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Abstract

In this paper, we consider the n×n two-payer zero-sum repeated game in which one player
(player X) employs the popular Hedge (also called multiplicative weights update) learning
algorithm while the other player (player Y) adopts the myopic best response. We investigate
the dynamics of such Hedge-myopic system by defining a metric Q(xt), which measures the
distance between the stage strategy xt and Nash Equilibrium (NE) strategy of player X. We
analyze the trend of Q(xt) and prove that it is bounded and can only take finite values on
the evolutionary path when the payoff matrix is rational and the game has an interior NE.
Based on this, we prove that the stage strategy sequence of both players are periodic after
finite stages and the time-averaged strategy of player Y within one period is an exact NE
strategy. Accordingly, we propose an asymmetric paradigm for solving two-player zero-sum
games. For the special game with rational payoff matrix and an interior NE, the paradigm
can output the precise NE strategy; for any general games we prove that the time-averaged
strategy can converge to an approximate NE. In comparison to the NE-solving method via
Hedge self-play, this HBR paradigm exhibits faster computation/convergence,better stability
and can attain precise NE convergence in most real cases.

Keywords: Repeated game, Equilibrium solving, Hedge algorithm, Myopic best response,
Evolutionary dynamical analysis

1 Introduction

Game theory is widely used to model interactions and competitions among self-interested and
rational agents in the real world [15, 30, 33]. In such situations, the utility of each agent is
determined by the actions of all the other agents, leading to the solution concept of equilibrium,
in which Nash equilibrium (NE) is a central one. This makes the NE-solving one of the most
significant problems in game theory, which however is very hard for general games.

The notion of NE [31, 32] aims to describe a stable state where each participant makes
the optimal choice considering the strategies of others and thus has no incentive to change the
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strategy unilaterally. Due to the mutual influence of participants in the game and the existence
of possible multiple equilibrium points in different scenarios, NE-solving is a difficult problem,
which has been proven to be PPAD-hard [10, 11, 36]. For the special two-player zero-sum games,
linear programming [21, 46] provides a powerful method to solve NE in polynomial time [45].
However, in practical scenarios, because of large scalability issues, imperfect information and the
complexity of multiple-stage dynamics, two-player zero-sum game is still a subject of ongoing
investigation and attracts attentions from researchers in different fields [26, 12, 38, 37]. Especially,
participants are often not perfectly rational, leading to research which aimed at approximating
NE from a learning perspective [14].

Concerning learning in games, there has been a long history and plentiful literature, where
a lot of learning algorithms have been proposed according to different settings. Under the Fic-
titious Play algorithm [14], the empirical distribution of actions taken by each player converges
to NE if the stage game has generic payoffs and is 2 × 2 [41] or zero-sum game [27] or po-
tential game [28]. When each player employs the no-regret algorithm [9, 8] to determine their
stage strategy in repeated games, their time-averaged strategy profile converges to the coarse
correlated equilibrium in general-sum games [18] and to NE in two-player zero-sum games. In
imperfect-information extensive-form games, Zinkevich et al. [47] proposed the counterfactual
regret minimization (CFR) algorithm and proved its convergence to NE in the two-player zero-
sum setting. Based on these methods, lots of variants were proposed and widely used in solving
equilibrium in complicated games [4, 5, 6, 22, 29, 43]. Note that in all these works, every player
in the game adopts the same learning algorithm and the convergence results are based on the
term of time-averaged strategy.

However, further investigation on the learning dynamics shows that even in simple game
models, basic learning algorithms can lead to highly complex behavior and may not converge
[35, 39, 42, 40, 19]. Palaiopanos et al. [34] discovered specific instances of 2 × 2 potential
games where the behavior of multiplicative weights update (MWU) algorithm exhibits bifurcation
at the critical value of its step size. Bailey and Piliouras [2] showed that in two-player zero-
sum games, when both players adopt the MWU algorithm, the system dynamics deviate from
equilibrium and converge towards boundary. Mertikopoulos et al. [26] studied the regularized
learning algorithms in two-player zero-sum games and proved the Poincaré recurrence of the
system behavior, implying the impossibility of convergence to NE from any initial strategy profile.
Perolat et al. [37] extended the results of Poincaré recurrence from normal-form games to two-
player zero-sum imperfect-information games and built an algorithm to approximate NE by
solving a series of regularized game with unique NE. Generally speaking, there is no systematic
framework for analyzing the limiting behavior of these repeated games [20, 44].

For the asymmetric case, as emphasized in [7], the limiting behavior of dynamic processes
where players adhere to different update rules is an open question, even for potential games.
Therefore, related theoretical analysis of such system is extremely rare. Our previous work
[16, 17] studied such dynamical system where one player employs the Hedge algorithm and the
other player takes the globally or locally optimal strategy in finitely repeated two-player zero-
sum games and proved its periodicity when the game is 2× 2. As a byproduct, our investigation
reveals that the detailed understanding about the dynamics can facilitate the design of novel
algorithms with special properties, thereby suggesting a promising avenue for advancing learning
algorithms.

This paper will consider the general n×n zero-sum stage game and investigate the dynamics
of repeated game under asymmetric updating rules. To be specific, we will study the dynamics
of the repeated game where one player (player X) employs the Hedge algorithm to update his
stage strategy and the other player (player Y) adopts the according myopic best response to the
stage strategy of player X. The main contributions of this paper can be summarized as follows.
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(1) This paper considers the Hedge-myopic system and investigates its dynamic by analyzing the
trend of a quantity called Q(x) based on the Kullback-Leibler divergence, which measures
the distance between the stage strategy x and the NE strategy of player X. For the game
with rational payoff matrix and an interior NE, we prove that along the strategy sequence
xt the Q-sequence Q(xt) is bounded and xt can only take finite values on the evolutionary
path. This implies that the strategy sequence xt of player X will not converge to the NE
strategy and justifies the finding in the literature.

(2) Using the dynamic property, this paper theoretically proves that the stage strategy sequences
of both players are periodic after finite stages for the game with rational payoff matrix and
an interior NE. Additionally, the time-averaged strategy of player Y within one period is an
exact NE strategy.

