Clearly, Vir is a \mathbb{Z} -graded Lie algebra with Cartan subalgebra $\mathfrak{h}_{\text{Vir}} = \mathbb{C}L_0$. The representation theories of $\widehat{\text{Vir}}$ and Vir have been extensively and deeply studied due to its importance in mathematics and physics, see, e.g., the survey in [9]. One of the most important work in weigh module theory is the well-known Mathieu's theorem [13] on classification of Harish-Chandra modules, which was conjectured earlier by Kac [10].

Recently, an interesting non-weight module problem for a Lie algebra \mathfrak{g} , defined by an "opposite condition" relative to weight modules, was proposed by Nilsson [14, 15]. Let \mathfrak{h} be the Cartan subalgebra of \mathfrak{g} . Denote by $\mathcal{U}(\mathfrak{h})$ the universal enveloping algebra of \mathfrak{h} . This kind of non-weight modules, referred to as *free* $\mathcal{U}(\mathfrak{h})$ -modules since the action of \mathfrak{h} is required to be free, was constructed first for \mathfrak{sl}_n by Nilsson [14] and independently by Tan and Zhao [22]. In another paper, Tan and Zhao [21] proved that any free $\mathcal{U}(\mathfrak{h}_{Vir})$ -module of rank one over Vir is isomorphic to $\Omega_{Vir}(\lambda, \alpha)$ (cf. (2.1)) for some $\lambda \in \mathbb{C}^*$ and $\alpha \in \mathbb{C}$. Following [14, 15, 21, 22], free $\mathcal{U}(\mathfrak{h})$ -modules, especially for finitely graded Lie algebras containing Virasoro subalgebra, have been extensively

^{*}Corresponding author: chgxia@cumt.edu.cn (C. Xia).

studied in recent years, see, e.g., [1-3, 7, 8, 24] and the references therein. It has been realized that interesting free $\mathcal{U}(\mathfrak{h})$ -module results will appear under the assumption that \mathfrak{h} is not a Cartan subalgebra (e.g., [1, 7, 16]). The latest work in this direction is Nilsson's work [16], where he chose \mathfrak{h} to be the nilradical of a maximal parabolic subalgebra of \mathfrak{sl}_n .

Let $\epsilon = \pm 1$. In this paper, we focus on a class of not-finitely graded Lie algebras $\mathcal{W}(\epsilon)$ with basis $\{L_{i,m} \mid i \in \mathbb{Z}, m \in \mathbb{Z}_+\}$ and relations

$$[L_{i,m}, L_{j,n}] = (j-i)L_{i+j,m+n} + \epsilon(m-n)L_{i+j,m+n-\epsilon}.$$
(1.1)

Note that the subspace spanned by $\{L_{i,0} \in \mathcal{W}(\epsilon) \mid i \in \mathbb{Z}\}$ is isomorphic to the centerless Virasoro algebra Vir. For simplicity, we refer to $\mathcal{W}(\epsilon)$ as not-finitely graded Virasoro algebras. The case for $\epsilon = 1$ was first constructed in [20, 25] as the simple Lie algebra $W(0, 1, 0; \mathbb{Z})$ of Witt type. The case for $\epsilon = -1$ was naturally realized in [4] as the non-simple Lie algebra $W(\mathbb{Z})$ consisting of smooth function $L_{i,m} := -(1+t)^{-m}e^{-it} \in C^{\infty}_{[0,+\infty)}$ under bracket [f,g] = fg' - f'g for $f,g \in W(\mathbb{Z})$.

For not-finitely graded Lie algebras with Virasoro subalgebra, motivated by Mathieu's work [13], it is natural to consider the classification of the so-called quasifinite modules, such as the W-infinity algebra $\mathcal{W}_{1+\infty}$ [11], Lie algebras of Weyl type [17], Lie algebras of Block type [18, 19] and so on. However, for the Lie algebra $\mathcal{W}(\epsilon)$, although it admits a natural principal \mathbb{Z} -gradation $\mathcal{W}(\epsilon) = \bigoplus_{i \in \mathbb{Z}} \mathcal{W}(\epsilon)_i$ with $\mathcal{W}(\epsilon)_i = \operatorname{span}\{L_{i,m} \mid m \in \mathbb{Z}_+\}$, the zero-graded part $\mathcal{W}(\epsilon)_0$ is not a commutative subalgebra and more worse it does not contain Cartan subalgebra. This leads to that one cannot cope with the quasifinite modules over $\mathcal{W}(\epsilon)$. Fortunately, in this paper, we find that one can develop the representation theory of $\mathcal{W}(\epsilon)$ by studying free $\mathcal{U}(\mathfrak{h})$ -modules with $\mathfrak{h} = \mathbb{C}L_{0,0}$ (although it is not a Cartan subalgebra). To best of our knowledge, up to now, there are few work on free $\mathcal{U}(\mathfrak{h})$ -modules over not-finitely graded Lie algebras, see [5, 6, 23] for some attempt on loop Virasoro algebra and some Lie algebras of Block type.

We surprisingly find that the module structures of $\mathcal{W}(\epsilon)$ are much more complicated than that of the Virasoro algebra [21], and rather different from those of other not-finitely graded Lie algebras [5, 6, 23]. Our first main result for $\mathcal{W}(1)$ is Theorem 3.2, in the proof of which the following combinatoric formula: for m < n,

$$\binom{n-1}{m} + \binom{n-1}{m-1} = \binom{n}{m}$$
(1.2)

will be used frequently. Our second main result for $\mathcal{W}(-1)$ is Theorem 4.2, for which we need more technical analysis. We also would like to point out that our techniques used here may be applied to analogous problems of not-finitely graded Lie algebras which are closely related to $\mathcal{W}(\epsilon)$. This is also our motivation for writing this paper.

This paper is organized as follows. In Section 2, we recall the classification of free $\mathcal{U}(\mathfrak{h}_{Vir})$ modules of rank one over Vir, and present an elementary result on a number sequence. In Sections
3 and 4, we classify the free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(1)$ and $\mathcal{W}(-1)$, respectively. Along
the way, we also determine the simplicity and isomorphism classes of these modules.

2 Preliminaries

Throughout this paper, we use \mathbb{Z} , \mathbb{Z}_+ , \mathbb{C} and \mathbb{C}^* to denote the sets of integers, nonnegative integers, complex numbers and nonzero complex numbers, respectively. We work over the complex field \mathbb{C} . In this section, we recall the classification of the free $\mathcal{U}(\mathfrak{h}_{Vir})$ -modules of rank one over the centerless Virasoro algebra Vir. We also present an elementary result on a number sequence, which will be used in Section 4.

