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Exponential decay property for eigenfunc-
tions of quantum walks
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Abstract. Under an abstract setting, we show that eigenvectors belong
to discrete spectra of unitary operators have exponential decay proper-
ties. We apply the main theorem to multi-dimensional quantum walks
and show that eigenfunctions belong to a discrete spectrum decay ex-
ponentially at infinity.
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1. Introduction

Exponential decay property (EDP) at infinity is one of the characteristic
properties of eigenfunctions associated with Schrödinger operators. Earlier
works on EDP are discussed by Šnol’. In [35], he discussed the asymptotic
behavior at infinity for eigenfunctions belong to discrete spectra. Moreover,
it was clarified that there is a relation between the spectral gap and decay
rate at infinity. O’Connor, Combes-Thomas, and Agmon considered EDP for
N−body Schrödinger operators. O’Connor showed EDP for pair potentials
belonging to Rollnik class plus L∞

ǫ class [31]. Combes and Thomas showed
it for pair potentials which are analytic for the subgroup of linear transfor-
mation groups [4]. Agmon showed it by application of operator positivity
methods [1]. For other works on EDP, we refer Froese-Herbst [8], Griesemer
[10], Nakamura [30], Bach-Matte [2], Yafaev [38] and Kawamoto [19]. We can
also derive EDP from an application of the Feynman-Kac type formula. It
is known that semigroups generated by a class of Schrödinger operators can
be represented by stochstic processes. In particular, martingale properties
are crucial to deriving EDP. In this direction, we refer [3, 17, 18, 24] and
references therein. EDP also appears in the context of quantum field theory
[11, 14, 15]. Besides, this property is not only shown but also applied to show
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the existence of ground states in non-relativistic quantum electrodynamics
[12, 16].

In this paper, we consider EDP for a class of unitary operators. Let
U be a unitary operator and A be a non-negative self-adjoint operator on a
Hilbert space H. We suppose that the discrete spectrum of U is not empty.
The purpose of this paper is to show

eδAψ ∈ H, (1.1)

for any eigenvector ψ belongs to the discrete spectrum and any sufficiently
small δ > 0. In this case, we say that ψ has EDP for A. As we see below, the
range of δ is closely related to the distance between the essential spectrum
of U and the discrete eigenvalue which ψ belongs to. A typical example of
a non-negative self-adjoint operator A in our mind is the modules of the
position operator.

A motivation we consider EDP for unitary operators comes from quan-
tum walks which are often regarded as a quantum counterpart of random
walks [13, 23, 27]. From the viewpoint of partial differential equations, quan-
tum walks are space-time discretized Dirac equations [26]. It is well known
that some properties of quantum walks are quite different from that of ran-
dom walks. In particular, the ballistic transportation and the localization
occur in quantum walks [20, 21]. Related to these properties, mathematical
analysis is developed from a viewpoint of weak limit theorem [7, 34, 33],
spectral theory[28, 29, 32], and references therein as examples.

In the context of quantum walks, results on the existence of discrete
spectra are known [22, 25]. In particular, the explicit optimal decay rate is
derived. In particular, in nonlinear quantum walks, EDP is applied to obtain
the asymptotic stability [25]. However, these references are limited in one
dimension. In the one-dimensional case, we can introduce the transfer matrix
which is a powerful tool for solving eigenvalue problems and analyzing various
quantities. Although, in multi-dimensional cases, the existence of a discrete
spectrum is reported in [6, 9], detailed properties of eigenfunctions are not
well known. In particular, it is not known whether eigenfunctions have EDP,
yet. Motivated by these situations, we show EDP for a class of quantum walks
involving multi-dimensional cases.

First, we establish (1.1) under a general setting in Section 2. Since we
treat exponential operators of unbounded operators, we have to introduce
suitable cut-off functions to avoid domain problems. For the proof, we mainly
follow the methods presented by Yafaev [38] concerned the first-order differen-
tial systems involving Dirac operators. In our case, the derivative of functions
are replaced by commutators. To analyze commutators is the crucial part.