(3) Based on the theoretical results, this paper proposes an asymmetric paradigm called HBR for
solving NE in two-player zero-sum games. For the special game with rational payoff matrix
and an interior NE, the paradigm can output the precise NE strategy; for any general
games we prove that the time-averaged strategy can converge to an approximate NE. In
comparison to the NE-solving method via Hedge self-play, this HBR paradigm exhibits faster
computation/convergence, better stability and can attain precise NE convergence in most
real cases.

Paper Organization: Section 2 provides the preliminary knowledge and problem formula-
tion; Section 3 presents the main results regarding the periodicity of the system behavior; Section
4 proposes an asymmetric paradigm for solving NE and gives the experiment results; Section 5
concludes the paper.

2 Preliminary and Problem Formulation

2.1 Online Learning and Hedge Algorithm

Hedge algorithm is a popular no-regret learning algorithm proposed by Freund and Schapire,
based on the context of boost learning [13]. Hedge algorithm is also known as weighted majority
[24] or exponential weighted average prediction [8], or multiplicative weights update [1].

Consider the online learning framework known as learning with expert advice [8]. In this
framework, the decision maker is a forecaster whose goal is to predict an unknown sequence
q1, q2, · · · , where qt belongs to an outcome space Q. The prediction of the forecaster at time t,
denoted by p̂t, is assumed to belong to a convex subset D of Q. At each time t, the forecaster
receives a finite set of expert advice {fi,t} ∈ D : i = 1, 2, · · · , N}, then the forecaster computes
his own guess p̂t based on {fi,t}. Subsequently the true outcome qt is revealed. Predictions of
the forecaster and experts are scored using a non-negative loss function ℓ : D × Q → R and
the cumulative regret is introduced to measure how much better the forecaster could have done
compared to how he did in hindsight, which is defined to be

Rt = max
i=1,2,··· ,N

{
t∑

τ=1

(ℓ(p̂τ , qτ )− ℓ(fi,τ , qτ ))

}
.

By the Hedge algorithm, the prediction p̂t at time t is taken as the weighted average of the
predictions from the experts, i.e., p̂t =

∑N
i=1 wi,t−1fi,t, where

wi,t−1 =
e−η

∑t−1
τ=1 ℓ(fi,τ ,qτ )∑N

j=1 e
−η

∑t−1
τ=1 ℓ(fj,τ ,qτ )

, i = 1, 2, · · · , N, t ≥ 1.
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Then, the prediction sequence has the following regret bound.

Theorem 2.1 (Theorem 2.2 of [8]). Assume that the loss function ℓ is convex in its first argument
and takes values in [0, 1]. For any t and η > 0, and for all q1, q2, · · · , qt ∈ Q, the regret for the
Hedge algorithm satisfies

Rt ≤
lnN

η
+

tη

8
.

In particular, for η =
√

8 lnN
t , the upper bound becomes

√
t
2 lnN .

Theorem 2.1 implies that the time-averaged regret of the Hedge algorithm goes to zero as
t increases, i.e., limt→∞ Rt/t = 0, which is the so-called no-regret property. This theorem will
be used to prove the convergence of the time-averaged strategy for the Hedge-myopic system in
Section 3.

2.2 Normal-form zero-sum Game

Consider a two-player zero-sum normal-form game Γ. The players are called player X and player
Y. Suppose there are n, n ≥ 2 feasible actions for each player. We denote the action set of player
X by I = {1, 2, · · · , n} and the action set of player Y by J = {1, 2, · · · , n}. For each action
profile (i, j), the payoff obtained by player Y is aij and thus the payoff obtained by player X
is −aij since the game is zero-sum. Naturally, the payoff of the game is shown by a matrix
A = {aij}i∈I,j∈J . The matrix is called the payoff matrix for player Y and the loss matrix for
player X. A mixed strategy of a player is a probability distribution over his action set. Denote
the mixed strategy of player X and player Y by x ∈ ∆(I) and y ∈ ∆(J ) respectively. The bold
font is used to emphasize that x and y are both vectors. Given the mixed strategy profile (x,y),
the payoff of player Y is xTAy and the payoff of player X is −xTAy.

Write the NE strategy profile of the game as (x∗,y∗). Then the value of the game is

v∗ := (x∗)TAy∗. (1)

Denote the support of x∗ by supp(x∗) = {i ∈ I : x∗
i > 0} and the support of y∗ by supp(y∗) =

{j ∈ J : y∗j > 0}. A NE is said to be interior if supp(x∗) = I and supp(y∗) = J .
A strategy profile (x,y) is called a ε−Nash equilibrium (ε−NE) if for all x′ ∈ ∆(I) and

y′ ∈ ∆(J ), we have

xTAy ≥ xTAy′ − ε and xTAy ≤ (x′)TAy+ ε.

Given a strategy profile (x,y), the exploitability [25] of strategy x is defined as the potential gain
for player Y if she switches to the best response of strategy x suppose that x is fixed, i.e.,

ex(x,y) ≜ maxy′∈∆(J ) x
TAy′ − xTAy.

Similarly, the exploitability of the strategy y is defined to be

ey(x,y) ≜ xTAy−minx′∈∆(I)(x
′)TAy.

Intuitively, if a strategy has low exploitability, it is difficult for the opponent to take advantage of
it, while a strategy with high exploitability can be effectively exploited by the opponent. Given
a strategy profile (x,y), a common metric to measure its distance to NE, called Nash Distance
(ND) [25], is

ND(x,y) ≜ ex(x,y) + ey(x,y).

4



Since the game is zero-sum, ND(x,y) = maxy′∈∆(J ) x
TAy′ −minx′∈∆(I)(x

′)TAy.
If the game admits an interior NE strategy x∗ of player X, we denote the cross entropy

between strategy x and x∗ by function Q(x), i.e.,

Q(x) ≜ −
n∑

i=1

x∗
i lnxi (2)

where 0 < xi < 1 for all i ∈ I. It is easy to see that Q(x) > 0 for all x.
In the following, we will focus on infinitely repeated game, that is to say, let the game Γ be

repeated for infinite times. We denote xt, yt the stage strategy of player X and player Y at time
t respectively. Then, the instantaneous expected payoff of player Y is xT

t Ayt. Different stage
strategy updating rules would lead to different stage strategy sequences of player X and Y, which
form different game dynamic systems. Below we will study the dynamic characteristics of the
repeated games driven by the Hedge algorithm and the myopic best response.