2.1 Free $\mathcal{U}(\mathfrak{h}_{Vir})$ -modules of rank one over Vir

Recall that $\mathfrak{h}_{Vir} = \mathbb{C}L_0$ is the Cartan subalgebra of Vir. Let $\lambda \in \mathbb{C}^*$ and $\alpha \in \mathbb{C}$. If we define the action of Vir on the vector space of polynomials in one variable

$$\Omega_{\rm Vir}(\lambda,\alpha) := \mathbb{C}[t]$$

by

$$L_i \cdot f(t) = \lambda^i (t - i\alpha) f(t - i), \qquad (2.1)$$

where $i \in \mathbb{Z}$, $f(t) \in \mathbb{C}[t]$, then $\Omega_{\text{Vir}}(\lambda, \alpha)$ becomes a Vir-module. Equivalently, we can rewrite (2.1) in a more simple form by restricting the action of L_i on monomials:

$$L_i \cdot t^k = \lambda^i (t - i\alpha)(t - i)^k.$$
(2.2)

These modules firstly appeared in [12] as quotient modules of fraction Virasoro modules. From (2.2), we see that $\Omega_{\text{Vir}}(\lambda, \alpha)$ is free of rank one when restricted to $\mathfrak{h}_{\text{Vir}}$. In fact, we have the following classification result [21].

Lemma 2.1 Any free $\mathcal{U}(\mathfrak{h}_{Vir})$ -module of rank one over Vir is isomorphic to $\Omega_{Vir}(\lambda, \alpha)$ defined by (2.2) for some $\lambda \in \mathbb{C}^*$ and $\alpha \in \mathbb{C}$.

The simplicity and isomorphism classification of $\Omega_{\rm Vir}(\lambda, \alpha)$ are as follows [21].

Lemma 2.2 (1) $\Omega_{\text{Vir}}(\lambda, \alpha)$ is simple if and only if $\alpha \neq 0$.

- (2) $\Omega_{\text{Vir}}(\lambda, 0)$ has a unique proper submodule $t\Omega_{\text{Vir}}(\lambda, 0) \cong \Omega_{\text{Vir}}(\lambda, 1)$, and $\Omega_{\text{Vir}}(\lambda, 0)/t\Omega_{\text{Vir}}(\lambda, 0)$ is a one-dimensional trivial Vir-module.
- (3) $\Omega_{\text{Vir}}(\lambda_1, \alpha_1) \cong \Omega_{\text{Vir}}(\lambda_2, \alpha_2)$ if and only if $\lambda_1 = \lambda_2$ and $\alpha_1 = \alpha_2$.

2.2 An elementary result

Lemma 2.3 Let $\{\beta_m \mid m \in \mathbb{Z}_+\}$ be a sequence of complex numbers satisfying $\beta_0 = 1$ and

$$\beta_{m+n} + (n-m)\beta_{m+n+1} = \beta_n\beta_m + n\beta_m\beta_{n+1} - m\beta_n\beta_{m+1}.$$
(2.3)

Then $\beta_m = \beta^m$, where $\beta = \beta_1$.

Proof. We prove this lemma by induction on m. First, the cases for m = 0, 1 are clear. Taking (m, n) = (1, 1) in (2.3), we immediately see that $\beta_2 = \beta_1^2$. Then, taking (m, n) = (1, 2) and (2, 1) respectively in (2.3), we have

$$\beta_3 + \beta_4 = \beta_1^3 + 2\beta_1\beta_3 - \beta_2^2, \beta_3 - \beta_4 = \beta_1^3 + \beta_2^2 - 2\beta_1\beta_3.$$

Adding the above two equations, we see that $\beta_3 = \beta_1^3$.

Let $m \ge 4$. Assume that the lemma holds for $k \le m-1$. Namely, we assume $\beta_k = \beta_1^k$ for $k \le m-1$. Next, we consider the case for m. Taking $(m, n) \to (m-2, 1)$ in (2.3), we have

$$\beta_{m-1} + (3-m)\beta_m = \beta_1\beta_{m-2} + \beta_{m-2}\beta_2 - (m-2)\beta_1\beta_{m-1}.$$

A direct computation shows that $\beta_m = \beta_1^m$. This completes the proof.

3 Free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(1)$

Note that the Lie algebra $\mathcal{W}(1)$ is $\mathbb{Z} \times \mathbb{Z}_+$ -graded, and recall that $\mathfrak{h} = \mathbb{C}L_{0,0}$ is the (0,0)-graded part. In this section, we completely classify the free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(1)$.

3.1 Construction of free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(1)$

Let $\lambda \in \mathbb{C}^*$ and $\alpha, \beta \in \mathbb{C}$. Define the action of $\mathcal{W}(1)$ on the vector space of polynomials in one variable

$$\Omega_{\mathcal{W}(1)}(\lambda,\alpha,\beta) := \mathbb{C}[t]$$

by

$$L_{i,m} \cdot t^k = \sum_{s=0}^{\min\{m,k\}} s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s-1} ((m-s)\alpha - i\alpha\beta + \beta t)(t-i)^{k-s}, \tag{3.1}$$

where $i \in \mathbb{Z}, m \in \mathbb{Z}_+$ and $t^k \in \mathbb{C}[t]$. It is important to note here that we allow $\beta = 0$: if $\beta = 0$ and s = m in the sum of (3.1), although $\beta^{m-s-1} = \beta^{-1}$ formally appears, we view

$$\beta^{m-s-1}((m-s)\alpha - i\alpha\beta + \beta t) = t - i\alpha$$

as a whole, and thus (3.1) still make sense. Note further that if we take i = m = 0 in (3.1), then we have $L_{0,0} \cdot t^k = t^{k+1}$. Hence, $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$ is a $\mathcal{U}(\mathfrak{h})$ -module, which is free of rank one. Furthermore, we find that $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$ is in fact a $\mathcal{W}(1)$ -module.

Proposition 3.1 The space $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$ is a $\mathcal{W}(1)$ -module under the action (3.1).

Proof. Taking k = 0 in (3.1), we have

$$L_{i,m} \cdot 1 = \lambda^{i} \beta^{m-1} (m\alpha - i\alpha\beta + \beta t).$$
(3.2)

By (3.2), we can rewrite (3.1) as

$$L_{i,m} \cdot t^{k} = \sum_{s=0}^{\min\{m,k\}} s! \binom{m}{s} \binom{k}{s} (t-i)^{k-s} L_{i,m-s} \cdot 1.$$
(3.3)

This in particular implies that the action of $L_{i,m}$ on the base element t^k of $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$ is a linear combination of the actions of $L_{i,j}$ $(m - \min\{m, k\} \leq j \leq m)$ on 1. Hence, to prove this proposition, we only need to check the action of $L_{i,m}$ on 1. In fact, on the one hand, by (1.1) and (3.2), we have

$$\frac{1}{\lambda^{i+j}} [L_{i,m}, L_{j,n}] \cdot 1 = \frac{1}{\lambda^{i+j}} (j-i) L_{i+j,m+n} \cdot 1 + \frac{1}{\lambda^{i+j}} (m-n) L_{i+j,m+n-1} \cdot 1$$
$$= (i^2 - j^2) \alpha \beta^{m+n} + (2nj - 2mi) \alpha \beta^{m+n-1} + (m^2 - m - n^2 + n) \alpha \beta^{m+n-2}$$
$$+ (j-i) \beta^{m+n} t + (m-n) \beta^{m+n-1} t.$$

On the other hand, we have

$$\frac{1}{\lambda^{i+j}}L_{i,m} \cdot L_{j,n} \cdot 1 = \frac{1}{\lambda^{i}}L_{i,m} \cdot (n\alpha\beta^{n-1} - j\alpha\beta^{n} + \beta^{n}t)$$

