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Abstract. We explicitly solve a variational problem related to upper bounds on the optimal
constants in the Cwikel–Lieb–Rozenblum (CLR) and Lieb–Thirring (LT) inequalities, which has
recently been derived in [HKRV23] and [FHJN21]. We achieve this through a variational char-
acterization of the 𝐿1 norm of the Fourier transform of a function and duality, from which we
obtain a reformulation in terms of a variant of the Hadamard three lines lemma. By studying
Hardy-like spaces of holomorphic functions in a strip in the complex plane, we are able to provide
an analytic formula for the minimizers, and use it to get the best possible upper bounds for the
optimal constants in the CLR and LT inequalities achievable by the method of [HKRV23] and
[FHJN21].
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1. Introduction

Motivated by the recent new proof of the Cwikel–Lieb–Rozenblum (CLR) inequality [HKRV23],
we study the variational problem

𝑀𝛾 B inf
𝑚1,𝑚2∈𝐿2 (ℝ+,

d𝑠
𝑠
)

{(
∥𝑚1∥

𝐿2 (ℝ+; d𝑠𝑠 )
∥𝑚2∥

𝐿2 (ℝ+; d𝑠𝑠 )

)𝛾−2 ∫ ∞

0
|𝑚1 ∗𝑚2(𝑡) − 𝑡 |2 𝑡−𝛾

d𝑡
𝑡

}
, (1.1)

Date: March 8, 2024.
2020 Mathematics Subject Classification. Primary 35P15; Secondary 81Q10, 30D05.
Key words and phrases. Schrödinger operators, eigenvalues, bound states, Lieb–Thirring inequality, Cwikel–Lieb–

Rozenblum inequality, Hadamard three lines lemma, Hardy spaces, maximal Fourier multipliers, boundary values of
holomorphic functions.

Funding information: DFG – Project-ID 195170736 – TRR109; DFG – Project-ID 442047500 – SFB 1481.
©2024 by the authors. Faithful reproduction of this article, in its entirety, by any means is permitted for noncommercial
purposes.

1

ar
X

iv
:2

40
3.

04
34

7v
1 

 [
m

at
h-

ph
] 

 7
 M

ar
 2

02
4



2 T. CARVALHO CORSO AND T. RIED

for 𝛾 > 2, where ℝ+ = (0,∞) is the multiplicative group,

𝐿2(ℝ+; d𝑠𝑠 ) =
{
𝑓 : ℝ+ → ℂ measurable :

∫ ∞

0
|𝑓 (𝑠) |2 d𝑠

𝑠
< ∞

}
,

and the convolution is taken with respect to the Haar measure d𝑠
𝑠
in the multiplicative group,

(𝑚1 ∗𝑚2) (𝑡) =
∫ ∞

0
𝑚1

( 𝑡
𝑠

)
𝑚2(𝑠)

d𝑠
𝑠
. (1.2)

The solution of (1.1) gives an upper bound on the constant in the CLR inequality.1 In the article
[HKRV23], the authors proved a lower bound on the variational problem for𝑀𝛾 and were able to
provide upper bounds that in dimensions 𝑑 ≥ 5 improved the till then best upper bounds on the
optimal constant in the CLR inequality due to Lieb [Lie80]. However, the choice of test functions
in [HKRV23, Appendix D] seems quite arbitrary and the questions of existence of optimizers and
the corresponding optimal value for𝑀𝛾 were left open.

In the article at hand we prove that the variational problem (1.1) indeed has a solution, and
we give a description of the optimizer in terms of the solution of another optimization problem,
which makes an interesting connection to (a variant of) Hadamard’s three lines lemma.

In order to state this connection, let us consider the set ℍ(𝑆) of holomorphic functions on the
strip

𝑆 B {𝑥 + i𝑦 ∈ ℂ : 0 < 𝑦 < 1}

in the complex plane, and introduce the following class of spaces similar to Hardy spaces:

Definition 1.1 (ℍ𝑝,𝑞 (𝑆) spaces). Let 1 ≤ 𝑝, 𝑞 ≤ ∞. We say that a holomorphic function ℎ : 𝑆 → ℂ

belongs to the space ℍ𝑝,𝑞 (𝑆) if

∥ℎ∥ℍ𝑝,𝑞 (𝑆 ) B sup
0<𝑦<1

inf
𝑓𝑦∈𝐿𝑝 (ℝ),𝑔𝑦∈𝐿𝑞 (ℝ) :

𝑓𝑦+𝑔𝑦=ℎ𝑦

1
1 − 𝑦 ∥ 𝑓𝑦 ∥𝐿

𝑝 (ℝ) +
1
𝑦
∥𝑔𝑦 ∥𝐿𝑞 (ℝ) < ∞, (1.3)

where for 0 < 𝑦 < 1, ℎ𝑦 : ℝ → ℂ denotes the function ℎ𝑦 (𝑥) B ℎ(𝑥 + i𝑦).2 Moreover, we say that
a holomorphic function ℎ : 𝑆− → ℂ on the lower strip 𝑆− B {𝑥 − i𝑦 ∈ ℂ : 0 < 𝑦 < 1} belongs to
ℍ𝑝,𝑞 (𝑆−) provided that the reflected function 𝑧 ∈ 𝑆 ↦→ ℎ(𝑧) belongs to ℍ𝑝,𝑞 (𝑆).

We will show in Lemma 3.1 that such functions admit boundary values in certain 𝐿𝑝 spaces.
More precisely, for any ℎ ∈ ℍ𝑝,2(𝑆), there exists ℎ0 ∈ 𝐿𝑝 (ℝ) and ℎ1 ∈ 𝐿2(ℝ) such that

lim
𝑦↓0

⟨ℎ𝑦, 𝜑⟩ = ⟨ℎ0, 𝜑⟩ and lim
𝑦↑1

⟨ℎ𝑦, 𝜑⟩ = ⟨ℎ1, 𝜑⟩,

for any Schwartz function 𝜑 ∈ S(ℝ).

1.1. Main result. The first main result of this paper can now be stated as follows.

Theorem 1.2 (Three lines variational problem). Let𝑀𝛾 be defined via (1.1). Then we have

𝑀𝛾 = 16𝜋 (𝛾 − 2)𝛾−2
𝛾𝛾+1

(
max

ℎ∈ℍ∞,2 (𝑆− )

∥ℎ−2/𝛾 ∥𝐿∞ (ℝ)

∥ℎ0∥1−2/𝛾𝐿∞ (ℝ) ∥ℎ−1∥
2/𝛾
𝐿2 (ℝ)

)𝛾
, (1.4)

where ℎ0 and ℎ−1 are the boundary values of ℎ in the sense described above. Moreover, the maximizer
of (1.4) exists and is unique up to the transformation ℎ𝛼,𝛽,𝜔 (𝑧) = 𝛽ℎ(𝑧 − 𝛼)ei𝜔𝑧 for 𝛼,𝜔 ∈ ℝ and
𝛽 ∈ ℂ \ {0}.

1For more details on the CLR estimate and how it is connected to the variational problem (1.1), we refer to
[HKRV21, HKRV23].

2Note that we do not require the functions 𝑓 , 𝑔 in the above decomposition of ℎ to be holomorphic.
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This three lines variational problem resembles the variational problem associated to the famous
Hadamard three lines lemma. In the latter, one replaces the 𝐿2 norm in the denominator by the
𝐿∞ norm; one can then apply the maximum principle to conclude that the constant function is
the unique maximizer (up to the symmetry described above), which gives the statement of the
Hadamard three lines lemma. For problem (1.4), however, the same strategy does not apply as the
functions considered

(i) need to be in 𝐿2 along the line ℝ + 𝑖 , in particular they may be unbounded,
(ii) only extend to the boundary of the strip in a weak sense to be made precise later, and
(iii) the maximum principle does not apply.

Nevertheless, it turns out that problem (1.4) can also be solved in the sense that an explicit analytic
formula for the optimizers can be given. This is the content of the next theorem.