2.3 Problem Formulation

First, let player X update his stage strategy according to the Hedge algorithm. Specifically, the
strategy of player X at time t is updated by

xi,t =

exp(−η
t−1∑
τ=1

eTi Ayτ )

n∑
j=1

exp(−η
t−1∑
τ=1

eTj Ayτ )

, i = 1, 2, · · · , n, (3)

where η is called the learning rate, which is a constant parameter. In this paper, we assume that
η is sufficiently small and determined by the payoff matrix A.

From formula (3), xt is fully determined by y1, y2, ..., yt−1. Further, we can compute xt

from xt−1 and yt−1 and get

xi,t =
xi,t−1 exp(−ηeTi Ayt−1)∑n
j=1 xj,t−1 exp(−ηeTj Ayt−1)

, ∀ i = 1, 2, · · · , n. (4)

Then, let player Y only consider maximizing her instantaneous expected payoff and take
myopic best response to xt at each time t. In most cases, the myopic best response is unique
and is pure strategy. When the best response is not unique, we stipulate that player Y chooses
the pure strategy with the smallest subscript in J , i.e.,

yt = BR(xt) ≜ yj̄ , where j̄ = min{j ∈ J : xT
t Ayj = max

y∈∆(J )
xT
t Ay} (5)

and yj is a pure-strategy vector with only the j-th element is 1 and all the other elements are 0.
Then, the strategy of player Y at each stage is well-defined and is pure strategy. Apparently yt

is totally determined by xt. Combined with (4), we know that xt+1 is fully determined by xt,
with no randomness involved.

Given the action rule of player X and Y as above, the infinitely repeated game is intrinsically
determined and the system is called the Hedge-myopic system. In this paper, we will study the
dynamic characteristics of such a dynamical system and try to answer the questions like: Is the
system periodic? Does the system converge?
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3 Main Results

3.1 Rational Games with an Interior Equilibrium

In this session, we prove that for the game with rational payoff matrix and an interior NE, the
dynamics of the Hedge-myopic system is periodic after finite stages.

We state some assumptions below:
Assumption 1: The payoff matrix is rational and the game has an unique interior NE,

denoted by (x∗,y∗);
Assumption 2: The matrices Ai ∈ Rn×n are all non-singular for i = 1, 2, ..., n where Ai is

defined as 

a1,1 a2,1 · · · an,1
...

...
a1,i−1 a2,i−1 · · · an,i−1

a1,i+1 a2,i+1 · · · an,i+1

...
...

a1,n a2,n · · · an,n
1 1 · · · 1


. (6)

We note here that the uniqueness of equilibrium here is actually not a necessary condition.
Through experiments, we found that as long as the game has interior equilibrium, even if it
is not unique, the game system can still generate cycles. The assumption of uniqueness is a
requirement in theoretical proofs.

Recall formula (2) and (3), we denote

Qt = Q(xt) = −
n∑

i=1

x∗
i lnxi,t = ln

(
n∑

i=1

eη
∑t−1

τ=1(v
∗−eTi Ayτ )

)
, (7)

where v∗ is the value of the game. Thus Qt is determined by y1, y2, ..., yt−1 and it can measures
the “goodness” of xt. Call {Qt} the Q-sequence.

Qt actually is based on the Kullback-Leibler divergence (KL divergence), which measures the
level of resemblance between the strategy xt and the NE strategy x∗ and defined as

KL(x∗,xt) = −
n∑

i=1

x∗
i lnxi,t +

n∑
i=1

x∗
i lnx

∗
i . (8)

Here, we omit the term
∑n

i=1 x
∗
i lnx

∗
i for convenience and obviously

KL(x∗,xt+1) > KL(x∗,xt)⇔ Qt+1 > Qt.

Hence, by studying the Q-sequence especially the difference between Qt+1 and Qt, we can obtain
the variation in the level of resemblance between the stage strategy and the NE strategy along
the time.

By (7), we can calculate

Qt+1 −Qt = ln

(
n∑

i=1

xi,te
η(v∗−eTi Ayt)

)
. (9)

Recall that eω ∼ ω + 1 if ω is small. Substitute this into the definition of Qt, we obtain

Qt+1 −Qt ≈ ln

(
n∑

i=1

xi,t

(
1 + η(v∗ − eTi Ayt)

))
. (10)
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On the other hand, since yt is the myopic best response of xt, i.e., x
T
t Ayt = maxy∈∆(J ) x

T
t Ay,

we have
n∑

i=1

xi,t(v
∗ − eTi Ayt) = v∗ − xT

t Ayt ≤ 0 (11)

by the Minimax theorem [46].
Substitute (11) to (10), we get

Qt+1 −Qt ≈ ln

(
n∑

i=1

xi,t

(
1 + η(v∗ − eTi Ayt)

))
≤ 0,

indicating that roughly speaking, the value of Qt gradually decreases as time t increases.
Inspired by this rough estimation, we can prove the below theorem.

Theorem 3.1. There exists a positive number MQ such that 0 < Qt ≤ MQ for all t ≥ 1, i.e.,
the Q-sequence is bounded.

To prove Theorem 3.1, we need to study the sequence xt and Qt in details. To this end,
define

D(x) ≜ ln

(
n∑

i=1

xie
η(v∗−eT

i Ayx)

)
, x ∈ ∆(I) (12)

where yx = BR(x) ≜ yj̄ with j̄ = min{j ∈ J : xTAyj = maxy∈∆(J ) x
TAy}. Take x = xt,

we have D(xt) = Qt+1 − Qt. Obviously, if D(xt) < 0, then Qt+1 < Qt; if D(xt) ≥ 0, then
Qt+1 ≥ Qt.

Depending on whether D(x) is positive, for the mixed strategy set ∆(I), define

Zp ≜ {x ∈ ∆(I) : D(x) ≥ 0} and Zn ≜ {x ∈ ∆(I) : D(x) < 0}.

Easy to see that the NE strategy x∗ ∈ Zp, hence Zp ̸= ∅.
To locate the regions Zp and Zn on ∆(I), we need the following inequality in probability

theory.

Lemma 3.1 (Lemma A.1 of [8]). Let z be a random variable with a ≤ z ≤ b. Then, for any
s ∈ R,

lnE(esz) ≤ sEz+
s2(b− a)2

8
.