In proofs, instead of A, we introduce another operator Λ(A) which is
step-like and approximates A from above (see (2.1)). In the function space,
differential operators and multiplication operators act locally on configuration
spaces. From this observation, in addition to introducing Λ(A), it may be
suitable to assume some locality conditions in U . Therefore, in this paper, we
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impose “finite propagation” condition (see Assumption 2.3) for U . By these
two ideas, we can analyze the commutator in detail.

The optimal constant δ in (1.1) depends on dispersion relations of quan-
tum walks. For example, in [22, 25], the optimal constant is derived. However,
in quantum walks, we can select graphs, internal degrees of freedom, motion
of a quantum walker, and shift parameters. Thus, it would be useful to es-
tablish EDP in general settings. For example, in [37], Tiedra de Aldecoa
considered spectral and scattering theory for quantum walks on not square
lattices but trees. If discrete spectra of such quantum walks are not empty,
we can apply our results. Our idea can be applied to discrete Schrödinger
operators since they consist of shift operators and multiplication operators
that act locally.

As an application, in Section 3, we apply the results for multi-dimensional
quantum walks with a defect. Then, we can show that eigenfunctions associ-
ated with discrete spectrum possess EDP.

2. Set up and main result

LetH be the separable Hilbert space over C. The symbol 〈·, ·〉 and ‖·‖ denotes
the inner product and the norm over H, respectively. Let U be a unitary
operator on H. Symbols σ(U), σess(U) and σd(U) denote the spectrum of
U , the essential spectrum of U and the discrete spectrum of U , respectively.
First, we introduce the following notion:

Definition 2.1. Let S be a self-adjoint operator on H. We denote the spectral
measure of S by ES(·). We say that U finitely propagates with respect to S
if there exists a constant b > 0 such that for any ψ ∈ RanES([R1, R2)) with
R1 < R2, Uψ ∈ RanES([R1 − b, R2 + b)).

Remark 2.2. In Definition 2.1, we introduced the notion of finite propagation
for half-open intervals. Of course, we can also define the notion of the finite
propagation by open intervals and closed intervals. However, we only consider
half-open intervals to cover [0,∞) by disjoint intervals.

We impose the following assumption:

Assumption 2.3. 1. σd(U) 6= ∅.
2. The unitary operator U finitely propagates with a constant b > 0 with

respect to a non-negative, possibly unbounded, self-adjoint operator A.

For any λ ∈ σd(U), we define the constant d(λ) > 0 as

d(λ) := dist(λ, σess(U)) = inf
µ∈σess(U)

|λ− µ|.

The main result of this section is as follows:

Theorem 2.4. Under Assunption 2.3, for any ψ ∈ Ker(U − λ) \ {0} with

λ ∈ σd(U), eδAψ ∈ H for any δ > 0 such that 2 sinh(δb) < d(λ).
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Remark 2.5. The non-negativity in the second part of Assumption 2.3 is not
essential. However, for simplicity, we assume the non-negativity of A in this
paper.

In what follows, we always assume Assumption 2.3. To prove Theorem
2.4, we prepare some lemmas.

Lemma 2.6. We take λ ∈ σd(U). Then for any ǫ > 0, there exists R > 0 such

that

‖Uf − λf‖ ≥ {d(λ)− ǫ}‖f‖,

for all f ∈ H such that EA([0, R))f = 0.

Proof. We suppose the contrary. Then there exists ǫ > 0 such that for any
R > 0, there exists fR ∈ H such that ‖fR‖ = 1, EA([0, R))fR = 0 and

‖UfR − λfR‖ < d(λ) − ǫ.

We choose θ ∈ [0, 2π) such that a := dist (Arc(λ, θ), σess(U)) < d(λ) and
a > d(λ) − ǫ, where

Arc(λ, θ) := {λeik| − θ ≤ k ≤ θ}.