= $ij\alpha^{2}\beta^{m+n} - (mj+ni)\alpha^{2}\beta^{m+n-1} + mn\alpha^{2}\beta^{m+n-2} + i^{2}\alpha\beta^{m+n}$
 $-2mi\alpha\beta^{m+n-1} + m(m-1)\alpha\beta^{m+n-2} - (i+j)\alpha\beta^{m+n}t$
 $+(n+m)\alpha\beta^{m+n-1}t - i\beta^{m+n}t + m\beta^{m+n-1}t + \beta^{m+n}t^{2},$

and thus

$$\frac{1}{\lambda^{i+j}}(L_{i,m} \cdot L_{j,n} \cdot 1 - L_{j,n} \cdot L_{i,m} \cdot 1) = (i^2 - j^2)\alpha\beta^{m+n} + (2nj - 2mi)\alpha\beta^{m+n-1} + (m^2 - m - n^2 + n)\alpha\beta^{m+n-2} + (j-i)\beta^{m+n}t + (m-n)\beta^{m+n-1}t.$$

Hence we have $[L_{i,m}, L_{j,n}] \cdot 1 = L_{i,m} \cdot L_{j,n} \cdot 1 - L_{j,n} \cdot L_{i,m} \cdot 1$. This completes the proof.

3.2 Classification of free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(1)$

Now we show that $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$ constructed in (3.1) in fact exhaust all free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(1)$. This is our first main result.

Theorem 3.2 Any free $\mathcal{U}(\mathfrak{h})$ -module of rank one over $\mathcal{W}(1)$ is isomorphic to $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$ defined by (3.1) for some $\lambda \in \mathbb{C}^*$ and $\alpha, \beta \in \mathbb{C}$.

Proof. Let M be a free $\mathcal{U}(\mathfrak{h})$ -module of rank one over $\mathcal{W}(1)$. By viewing M as a Vir-module, from Lemma 2.1, we may assume that $M = \mathbb{C}[t]$ and there exist some $\lambda \in \mathbb{C}^*$ and $\alpha \in \mathbb{C}$ such that the action of Vir $\subseteq \mathcal{W}(1)$ on M is as follows

$$L_{i,0} \cdot t^k = \lambda^i (t - i\alpha)(t - i)^k.$$
(3.4)

We reduce the remaining proof to the following Lemma 3.3 and Lemma 3.4.

Lemma 3.3 The action of $L_{i,m}$ on t^k is a linear combination of the actions of $L_{i,j}$ $(m - \min\{m,k\} \le j \le m)$ on 1, and more precisely we have (cf. (3.3))

$$L_{i,m} \cdot t^{k} = \sum_{s=0}^{\min\{m,k\}} s! \binom{m}{s} \binom{k}{s} (t-i)^{k-s} L_{i,m-s} \cdot 1.$$
(3.5)

Proof. We shall prove (3.5) by induction on k. First, by (1.1), we have

$$L_{i,m} \cdot t = L_{i,m} \cdot L_{0,0} \cdot 1 = (t-i)L_{i,m} \cdot 1 + mL_{i,m-1} \cdot 1,$$

which implies that (3.5) holds for k = 1. Let $k \ge 2$. Assume that (3.5) holds for k - 1, namely we have

$$L_{i,m} \cdot t^{k-1} = \sum_{s=0}^{\min\{m, k-1\}} s! \binom{m}{s} \binom{k-1}{s} (t-i)^{k-s-1} L_{i,m-s} \cdot 1.$$
(3.6)

Next, we prove that (3.5) holds for k in two cases.

Case 1: m < k. In this case, by (3.6), we have

$$\begin{split} L_{i,m} \cdot t^k &= L_{i,m} \cdot L_{0,0} \cdot t^{k-1} = (t-i)L_{i,m} \cdot t^{k-1} + mL_{i,m-1} \cdot t^{k-1} \\ &= (t-i) \sum_{s=0}^{\min\{m, k-1\}} s! \binom{m}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s} \cdot 1 \\ &+ m \sum_{s=0}^{\min\{m-1, k-1\}} s! \binom{m-1}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s-1} \cdot 1 \\ &= (t-i)^k L_{i,m} \cdot 1 + \sum_{s=1}^m s! \binom{m}{s} \binom{k-1}{s} (t-i)^{k-s}L_{i,m-s} \cdot 1 \\ &+ m \sum_{s=0}^{m-1} s! \binom{m-1}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s-1} \cdot 1 \\ &= (t-i)^k L_{i,m} \cdot 1 + \sum_{s=1}^m s! \binom{m}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s-1} \cdot 1 \\ &= (t-i)^k L_{i,m} \cdot 1 + \sum_{s=1}^m s! \binom{m}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s-1} \cdot 1 \\ &= \sum_{s=0}^m s! \binom{m}{s} \binom{k-1}{s-1} (t-i)^{k-s}L_{i,m-s} \cdot 1 \\ &= \sum_{s=0}^m s! \binom{m}{s} \binom{k}{s} (t-i)^{k-s}L_{i,m-s} \cdot 1. \end{split}$$

Here we have used the combinatoric formula (cf. (1.2))

$$\binom{k-1}{s} + \binom{k-1}{s-1} = \binom{k}{s}$$

in the last equality.

Case 2: $m \ge k$. Similarly, in this case, we have

$$\begin{split} L_{i,m} \cdot t^k &= L_{i,m} \cdot L_{0,0} \cdot t^{k-1} = (t-i)L_{i,m} \cdot t^{k-1} + mL_{i,m-1} \cdot t^{k-1} \\ &= (t-i) \sum_{s=0}^{\min\{m,k-1\}} s! \binom{m}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s} \cdot 1 \\ &+ m \sum_{s=0}^{\min\{m-1,k-1\}} s! \binom{m-1}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s-1} \cdot 1 \\ &= (t-i)^k L_{i,m} \cdot 1 + \sum_{s=1}^{k-1} s! \binom{m}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s} \cdot 1 \\ &+ m \sum_{s=0}^{k-2} s! \binom{m-1}{s} \binom{k-1}{s} (t-i)^{k-s-1}L_{i,m-s-1} \cdot 1 + m(k-1)! \binom{m-1}{k-1}L_{i,m-k} \cdot 1 \\ &= (t-i)^k L_{i,m} \cdot 1 + \sum_{s=1}^{k-1} s! \binom{m}{s} \binom{k-1}{s} (t-i)^{k-s}L_{i,m-s} \cdot 1 \\ &+ \sum_{s=1}^{k-1} s! \binom{m}{s} \binom{k-1}{s-1} (t-i)^{k-s}L_{i,m-s} \cdot 1 + m(k-1)! \binom{m-1}{k-1}L_{i,m-k} \cdot 1 \\ &= \sum_{s=0}^k s! \binom{m}{s} \binom{k}{s} (t-i)^{k-s}L_{i,m-s} \cdot 1. \end{split}$$

This completes the proof.

Lemma 3.4 There exists some $\beta \in \mathbb{C}$ such that $L_{i,m} \cdot 1 = \lambda^i \beta^{m-1} (m\alpha - i\alpha\beta + \beta t)$.

Proof. Denote $F_{i,m}(t) = L_{i,m} \cdot 1$. We determine $F_{i,m}(t)$ by induction on m.