Theorem 1.3 (Optimizer). The unique optimizer (up to symmetries) of Problem (1.4) is given by

ℎ(𝑧) = 𝐵𝛾 (𝑧)e𝜃𝛾 (𝑧 ) ,

where 𝐵𝛾 (𝑧) =
𝑧−𝑧𝛾
𝑧−𝑧𝛾 is the Blaschke factor (for the upper half plane) with zero at 𝑧𝛾 = i(2 − 2

𝛾
) ∈ ℂ+,

and the function 𝜃𝛾 is defined via

𝜃𝛾 (𝑧) B
1
2𝜋 lim

𝜖↓0

∫
|𝑘 | ≥𝜖

𝑔𝛾 (𝑘) (ei𝑧𝑘 − i𝑧𝑘)
𝑘 (cosh(2𝑘) − 1) d𝑘, with 𝑔𝛾 (𝑘) B 𝜋

(
2e−(2− 2

𝛾
) |𝑘 | + e−

2
𝛾
|𝑘 | − e−(4− 2

𝛾
) |𝑘 |

)
.

From the above formula, one can easily evaluate the values of 𝑀𝛾 to high precision. The
numerical values3 of𝑀𝛾 for some values of 𝛾 are displayed in Table 1.1.

𝛾 𝑀𝛾

3 0.371185695
4 0.098174770
5 0.040698664
6 0.020862684
7 0.012143294
8 0.007698202
9 0.005190491

Table 1.1. 𝑀𝛾 for different values of 𝛾 .

1.2. Applications to CLR and LT inequalities. Our main motivation for studying the variational
problem (1.1) comes from its recently discovered connection to the CLR inequality [HKRV21,
HKRV23]. Remarkably, the same variational problem also appears in a recent upper bound for
the optimal constant in the Lieb–Thirring (LT) inequality [FHJN21]. Let us briefly recall these
results and explore their consequences in connection with our main results.

We start with the CLR inequality, for which in [HKRV23, Theorem 1.3] the authors proved the
following upper bound for the CLR constant:

Theorem 1.4 (CLR bound). Let 𝑑 ∈ ℕ and 0 < 𝜎 < 𝑑/2. Then the best constant 𝐿0,𝑑,𝜎 in the
Cwikel-Lieb-Rozenblum inequality for the fractional Schrödinger operator (−Δ)𝜎 +𝑉 ,

𝑁0((−Δ)𝜎 +𝑉 ) ≤ 𝐿0,𝑑,𝜎

∫
ℝ𝑑

𝑉− (𝑥)
𝑑
2𝜎 d𝑥, (1.5)

3The numerical values were obtained using the standard numerical integration routines of MATLAB and indepen-
dently cross-checked with Mathematica.
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satisfies

𝐿0,𝑑,𝜎

𝐿cl0,𝑑,𝜎
≤ 1

4
𝛾𝛾+1

(𝛾 − 2)𝛾−2𝑀𝛾 , with 𝛾 = 𝑑
𝜎
, (1.6)

where the semi-classical constant is given by 𝐿cl0,𝑑,𝜎 =
|𝐵1 |
(2𝜋 )𝑑 and 𝑁0 denotes the number of negative

eigenvalues (counting multiplicity).

We can therefore combine the values obtained for𝑀𝛾 with the above result to update the best
known upper bounds for the CLR constant. The result is displayed in Table 1.2.

𝑑/𝜎 Optimal upper bound via VP Best known so far
3 7.51651 6.86924
4 6.28319 6.03398
5 5.88812 5.95405
6 5.70334 5.77058
7 5.60029 5.67647
8 5.53645 5.63198
9 5.49398 5.62080

𝑑/𝜎 → ∞ 5.34282 –
Table 1.2. Comparison between previously best known upper bounds on the
CLR constant and the best possible bounds via our solution of the variational
problem (VP) for 𝑀𝛾 in (1.1). The values in the third column of Table 1.2 were
extracted from [HKRV23, Table 1].

Remark 1.5 (Asymptotics of CLR upper bound). The asymptotic bound

lim sup
𝑑/𝜎→∞

𝐿0,𝑑,𝜎

𝐿cl0,𝑑,𝜎
≤ 5.342823 (1.7)

in Table 1.2 is proved in Section 5. Moreover, one can show that in the opposite limit 𝛾 = 𝑑
𝜎
↓ 2,

the right hand side of (1.6) has the asymptotic behaviour
1
4

𝛾𝛾+1

(𝛾 − 2)𝛾−2𝑀𝛾 =
2

(𝛾 − 2)𝛾−1 + O(1), (1.8)

where O(1) denotes a term bounded by a constant as 𝛾 ↓ 2; this follows from the lower and
upper bounds in [HKRV23, Proposition 1.4], and we refer to that article for details. Note that the
blowup as 𝛾 ↓ 2 in (1.8) is expected, since the CLR inequality (1.5) does not hold in the case 𝑑

𝜎
≤ 2

[LSW02, HHRV23].

We now turn to the Lieb–Thirring inequality. In [FHJN21, Theorem 2], the authors proved the
following upper bound for the LT inequality.

Theorem 1.6 (LT Bound). For any 𝑑 ∈ ℕ and 𝜎 > 0, the best constant 𝐿1,𝑑,𝜎 in the Lieb–Thirring
inequality for the fractional Schrödinger operator (−Δ)𝜎 +𝑉 ,

Tr[(−Δ)𝜎 +𝑉 ]− ≤ 𝐿1,𝑑,𝜎

∫
ℝ𝑑

𝑉− (𝑥)1+
𝑑
2𝜎 d𝑥, (1.9)

satisfies

𝐿1,𝑑,𝜎

𝐿cl1,𝑑,𝜎
≤ (𝑑 + 2𝜎)2+ 𝑑

2𝜎

𝑑
𝑑
2𝜎 (2𝜎)2

C𝑑,𝜎 , where 𝐿cl1,𝑑,𝜎 = 2𝜎
𝑑+2𝜎

|𝐵1 |
(2𝜋 )𝑑 , (1.10)
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and

C𝑑,𝜎 =
𝑑

2𝜎 inf
𝑓 ,𝜑∈𝐿2 (ℝ+ )
∥ 𝑓 ∥

𝐿2 (ℝ+)=1

{( ∫ ∞

0
𝜑 (𝑡)2d𝑡

) 𝑑
2𝜎

∫ ∞

0

(
1 −

∫ ∞
0 𝜑 (𝑠) 𝑓 (𝑡𝑠)d𝑠

)2
𝑡1+

𝑑
2𝜎

d𝑡
}
. (1.11)

At first glance, problem (1.11) looks different from problem (1.1). However, setting𝑚1(𝑡) B√
2𝑓 (𝑡2)𝑡 and𝑚2(𝑡) =

√
2𝜑 (𝑡−2)𝑡−1, one can easily verify that

∥𝑚1∥
𝐿2 (ℝ+,

d𝑠
𝑠
)
= ∥ 𝑓 ∥𝐿2 (ℝ+ ) , ∥𝑚2∥

𝐿2 (ℝ+,
d𝑠
𝑠
)
= ∥𝜑 ∥𝐿2 (ℝ+ ) ,

and ∫ ∞

0
𝑓 (𝑡𝑠)𝜑 (𝑠)d𝑠 = (𝑚1 ∗𝑚2) (𝑡

1
2 )

𝑡
1
2

,

where the convolution is understood with respect to the multiplicative group, see (1.2). Thus,
from the change of variables 𝑡 1

2 → 𝑡 and a scaling argument (see Lemma 2.4) we find that

C𝑑,𝜎 =
𝑑

𝜎
𝑀2+𝑑

𝜎
, where C𝑑,𝜎 is defined in (1.11) and𝑀𝛾 is defined in (1.1). (1.12)

Consequently, we can also use the computed values for𝑀𝛾 in Table 1.1 to update the best known
upper bounds on the LT constant.

Corollary 1.7 (LT Bound Updated). For any 𝑑 ∈ ℕ and 𝜎 > 0, the best constant in the Lieb–Thirring
inequality for the fractional Schrödinger operator (−Δ)𝜎 +𝑉 satisfies

𝐿1,𝑑,𝜎

𝐿cl1,𝑑,𝜎
≤ 1

4
𝛾

𝛾+2
2

(𝛾 − 2)
𝛾−4
2
𝑀𝛾 , with 𝛾 = 2 + 𝑑

𝜎
, (1.13)

where𝑀𝛾 is defined in (1.1). In particular, we have

𝐿1,1,1

𝐿cl1,1,1
≤ 1.44655,

𝐿1,3,1/2

𝐿cl1,3,1/2
≤ 1.75177, lim sup

𝑑
𝜎
→∞

𝐿1,𝑑,𝜎

𝐿cl1,𝑑,𝜎
≤ 1.96551, and lim sup

𝑑
𝜎
↓0

𝐿1,𝑑,𝜎

𝐿cl1,𝑑,𝜎
= 1.