We set X := Arc(λ, θ), and gR := (1−EU (X))fR, where EU (·) is the spectral
measure of U . From the spectral theorem for unitary operators, it follows that

‖UgR − λgR‖
2 =

∫

S1\X

|µ− λ|2d‖EU (µ)gR‖
2 > a2‖gR‖

2,

where S1 is the unit circle on C. Since fR weakly converges to 0 (as R → ∞)
and EU (X) is compact, EU (X)fR strongly converges to 0 (as R→ ∞). This
implies that ‖gR − fR‖ → 0 (as R→ ∞). On the other hand, we have

a‖gR‖ < ‖UgR − λgR‖

≤ ‖UfR − λfR‖+ ‖(U − λ)EU (X)fR‖

< d(λ)− ǫ + 2‖EU (X)fR‖.

By taking the limit R → ∞, we get a ≤ d(λ) − ǫ since ‖gR‖ → ‖fR‖ =
1 (as R → ∞). This is a contradiction since we took a like as a > d(λ)−ǫ. �

Before going to next lemma, we introduce followig step-like functions.
For N ∈ N and δ > 0, we define

Λ(r) :=

∞
∑

n=1

δnbIBn
(r), ΛN(r) :=











N
∑

n=1

δnbIBn
(r), r ∈ [0, Nb),

δNb, r ∈ [Nb,∞),

(2.1)

where Bn := [(n− 1)b, nb) ⊂ R and IBn
is the characteristic function of Bn.

Then, Λ approximates a function f(r) := δr, (r ∈ [0,∞)) from the above
and ΛN is a cut-off function of Λ.

For a two bounded operators S and T , we define the commutator [S, T ]
as [S, T ] := ST − TS.
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Lemma 2.7. For any R > 0, we set EA(R) := EA([R,∞)). Then, eΛ(A)[U,EA(R)]
is bounded on H and

‖eΛ(A)[U,EA(R)]‖ ≤ eδ⌈R+b⌉b + eδ⌈R⌉b ,

where for x > 0, ⌈x⌉b := b ·min{n ∈ N| x ≤ nb}.

Proof. Since U finitely propagates with respect to A, it follows that

[U,EA(R)]

= {UEA(R)− EA(R)U}

× {EA([0, R− b)) + EA([R − b, R)) + EA([R,R+ b)) + EA(R + b)}

= −EA([R,R+ b))UEA([R− b, R)) + EA([R− b, R))UEA([R,R+ b)),

where if R−b ≤ 0, we set EA([0, R−b)) = 0 and EA([R−b, R)) = EA([0, R)).
Thus, for any ψ ∈ H, it follows that [U,EA(R)]ψ ∈ D(eΛ(A)) and

‖eΛ(A)[U,EA(R)]ψ‖ ≤
(

eδ⌈R+b⌉b + eδ⌈R⌉b
)

‖ψ‖.

Therefore the lemma follows. �

Lemma 2.8. For any N ∈ N, it follows that

‖[U, eΛN (A)]e−ΛN (A)‖ ≤ 2 sinh(δb).

In particular, the above estimate in the right hand side does not depend on

N .

Proof. By applying the Duhamel formula, [U, eΛN (A)]e−ΛN (A) can be ex-
pressed as

[U, eΛN (A)]e−ΛN (A) =

∫ 1

0

etΛN (A)[U,ΛN(A)]e−tΛN (A)dt. (2.2)

The integrand in (2.2) is decomposed as follows:

etΛN (A)[U,ΛN(A)]e−tΛN (A)

= etΛN (A){UΛN(A)− ΛN (A)U}EA(B1)

+

N
∑

m=2

etΛN (A){UΛN(A) − ΛN(A)U}e−tΛN (A)EA(Bm)

+ etΛN (A){UΛN(A) − ΛN(A)U}e−tΛN (A)EA(BN+1)

+ etΛN (A){UΛN(A) − ΛN(A)U}e−tΛN (A)EA((N + 1)b)

=: I + II + III + IV.