The case for m = 0 has been given by (3.4) with k = 0 (note that, as before, if $m = \beta = 0$ in this lemma, we have viewed $\beta^{-1}(m\alpha - i\alpha\beta + \beta t) = t - i\alpha$ as a whole).

Let us first determine $F_{i,1}(t)$. Applying

$$[L_{0,1}, L_{i,0}] = iL_{i,1} + L_{i,0}, \quad [L_{-i,0}, L_{i,1}] = 2iL_{0,1} - L_{0,0}$$

respectively on 1, by (3.4), we obtain

$$iF_{i,1}(t) = \lambda^{i}(t - i\alpha)F_{0,1}(t) - \lambda^{i}(t - i\alpha)F_{0,1}(t - i) + \lambda^{i}i\alpha, \qquad (3.7)$$

$$2iF_{0,1}(t) = \lambda^{-i}(t+i\alpha)F_{i,1}(t+i) - \lambda^{-i}(t+i\alpha-i)F_{i,1}(t) + i\alpha.$$
(3.8)

Multiplying (3.8) by *i*, and then using the relation (3.7), we can derive that

$$2i^{2}\alpha = 2(t^{2} - i^{2}\alpha^{2} + i^{2}\alpha + i^{2})F_{0,1}(t) - (t^{2} + it - i^{2}\alpha^{2} + i^{2}\alpha)F_{0,1}(t+i) - (t^{2} - it - i^{2}\alpha^{2} + i^{2}\alpha)F_{0,1}(t-i).$$
(3.9)

If $F_{0,1}(t) = 0$, then by (3.7) and (3.9), we see that $F_{i,1}(t) = 0$ for all $i \in \mathbb{Z}$. This proves this lemma for the case $(\alpha, \beta) = (0, 0)$. If $F_{0,1}(t) \neq 0$, we let deg $F_{0,1}(t) = K$, and assume that

$$F_{0,1}(t) = \sum_{r=0}^{K} a_r t^r, \quad \text{where} \quad a_r \in \mathbb{C} \text{ and } a_K \neq 0.$$
(3.10)

If K = 0, then $F_{0,1}(t) = a_0$. By (3.9) with i = 1, we have $a_0 = \alpha$, and thus $F_{0,1}(t) = \alpha \ (\neq 0)$. If K = 1, then $F_{0,1}(t) = a_0 + a_1 t$. By (3.9), one can also derive that $a_0 = \alpha$. Redenote a_1 by β , we have $F_{0,1}(t) = \alpha + \beta t$. If $K \ge 2$, substituting (3.10) into (3.9) with i = 1 and comparing the coefficients of t^K on both sides, we obtain $(K^2 + K - 2)a_K = 0$, a contradiction. Hence, in general, we have $F_{0,1}(t) = \alpha + \beta t$. Then, by (3.7), we obtain $F_{i,1}(t) = \lambda^i (\alpha - i\alpha\beta + \beta t)$. This proves this lemma for the case $(\alpha, \beta) \neq (0, 0)$.

Let $m \ge 1$. Assume that this lemma holds for $0 \le k \le m - 1$, namely,

$$F_{i,k}(t) = \lambda^i \beta^{k-1} (k\alpha - i\alpha\beta + \beta t), \ 0 \le k \le m - 1.$$
(3.11)

Next, we determine $F_{i,m}(t)$. Using the same arguments as for the case $F_{i,1}(t)$, by relations

$$[L_{0,m}, L_{i,0}] = iL_{i,m} + mL_{i,m-1}, \quad [L_{-i,0}, L_{i,m}] = 2iL_{0,m} - mL_{0,m-1}$$

and (3.11), one can derive that $F_{i,m}(t) = \lambda^i (m\alpha\beta^{m-1} - i\alpha b_m + b_m t)$ for some $b_m \in \mathbb{C}$. Then, applying

$$[L_{1,1}, L_{0,m-1}] = -L_{1,m} - (m-2)L_{1,m-1}$$

on 1, we obtain $b_m = \beta^m$, and thus $F_{i,m}(t) = \lambda^i \beta^{m-1} (m\alpha - i\alpha\beta + \beta t)$. This completes the proof. \Box

3.3 Simplicity and isomorphism classification of $\mathcal{W}(1)$ -modules

Next, we determine the simplicity of $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$. One will see that although the results are similar to Lemmas 2.2(1) and (2), the proofs, especially for Theorem 3.5(2), are rather non-trivial.

Theorem 3.5 (1) $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$ is simple if and only if $\alpha \neq 0$.

(2) $\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta)$ has a unique proper submodule $t\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta) \cong \Omega_{\mathcal{W}(1)}(\lambda, 1, \beta)$, and the quotient $\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta)/t\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta)$ is a one-dimensional trivial $\mathcal{W}(1)$ -module. *Proof.* (1) Let $M = \Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$. If $\alpha \neq 0$, by viewing M as a Vir-module, from Lemma 2.2(1), we see that M is simple. If $\alpha = 0$, one can easily see that tM is a submodule of M.

(2) From definition, one can easily see that $t\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta)$ is the unique proper submodule of $\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta)$. Next, we prove $t\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta) \cong \Omega_{\mathcal{W}(1)}(\lambda, 1, \beta)$ by comparing the actions of $\mathcal{W}(1)$ on these two modules.

First, we consider the action of $\mathcal{W}(1)$ on $t\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta)$. For $k \ge 0$, by (3.1), we have

$$L_{i,m} \cdot (t \cdot t^k) = t \left(\sum_{s=0}^{\min\{m, k+1\}} s! \binom{m}{s} \binom{k+1}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \right).$$
(3.12)

Next, we consider the action of $\mathcal{W}(1)$ on $\Omega_{\mathcal{W}(1)}(\lambda, 1, \beta)$ in two cases. Let $k \geq 0$.

Case 1: $m \leq k$. In this case, by (3.1), we have

$$\begin{split} L_{i,m} \cdot t^k &= \sum_{s=0}^m s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s-1} (\beta(t-i) + (m-s))(t-i)^{k-s} \\ &= \sum_{s=0}^m s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} + \sum_{s=0}^m s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s-1} (m-s)(t-i)^{k-s} \\ &= \lambda^i \beta^m (t-i)^{k+1} + \sum_{s=1}^m s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \\ &+ \sum_{s=0}^{m-1} s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s-1} (m-s)(t-i)^{k-s} \\ &= \lambda^i \beta^m (t-i)^{k+1} + \sum_{s=1}^m s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \\ &+ \sum_{s=1}^m (s-1)! \binom{m}{s-1} \binom{k}{s-1} \lambda^i \beta^{m-s} (m-s+1)(t-i)^{k-s+1} \\ &= \lambda^i \beta^m (t-i)^{k+1} + \sum_{s=1}^m s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \\ &+ \sum_{s=1}^m s! \binom{m}{s} \binom{k}{s-1} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \\ &+ \sum_{s=1}^m s! \binom{m}{s} \binom{k}{s-1} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \\ &= \sum_{s=0}^m s! \binom{m}{s} \binom{k+1}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1}. \end{split}$$

Here, we have again used the combinatoric formula (1.2) in the last equality.