(1.14)

Let us now compare the values derived above with previous results. For the LT inequality, our
bound 𝐿1,1,1/𝐿cl1,1,1 ≤ 1.44655 improves only marginally over the previously best known bound
𝐿1,1,1/𝐿cl1,𝑑,1 ≤ 1.45579 derived in [FHJN21]. This shows that the lower bounds derived for C𝑑,𝜎 and
𝑀𝛾 respectively in [FHJN21, Corollary 8] and [HKRV23, Proposition 1.4] were rather optimistic
and the exact optimal values of (1.1) are in fact much closer to the upper bounds obtained in these
works. Moreover, from the induction in dimension argument due to Laptev–Weidl [LW00] and
Hundertmark–Laptev–Weidl [HLW00], it is well-known that

𝐿1,𝑑,1

𝐿cl1,𝑑,1
≤
𝐿1,𝑑 ′,1

𝐿cl1,𝑑 ′,1
for any 𝑑 ≥ 𝑑 ′ ∈ ℕ. (1.15)

We can therefore extend the upper bound in (1.14) from the case 𝑑 = 1 = 𝜎 to all dimensions
𝑑 ≥ 1 with 𝜎 = 1; in particular, our results marginally improve the best upper bounds for these
cases as well. On the other hand, for the polyharmonic Schrödinger operator with 𝜎 ≠ 1, the
induction-in-dimension argument is not available and our bounds significantly improve over the
best known bounds as 𝑑

𝜎
becomes large. For instance, for the ultra-relativistic operator in three

dimensions the bound in (1.14) only slightly improves over the previous bound 𝐿1,3,1/2/𝐿cl1,3,1/2 =
(1/0.826)3 ≈ 1.77443 [FHJN21] while the asymptotic bound in (1.14) is about 38% better than the
asymptotic bound

lim sup
𝑑
𝜎
→∞

𝐿1,𝑑,𝜎

𝐿cl1,𝑑,𝜎
= e ≈ 2.71828
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in [FHJN21, Corollary 3].
For the CLR inequality the situation is similar. The new upper bounds presented in Table 1.2 do

not improve over the original upper bounds derived by Lieb [Lie76] for 𝑑 = 3, 4. For dimension 𝑑 ≥
5, however, we obtain improvements over the values derived in [HKRV23]; these improvements
become significantly better as 𝑑/𝜎 grows. Moreover, in contrast with the LT inequality, where
the case 𝑑 = 𝜎 = 1 gives the best bound for all higher dimensions, the upper bound for the
CLR inequality is monotonically decreasing in 𝑑/𝜎 ; therefore, the upper bounds for large 𝑑/𝜎
presented here (see Table 1.2) provide significant improvements not only for the fractional case
but also for the case 𝜎 = 1.

To conclude our brief comparison with previous works, let us make a few remarks. First, both
the LT and the CLR inequalities can be stated in a dual form (see, e.g., [FHJN21, Equation 6]). In
particular, the upper bounds derived here can be translated into lower bounds for the dual con-
stants, denoted by𝐾1,𝑑,𝜎 for the LT inequality in [FHJN21]. Second, in view of [HKRV23][Theorem
1.7] and [FHJN21, Remark 7], the bounds derived here also apply to operator-valued Schrödinger
operators. Third, in view of Theorems 1.4 and 1.6, we expect the variational problem for 𝑀𝛾 to
also provide interesting upper bounds for the whole family of LT inequalities (i.e. sums of 𝑝 th
moments of the negative eigenvalues with 𝑝 ≥ 0). This will be the content of future work. Finally,
let us refer to the review articles [Fra21, Nam21, Sch22] and the books [FLW23, EFGHW21] for
further information on recent developments regarding Lieb–Thirring and related inequalities, as
well as the state of the art on the Lieb–Thirring conjecture.

1.3. Outline of the proofs of our main theorems. We now outline the proof of Theorems 1.2
and 1.3. First, based on a characterization of the space of Fourier transforms of 𝐿1(ℝ) functions,
we derive an alternative formulation (2.4) of the variational problem (1.1). This reformulation,
via its symmetries, allows us to obtain a convex formulation of the problem; we then apply the
Fenchel-Rockafellar duality theorem to obtain a dual formulation of (2.4), see Theorem 2.10 below.

The next step of our proof brings in some tools from complex analysis to restate both the primal
and dual variational problems in (2.4) and (2.15) as minimization problems over the Hardy-type
spaces ℍ𝑝,𝑞 (𝑆) on a strip in the complex plane introduced above. More precisely, we show that
the domains of these problems are in one-to-one correspondence with the boundary values
of functions in ℍ𝑝,𝑞 (𝑆) for suitable 𝑝, 𝑞 ∈ [1,∞]. From this correspondence, and the previous
reformulations, we immediately obtain the three lines problem stated in Theorem 1.2.

The final step in our proof is to effectively solve the Euler-Lagrange (EL) equations associated
to the three lines problem from Theorem 1.2. This is a quite challenging problem, owing to the
fact that the EL equation (see eqs. (4.2) and (4.5)) is non-local and non-linear in the sense that
it relates the boundary values of a meromorphic function at the opposite ends of a strip in a
non-linear way. To overcome these challenges, we implement the three following main ideas:

(i) Factorize the poles (and zeros) of the optimizer via a Blaschke product decomposition. For
this, it turns out that the single Blaschke factor introduced in Theorem 4.7 suffices.

(ii) Linearize the EL equation by applying a logarithmic transformation. More precisely, we
make the ansatz ℎ(𝑧) = 𝐵𝛾 (𝑧)e𝜃𝛾 (𝑧 ) for the optimizer, which allows us to re-state the
non-linear EL equation (4.5) for ℎ as a linear equation for 𝜃𝛾 .

(iii) Overcome the non-locality by using the fact that holomorphic functions on the strip
can be viewed as the Fourier transform of rapidly decaying tempered distributions with
complex argument.4 In other words, we make the ansatz 𝜃𝛾 (𝑧) = p𝜂 (𝑧) for some tempered
distribution 𝜂, which results in a linear local equation that can be formally solved pointwise.

The rest of the proof then consists in showing that the formal guess obtained for the optimizer is
in the right function space and indeed satisfies the EL equation.

1.4. Overview of the article. We end this section with a brief outline of the rest of the paper. In
Section 2, we carry out the first step of our proof and obtain a primal and dual reformulation

4This is actually the idea that led us to introduce the Hardy like spaces ℍ𝑝,𝑞 (𝑆).
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of problem (1.1) over the classical Lebesgue spaces 𝐿1(ℝ) and 𝐿∞(ℝ). In Section 3, we study
the boundary values of functions in ℍ𝑝,𝑞 (𝑆), and derive the reformulation of our variational
problem over these spaces. The construction of the optimizer of (1.4) is carried out in Section 4.
In Section 5, we prove the asymptotic upper bounds for the CLR and LT inequalities stated in
Table 1.2 and Corollary 1.7. In Appendix A, we briefly discuss how the characterization of the space
of Fourier transform of 𝐿1(ℝ) functions (Lemma 2.1 below) naturally appears in the maximal
Fourier multiplier bound derived in [HKRV23, Theorem 4.2], which is of independent interest.
The proof of some technical lemmas used in Section 3 are presented in Appendix B. In Appendix C,
we prove existence of optimizers for problem (1.1), even though this is not explicitly needed for
the proof of our main theorems (since we explicitly construct the optimizers).

2. The Dual problem

In this section, we show that Problem (1.1) can be reformulated in 𝐿1(ℝ) with respect to standard
Lebesgue measure. We then derive a dual formulation for this problem on the space 𝐿∞(ℝ).