The first term I can be calculated as follows:

I = {EA(B1) + EA(B2)}e
tΛN (A){UΛN(A)− ΛN (A)U}EA(B1)

= EA(B2)e
2tδb(Uδb− 2δbU)e−tδbEA(B1)

= −δbetδbEA(B2)UEA(B1).
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The second term II can be calculated as follows:

II =

N
∑

m=2

{EA(Bm−1) + EA(Bm) + EA(Bm+1)}

× etΛN (A){UΛN(A)− ΛN (A)U}e−ΛN (A)EA(Bm)

=

N
∑

m=2

[

EA(Bm−1)e
tδb(m−1){Uδbm− δb(m− 1)U}e−tδbmEA(Bm)

+ EA(Bm+1)e
tδb(m+1){Uδbm− δb(m+ 1)U}e−tδbmEA(Bm)

]

= δb
N
∑

m=2

[

e−tδbEA(Bm−1)UEA(Bm)− etδbEA(Bm+1)UEA(Bm)
]

.

The third term III can be calculated as follows:

III = {EA(BN ) + EA(BN+1) + EA(BN+2)}

× etΛN (A){UΛN(A) − ΛN(A)U}e−tΛN (A)EA(BN+1)

= EA(BN )etδbN{Uδb(N + 1)− δbNU}e−tδb(N+1)EA(BN+1)

= δbe−tδbEA(BN )UEA(BN+1).

Lastly, the forth term IV can be calculated as follows:

IV = EA(Nb)e
tΛN (A){UΛN(A) − ΛN(A)U}e−tΛN (A)EA((N + 1)b)

= EA(Nb)e
tΛN (A)(UbδN − bδNU)e−tΛN(A)EA((N + 1)b)

= 0.

Thus, we get the following expression:

[U, eΛN (A)]e−ΛN (A)

= δb

∫ 1

0

e−tδbdt ·
N+1
∑

m=2

EA(Bm−1)UEA(Bm)− δb

∫ 1

0

etδbdt ·
N
∑

m=1

EA(Bm+1)UEA(Bm)

= (1− e−δb)

N+1
∑

m=2

EA(Bm−1)UEA(Bm)− (eδb − 1)

N
∑

m=1

EA(Bm+1)UEA(Bm).
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For any ψ ∈ H, we have

‖[U, eΛN(A)]e−ΛN (A)ψ‖2

= ‖(1− e−δb)

N+1
∑

m=2

EA(Bm−1)UEA(Bm)ψ − (eδb − 1)

N
∑

m=1

EA(Bm+1)UEA(Bm)ψ‖2

= (1− e−δb)2
N+1
∑

m=2

‖EA(Bm−1)UEA(Bm)ψ‖2 + (eδb − 1)2
N
∑

m=1

‖EA(Bm+1)UEA(Bm)ψ‖2

− 2(1− e−δb)(eδb − 1)

N+1
∑

m=2

N
∑

n=1

Re〈EA(Bm−1)UEA(Bm)ψ,EA(Bn+1)UEA(Bn)ψ〉

= (1− e−δb)2
N+1
∑

m=2

‖EA(Bm−1)UEA(Bm)ψ‖2 + (eδb − 1)2
N
∑

m=1

‖EA(Bm+1)UEA(Bm)ψ‖2

− 2(1− e−δb)(eδb − 1)

N
∑

n=2

Re〈EA(Bn)UEA(Bn+1)ψ,EA(Bn)UEA(Bn−1)ψ〉

≤ (1− e−δb)2
N
∑

m=2

‖EA(Bm)ψ‖2 + (eδb − 1)2
N
∑

m=1

‖EA(Bm)ψ‖2

+ (1 − e−δb)(eδb − 1)

N
∑

n=2

{‖EA(Bn)UEA(Bn+1)ψ‖
2 + ‖EA(Bn)UEA(Bn−1)ψ‖

2}

≤ (1− eδb)2‖ψ‖2 + (eδb − 1)2‖ψ‖2 + 2(1− e−δb)(eδb − 1)‖ψ‖2

= {(1− e−δb) + (eδb − 1)}2‖ψ‖2

= (eδb − e−δb)2‖ψ‖2.