Case 2: m > k. Similarly, in this case, we have

$$\begin{split} L_{i,m} \cdot t^k &= \sum_{s=0}^k s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s-1} (\beta(t-i) + (m-s))(t-i)^{k-s} \\ &= \sum_{s=0}^k s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} + \sum_{s=0}^k s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s-1} (m-s)(t-i)^{k-s} \\ &= \lambda^i \beta^m (t-i)^{k+1} + \sum_{s=1}^k s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \\ &+ \sum_{s=0}^{k-1} s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s-1} (m-s)(t-i)^{k-s} + k! \binom{m}{k} \lambda^i \beta^{m-k-1} (m-k) \\ &= \lambda^i \beta^m (t-i)^{k+1} + \sum_{s=1}^k s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \\ &+ \sum_{s=1}^k (s-1)! \binom{m}{s-1} \binom{k}{s-1} \lambda^i \beta^{m-s} (m-s+1)(t-i)^{k-s+1} \\ &+ (k+1)! \binom{m}{k+1} \lambda^i \beta^{m-k-1} \\ &= \lambda^i \beta^m (t-i)^{k+1} + \sum_{s=1}^k s! \binom{m}{s} \binom{k}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} \\ &+ \sum_{s=1}^k s! \binom{m}{s} \binom{k}{s-1} \lambda^i \beta^{m-s} (t-i)^{k-s+1} + (k+1)! \binom{m}{k+1} \lambda^i \beta^{m-k-1} \\ &= \sum_{s=0}^{k+1} s! \binom{m}{s} \binom{k+1}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} + (k+1)! \binom{m}{k+1} \lambda^i \beta^{m-k-1} \\ &= \sum_{s=0}^{k+1} s! \binom{m}{s} \binom{k+1}{s} \lambda^i \beta^{m-s} (t-i)^{k-s+1} . \end{split}$$

Summarizing the above two cases, we have

$$L_{i,m} \cdot t^{k} = \sum_{s=0}^{\min\{m, k+1\}} s! \binom{m}{s} \binom{k+1}{s} \lambda^{i} \beta^{m-s} (t-i)^{k-s+1}.$$
 (3.13)

Comparing (3.12) with (3.13), we see that $t\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta) \cong \Omega_{\mathcal{W}(1)}(\lambda, 1, \beta)$.

At last, it is clear that the quotient $\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta)/t\Omega_{\mathcal{W}(1)}(\lambda, 0, \beta)$ is a one-dimensional trivial $\mathcal{W}(1)$ -module. This completes the proof.

The isomorphism classification of $\Omega_{\mathcal{W}(1)}(\lambda, \alpha, \beta)$ is as follows.

Theorem 3.6 $\Omega_{\mathcal{W}(1)}(\lambda_1, \alpha_1, \beta_1) \cong \Omega_{\mathcal{W}(1)}(\lambda_2, \alpha_2, \beta_2)$ if and only if $\lambda_1 = \lambda_2$, $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$.

Proof. Suppose that φ is a module isomorphism from $\Omega_{\mathcal{W}(1)}(\lambda_1, \alpha_1, \beta_1)$ to $\Omega_{\mathcal{W}(1)}(\lambda_2, \alpha_2, \beta_2)$. Denote by φ^{-1} the inverse of φ . Let $f(t) = \varphi^{-1}(1)$. Since $L_{0,0} \cdot t^k = t^{k+1}$, we have

$$1 = \varphi(f(t)) = \varphi(f(L_{0,0}) \cdot 1) = f(L_{0,0}) \cdot \varphi(1) = f(t)\varphi(1).$$

Hence, $\varphi(1) \in \mathbb{C}^*$. Computing $\varphi(L_{i,0} \cdot 1)$, we have

$$\varphi(L_{i,0} \cdot 1) = \varphi(\lambda_1^i(t - i\alpha_1)) = \varphi(\lambda_1^i(L_{0,0} - i\alpha_1) \cdot 1) = \lambda_1^i(L_{0,0} - i\alpha_1) \cdot \varphi(1) = \lambda_1^i(t - i\alpha_1)\varphi(1).$$

On the other hand, we have (note that $\varphi(1) \in \mathbb{C}^*$)

$$\varphi(L_{i,0} \cdot 1) = L_{i,0} \cdot \varphi(1) = \lambda_2^i (t - i\alpha_2)\varphi(1).$$

Comparing the above two formulas, we must have $\lambda_1 = \lambda_2$ and $\alpha_1 = \alpha_2$. Similarly, computing $\varphi(L_{i,1} \cdot 1)$, one can derive that

$$\lambda_1^i(\alpha_1 - i\alpha_1\beta_1 + \beta_1 t)\varphi(1) = \lambda_2^i(\alpha_2 - i\alpha_2\beta_2 + \beta_2 t)\varphi(1),$$

which implies that $\beta_1 = \beta_2$. This completes the proof.

4 Free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(-1)$

Recall that $\mathfrak{h} = \mathbb{C}L_{0,0}$. In this section, we completely classify the free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(-1)$. Comparing with Section 3, one will see that the problem becomes more difficult, especially when determining the actions on 1 (one can compare the following Lemma 4.4 with Lemma 3.4). Thus we need more technical analysis.

4.1 Construction of free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(-1)$

Let $\lambda \in \mathbb{C}^*$ and $\alpha, \beta \in \mathbb{C}$. We define the action of $\mathcal{W}(-1)$ on the vector space of polynomials in one variable

$$\Omega_{\mathcal{W}(-1)}(\lambda,\alpha,\beta) := \mathbb{C}[t]$$

by

$$L_{i,m} \cdot t^{k} = \sum_{s=0}^{k} (-1)^{s} s! \binom{m+s-1}{s} \binom{k}{s} \lambda^{i} \beta^{m+s} (t-i\alpha - (m+s)\alpha\beta) (t-i)^{k-s},$$
(4.1)

where $i \in \mathbb{Z}$, $m \in \mathbb{Z}_+$ and $t^k \in \mathbb{C}[t]$. It should note here that $\binom{-1}{0} = 1$ and $\binom{n-1}{n} = 0$ if n > 0. This guarantees that $\Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$ is a $\mathcal{U}(\mathfrak{h})$ -module, which is free of rank one. Similar to Proposition 3.1, one can further prove that $\Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$ is a $\mathcal{W}(-1)$ -module; the details are omitted.

Proposition 4.1 The space $\Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$ is a $\mathcal{W}(-1)$ -module under the action (4.1).

4.2 Classification of free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(-1)$

The following is our second main result, which states that $\Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$ exhausts all free $\mathcal{U}(\mathfrak{h})$ -modules of rank one over $\mathcal{W}(-1)$.

Theorem 4.2 Any free $\mathcal{U}(\mathfrak{h})$ -module of rank one over $\mathcal{W}(-1)$ is isomorphic to $\Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$ defined by (4.1) for some $\lambda \in \mathbb{C}^*$ and $\alpha, \beta \in \mathbb{C}$.

Proof. Let M be a free $\mathcal{U}(\mathfrak{h})$ -module of rank one over $\mathcal{W}(-1)$. By viewing M as an Vir-module, from Lemma 2.1, we may assume that $M = \mathbb{C}[t]$ and there exist some $\lambda \in \mathbb{C}^*$ and $\alpha \in \mathbb{C}$ such that the action of Vir $\subseteq \mathcal{W}(-1)$ on M is as follows

$$L_{i,0} \cdot t^k = \lambda^i (t - i\alpha)(t - i)^k.$$

$$(4.2)$$

We reduce the remaining proof to the following Lemma 4.3 and Lemma 4.4.