Applying Lemma 3.1 , we can estimate D(x) as below.

D(x) = ln

(
n∑

i=1

xie
η(v∗−eTi Ayx)

)
≤

n∑
i=1

xiη(v
∗ − eTi Ayx) +

η2δ2

8

= η(v∗ − xTAyx +
ηδ2

8
)

where δ = maxi∈I,j∈J ai,j −mini∈I,j∈J ai,j . Then, depending on whether v∗ − xTAyx + ηδ2

8 is
positive, we further split the set ∆(I) into another two regions Zu and Zd where

Zu ≜ {x ∈ ∆(I) : v∗ − xTAyx +
ηδ2

8
≥ 0} and Zd ≜ {x ∈ ∆(I) : v∗ − xTAyx +

ηδ2

8
< 0}.

For the strategy x ∈ ∆(I), if x ∈ Zd, immediately we have D(x) < 0, i.e., x ∈ Zu. Hence, we
have the Claim 1 below:
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Figure 1: Graphical illustration of Zp, Zu and NE for 3× 3 games.

Claim 1: Zd ⊂ Zn and Zp ⊂ Zu.
Figure 1 gives a graphical illustration about the region Zp, Zu, ∆(I) and interior NE strategy

for a 3×3 game. In this figure, the entire triangular region represents the simplex ∆(I), and the
red point in the center represents the NE strategy x∗ of player X; the gray dashed lines divide
the triangular region into three areas, labeled y1,y2, and y3 respectively, which represents the
best response action of player Y to the strategies in that area; the points on the blue solid line

represent the strategy whereby the payoff of player Y is equal to v∗ + ηδ2

8 when player Y adopts
the corresponding best response, and the triangular region enclosed by the blue solid line is
region Zu; within region Zu, the elliptical region enclosed by the gray dashed line (the actual
region Zp may not necessarily be elliptical) is region Zp, and the NE strategy x∗ is located in
region Zp.

For the region Zu = {x ∈ ∆(I) : xTAyx ≤ v∗ + ηδ2

8 }, we claim that:
Claim 2: The region Zu can be further rewritten as Zu = {x ∈ ∆(I) : maxyj xTAyj ≤

v∗ + ηδ2

8 } = {x ∈ ∆(I) : ATx ≤ b}, where b = [v∗ + ηδ2

8 , v∗ + ηδ2

8 , · · · , v∗ + ηδ2

8 ]T . Thus, the
region Zu is a bounded polyhedron.

For the bounded polyhedron, we have the following result, which can be found in the Theo-
rem 2.9 of [3].

Lemma 3.2 (Representation of Bounded Polyhedra). A bounded polyhedron is the set of all
convex combinations of its vertices.

In Figure 1, the points I12, I13 and I23 are the vertices of polyhedron Zu. Thus by Lemma
3.2, every point in Zu can be written as a convex combination of these vertex points. Then, we
can prove that the polyhedron Zu must lie in the strict interior of ∆(I).

Proposition 3.1. If x ∈ Zu, then the elements of x are uniformly lower bounded. That is, for
all x ∈ Zu, there exists εd > 0 such that xi > εd for all i ∈ I.
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(Proof in Appendix A)
Based on Proposition 3.1, we can obtain the following corollary.

Corollary 3.1. In the Hedge-myopic system, if x ∈ Zu, then Q(x) is upper bounded, i.e., there
exists Mp > 0 such that Q(x) ≤Mp for all x ∈ Zu.

Proof. By Proposition 3.1, we know that for all x ∈ Zu,

Q(x) = −
n∑

i=1

x∗
i lnxi ≤ −

n∑
i=1

x∗
i ln εd = − ln εd,

i.e., the function Q(x) is upper bounded in the region Zu.

Since Zp ⊂ Zu, we immediately prove that Q(x) is also upper bounded by Mp in the region
Zp.

Corollary 3.1 indicates the boundness of Q(x) over Zp and Zu, which is a property in a
spatial sense. The subsequent proof of Theorem 3.1 demonstrates that the boundness in the
spatial sense actually implies boundness in the temporal sense.

Proof of Theorem 3.1. By Corollary 3.1, if x ∈ Zu, then Q(x) ≤Mp.
Consider the sequence xt in the Hedge-myopic system. Suppose that for some time t, xt ∈ Zp.

Then,

Q(xt+1) = Q(xt) + ln

(
n∑

i=1

xi,te
η(v∗−eTi Ayt)

)

≤Mp + ln

(
n∑

i=1

xi,te
ηmax

i∈I
(v∗−eTi Ayt)

)
= Mp + ηmax

i∈I
(v∗ − eTi Ayt)

≤Mp + ηδu, (13)

where δu = v∗ −mini∈I,j∈J aij .
Now, we consider different cases for the behavior of the strategy sequence {xt}.
Case 1: if the strategy sequence never goes into the region Zp, which implies that D(xt) < 0

for all t, then we have Q(xt) ≤ Q(x1) for all t. By calculating, Q(x1) = −
∑n

i=1 x
∗
i ln(1/n) = lnn.

Hence, Q(xt) ≤ lnn for all t.
Case 2: if the strategy sequence goes into the region Zp at some time t′, then for the strategy

xt before time t′, we have Q(xt) ≤ lnn for all t < t′. For the strategy xt after time t′:
(1). if xt ∈ Zp, then we have Q(xt) ≤Mp;
(2). if xt /∈ Zp, then we can find an integer k > 0 such that xt−k ∈ Zp and xt−j /∈ Zp for 0 < j <
k. Combining this with (13), we can obtain that Q(xt) < Q(xt−1) < · · · < Qt−k+1 ≤ Mp + ηδu
since xt−k ∈ Zp.

Take MQ = max{lnn,Mp+ηδu}, then the Q-sequence {Qt}∞t=1 is upper bounded by MQ.

From Definition (2), for strategy x, if some element xi is near zero, the value of Q(x) is near
infinity. Hence, by Theorem 3.1, the elements of the stage strategy xt cannot be too small since
the Q-sequence is bounded. Based on this direct intuition, we can further prove the following
theorem, which shrinks the range of possible values for xt to be a finite set.

Theorem 3.2. In the Hedge-myopic system, xt for player X can only take finite values.