Thus, the lemma follows. �

Proof of Theorem 2.4. We choose ǫ > 0 as ǫ := [d(λ)−2 sinh(δb)]/2. Then, by
Lemma 2.6, there exists R > 0 such that for any f ∈ H with EA([0, R))f = 0,
we have

{d(λ) − ǫ}‖f‖ ≤ ‖Uf − λf‖.

We take ψ ∈ Ker(U − λ) \ {0} with λ ∈ σd(U). For R and b, there exists
N0 ∈ N such that R < N0b. Then we set fN := eΛN (A)EA(R)ψ, (N ≥ N0).
Since EA([0, R))fN = 0, we have the following for arbitrary N ≥ N0:

{d(λ) − ǫ}‖fN‖ ≤ ‖UfN − λfN‖. (2.3)

From Uψ = λψ, we get

UfN − λfN = [U, eΛN (A)EA(R)]ψ = [U, eΛN (A)]EA(R)ψ + eΛN (A)[U,EA(R)]ψ.
(2.4)

From Lemma 2.7, we get

‖eΛN (A)[U,EA(R)]ψ‖ ≤
(

eδ⌈R+b⌉b + eδ⌈R⌉b
)

‖ψ‖,
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For the first term of (2.4), from Lemma 2.8, we get

‖[U, eΛN(A)]EA(R)ψ‖ = ‖[U, eΛN (A)]e−ΛN (A)eΛN (A)EA(R)ψ‖ ≤ 2 sinh(δb)‖fN‖.

Thus, we arrive at

‖UfN − λfN‖ ≤
(

eδ⌈R+b⌉b + eδ⌈R⌉b
)

‖ψ‖+ 2 sinh(δb)‖fN‖.

From the above inequality and (2.3), we arrive at

d(λ)− 2 sinh(δb)

2
‖fN‖ ≤

(

eδ⌈R+b⌉b + eδ⌈R⌉b
)

‖ψ‖. (2.5)

Since N is arbitrary and right hand side of (2.5) is independent of N , we con-
clude that eΛ(A)ψ ∈ H by the monotone convergence theorem. This implies
eδAψ ∈ H. �

3. Application

In this section, we apply the result to multi-dimensional quantum walks. We
choose the Hilbert space H as

H := ℓ2(Zd;C2d) :=







f : Zd → C
2d
∣

∣

∣

∑

x∈Zd

‖f(x)‖2
C2d <∞







.

In what follows, we freely use the identification H ≃ ⊕d
j=1ℓ

2(Z;C2). Thus

f(x) =











f1(x)
f2(x)

...
fd(x)











=















f11(x)
f12(x)

...
fd1(x)
fd2(x)















, f ∈ H, x ∈ Z
d.

Let {ej}dj=1 be the set of standard orthogonal basis of Zd. Let Lj (j =
1, . . . , d) be the shift operator on j−th direction defined by

(Ljf)(x) := f(x+ ej), f ∈ H, x ∈ Z
d, j = 1, . . . , d.

To introduce the shift operator S, we set

D :=
{

(p, q) = (p1, . . . , pd, q1, . . . , qd) ∈ R
d × C

d
∣

∣

∣
p2j + |qj |

2 = 1, (j = 1, . . . , d)
}

.

For (p, q) ∈ D, we define the shift operator S by

S := S1 ⊕ S2 ⊕ · · · ⊕ Sd, Sj :=

[

pj qjLj

(qjLj)
∗ −pj

]

, j = 1, . . . , d.