2.1. Formulation over 𝐿1(ℝ). It is convenient to transform (1.1) to ℝ by an exponential change
of coordinates, yielding

𝑀𝛾 = inf
𝑚1,𝑚2∈𝐿2 (ℝ)

{(
∥𝑚1∥𝐿2 (ℝ) ∥𝑚2∥𝐿2 (ℝ)

)𝛾−2
∥𝑚1 ∗𝑚2 − exp∥2

𝐿2𝛾 (ℝ)

}
, (2.1)

where 𝐿2(ℝ) now denotes the classical Lebesgue space of square integrable functions on ℝ,
𝑚1 ∗𝑚2 is the standard convolution

𝑚1 ∗𝑚2(𝑘) =
∫
ℝ

𝑚1(𝑘 − 𝑢)𝑚2(𝑢)d𝑢,

and for 𝛾 ∈ ℝ, 𝐿2𝛾 will be used throughout this article to denote the exponentially weighted 𝐿2
spaces

𝐿2𝛾 (ℝ) = 𝐿2(ℝ; e−𝛾𝑘d𝑘) =
{
𝑚 : ℝ → ℂ : ∥𝑚∥2

𝐿2𝛾
=

∫
ℝ

|𝑚(𝑘) |2e−𝛾𝑘d𝑘 < ∞
}
. (2.2)

This sets our problem in the more conventional framework of 𝐿𝑝 spaces on ℝ.
We use the following convention for the Fourier transform of a function𝑚 ∈ 𝐿1(ℝ),

p𝑚(𝑘) =
∫
ℝ

𝑚(𝑥) e−i𝑘𝑥 d𝑥,

as well as its extension to the space of tempered distributions S′(ℝ). With this convention, we
have the following characterization of the Fourier transform of integrable functions.

Lemma 2.1 (Fourier transform of integrable functions). Let𝑚 ∈ S′(ℝ). Then q𝑚 ∈ 𝐿1(ℝ) if and
only if there exists𝑚1,𝑚2 ∈ 𝐿2(ℝ) with𝑚1 ∗𝑚2 =𝑚. Moreover, we have the equality

∥ q𝑚∥𝐿1 (ℝ) = min{∥𝑚1∥𝐿2 ∥𝑚2∥𝐿2 :𝑚1 ∗𝑚2 =𝑚}, (2.3)

where the minimum is attained.

Remark. The proof of Lemma 2.1 is a straightforward consequence of the convolution property of
the Fourier transform and Plancherel’s theorem. In fact, the first statement is known and can be
found, e.g., in [Rud62, Theorem 1.6.3]. However, we could not find a reference for the variational
characterization of ∥ q𝑚∥𝐿1 stated in (2.3). Therefore, we present the simple proof below.

Remark (Connection with maximal Fourier multipliers). Lemma 2.1 also allows us to improve the
maximal Fourier mutliplier bound in [HKRV23, Theorem 2.1, Theorem 4.2] in a natural way. For
the details, see Appendix A.
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Proof of Lemma 2.1. Suppose that p𝑚 ∈ 𝐿1(ℝ). Then there exist measurable functions | q𝑚 | : ℝ →
[0,∞) and 𝜃 : ℝ → [0, 2𝜋) such that q𝑚(𝑥) = | q𝑚 | (𝑥)ei𝜃 (𝑥 ) . In particular, if we define (2𝜋) 1

2
|𝑚1 =

(2𝜋) 1
2
|𝑚2 B

√︁
| q𝑚 |ei𝜃 (𝑥 )/2 ∈ 𝐿2(ℝ), then𝑚1 ∗𝑚2 =𝑚 by the convolution property of the Fourier

transform, and
∥ q𝑚∥𝐿1 = (2𝜋)∥|𝑚1|𝑚2∥𝐿1 = (2𝜋)∥|𝑚1∥𝐿2 ∥|𝑚2∥𝐿2 = ∥𝑚1∥𝐿2 ∥𝑚2∥𝐿2

by Plancherel’s theorem. The converse implication and the inequality ∥|𝑚1∥ ≤ ∥𝑚1∥𝐿2 ∥𝑚2∥𝐿2
follows from reversing the previous steps and using the Cauchy-Schwarz inequality. ■

The above characterization is the first key step of our analysis; it allows us to reformulate
problem (2.1) in the following way:

Lemma 2.2 (Reformulation on 𝐿1(ℝ)). Let 𝛾 > 2 and define the functional
𝐹𝛾 : 𝐿1(ℝ) → ℝ ∪ {+∞}, 𝑚 ↦→ 𝐹𝛾 (𝑚) B ∥ p𝑚 − exp ∥2

𝐿2𝛾
.

Then 𝐹𝛾 is strictly convex and lower semi-continuous in 𝐿1(ℝ) with domain

dom 𝐹𝛾 =

{
𝑚 ∈ 𝐿1(ℝ) : p𝑚 − exp ∈ 𝐿2𝛾 (ℝ)

}
.

Moreover, we have

𝑀𝛾 = inf
𝑚∈𝐿1 (ℝ)

∥𝑚∥𝛾−2
𝐿1

𝐹𝛾 (𝑚), (2.4)

with𝑀𝛾 defined in equation (2.1).

Remark 2.3 (Notation). In Sections 3 and 4, we will mostly be working with the functional

E𝛾 (𝑚) B ∥𝑚∥𝛾−2
𝐿1

𝐹𝛾 (𝑚) = ∥𝑚∥𝛾−2
𝐿1 (ℝ) ∥ p𝑚 − exp∥2

𝐿2𝛾
, (2.5)

with domain
dom E𝛾 = dom 𝐹𝛾 = {𝑚 ∈ 𝐿1(ℝ) : p𝑚 − exp ∈ 𝐿2𝛾 }. (2.6)

To simplify notation, we write exp𝛼 : ℝ → ℝ, 𝑥 ↦→ exp𝛼 (𝑥) := e𝛼𝑥 for 𝛼 ∈ ℝ.

Proof of Lemma 2.2. The strict convexity of 𝐹𝛾 follows directly from the strict convexity of the
norm in 𝐿2𝛾 squared. Moreover, the lower semi-continuity follows from Fatou’s lemma by ob-
serving that convergence in 𝐿1(ℝ) implies uniform convergence of the Fourier transform. The
reformulation of (2.1) in (2.4) is immediate from Lemma 2.1 after interchanging the role of real
and reciprocal (Fourier) space by considering𝑚 as a function in 𝐿1(ℝ). ■

The functional 𝐹𝛾 has the following scaling property: for any 𝛼 > 0 and𝑚 ∈ 𝐿1(ℝ), there holds

𝐹𝛾 (𝑚𝛼 ) = 𝛼𝛾−2𝐹𝛾 (𝑚) where 𝑚𝛼 (𝑥) B 𝛼−1−i𝑥𝑚(𝑥) . (2.7)
As a consequence, Problem (2.4) can be reformulated in several ways.

Lemma 2.4 (Scaling property). For any 𝑝, 𝑞 > 0 and 𝑎 > 0 we have

inf
𝑚∈𝐿1 (ℝ)

{
𝐹𝛾 (𝑚)𝑝 + 𝑎∥𝑚∥𝑞

𝐿1

}
= 𝐶 (𝛾, 𝑝, 𝑞, 𝑎)𝑀

𝑝𝑞

(𝛾−2)𝑝+𝑞
𝛾 ,

where𝑀𝛾 is defined in (2.1) and

𝐶 (𝛾, 𝑝, 𝑞, 𝑎) =
(
(𝛾 − 2)𝑝

𝑞

) 𝑞

(𝛾−2)𝑝+𝑞
(

𝑞

(𝛾 − 2)𝑝 + 1
)
𝑎

(𝛾−2)𝑝
(𝛾−2)𝑝+𝑞 .

Moreover, we have

𝑀𝛾 = inf
𝑚∈𝐿1 (ℝ)
∥𝑚∥

𝐿1≤1

𝐹𝛾 (𝑚). (2.8)
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In particular, if a minimizer of (1.1) exists, it is unique up to the transformation𝑚𝛼 (𝑥) B 𝑚(𝑥)𝛼−i𝑥−1,
𝛼 > 0.