9



Figure 2: The evolving path of the strategy for player X. The red point represents the NE
strategy of player X.

(Proof in Appendix B)

Remark 1. From the proof of Theorem 3.2, it can be observed that when there are irrational
number elements in the payoff matrix, Theorem 3.2 no longer holds except for the special case
such as all elements are rational multiples of the same irrational number. This implies that the
rationality of the payoff matrix is nearly an intrinsically necessary condition for periodicity.

By Theorem 3.2, in the Hedge-myopic system, player X can only adopt a finite number of
mixed strategies. This directly leads to the periodicity of the dynamical system as stated below.

Theorem 3.3. In the Hedge-myopic system with Assumption 1 and Assumption 2 satisfied,
after finite steps,

(1) the strategy sequence of player X and player Y enters a cycle (i.e., is periodic);

(2) the time-averaged strategy of player Y in one period is a NE strategy.

In other words, there exists Ts and T such that for all t ≥ Ts, we have xt+T = xt,yt+T = yt,

and
∑T

k=1 yt+k/T = y∗, where y∗ is a NE strategy of player Y.

Below we give an example to illustrate Theorem 3.3.

Example 3.1. Consider a 3× 3 zero-sum game and the payoff matrix is taken as

A =

−2 1 3
1 2 −2
2 0 −1

 ,

and η = ln 3
625 . In the Hedge-myopic system for this game, the evolution of xt is shown in Figure 2.

The X-axis represents the first element x1,t, and the Y-axis represents the second element x2,t.
From Figure 2, we can observe that basically xt gradually approaches the NE strategy of player

X. However, after reaching a certain range, xt enters a cycle. In Figure 2, we mark a point such

10



that two red arrows both point to it, meaning that a cycle is formed. Additionally, we can see
that xt does not converge to his NE strategy, no matter how long the game is repeated.

Before proving Theorem 3.3, we give Lemma 3.3 below by which we only need to prove the
periodicity of xt in order to prove the periodicity of the system.

Lemma 3.3. If xt enters a cycle, then yt also enters a cycle and her time-averaged strategy in
a single cycle is a NE strategy.

(Proof in appendix C)
Now, we can prove Theorem 3.3.

Proof of Theorem 3.3. By Lemma 3.2, xt can only take finite values. Then, using the pigeonhole
principle, we can obtain that there must exist two stages, t1 < t2, such that xt1 = xt2 because
the game is repeated for infinite times. Since xt+1 is fully determined by xt, we have xt1+k =
xt2+k, ∀ k = 1, 2, · · · , which implies that xt is periodic from time t1. Combining Lemma 3.3, we
can prove Theorem 3.3.

Remark 2. The time required to enter a cycle depends on the parameter η. Due to the complexity
of the problem, it is difficult to provide an explicit expression for it. We have studied it for 2× 2
games in [17] where the time needed for the strategy sequences of both players to enter a cycle is
O(1/η).

Remark 3. In addition to periodicity, it is worth noting that the time-averaged strategy of player
Y in a single cycle is a precise NE strategy! Compared with this, when both players adopt the
no-regret learning algorithm in two-player zero-sum games, their time-averaged strategy profile
converges to a NE when the time horizon goes to infinity, that is to say, only an approximate
NE can be obtained. Moreover, in the Hedge-myopic system, not only can we obtain a precise
NE, but we also only need to compute the time-averaged strategy in a single cycle whose length
is far shorter than the whole time horizon.

3.2 Non-periodicity Examples without Rational Interior NE

In this section, we study the dynamic of the Hedge-myopic system for general games by examples.
These games may have an unique irrational interior equilibrium, or have more than one interior
equilibria, or have an unique non-interior equilibrium. We will see that the dynamics of the
Hedge-myopic systems can vary significantly for different games, preventing a consistent result.

First, we give Example 3.2 to show that when the NE of the game is irrational, the periodicity
of the strategy sequence no longer holds.

Example 3.2. Consider a 3× 3 zero-sum game with the payoff matrix for player Y being−2 √
2 3

1 2 −2
2 0 −1

 ,

in which there is an irrational number
√
2. For this game, in the Hedge-myopic system, the

action sequence yt is shown by Figure 3a. We only present the part that lies between stage 1800
and 1900.

For comparison, we also show the action sequence yt for the game in Example 3.1 by Figure
3b. Comparing these two figures, we can observe that the action sequence is periodic when the
elements of payoff matrix are all rational numbers, while the action sequence is not periodic when
there are irrational numbers in the elements of payoff matrix.

11



(a) The action sequence is not periodic when there are irrational numbers in the payoff matrix.

(b) The action sequence is periodic when the elements of payoff matrix are all rational numbers.

Figure 3: The action sequence of player Y in two different games.
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In the Hedge-myopic system, since player Y can only take pure strategies, the averaged
strategy has only rational elements, so it is impossible for the averaged strategy to be a NE
strategy when there are irrational numbers in the NE strategy. This explains why the periodicity
no longer holds.

Below we present Example 3.3 and Example 3.4 to illustrate that when the game does not ad-
mit interior equilibrium, the periodicity of system dynamics also no longer holds, and periodicity
only exists in special games.

Example 3.3 (No interior equilibrium and no cycle). Consider a 3× 3 zero-sum game and let
the payoff matrix of player Y be

A =

−2 1 3
1 −1 2
0 2 −1

 .

The NE strategy for player X is (0, 1/2, 1/2), which is non-interior, and the equilibrium strategy
for player Y is not unique. The evolving path of xt is shown by Figure 4, from which we can see
that the first element x1,t continually decreases and the repeated game does not enter a cycle.

Figure 4: The evolution of xt in Example 3.3.

Example 3.4 (No interior equilibrium but with a special cycle). Consider the 3× 3 game with
a payoff matrix being

A =

 2 −1 0
−1 1 −2
−3 −2 1

 .

In this game, player X has both interior and non-interior NE strategy. The evolving path of xt

is shown in Figure 5, from which we can see that the repeated game does enter a cycle although
the assumptions in Theorem 3.3 does not hold.

Generally, for all the two-player games, we can approximate the NE no matter whether the
Hedge-myopic system enters a cycle or not. We state it in Theorem 3.4 below, whose proof can
also be found in [23].

13



(a) The evolution of x1,t. (b) The evolution of x2,t.