Lemma 4.3 The action of $L_{i,m}$ on t^k is a linear combination of the actions of $L_{i,j}$ $(m \leq j \leq m+k)$ on 1, and more precisely we have

$$L_{i,m} \cdot t^k = \sum_{s=0}^k (-1)^s s! \binom{m+s-1}{s} \binom{k}{s} (t-i)^{k-s} L_{i,m+s} \cdot 1.$$
(4.3)

Proof. The proof is similar to that of Lemma 3.3 and is omitted.

Lemma 4.4 There exists some $\beta \in \mathbb{C}$ such that $L_{i,m} \cdot 1 = \lambda^i \beta^m (t - i\alpha - m\alpha\beta)$.

Proof. Denote $G_{i,m}(t) = L_{i,m} \cdot 1$. Since the Lie structure of $\mathcal{W}(-1)$ is essentially different from that of $\mathcal{W}(1)$, one cannot prove this lemma by induction on m as in Lemma 3.4. In fact, the situation becomes more difficult, and thus we need more technical analysis. To simplify the proof, we shall use the shifted notation $Y_{i,m}(t) = \lambda^{-i} G_{i,m}(t)$.

Let $N_i = \deg Y_{i,1}(t), i \in \mathbb{Z}$. Assume that

$$Y_{i,1}(t) = \sum_{r=0}^{N_i} a_r^{(i)} t^r, \quad \text{where} \ a_r^{(i)} \in \mathbb{C} \text{ and } a_{N_i}^{(i)} \neq 0.$$
(4.4)

Let $f(x_1, x_2, \ldots, x_n) \in \mathbb{C}[x_1, x_2, \ldots, x_n]$ be a polynomial in n variables. In the following, we shall use the notation $\operatorname{Coeff}_{f(x_1, x_2, \ldots, x_n)} x_r^i$ to denote the coefficient of x_r^i in $f(x_1, x_2, \ldots, x_n) \in \mathbb{C}[x_r]$. In particular, if i = 0, we use it to denote the constant term.

Claim 1 We have $N_i = N_0$ and $a_{N_i}^{(i)} = a_{N_0}^{(0)}$ for all $i \in \mathbb{Z}$. We shall simply denote N_0 by N, and $a_{N_0}^{(0)}$ by a_N .

Applying

$$[L_{j,1}, L_{i-j,0}] = (i-2j)L_{i,1} - L_{i,2}, \quad [L_{-j,0}, L_{j,1}] = 2jL_{0,1} + L_{0,2}$$
(4.5)

respectively on 1, by (4.2), we obtain

$$(t-j-(i-j)\alpha)Y_{j,1}(t) - (t-(i-j)\alpha)Y_{j,1}(t-i+j) - Y_{j,2}(t) = (i-2j)Y_{i,1}(t) - Y_{i,2}(t), \quad (4.6)$$
$$(t+j\alpha)Y_{j,1}(t+j) - (t-j+j\alpha)Y_{j,1}(t) + Y_{j,2}(t) = 2jY_{0,1}(t) + Y_{0,2}(t). \quad (4.7)$$

$$(4.7)$$

Taking j = 0 in (4.6), we have

$$(t - i\alpha)Y_{0,1}(t) - (t - i\alpha)Y_{0,1}(t - i) - Y_{0,2}(t) = iY_{i,1}(t) - Y_{i,2}(t).$$

$$(4.8)$$

Computing (4.6) + (4.7) - (4.8), we obtain

$$(t+j\alpha)Y_{j,1}(t+j) - i\alpha Y_{j,1}(t) - (t-(i-j)\alpha)Y_{j,1}(t-i+j) + 2jY_{i,1}(t)$$

= $(t-i\alpha+2j)Y_{0,1}(t) - (t-i\alpha)Y_{0,1}(t-i).$ (4.9)

Taking j = i in (4.9), we have

$$(t+i\alpha)Y_{i,1}(t+i) - (t+i\alpha-2i)Y_{i,1}(t) = (t-i\alpha+2i)Y_{0,1}(t) - (t-i\alpha)Y_{0,1}(t-i).$$
(4.10)

Let $\mathbf{L}_1(t)$ and $\mathbf{R}_1(t)$ denote respectively the left- and right-hand sides of (4.10). Considering the coefficients of the highest degree terms, we have

$$\operatorname{Coeff}_{\mathbf{L}_1(t)} t^{N_i} = (N_i + 2)ia_{N_i}^{(i)}, \quad \operatorname{Coeff}_{\mathbf{R}_1(t)} t^{N_0} = (N_0 + 2)ia_{N_0}^{(0)}.$$

By (4.10) with $i \neq 0$, we must have $N_i = N_0$ and $a_{N_i}^{(i)} = a_{N_0}^{(0)}$. Namely, Claim 1 holds.

Claim 2 The situation $N \geq 3$ is impossible.

Let $N \ge 3$. Taking j = 1 in (4.9), we have

$$Y_{i,1}(t) = \frac{1}{2} \big((t - i\alpha + 2) Y_{0,1}(t) - (t - i\alpha) Y_{0,1}(t - i) - (t + \alpha) Y_{1,1}(t + 1) + i\alpha Y_{1,1}(t) + (t - (i - 1)\alpha) Y_{1,1}(t - i + 1) \big).$$
(4.11)

Note that if we substitute (4.11) into (4.9), then we obtain an equation on functions $Y_{0,1}$ and $Y_{1,1}$, and both sides can be viewed as functions on i, j and t. Let $\mathbf{L}_2(i, j, t)$ and $\mathbf{R}_2(i, j, t)$ denote respectively the left- and right-hand sides of (4.9). By Claim 1, a direct computation shows that there always exist $K_{N-2}(i,j), K_0(i,j) \in \mathbb{C}[i,j]$ such that

Coeff_{L₂(*i*,*j*,*t*)-**R**₂(*i*,*j*,*t*)}
$$t^{N-2} = \frac{1}{2}ijK_{N-2}(i,j),$$

Coeff_{L₂(*i*,*j*,*t*)-**R**₂(*i*,*j*,*t*)} $t^{0} = \frac{1}{2}ij\alpha K_{0}(i,j).$}

By (4.9), we have $K_{N-2}(i,j) = 0$ if $ij \neq 0$, and $K_0(i,j) = 0$ if $ij\alpha \neq 0$. Through a more detailed analysis, we observe that deg $K_{N-2}(i,j) \leq 1$ and deg $K_0(i,j) \leq N-1$. Since one can first fix $i \neq 0$ (resp., $j \neq 0$) and then let $j \to \infty$ (resp., $i \to \infty$), the above two observations imply that (see Example 4.5 for concrete equations in the case of N = 3)

Case 1: $\alpha \neq 0$.

$$\begin{cases} \operatorname{Coeff}_{K_{N-2}(i,j)}i = 0, \\ \operatorname{Coeff}_{K_{N-2}(i,j)}j = 0, \\ \operatorname{Coeff}_{K_0(i,j)}i^{N-1} = 0, \\ \operatorname{Coeff}_{K_0(i,j)}j^{N-1} = 0; \end{cases}$$

Case 2: $\alpha = 0$.

$$\left. \left. \begin{array}{l} \left. \operatorname{Coeff}_{K_{N-2}(i,j)} i \right|_{\alpha=0} = 0, \\ \left. \left. \operatorname{Coeff}_{K_{N-2}(i,j)} j \right|_{\alpha=0} = 0. \end{array} \right. \right.$$

In both cases, one can derive that $a_N = 0$, which contradicts to our previous assumption (4.4). Hence, Claim 2 holds.