Proof. From (2.7) we have
inf

𝑚∈𝐿1 (ℝ)
{𝐹𝛾 (𝑚)𝑝 + 𝑎∥𝑚∥𝑞

𝐿1
} = inf

𝑚∈𝐿1 (ℝ)
inf
𝛼>0

{𝐹𝛾 (𝑚𝛼 )𝑝 + 𝑎∥𝑚𝛼 ∥𝑞𝐿1}

= inf
𝑚∈𝐿1 (ℝ)

inf
𝛼>0

{𝛼 (𝛾−2)𝑝𝐹𝛾 (𝑚)𝑝 + 𝛼−𝑞𝑎∥𝑚∥𝑞
𝐿1
}. (2.9)

Minimizing the function 𝛼 ↦→ 𝑓𝑚 (𝛼) B 𝛼 (𝛾−2)𝑝𝐹𝛾 (𝑚)𝑝 + 𝛼−𝑞𝑎∥𝑚∥𝑞
𝐿1

yields

min
𝛼>0

𝑓𝑚 (𝛼) =
(
(𝛾 − 2)𝑝

𝑞

) 𝑞

(𝛾−2)𝑝+𝑞
(

𝑞

(𝛾 − 2)𝑝 + 1
)
𝑎

(𝛾−2)𝑝
(𝛾−2)𝑝+𝑞

(
∥𝑚∥𝛾−2

𝐿1
𝐹𝛾 (𝑚)

) 𝑝𝑞

(𝛾−2)𝑝+𝑞
,

which together with (2.9) completes the proof. Equation (2.8) follows from similar arguments.
Moreover, the uniqueness of the minimizer (provided it exists) follows from the strict convexity
of 𝐹𝛾 and the convexity of ∥·∥𝐿1 . ■

2.2. Duality. We now observe that eq. (2.8) can be re-written as
𝑀𝛾 = inf

𝑚∈𝐿1 (ℝ)
{𝐹𝛾 (𝑚) +𝐺 (𝑚)},

where𝐺 : 𝐿1(ℝ) → {0, +∞} is the characteristic function (in the convex analysis terminology) of
the unit ball in 𝐿1, i.e.

𝐺 (𝑚) =
{
0, if ∥𝑚∥𝐿1 (ℝ) ≤ 1,
+∞, otherwise.

The idea is now to apply the Fenchel-Rockafellar duality theorem to obtain a dual formulation of
our problem. For this, we start with the following extension of Plancherel’s theorem.

Lemma 2.5 (Plancherel’s theorem). Let 1 ≤ 𝑝 ≤ ∞, then for any 𝑔 ∈ 𝐿𝑝 (ℝ) with p𝑔 ∈ 𝐿2−𝛾 (ℝ) and
𝑚 ∈ 𝐿

𝑝

𝑝−1 (ℝ) with p𝑚 ∈ 𝐿2𝛾 (ℝ), there holds

⟨𝑔,𝑚⟩ ≔
∫
ℝ

𝑔(𝑥)𝑚(𝑥)d𝑥 =
1
2𝜋

∫
ℝ

p𝑔(𝑘) p𝑚(𝑘)d𝑘 =
1
2𝜋 ⟨p𝑔, p𝑚⟩ . (2.10)

Proof. Let p𝜑 ∈ 𝐶∞
𝑐 (ℝ) be a real-valued function satisfying p𝜑 (𝑥) = 1 for |𝑥 | ≤ 1/2 and p𝜑 (𝑥) = 0 for

|𝑥 | ≥ 1, and set p𝜑𝜖 (𝑥) = p𝜑 (𝜖𝑥). From the definition of the Fourier transform we have p𝜑𝜖 p𝑔 = {𝜑𝜖 ∗ 𝑔
for any 𝑔 ∈ S′(ℝ). Moreover, if 𝑔 ∈ 𝐿𝑝 (ℝ) for some 1 ≤ 𝑝 ≤ ∞ with p𝑔 ∈ 𝐿2−𝛾 (ℝ) for some 𝛾 ∈ ℝ,
then by dominated convergence and the approximate identity property of 𝜑𝜖 , respectively, we
have

p𝜑𝜖 p𝑔 → p𝑔 strongly in 𝐿2−𝛾 and 𝜑𝜖 ∗ 𝑔 → 𝑔 strongly in 𝐿𝑝 (ℝ) (or weak-∗ for 𝑝 = ∞)

as 𝜖 ↓ 0. From the assumptions on p𝜑 , we see that p𝜑𝜖 = p𝜑𝜖 p𝜑𝜖/2 and p𝜑𝜖 p𝑔 ∈ 𝐿2(ℝ). Hence, using the
above convergence and Plancherel’s theorem for 𝐿2(ℝ) functions, we conclude that

1
2𝜋 ⟨p𝑔, p𝑚⟩ = lim

𝜖↓0

1
2𝜋 ⟨p𝜑𝜖 p𝑔, p𝜑𝜖/2p𝑔⟩ = lim

𝜖↓0
⟨𝜑𝜖 ∗ 𝑔, 𝜑𝜖/2 ∗𝑚⟩ = ⟨𝑔,𝑚⟩.

■

Remark 2.6. Recall that the Fourier transform of a function 𝑔 ∈ 𝐿∞(ℝ) has to be understood
in the sense of tempered distributions. Since the Fourier transform of a tempered distribution
is itself a tempered distribution, the condition p𝑔 ∈ 𝐿2−𝛾 (ℝ) means that p𝑔 can be identified with
a function that lies in 𝐿2−𝛾 (ℝ), which puts a one-sided (exponential) decay constraint on the
Fourier transform p𝑔. This allows us to define certain integrals of p𝑔 against exponentially growing
functions.
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Lemma 2.7. Let 𝛾 > 2 and 𝑔 ∈ 𝐿∞(ℝ) with p𝑔 ∈ 𝐿2−𝛾 (ℝ). Then the limit

lim
𝜖↓0

∫
ℝ

𝜑 (𝜖𝑘)p𝑔(𝑘)e𝑘d𝑘, 𝜑 ∈ 𝐶∞
𝑐 (ℝ), 𝜑 (0) = 1, (2.11)

exists and is independent of 𝜑 . We can therefore define

⟨exp, p𝑔⟩ =
∫
ℝ

p𝑔(𝑘)e𝑘d𝑘 B lim
𝜖↓0

∫
ℝ

𝜑 (𝜖𝑘)p𝑔(𝑘)e𝑘d𝑘 (2.12)

for any 𝜑 ∈ 𝐶∞
𝑐 (ℝ) such that 𝜑 (0) = 1.

Proof. We decompose e𝑘 = 𝑝 (𝑘) + 𝑞(𝑘), where 𝑝 (𝑘) B e−|𝑘 | and 𝑞(𝑘) B
(
e𝑘 − e−𝑘

)
1(0,∞) (𝑘).

Note that p𝑝 (𝑥) = 2
1+𝑥2 ∈ 𝐿1(ℝ) and 𝑞 ∈ 𝐿2𝛾 for 𝛾 > 2.

Let 𝜑𝜖 (𝑘) B 𝜑 (𝜖𝑘) for 𝑘 ∈ ℝ, then p𝜑𝜖 is an approximate identity in 𝐿1(ℝ), in particular
p𝜑𝜖 ∗ p𝑝 → p𝑝 in 𝐿1(ℝ), and by the classical Parseval identity, we have∫

ℝ

𝜑𝜖 (𝑘)𝑝 (𝑘)p𝑔(𝑘) d𝑘 =
1
2𝜋

∫
ℝ

(
p𝜑𝜖 ∗ p𝑝

)
(𝑥)𝑔(𝑥)d𝑥 𝜖→0−→ 1

2𝜋

∫
ℝ

p𝑝 (𝑥)𝑔(𝑥) d𝑥 =
1
𝜋

∫
ℝ

𝑔(𝑥)
1 + 𝑥2 d𝑥 .

The limit is independent of the choice of 𝜑 and, since 𝑔 ∈ 𝐿∞(ℝ), it is finite. Moreover, 𝜑𝜖𝑞 → 𝑞

in 𝐿2𝛾 as 𝜖 ↓ 0 by dominated convergence, from which it follows that∫
ℝ

𝜑𝜖 (𝑘)𝑞(𝑘)p𝑔(𝑘) 𝜖→0−→
∫
ℝ

𝑞(𝑘)p𝑔(𝑘) d𝑘,

where the limit is finite since 𝑞 ∈ 𝐿2𝛾 and p𝑔 ∈ 𝐿2−𝛾 , and independent of 𝜑 (as long as 𝜑 (0) = 1). ■

We can now compute the dual of 𝐹𝛾 .