Figure 5: The evolution of xt in the Hedge-myopic system for Example 3.4.

Theorem 3.4. In a repeated two-player zero-sum game with T stages, suppose player X em-
ploys the Hedge algorithm to update his stage strategy with parameter η set to be

√
8 lnn/T ,

where n is the number of his feasible actions, and suppose player Y takes the myopic best re-
sponse to the stage strategy of player X, then the time-averaged strategy profile converges to the√
lnn/(2T )−NE.

Proof. By Theorem 2.1, we know that the upper regret bound for the Hedge algorithm with
η =

√
8 lnn/T is

√
(T/2) lnn. Then, we have

1

T

T∑
t=1

xT
t Ayt − min

x∈∆(I)
xTAȳ =

1

T

(
max

x∈∆(I)

T∑
t=1

xT (−A)yt −
T∑

t=1

xT
t (−A)yt

)
≤
√

lnn

2T
,

where ȳ =
∑T

t=1(yt/T ). Thus, for all x ∈ ∆(I),

1

T

T∑
t=1

xT
t Ayt − xTAȳ ≤

√
lnn

2T
. (14)

Since player Y always takes the myopic best response, we can deduce that for all y ∈ ∆(J ),

x̄TAy− 1

T

(
T∑

t=1

xT
t Ayt

)
=

1

T

(
T∑

t=1

xT
t Ay−

T∑
t=1

xT
t Ayt

)
=

1

T

T∑
t=1

(
xT
t Ay− xT

t Ayt

)
≤ 0, (15)

where x̄ =
∑T

t=1(xt/T ). Combining the two inequalities (14) and (15), we have

x̄TAy− xTAȳ ≤
√

lnn

2T
(16)

for all x ∈ ∆(I) and y ∈ ∆(J ). Taking x = x̄, we obtain x̄TAy − x̄TAȳ ≤
√
lnn/2T for all

y ∈ ∆(J ), while taking y = ȳ, we obtain that x̄TAȳ − xTAȳ ≤
√

lnn/2T for all x ∈ ∆(I).
Hence, the time-averaged strategy profile (x̄, ȳ) forms a

√
lnn/(2T )−NE.
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4 A Novel NE-solving Algorithm and Experiments

4.1 HBR: an Asymmetric Equilibrium-solving Paradigm

Algorithm 1 HBR Paradigm

Input: T : time horizon, A: payoff matrix, n: number of actions for the row player, m: number

of actions for the column player

1: set η =
√

8 lnn/T

2: initialize ct = zeros(m, 1) ▷ ct is the count of each action taken by player Y

3: initialize the time-averaged strategies: TASx = zeros(n, 1), TASy = zeros(m, 1)

4: for t = 1 to T do

5: compute the state vector st ← A · ct
6: normalization: st ← st − st(n) · ones(n, 1) ▷ st(n) is the n-th element of st
7: check if there exists t′ < t such that st′ = st
8: if such t′ exists then

9: compute the average of yt between time t′ and t

10: output the average strategy ▷ the average strategy is player Y’s exact NE strategy

11: terminate the for loop

12: else

13: compute the stage strategy xt for player X based on Equation (3)

14: compute the best response yt for player Y based on Equation (5)

15: update the time-averaged strategy TASx of player X: TASx = t−1
t TASx +

1
txt

16: update the time-averaged strategy TASy of player Y: TASy = t−1
t TASy +

1
tyt

17: store st and yt

18: update ct ← ct + yt

19: end if

20: end for

21: if the for loop is not prematurely terminated then

22: output TASx and TASy
23: end if

Based on Theorem 3.3 and Theorem 3.4, we can propose an asymmetric Nash-equilibrium
solving paradigm for two-player zero-sum games. Given the time horizon T and the payoff matrix
A, let one player employ the Hedge algorithm to update his stage strategy, and let the other
player know all the information and take the myopic best response. The paradigm is called the
HBR paradigm in which H stands for the Hedge algorithm of one player and BR stands for the
best response of the other player.

As we know from Theorem 3.3, we can compute exact NE fast if there is a cycle. So we exert
additional efforts to identify whether the strategy sequences enter a cycle. If a cycle is detected,
the computation can be terminated, and by Theorem 3.3, an exact NE strategy for the player
using the myopic best response can be obtained. If the strategy sequences never enter a cycle,
we can output the time-averaged strategy over the entire time horizon. By Theorem 3.4, this
converges to an approximate NE as the time horizon T increases. By exchanging the updating
rules of the players, an exact or approximate NE for the other player can also be obtained.

So how can we identify a cycle? This can be done through {xt}. To be specific, we can
record all values of xt, and once xt1 = xt2 , then the strategy sequence xt1 , xt1+1, · · · , xt2−1 forms
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a cycle. By the proof of Lemma 3.3 and (3), the vector st = norm(A ·
∑t−1

τ=1 yτ ) is the other
object to detect, where the operator norm means subtracting each element of a vector by its
n-th element. Then it can be observed that the detection of a cycle implies that player Y has an
interior equilibrium strategy.

The pseudocode for this paradigm is shown in Algorithm 1.

4.2 Experimental Results

We conduct several experiments to show the effectiveness of the HBR paradigm. First, we
consider the game whose payoff matrix is set to be

A =

−2 1 3
1 2 −2
2 0 −1

 .

The equilibrium of this game is an interior equilibrium, which is (( 38 ,
1
24 ,

7
12 ), (

3
8 ,

1
3 ,

7
24 )). An

existing NE solving paradigm via learning is by the self-play of no-regret algorithm, such as
Hedge, abbreviated to HSP. Now, we compare the performance of HBR and HSP paradigm.

(a) The relationship between the terminal time
and the time horizon for computing the NE
strategy for player X.

(b) The relationship between the terminal time
and the time horizon for computing the NE
strategy for player Y.

Figure 6: Autonomously terminated time when the game admits an interior equilibrium.

(1). For different time horizons T , let η =
√

8 ln 3/T . Figure 6 gives the time needed to get
the NE for player X and Y by the HBR paradigm. From Figure 6, we can see that the
HBR paradigm actually enters a cycle very quickly. For this special game, time needed to
calculate the NE strategy for player X and Y is different. Basically, needed steps to enter a
cycle increases with η.