Claim 3 The situation N = 2 is impossible.

Let N = 2. Recall Claim 1. In this case, we have

$$Y_{i,1}(t) = a_2 t^2 + a_1^{(i)} t + a_0^{(i)},$$

which is essentially derived from relations (4.5). Similarly, start from relations

$$[L_{j,2}, L_{i-j,0}] = (i-2j)L_{i,2} - 2L_{i,3}, \quad [L_{-j,0}, L_{j,2}] = 2jL_{0,2} + 2L_{0,3}, \tag{4.12}$$

one can derive that

$$Y_{i,2}(t) = b_2 t^2 + b_1^{(i)} t + b_0^{(i)}.$$

By comparing the coefficients of t^2 on both sides of (4.8) with i = 1, we can derive that $a_2 = 0$, a contradiction. Hence, Claim 3 holds.

Claim 4 If $N \leq 1$, then $Y_{i,m}(t) = \beta_m(t - i\alpha) + \gamma_m$, where $\beta_m, \gamma_m \in \mathbb{C}$ and $\beta_0 = 1, \gamma_0 = 0$.

Let $N \leq 1$. Recall Claim 1. In this case, we have

$$Y_{i,1}(t) = a_1 t + a_0^{(i)}.$$

By (4.10), we can derive that $a_0^{(i)} = a_0^{(0)} - i\alpha a_1$. Redenote a_1 by β_1 , and $a_0^{(0)}$ by γ_1 . The above formula becomes

$$Y_{i,1}(t) = \beta_1(t - i\alpha) + \gamma_1.$$

Generally, start from relations (cf. (4.5) for the case m = 1, and (4.12) for the case m = 2)

$$[L_{j,m}, L_{i-j,0}] = (i-2j)L_{i,m} - mL_{i,m+1}, \quad [L_{-j,0}, L_{j,m}] = 2jL_{0,m} + mL_{0,m+1},$$

one can derive that $Y_{i,m}(t) = \beta_m(t - i\alpha) + \gamma_m$ for some $\beta_m, \gamma_m \in \mathbb{C}$. Finally, from (4.2) we see that $\beta_0 = 1$ and $\gamma_0 = 0$. This completes the proof of Claim 4.

Claim 5 We have $\beta_m = \beta^m$ and $\gamma_m = -m\alpha\beta^{m+1}$, where $\beta \in \mathbb{C}$.

First, let us determine β_m . By Claim 4, applying the relation

$$[L_{0,m}, L_{1,n}] = L_{1,m+n} + (n-m)L_{1,m+n+1}$$

on 1, one can obtain an equation on β_m and γ_m . By comparing the coefficients of t on both sides of this equation, we obtain

$$\beta_{m+n} + (n-m)\beta_{m+n+1} = \beta_m\beta_n + n\beta_m\beta_{n+1} - m\beta_n\beta_{m+1}.$$

Recall that $\beta_0 = 1$ (by Claim 4). By Lemma 2.3, we have $\beta_m = \beta^m$, where $\beta = \beta_1$.

Next, we determine γ_m . By Claim 4, applying the relation $(i \neq 0)$

$$[L_{0,m}, L_{i,0}] = iL_{i,m} - mL_{i,m+1}$$

on 1, one can easily obtain $\gamma_m = -m\alpha\beta^{m+1}$. This completes the proof of Claim 5.

Finally, from Claims 1–5 we see that this lemma holds.

Example 4.5 For the convenience of the reader we explicitly write the systems of equations in Cases 1 and 2 in Claim 2 under the assumption N = 3. If $\alpha \neq 0$, the system of equations is

$$\begin{cases} (1+2\alpha)\left(2(a_2^{(0)}-a_2^{(1)})-3(1+\alpha)a_3^{(0)}\right)=0,\\ (1+2\alpha)(a_2^{(0)}-a_2^{(1)})-(1+3\alpha+8\alpha^2)a_3^{(0)}=0,\\ \\ 2(a_2^{(0)}-a_2^{(1)})-3(1+\alpha)a_3^{(0)}=0,\\ \\ (1-\alpha)(a_2^{(0)}-a_2^{(1)})-a_3^{(0)}=0; \end{cases}$$

and if $\alpha = 0$, the system of equations is

$$\begin{cases} 2(a_2^{(0)} - a_2^{(1)}) - 3a_3^{(0)} = 0, \\ (a_2^{(0)} - a_2^{(1)}) - a_3^{(0)} = 0. \end{cases}$$

It is straightforward to check that both cases yield $a_3 = a_3^{(0)} = 0$.

4.3 Simplicity and isomorphism classification of W(-1)-modules

Similar to Theorem 3.5, we have the following result on the simplicity of $\Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$.

Theorem 4.6 (1) $\Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$ is simple if and only if $\alpha \neq 0$.

(2) $\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta)$ has a unique proper submodule $t\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta) \cong \Omega_{\mathcal{W}(-1)}(\lambda, 1, \beta)$, and the quotient $\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta)/t\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta)$ is a one-dimensional trivial $\mathcal{W}(-1)$ -module.

Proof. (1) Let $M = \Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$. If $\alpha \neq 0$, by viewing M as a Vir-module, from Lemma 2.2(1), we see that M is simple. If $\alpha = 0$, one can easily see that tM is a submodule of M.

(2) From definition, one can easily see that $t\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta)$ is the unique proper submodule of $\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta)$. Next, we prove $t\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta) \cong \Omega_{\mathcal{W}(-1)}(\lambda, 1, \beta)$ by comparing the actions of $\mathcal{W}(-1)$ on these two modules.

First, we consider the action of $\mathcal{W}(-1)$ on $t\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta)$. For $k \ge 0$, by (4.1), we have

$$L_{i,m} \cdot (t \cdot t^k) = t \left(\sum_{s=0}^{k+1} (-1)^s s! \binom{m+s-1}{s} \binom{k+1}{s} \lambda^i \beta^{m+s} (t-i)^{k-s+1} \right).$$
(4.13)