Proposition 2.8 (Dual of 𝐹𝛾 ). The Fenchel conjugate 𝐹 ∗𝛾 : 𝐿∞(ℝ) → ℝ ∪ {+∞} of 𝐹𝛾 is given by

𝐹 ∗𝛾 (𝑔) = sup
𝑚∈dom 𝐹𝛾

(
Re

∫
ℝ

𝑔(𝑥)𝑚(𝑥) d𝑥 − 𝐹𝛾 (𝑚)
)

=


1

16𝜋2 ∥p𝑔∥2
𝐿2−𝛾

+ 1
2𝜋 Re

∫
ℝ

p𝑔(𝑘)e𝑘d𝑘, if p𝑔 ∈ 𝐿2−𝛾 ,

+∞ otherwise,

where
∫
ℝ

p𝑔(𝑘)e𝑘d𝑘 is understood in the sense of (2.12).

Proof. Note that dom 𝐹𝛾 ≠ ∅, since 𝑚(𝑥) = 𝜋−1(1 + 𝑥2)−1 is integrable with p𝑚(𝑘) = e−|𝑘 | , so
𝑚(𝑘) − e𝑘 ∈ 𝐿2𝛾 for any 𝛾 > 2 (see the proof of Lemma 2.7).

To compute the dual, we fix some 𝑚0 ∈ dom 𝐹𝛾 and split 𝑚 ∈ dom 𝐹𝛾 in 𝑚 = 𝑚0 + ℎ with
ℎ ∈ 𝐿1(ℝ) such that pℎ ∈ 𝐿2𝛾 . Then

𝐹 ∗𝛾 (𝑔) = Re
∫
ℝ

𝑔(𝑥)𝑚0(𝑥) d𝑥 − 𝐹𝛾 (𝑚0) + sup
ℎ∈𝐿1:pℎ∈𝐿2𝛾

(
Re

∫
ℝ

𝑔(𝑥)ℎ(𝑥) d𝑥 + 𝐹𝛾 (𝑚0) − 𝐹𝛾 (𝑚0 + ℎ)
)
.

Note that |Re ⟨𝑔,𝑚0⟩| ≤ ∥𝑔∥𝐿∞ ∥𝑚0∥𝐿1 < ∞ and 𝐹𝛾 (𝑚0) < ∞ since𝑚0 ∈ dom 𝐹𝛾 . Hence, 𝐹 ∗𝛾 is
finite if and only if

sup
ℎ∈𝐿1:pℎ∈𝐿2𝛾

(
Re ⟨𝑔, ℎ⟩ − 2Re

〈
(x𝑚0 − exp) exp−𝛾 , pℎ

〉
− ∥pℎ∥2

𝐿2𝛾

)
= sup

ℎ∈𝐿1:pℎ∈𝐿2𝛾
sup
𝛼∈ℂ

(
Re𝛼 ⟨𝑔, ℎ⟩ − 2Re𝛼

〈
(x𝑚0 − exp) exp−𝛾 , pℎ

〉
− |𝛼 |2∥pℎ∥2

𝐿2𝛾

)
= sup

ℎ∈𝐿1:pℎ∈𝐿2𝛾

1
4

���⟨𝑔, ℎ⟩ − 2
〈
(x𝑚0 − exp) exp−𝛾 , pℎ

〉���2
∥pℎ∥2

𝐿2𝛾

< ∞,
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Since 𝐶∞
𝑐 (ℝ) ⊂ {pℎ ∈ 𝐿2𝛾 : ℎ ∈ 𝐿1} and the former is dense in 𝐿2𝛾 , the above quotient is finite if and

only if the linear functional ℓ : 𝐶∞
𝑐 (ℝ) → ℝ given by

pℎ ↦→ ℓ (pℎ) B ⟨𝑔, ℎ⟩ − 2
〈
(x𝑚0 − exp) exp−𝛾 , pℎ

〉
extends to a bounded linear functional on 𝐿2𝛾 (ℝ). In this case, the Riesz representation theorem
implies that there exists a unique 𝐺 ∈ 𝐿2−𝛾 (ℝ) such that ℓ (pℎ) = ⟨𝐺, pℎ⟩ for all pℎ ∈ 𝐿2𝛾 (ℝ). In
particular, since (x𝑚0 − exp) exp−𝛾 ∈ 𝐿2−𝛾 (recall that x𝑚0 − exp ∈ 𝐿2𝛾 ), it follows that

⟨𝑔, ℎ⟩ =
〈
𝐺 + 2(x𝑚0 − exp) exp−𝛾 ), pℎ

〉
for all pℎ ∈ 𝐿2𝛾 ,

from which we conclude that p𝑔 ∈ 𝐿2−𝛾 (ℝ). We may therefore apply Parseval’s identity (Lemma 2.5)
to obtain

sup
ℎ∈𝐿1:pℎ∈𝐿2𝛾

1
4

���⟨𝑔, ℎ⟩ − 2
〈
(x𝑚0 − exp) exp−𝛾 , pℎ

〉���2
∥pℎ∥2

𝐿2𝛾

= sup
ℎ∈𝐿1:pℎ∈𝐿2𝛾

1
4

���〈 1
2𝜋 p𝑔 − 2(x𝑚0 − exp) exp−𝛾 , pℎ

〉���2
∥pℎ∥2

𝐿2𝛾

=
1
4





 1
2𝜋 p𝑔 − 2(x𝑚0 − exp) exp−𝛾





2
𝐿2−𝛾

.

It follows that

𝐹 ∗𝛾 (𝑔) = Re ⟨𝑔,𝑚0⟩ − ∥x𝑚0 − exp ∥2
𝐿2𝛾

+




 1
4𝜋 p𝑔 − (x𝑚0 − exp) exp−𝛾





2
𝐿2−𝛾

=
1

(4𝜋)2 ∥p𝑔∥2
𝐿2𝛾

+ Re ⟨𝑔,𝑚0⟩ −
1
2𝜋 Re ⟨p𝑔, x𝑚0 − exp⟩. (2.13)

To complete the proof, we observe that by dominated convergence, for any 𝜑 ∈ 𝐶∞
𝑐 (ℝ) with

𝜑 (0) = 1, setting 𝜑𝜖 B 𝜑 (𝜖 ·), there holds
1
2𝜋 Re

∫
ℝ

p𝑔(𝑘) ( p𝑚0(𝑘) − e𝑘 ) d𝑘 = lim
𝜖↓0

1
2𝜋 Re

∫
ℝ

p𝑔(𝑘)𝜑𝜖 (𝑘) ( p𝑚0(𝑘) − e𝑘 ) d𝑘

= lim
𝜖↓0

Re
∫
ℝ

𝑔(𝑥)q𝜑𝜖 ∗𝑚0(𝑥) d𝑥 − lim
𝜖↓0

1
2𝜋

∫
ℝ

p𝑔(𝑘)𝜑𝜖 (𝑘)e𝑘 d𝑘

= Re
∫
ℝ

𝑔(𝑥)𝑚0(𝑥) d𝑥 − 1
2𝜋 Re

∫
ℝ

p𝑔(𝑘)e𝑘 d𝑘.

With this and (2.13), we can conclude that

𝐹 ∗𝛾 (𝑔) =
1

(4𝜋)2 ∥p𝑔∥2
𝐿2𝛾

+ 1
2𝜋 Re ⟨p𝑔, exp⟩ , if p𝑔 ∈ 𝐿2−𝛾 (ℝ),

and 𝐹 ∗𝛾 (𝑔) = +∞ otherwise. ■

From the above lemma and the Fenchel-Rockafellar duality theorem we obtain

Lemma 2.9 (Duality). The strong duality

𝑀𝛾 = inf
𝑚∈𝐿1 (ℝ)
∥𝑚∥

𝐿1≤1

𝐹𝛾 (𝑚) = − min
𝑔∈𝐿∞
p𝑔∈𝐿2−𝛾

{
∥𝑔∥𝐿∞ + 1

16𝜋2 ∥p𝑔∥2
𝐿2−𝛾

+ 1
2𝜋 Re

∫
ℝ

p𝑔(𝑘)e𝑘 d𝑘
}

(2.14)

holds. Moreover, there exists a unique minimizer for the problem on the right-hand side.