For example, when T = 500000, calculating the NE strategy for player Y terminates prema-
turely at time t ≈ 420, while calculating the NE strategy for player X terminates prematurely
at time t ≈ 80. Basically, we can save a substantial amount of computation.
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Why is the termination time so different for player X and Y? The reason lies in their NE
strategies. For player X, it is ( 38 ,

1
24 ,

7
12 ), while for player Y, it is ( 38 ,

1
3 ,

7
24 ), which is more

balanced among the elements. It is natural that it needs shorter time to enter a cycle
corresponding to ( 38 ,

1
3 ,

7
24 ).

(2). For different time horizons T = 1000, 2000, · · · , 80000, let η =
√

(8 ln 3)/T . We calculate
the ND of the time-averaged strategy profile and the results are in Figure 7a. This figure
illustrates that, 1) as T increases, the ND of the time-averaged strategy profile obtained
by HBR roughly decreases, indicating that the calculated results approach the NE more
closely; 2) compared to HSP, the volatility of the performance of HBR is lower.

We set T = 3000 and present the ND of the time-averaged strategy at each time t in Figure
7b. We can see that compared to HSP, the ND of the averaged strategy of HBR decreases
faster and fluctuates lighter once it stabilizes.

Furthermore, we consider another game matrix

A =

−2 √
2 3

1 2 −2
2 0 −1

 .

whose equilibrium is not rational interior. The ND of the time-averaged strategy profile
and the convergence rate are shown in Figure 8a and 8b respectively. In this case, the HBR
paradigm still performs better than HSP in the perspective of stability and convergence
rate.

(a) The ND of the output strategy profile for
different time horizons.

(b) The descending trend for the ND of the
time-averaged strategy profile.

Figure 7: The comparison between HSP and HBR from the perspective of the convergence results
and the convergence rate: game with an unique rational interior equilibrium.

5 Conclusion and Future Work

In this paper, we study the repeated game between one player using the Hedge algorithm and
the other using the myopic best response. We prove that within this framework, when the payoff
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(a) The ND of the output strategy profile for
different time horizons.

(b) The descending trend for the ND of the
time-averaged strategy profile.

Figure 8: The comparison between HSP and HBR from the perspective of the convergence results
and the convergence rate: game without rational interior equilibrium.

matrix is rational and the game has an interior NE, the dynamical game system enters a cycle
after finite time. Moreover, within each period, the time-averaged strategy of the player using
the myopic best response is an exact NE strategy. For the game with no cycle, the time-averaged
strategy over the entire time horizon converges to the approximate NE. Based on these results,
we propose the novel asymmetric HBR paradigm for NE-solving, which can save a substantial
amount of computation costs and exhibit fast convergence rate and better stability.

In the future, we can explore the Hedge-myopic system for general games which have complex
structures of NE. On the other hand, the periodicity of the Hedge-myopic system actually rules
out the possibility of stage strategies converging to NE. Therefore, it is significant to consider
how to modify the HBR paradigm so that the stage strategy can converge to NE strategy, i.e.,
the last-iterate property. We leave this also as future work.
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A Proof of Proposition 3.1

Proof. First, we claim that there does not exist x ∈ ∆(I) such that the payoffs obtained by the
pure strategies of player Y are all greater than the game value v∗, i.e., for all x ∈ ∆(I), we have

min
j∈J

xTAyj ≤ v∗.
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If not, suppose that for xb ∈ ∆(I), xT
b Ayj > v∗ for all j ∈ J . Then, for the NE strategy y∗

of player Y, since the equilibrium is interior, to play with y∗ of player Y, the loss of player X
will be the same (which actually equals v∗) no matter which pure strategy is taken by player X.
Then we have

v∗ = xT
b Ay∗ =

n∑
j=1

y∗
jx

T
b Ayj >

n∑
j=1

y∗
jv

∗ = v∗,

which leads to contradiction.
Next, we investigate the vertices of the region Zu.
Note that the point corresponding to the NE strategy of player X is the unique solution of

the n systems of linear equations: Akx = c, j = 1, 2, . . . , n, where the coefficient matrix Ak is

a1,1 a2,1 · · · an,1
...

...
a1,k−1 a2,k−1 · · · an,k−1

a1,k+1 a2,k+1 · · · an,k+1

...
...

a1,n a2,n · · · an,n
1 1 · · · 1


, (17)

and c = [v∗, v∗, · · · , v∗, 1]T , whose first n− 1 components are v∗ and the n-th component is 1.
Now, consider the equation system Akx = c + δc, where δc = [ηδ2/8, ηδ2/8, · · · , ηδ2/8, 0],

whose first n− 1 components are ηδ2/8 and the n-th component is 0. By Assumption 2, Ak is
non-singular, the equation system admits an unique solution, denoted by xk.

Firstly, we prove that xk belongs to the region Zu and is a vertex of Zu. Since the strategy
xk is the solution to the linear equation system Akx = c + δc, i.e., (x

k)TAyj = v∗ + ηδ2/8,
thus (xk)TAyj > v∗ for j ̸= k. By the arguments at the beginning of this proof, we have
(xk)TAyk < v∗ ≤ v∗ + ηδ2/8. Combining these equations and inequality, we have ATxk ≤ b,
where b is the vector defined in Claim 2. That proves xk ∈ Zu. On the other hand, by the
n− 1 equations, xk lies on the facets of the polyhedron Zu, thus x

k is a vertex of Zu.
Secondly, we prove that xk is an interior strategy for all k. Since x∗ is the solution of the

linear equation system Akx = c, it follows that Ak(x
k − x∗) = δc and thus,

∥xk − x∗∥2 ≤ ∥A−1
k ∥2∥δc∥2 ≤ λm

√
n
ηδ2

8
,

where λm = maxk=1,2,...,n ∥A−1
k ∥2. λm is finite since Ak is non-singular for all k. Since x∗ is an

interior strategy and η is small enough, we know that for any k, xk is also an interior point, i.e.,
∃ εk > 0, s.t. xk

i > εk, ∀ i.
Lastly, let εd = mink=1,2,...,n ε

k. By Lemma 3.2, for all x ∈ Zu, there exists λ1, λ2, · · · , λn,
satisfying λk ≥ 0 and

∑n
k=1 λk = 1, such that x =

∑n
k=1 λkx

k. Then, for all i = 1, 2, . . . , n, we
have

xi =
∑n

k=1
λkx

k
i >

∑n

k=1
λkε

k ≥
∑n

k=1
λkεd = εd,

which completes the proof.
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B Proof of Theorem 3.2

Proof. First, define the set

Xε = {x : ∃ i ∈ I such that xi ≤ ε}. (18)

For x ∈ Xε, denote the index i such that xi ≤ ε to be i(x). The index i(x) might not be unique,
but it does not affect the following discussion.