Next, we consider the action of $\mathcal{W}(-1)$ on $\Omega_{\mathcal{W}(-1)}(\lambda, 1, \beta)$. Let $k \ge 0$. By (4.1), we have

$$\begin{split} L_{i,m} \cdot t^k &= \sum_{s=0}^k (-1)^s s! \binom{m+s-1}{s} \binom{k}{s} \lambda^i \beta^{m+s} (t-i-(m+s)\beta) (t-i)^{k-s} \\ &= \sum_{s=0}^k (-1)^s s! \binom{m+s-1}{s} \binom{k}{s} \lambda^i \beta^{m+s} (t-i)^{k-s+1} \\ &- \sum_{s=0}^k (-1)^s s! \binom{m+s-1}{s} \binom{k}{s} \lambda^i \beta^{m+s+1} (m+s) (t-i)^{k-s} \\ &= \lambda^i \beta^m (t-i)^{k+1} + \sum_{s=1}^k (-1)^s s! \binom{m+s-1}{s} \binom{k}{s} \lambda^i \beta^{m+s} (t-i)^{k-s+1} \\ &- \sum_{s=0}^{k-1} (-1)^s s! \binom{m+s-1}{s} \binom{k}{s} \lambda^i \beta^{m+s+1} (m+s) (t-i)^{k-s} \\ &- (-1)^k k! \binom{m+k-1}{k} \lambda^i \beta^{m+k+1} (m+k) \end{split}$$

$$= \lambda^{i}\beta^{m}(t-i)^{k+1} + \sum_{s=1}^{k} (-1)^{s}s! \binom{m+s-1}{s} \binom{k}{s} \lambda^{i}\beta^{m+s}(t-i)^{k-s+1} \\ + \sum_{s=1}^{k} (-1)^{s}(s-1)! \binom{m+s-2}{s-1} \binom{k}{s-1} \lambda^{i}\beta^{m+s}(m+s-1)(t-i)^{k-s+1} \\ + (-1)^{k+1}(k+1)! \binom{m+k}{k+1} \lambda^{i}\beta^{m+k+1} \\ = \lambda^{i}\beta^{m}(t-i)^{k+1} + \sum_{s=1}^{k} (-1)^{s}s! \binom{m+s-1}{s} \binom{k}{s} \lambda^{i}\beta^{m+s}(t-i)^{k-s+1} \\ + \sum_{s=1}^{k} (-1)^{s}s! \binom{m+s-1}{s} \binom{k}{s-1} \lambda^{i}\beta^{m+s}(t-i)^{k-s+1} \\ + (-1)^{k+1}(k+1)! \binom{m+k}{k+1} \lambda^{i}\beta^{m+k+1} \\ = \sum_{s=0}^{k+1} (-1)^{s}s! \binom{m+s-1}{s} \binom{k+1}{s} \lambda^{i}\beta^{m+s}(t-i)^{k-s+1}.$$
(4.14)

Comparing (4.13) with (4.14), we see that $t\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta) \cong \Omega_{\mathcal{W}(-1)}(\lambda, 1, \beta)$.

At last, it is clear that the quotient $\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta)/t\Omega_{\mathcal{W}(-1)}(\lambda, 0, \beta)$ is a one-dimensional trivial $\mathcal{W}(-1)$ -module. This completes the proof.

Similar to Theorem 3.6, one can also prove the following result on the isomorphism classification of $\Omega_{\mathcal{W}(-1)}(\lambda, \alpha, \beta)$; the details are omitted.

Theorem 4.7 $\Omega_{\mathcal{W}(-1)}(\lambda_1, \alpha_1, \beta_1) \cong \Omega_{\mathcal{W}(-1)}(\lambda_2, \alpha_2, \beta_2)$ if and only if $\lambda_1 = \lambda_2$, $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$.

Acknowledgement This work was supported by the Fundamental Research Funds for the Central Universities (No. 2019QNA34).

References

- H. Chen, X. Guo, Non-weight modules over the Heisenberg-Virasoro algebra and the W algebra W(2,2), J. Algebra Appl. 16 (2017) 1750097.
- [2] Q. Chen, Y. Cai, Modules over algebras related to the Virasoro algebra, Internat. J. Math. 26 (2015) 1550070.
- [3] Q. Chen, J. Han, Non-weight modules over the affine-Virasoro algebra of type A_1 , J. Math. Phys. 60 (2019) 071707.

- [4] Q. Chen, J. Han, Y. Su, Structures of not-finitely graded Lie algebras related to generalized Virasoro algebras, *Commun. Algebra* 43 (2014) 3033–3049.
- [5] Q. Chen, Y. Yao, Non-weight modules over algebras related to the Virasoro algebra, J. Geom. Phys. 134 (2018) 11–18.
- [6] X. Guo, M. Wang, X. Liu, $U(\mathfrak{h})$ -free modules over the Block algebra $\mathcal{B}(q)$, J. Geom. Phys. 169 (2021) 104333.
- [7] J. Han, Q. Chen, Y. Su, Modules over the algebras $\mathcal{V}ir(a, b)$, Linear Algebra Appl. 515 (2017) 11–23.
- [8] Y. He, Y. Cai, R. Lü, A class of new simple modules for \mathfrak{sl}_{n+1} and the Witt algebra, J. Algebra 541 (2020) 415–435.
- [9] K. Iohara and Y. Koga, Representation theory of the Virasoro algebra, Springer Monographs in Mathematics, Springer, London, 2010.
- [10] V. Kac, Some problems on infinite dimensional Lie algebras and their representations, Lect. Notes Math. 933 (1981) 117–126.
- [11] V. Kac, A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, *Commun. Math. Phys.* 157 (1993) 429–457.
- [12] R. Lü, K. Zhao, Irreducible Virasoro modules from irreducible Weyl modules, J. Algebra 414 (2014) 271–287.
- [13] O. Mathieu, Classification of Harish-Chandra modules over the Virasoro Lie algebra, *Invent. Math.* 107 (1992) 225–234.
- [14] J. Nilsson, Simple \mathfrak{sl}_{n+1} -module structures on $\mathcal{U}(\mathfrak{h})$, J. Algebra 424 (2015) 294–329.
- [15] J. Nilsson, $\mathcal{U}(\mathfrak{h})$ -free modules and coherent families, J. Pure Appl. Algebra **220**(4) (2016) 1475–1488.
- [16] J. Nilsson, Simple sl(V)-modules which are free over an abelian subalgebra, Forum Math. (2023) https://doi.org/10.1515/forum-2022-0245
- [17] Y. Su, Classification of quasifinite modules over the Lie algebras of Weyl type, Adv. Math. 174 (2003) 57–68.
- [18] Y. Su, C. Xia, Y. Xu, Quasifinite representations of a class of Block type Lie algebras $\mathcal{B}(q)$, J. Pure Appl. Algebra, **216** (2012) 923–934.
- [19] Y. Su, C. Xia, Y. Xu, Classification of quasifinite representations of a Lie algebra related to Block type, J. Algebra, 393 (2013) 71–78.
- [20] Y. Su, X. Xu, H. Zhang, Derivation-simple algebras and the structures of Lie algebras of Witt type, J. Algebra 233(2) (2000) 642–662.
- [21] H. Tan, K. Zhao, \mathcal{W}_n^+ and \mathcal{W}_n -module structures on $U(\mathfrak{h}_n)$, J. Algebra 424 (2015) 357–375.
- [22] H. Tan, K. Zhao, Irreducible modules over Witt algebras \mathcal{W}_n and over $sl_{n+1}(\mathbb{C})$, Algebr. Represent. Theory **21**(4) (2018) 787–806.
- [23] H. Wang, C. Xia, X. Zhang, Non-weight representations of Lie superalgebras of Block type, I, J. Geom. Phys. 186 (2023) 104775.
- [24] S. Williamson, On a family of non-weight modules over Witt-type Lie algebras and superalgebras, J. Algebra 569 (2021) 180–194.
- [25] X. Xu, New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Algebra 224 (2000) 23–58.