Next, we intoduce the coin operator C. Let {C(x)}x∈Z ⊂ U(2d) be a set of
2d× 2d self-adjoint and unitary matrices. We define the coin operator C as
a multiplication operator by C(x) :

(Cu)(x) := C(x)u(x), u ∈ H, x ∈ Z.

For the coin operator C, we impose the following assumptioon:



Exponential decay property for quantum walks 9

Assumption 3.1. 1. For each x ∈ Zd, 1 is a simple eigenvalue of C(x), i.e.,
dimker(C(x) − 1) = 1.

2. There exists two self-adjoint and unitary matrices C0 and C1 such that

C(x) =

{

C1, x ∈ Z
d \ {0},

C0, x = 0.

By the first part of Assumption 3.1, for each x ∈ Zd, we can take a unit
vector χ(x) as follows:

χ(x) =







χ1(x)
...

χd(x)






∈ ker(C(x) − 1), χj(x) =

[

χj1(x)
χj2(x)

]

∈ C
2, (j = 1, . . . d).

From the first part of Assumption 3.1 and the spectral decomposition of C(x),
we have C(x) = 2|χ(x)〉〈χ(x)| − 1. Moreover, the second part of Assumption
3.1 implies that χ has a form of

χ(x) =















































Φ =









Φ1

...

Φd









, Φj =

[

Φj1

Φj2

]

∈ C2, (j = 1, . . . , d), x ∈ Zd \ {0},

Ω =









Ω1

...

Ωd









, Ωj =

[

Ωj1

Ωj2

]

∈ C2, (j = 1, . . . , d), x = 0.

The condition dimKer(C(x) − 1) is needed to construct a coisometry from
ℓ2(Zd;C2d) to ℓ2(Zd;Cd) and to apply the spectral mapping theorem [36].

Assumption 3.2. Following conditions hold:

1. Φj · (σ1Ωj) := Φj1Ωj2 +Φj2Ωj1 6= 0 for all j = 1, . . . , d,

2. 〈Φl, σ+Ωl〉C2 6= 0 for some l = 1, . . . , d,

where

σ1 :=

[

0 1
1 0

]

, σ+ :=

[

0 1
0 0

]

.

We introduce the following quantities:

aΩ(p) :=

d
∑

j=1

pj〈Ωj , σ3Ωj〉C2 , aΦ(p) :=

d
∑

j=1

pj〈Φj , σ3Φj〉C2 ,

where,

σ3 :=

[

1 0
0 −1

]

.

Assumption 3.3. It follows that aΩ(p0) 6= aΦ(p0) for some p0 ∈ {−1, 1}d.
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Remark 3.4. In d = 1, Assumption 3.2 and Assumption 3.3 are not compart-
ible. For d = 1, see [5].

To explain the theorem, for l ∈ {1, . . . , n} stated in Assumption 3.2, we
set

Dl := {(p, q) ∈ D| plql 6= 0}.

Theorem 3.5. [6] Let d ≥ 2 and we assume Assumption 3.1, 3.2 and 3.3.

Then, there exists δ > 0 such that for any (p, q) ∈ Dl with ‖(p, q)−(p0, 0)‖Rd×Cd ,
σd(U) 6= ∅.

We introduce the moduls of position operator as a non-negative self-
adjoint operator A which appeared in Assumption 2.3:

Dom(|Q|) :=







u ∈ H|
∑

x∈Zd

|x|2‖u(x)‖C2d <∞







,

(|Q|u)(x) := |x|u(x), u ∈ Dom(|Q|), x ∈ Z
d.

Then, for any 0 ≤ R1 < R2, and u ∈ RanE|Q|([R1, R2)), we have Uu ∈
RanE|Q|([R1−1, R2+1)). Thus, we can choose the constant b which appeared
in Assumption 2.3 as b = 1. By Theorem 2.4, we get the following result:

Theorem 3.6. For any λ ∈ σd(U) and ψ ∈ Ker(U − λ) \ {0}, eδ|Q|ψ ∈ H for

any δ > 0 with 2 sinh δ < d(λ).