Note that for x ∈ Xε, Q(x) has a lower bound since

Q(x) = −
n∑

i=1

x∗
i lnxi ≥ −x∗

i(x) lnxi(x)

≥ −x∗
i(x) ln ε ≥ min

i∈I
{x∗

i } ln
1

ε
,

where the first inequality holds because −x∗
i lnxi > 0 for all i ∈ I.

By Lemma 3.1, we know that the Q-sequence {Qt} is bounded, i.e., 0 < Qt ≤ MQ for all t.
By the definition of Q(x), given MQ, there must exist εQ > 0 such that xi,t > εQ for all i ∈ I
and t ≥ 1.

Recall the formula (7) saying Q(xt) = ln
(∑n

i=1 e
η
∑t−1

τ=1(v
∗−eTi Ayτ )

)
. For i = 1, 2, · · · , n, let

Ri,t =
∑t−1

τ=1(v
∗ − eTi Ayτ ) and let Rt = (R1,t, R2,t, · · · , Rn,t). Then, the formula (3) can be

written as

xi,t =

exp(−η
t−1∑
τ=1

eTi Ayτ )

n∑
j=1

exp(−η
t−1∑
τ=1

eTj Ayτ )

=

exp(η
t−1∑
τ=1

(v∗ − eTi Ayτ ))

n∑
j=1

exp(η
t−1∑
τ=1

(v∗ − eTj Ayτ ))

=
exp(ηRi,t)

n∑
j=1

exp(ηRj,t)
, (19)

implying that for a given vector Rt, only one strategy xt can be obtained. Denote the mapping
from Rt to xt by ϕ : Rn → ∆(I). Since exp(ηRi,t) > 0 for all i and t, the range of the mapping
ϕ is ∆(I) \ ∂(∆(I)).

Now consider the inverse mapping of ϕ, i.e., ϕ−1 : ∆(I) \ ∂(∆(I))→ Rt.
By the equation (19), we have

Ri,t −Rn,t =
1

η
(lnxi,t − lnxn,t). (20)

For R1,t, R2,t, · · · , Rn,t, we also have

n∑
i=1

x∗
iRi,t =

n∑
i=1

x∗
i

(
t−1∑
τ=1

(v∗ − eTi Ayτ )

)
=

t−1∑
τ=1

n∑
i=1

x∗
i (v

∗−eTi Ayτ ) =

t−1∑
τ=1

(v∗−x∗Ayτ ) = 0 (21)

since the game is zero-sum and x∗ is the NE strategy of player X. Combining the equation (20)
and (21), we obtain that

Ri,t =
1

η
lnxi,t −

1

η

n∑
i=1

x∗
i lnxi,t =

1

η
lnxi,t +

1

η
Q(xt) (22)

which means that for a given vector xt, only one regret vector Rt can be obtained.
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Note that for all t, we have εQ < xi,t < 1 for all i and 0 < Q(xt) ≤MQ. Hence, we have

1

η
ln εQ ≤ Ri,t ≤

1

η
MQ

for all i and t, which means that the possible values of Ri,t in the Hedge-myopic system are in
the range [ 1η ln εQ,

1
ηMQ].

On the other hand, by the definition, Ri,t =
∑t−1

τ=1(v
∗ − eTi Ayτ ), in which eTi Ayτ refers to

one of the elements of the matrix A, and v∗ is the game value, which is a fixed rational number.
Hence, Ri,t is also rational and can only take values that are integer multiples of a fraction,
rather than being able to take all rational numbers. Combing with the boundness of Ri,t, we
can infer that Ri,t can only take finite possible values. This implies that Rt can only take finite
values and thus xt can only take finite values, which completes the proof.

Figure 9: Possible values for the Rt vector for Example 3.1.

The evolutionary direction ofRt in the Hedge-myopic system for a special 3×3 game(Example
3.1) is shown in Figure 9. In this figure, each point represents a possible value of Rt, and has
an arrow pointing to another point, indicating the best response action of player Y when player
X adopts the strategy corresponding to that point. The entire range of possible values for Rt

is divided into three regions: below, left, and upper right. In each region, the update direction
of Rt is opposite to the relative location of that region. For example, the points in the lower
region point upwards. The red line represents the actual evolutionary path of the Hedge-myopic
system.
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C Proof of Lemma 3.3

Proof. By the updating rule of yt, we know that yt is fully determined by the value of xt. Thus,
it is natural that if the sequence xt is periodic, then the corresponding sequence of yt is also
periodic.

Suppose for some t, T , xi,t+T = xi,t, ∀i = 1, 2, · · · , n. By the formula (3), each element of xt

is strictly positive, i.e., xi,t > 0, ∀i ∈ I. Then, for i = 1, 2, · · · , n− 1, we have

xi,t+T

xn,t+T
=

xi,t

xn,t

⇒
exp(−η

t+T−1∑
τ=1

eTi Ayτ )

exp(−η
t+T−1∑
τ=1

eTnAyτ )

=

exp(−η
t−1∑
τ=1

eTi Ayτ )

exp(−η
t−1∑
τ=1

eTnAyτ )

⇒ exp(−η
t+T−1∑
τ=t

eTi Ayτ ) = exp(−η
t+T−1∑
τ=t

eTnAyτ )

⇒
t+T−1∑
τ=t

eTi Ayτ =

t+T−1∑
τ=t

eTnAyτ

⇒ eTi A

(
1

T

t+T−1∑
τ=t

yτ

)
= eTnA

(
1

T

t+T−1∑
τ=t

yτ

)
.

Since the game admits an unique rational interior equilibrium, the above equations implies that
1
T

∑t+T−1
τ=t yτ is the NE strategy of player Y, i.e. 1

T

∑t+T−1
τ=t yτ = y∗.
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