Proof. By the Fenchel-Rockafellar duality theorem [Roc72, Theorem 31.1], we have
inf

𝑚∈𝐿1 (ℝ)
∥𝑚∥

𝐿1≤1

𝐹𝛾 (𝑚) = inf
𝑚∈𝐿1 (ℝ)

{𝐹𝛾 (𝑚) +𝐺 (𝑚)} = − min
𝑔∈𝐿∞ (ℝ)

{𝐹 ∗𝛾 (𝑔) +𝐺∗(−𝑔)}.
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where the minimizer of the dual problem exists provided that both 𝐹𝛾 and𝐺 are convex and lower
semi-continuous in 𝐿1(ℝ), and that there exists at least one point of continuity of𝐺 in the domain
of 𝐹𝛾 . The lower-semicontinuity and convexity can be directly checked for 𝐺 and are proved in
Proposition 2.8 for 𝐹𝛾 . To verify the last condition, note that𝑚𝛼 (𝑥) =𝑚(𝑥)𝛼−i𝑥−1 ∈ dom 𝐹𝛾 for
any 𝛼 > 0 and𝑚 ∈ domF𝛾 . So for 𝛼 big enough, we have ∥𝑚𝛼 ∥𝐿1 < 1, hence𝑚𝛼 is a continuity
point of𝐺 in the domain of 𝐹𝛾 . The uniqueness of the minimizer follows from the strict convexity
of ∥·∥2

𝐿2−𝛾
. It remains to calculate

𝐺∗(𝑔) = sup
𝑚∈𝐿1

(
Re

∫
ℝ

𝑔(𝑥)𝑚(𝑥) d𝑥 −𝐺 (𝑚)
)
= sup

𝑚∈𝐿1
∥𝑚∥

𝐿1≤1

Re
∫
ℝ

𝑔(𝑥)𝑚(𝑥) d𝑥 = ∥𝑔∥𝐿∞,

which completes the proof. ■

As for the primal problem, we can derive a scale invariant version of the dual problem.

Theorem 2.10 (Scale invariant dual problem). Let𝑀𝛾 be defined as in (1.1), then we have

𝑀𝛾 =
4(𝛾 − 2)𝛾−2
(2𝜋)𝛾−2𝛾𝛾

(
max

𝑔∈𝐿∞ (ℝ)
p𝑔∈𝐿2−𝛾

E∗
𝛾 (𝑔)

)𝛾
, where E∗

𝛾 (𝑔) B
Re

∫
ℝ

p𝑔(𝑘)e𝑘d𝑘

∥p𝑔∥
2
𝛾

𝐿2−𝛾
∥𝑔∥

1− 2
𝛾

𝐿∞

. (2.15)

Moreover, the maximizer exists and is unique up to re-scaling and translating in Fourier space, i.e.,
up to the transformation 𝑔𝛼,𝛽 (𝑥) = 𝛽𝛼 i𝑥𝑔(𝑥) with 𝛽 > 0 and 𝛼 > 0.

Proof. First, note that up to multiplying𝑔 by a phase ei𝜃 , 𝜃 ∈ ℝ, the term Re
∫
ℝ

p𝑔(𝑘)e𝑘d𝑘 appearing
in the dual problem (2.14) can be replaced by−|

∫
ℝ

p𝑔(𝑘)e𝑘d𝑘 |. Next, by defining𝑔𝛼,𝛽 (𝑥) = 𝛽𝑔(𝑥)𝛼 i𝑥
and noticing that p𝑔𝛼,𝛽 (𝑘) = 𝛽p𝑔(𝑘 − log𝛼), we find

𝑀𝛾 = − inf
𝑔

inf
𝛼>0,𝛽>0

{
∥𝑔𝛼,𝛽 ∥ +

1
16𝜋2 ∥p𝑔𝛼,𝛽 ∥2𝐿2−𝛾 − 1

2𝜋

���� ∫
ℝ

p𝑔𝛼,𝛽 (𝑘)e𝑘d𝑘
����}

= − inf
𝑔

inf
𝛼>0,𝛽>0

{
𝛽 ∥𝑔∥𝐿∞ + 𝛽2𝛼𝛾 1

16𝜋2 ∥p𝑔∥2
𝐿2−𝛾

− 𝛽𝛼 1
2𝜋

���� ∫
ℝ

p𝑔(𝑘)e𝑘d𝑘
����} .

Hence our task reduces to finding the minimizer of the function

𝑓 (𝛼, 𝛽) = 𝛽𝑐1 + 𝛽2𝛼𝛾𝑐2 − 𝛽𝛼𝑐3 with 𝑐1, 𝑐2 > 0 and 𝑐3 ≥ 0.

This can be done by finding the (unique) critical point of 𝑓 , which is given by

𝛼0 =
𝑐1
𝑐3

𝛾

𝛾 − 2 𝛽0 =
𝑐
𝛾

3

𝑐
𝛾−1
1 𝑐2

.

Eq. (2.15) then follows by substituting back the values of 𝑐1, 𝑐2, 𝑐3 and evaluating 𝑓 at (𝛼0, 𝛽0). ■

3. Reformulation in the complex plane

In this section we first derive properties of the mixed Hardy-type spaces of holomorphic
functions on the strip introduced in Definition 1.1 in the introduction. It turns out that their (non-
tangential) limits along the real axis correspond to the domains of the primal and dual problems.
This allows us to interpret our problem as a variant of the variational problem associated with the
classical Hadamard three lines lemma, as stated in Theorem 1.2. The connection with holomorphic
functions will also be useful to characterize the primal and dual optimizers in Section 4.
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3.1. Mixed Hardy-like spaces on the strip. The main result of this section is that the space
{𝑓 ∈ 𝐿𝑝 (ℝ) : p𝑓 ∈ 𝐿22 (ℝ)} can be identified with the boundary values of functions in ℍ𝑝,2(𝑆).

To prove this, we need the following lemma.

Lemma 3.1 (Existence of boundary values in ℍ𝑝,2(𝑆)). Let ℎ ∈ ℍ𝑝,2(𝑆), then there exist ℎ0 ∈ 𝐿𝑝 (ℝ)
with pℎ0 ∈ 𝐿22 (ℝ) and ℎ1 ∈ 𝐿2(ℝ) such that

lim
𝑦↓0

⟨ℎ𝑦, 𝜑⟩ = ⟨ℎ0, 𝜑⟩ and lim
𝑦↑1

⟨ℎ𝑦, 𝜑⟩ = ⟨ℎ1, 𝜑⟩ (3.1)

for any Schwartz function 𝜑 ∈ S(ℝ). Moreover, for any 𝜑 ∈ 𝐶∞
𝑐 (ℝ), there holds

⟨ℎ𝑦, p𝜑1−𝑦⟩ = ⟨ℎ0, p𝜑1⟩ for any 0 ≤ 𝑦 ≤ 1, (3.2)

where p𝜑𝑦 (𝑘) = p𝜑 (𝑘 + i𝑦) =
∫
ℝ
e−i𝑥 (𝑘+i𝑦)𝜑 (𝑥)d𝑥 . In particular, if ℎ0 = 0, then ℎ = 0.

The proof of the above lemma is an adaptation of standard arguments used in the theory of
Hardy spaces (see, e.g., [Mas09, Lemma 11.3] and [Koo98, Gar06]). For convenience of the reader,
we present the details in Appendix B.

Theorem 3.2 (Boundary values in ℍ𝑝,2(𝑆)). Let 1 ≤ 𝑝 ≤ ∞. For any 𝑣 ∈ 𝐿𝑝 (ℝ) with p𝑣 ∈ 𝐿22 (ℝ)
there exists a unique function ℎ ∈ ℍ𝑝,2(𝑆) such that ℎ0 = 𝑣 . Moreover, there holds pℎ1(𝑘) = p𝑣 (𝑘)e−𝑘
for almost every 𝑘 ∈ ℝ.

Conversely, for any ℎ ∈ ℍ𝑝,2(𝑆) we have ℎ0 ∈ 𝐿𝑝 (ℝ) and pℎ0 ∈ 𝐿22 (ℝ).