As a corollary of Theorem 3.6, we can derive the pointwise estimate:

Corollary 3.7. Under the same assumption of Theorem 3.5, for any δ > 0
with 2 sinh δ < d(λ), there exists Cδ > 0 such that for any x ∈ Zd, it follows
that

‖ψ(x)‖C2d ≤ Cδe
−δ|x|.

Proof. Since ψ ∈ D(eδ|Q|), {eδ|x|‖ψ(x)‖C2d}x∈Zd is bounded. We choose a
constant Cδ > 0 as Cδ := supx∈Zd eδ|x|‖ψ(x)‖C2d . Then, it follows that

‖ψ(x)‖C2d = eδ|x|e−δ|x|‖ψ(x)‖C2d ≤ Cδe
−δ|x|.
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[3] Carmona René, Masters Wen Chen, and Simon Barry. Relativistic Schrödinger
operators: asymptotic behavior of the eugenfuctions. J. Funct. Anal., 91(1):117-
142 (1990)

[4] Combes J. M. and Thomas L., Asymptotic behavior of eigenfunctions for mul-
tiparticle Schrödinger operators. Comm. Math. Phys., 34: 251-270 (1973)

[5] Fuda T., Funakawa D., and Suzuki A., Localication for a one-dimensional split-
step quantum walk with bound states robust ageinst perturbations. J. Math.
Phys., 59(8):082201, 13 (2018)

[6] Fuda Toru, Funakawa Daiju, and Suzuki Akito, Localization of a multi-
dimensional quantum walk with one defect. Quantum Inf. Process., 16(8):Paper
No. 203, 24 (2017)

[7] Fuda Toru, Funakwa Daiju, and Suzuki Akito, Weak limit theorem for a one-
dimensional split-step quantum walk. Rev. Roumaine Math. Pures Appl., 64(2-
3):157-165 (2019)

[8] Froese Richard and Herbst Ira, Exponential bounds and absence of positive
eigenvalues for N-body Schrödinger operators. Comm. Math. Phys., 87(3):429-
447 (1982/83)

[9] Fuda Toru, Funakawa Daiju, Sasayama Satoshi, and Suzuki Akito, Eigenvalues
and threshold resonances of a two-dimensional split-step quantum walk wih
strong shift. Quantum Stud. Math, Found., 10(4):483-496 (2023)

[10] Griesemer M., Exponential bounds for continuum eigenfunctions of N-body
Schrödinger operators. Helv. Phys. Acta, 70(6):854-857 (1997)

[11] Griesemer M., Exponential decay and ionization thresholds in non-relativistic
quantum electrodynamincs. J. Funct. Anal., 210(2):321-340 (2004)

[12] Griesemer Marcel, Lieb Elliot H., and Loss Michael, Ground ststes in non-
relativistic quantum electrodynamincs. Invent. Math., 145(3)557-595 (2001)

[13] Gudder S. P., Quantum probability. Probabolity and Mathematical Statistics.
Academic Press, Inc., Boston, MA (1988)

[14] Hiroshima Fumio, Functional integral approach to semi-relativistic Pauli-Fierz
models. Adv. Math., 259:784-840 (2014)

[15] Hiroshima Fumio, Pointwise exponential decay of bound states of the Nelson
mdel with Kato-class potentials. In Analysis and operator theory, volume 146
of Springer Optim. Appl., pages 225-250. Springer, Cham (2019)

[16] Hidaka Takeru, Hiroshima Fumio and Sasaki Itaru, Spectrum of the semi-
relativistic Pauli-Fierz model II. J. Spectr. Theory, 11(4):1779-1830 (2021)

[17] Hiroshima Fumio, Ichinose Takashi and Lörinczi József, Probabilistic represen-
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