Proof. Let 𝑣 ∈ 𝐿𝑝 (ℝ) with p𝑣 ∈ 𝐿22 (ℝ). We have to show that 𝑣 has a unique holomorphic extension
to the strip 𝑆 with ℎ1 ∈ 𝐿2(ℝ). In fact, the uniqueness of such an extension is immediate from the
last statement in Lemma 3.1, so we just need to prove its existence. For this, the idea is to consider
xℎ𝑦 (𝑘) := p𝑣 (𝑘) e−𝑦𝑘 for 𝑘 ∈ ℝ and 𝑦 ∈ (0, 1), and construct ℎ ∈ ℍ𝑝,2(𝑆) via Fourier inversion
1
2𝜋

∫
ℝ

p𝑣 (𝑘) ei𝑘𝑧 d𝑘 . Since p𝑣 ∈ 𝐿22 (ℝ), some care has to be taken. To this end, we split the function
ei𝑘𝑧 into two parts

ei𝑘𝑧 = ei𝑘𝑥e−𝑘𝑦 = ei𝑘𝑥
(
x𝑝𝑦 (𝑘) + 𝑞𝑦 (𝑘)

)
for some suitably chosen functions 𝑝𝑦, 𝑞𝑦 : ℝ → ℂ, and set

ℎ̃(𝑥 + i𝑦) := (𝑣 ∗ 𝑝𝑦) (𝑥) +
1
2𝜋

∫
ℝ

𝑞𝑦 (𝑘)p𝑣 (𝑘)ei𝑘𝑥 d𝑘, 𝑦 ∈ (0, 1) .

Since 𝑣 ∈ 𝐿𝑝 (ℝ), if 𝑝𝑦 ∈ 𝐿1(ℝ), Young’s inequality implies that ∥𝑣 ∗𝑝𝑦 ∥𝐿𝑝 ≤ ∥𝑣 ∥𝐿𝑝 ∥𝑝𝑦 ∥𝐿1 . On the
other hand, since p𝑣 ∈ 𝐿22 (ℝ), the second expression is a well-defined 𝐿2-function if𝑞𝑦 exp ∈ 𝐿∞(ℝ).
In particular, we obtain

∥ℎ̃∥ℍ𝑝,2 ≤ sup
0<𝑦<1

(
1

1 − 𝑦 ∥𝑣 ∥𝐿
𝑝 ∥𝑝𝑦 ∥𝐿1 +

1
𝑦
∥p𝑣 ∥𝐿22 ∥𝑞𝑦 exp ∥𝐿∞

)
.

Hence, in order to obtain ∥ℎ̃∥ℍ𝑝,2 < +∞, we have to be able to choose 𝑝𝑦, 𝑞𝑦 in such a way that

∥𝑝𝑦 ∥𝐿1 ≲ 1 − 𝑦 and ∥𝑞𝑦 exp ∥𝐿∞ ≲ 𝑦 (3.3)

for 𝑦 ∈ (0, 1). A possible choice is given by

𝑞𝑦 (𝑘) B
{
(e−𝑦𝑘 − e𝑦𝑘 )1{𝑘≤0}, for 𝑦 < 1/2,
e−𝑦𝑘1{𝑘≤0} + e−𝑘1{𝑘>0}, for 𝑦 ≥ 1/2,

and

x𝑝𝑦 (𝑘) B
{
e−𝑦 |𝑘 | , for 𝑦 < 1/2,
(e−𝑦𝑘 − e−𝑘 )1{𝑘≥0}, for 𝑦 ≥ 1/2.
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Then ei𝑥𝑘 (p𝑝𝑦 (𝑘) + 𝑞𝑦 (𝑘)) = ei𝑧𝑘 for any 𝑧 ∈ 𝑆 , and

𝑝𝑦 (𝑥) =


1
𝜋

𝑦

𝑦2 + 𝑥2 , for 𝑦 < 1/2,

1
2𝜋

1 − 𝑦
(1 − i𝑥) (𝑦 − i𝑥) , for 𝑦 ≥ 1/2.

In particular, for any 0 < 𝑦 < 1
2 there holds ∥𝑝𝑦 ∥𝐿1 (ℝ) = 1 and ∥𝑞𝑦 exp∥𝐿∞ (ℝ) ≲ 𝑦, while for

1
2 ≤ 𝑦 < 1 we have ∥𝑝𝑦 ∥𝐿1 (ℝ) ≲ 1 − 𝑦 and ∥𝑞𝑦 exp∥𝐿∞ (ℝ) ≲ 1. Therefore, conditions (3.3) are
fulfilled.

Note that by construction, the function ℎ̃ attains the function 𝑣 as boundary value as 𝑦 ↓ 0 in a
distributional sense. Indeed, for any Schwartz function 𝜑 we find that

⟨ℎ̃𝑦, 𝜑⟩ = ⟨𝑝𝑦 ∗ 𝑣, 𝜑⟩ +
1
2𝜋

∫
ℝ

𝑞𝑦p𝑣 (𝑘)p𝜑 (𝑘)d𝑘 =
1
2𝜋 ⟨p𝑣 (

x𝑝𝑦 + 𝑞𝑦), p𝜑⟩ =
1
2𝜋 ⟨p𝑣e

−𝑦 ( ·) , p𝜑⟩

𝑦↓0
−→ 1

2𝜋 ⟨p𝑣, p𝜑⟩ = ⟨𝑣, 𝜑⟩.

It remains to show that ℎ̃ : 𝑆 → ℂ is a holomorphic function. For this, we perform a different
decomposition ei𝑧𝑘 = p𝑟𝑧 (𝑘) + 𝑠𝑧 (𝑘) with

p𝑟𝑧 (𝑘) B e−i𝑧 |𝑘 | and 𝑠𝑧 (𝑘) B
(
e−i𝑧𝑘 − ei𝑧𝑘

)
1{𝑘≤0} .

Then 𝑟𝑧 (𝜉) = 1
𝜋

i𝑧
𝜉2−𝑧2 for 𝜉 ∈ ℝ, in particular 𝑟𝑧 ∈ 𝐿1(ℝ) ∩ 𝐿∞(ℝ) for any 𝑧 ∈ 𝑆 . In view of

Lemma 2.5 we then define the function

ℎ(𝑧) :=
∫
ℝ

𝑟𝑧 (𝜉)𝑣 (𝜉)d𝜉 +
1
2𝜋

∫
ℝ

𝑠𝑧 (𝑘)p𝑣 (𝑘)d𝑘.

Note that the second term is well-defined because p𝑣 ∈ 𝐿22 (ℝ) and∫
ℝ

|𝑠𝑧 (𝑘) |2e2𝑘 d𝑘 ≲
∫ 0

−∞
e2(1−𝑦)𝑘 d𝑘 +

∫ 0

−∞
e2(1+𝑦)𝑘 d𝑘 < ∞

for any 0 < 𝑦 < 1, hence 𝑠𝑧 ∈ 𝐿2−2(ℝ) for any 𝑧 ∈ 𝑆 .
Since 𝑧 ↦→ p𝑟𝑧 (𝑘), 𝑠𝑧 (𝑘) are holomorphic functions on 𝑆 for any 𝑘 ∈ ℝ, the function ℎ is

holomorphic on 𝑆 by Morera’s and Fubini’s theorem.
We now use an approximation argument similar to the one used in the proof of Lemma 2.5

to show that ℎ𝑦 (𝑥) = ℎ̃𝑦 (𝑥) for a.e. 𝑥 ∈ ℝ and any 0 < 𝑦 < 1, which completes the proof. Let
p𝜑 ∈ 𝐶∞

𝑐 (ℝ) be a mollifier satisfying p𝜑 (0) = 1 and set p𝑣𝜖 (𝑥) = p𝑣 (𝑥)p𝜑 (𝜖𝑘). Since p𝑣𝜖 has compact
support, the function

ℎ𝜖 (𝑧) B 1
2𝜋

∫
ℝ

p𝑣𝜖 (𝑘)ei𝑧𝑘d𝑘 (3.4)

is analytic. From the two different splittings ei𝑧𝑘 = ei𝑥𝑘 (p𝑝𝑦+𝑞𝑦) (𝑘) = p𝑟𝑧 (𝑘)+𝑠𝑧 (𝑘) and Plancherel’s
identity, it satisfies

ℎ𝜖 (𝑧) = (𝑝𝑦 ∗ 𝑣𝜖 ) (𝑥) +
1
2𝜋

∫
ℝ

𝑞𝑦 (𝑘)p𝑣𝜖ei𝑘𝑥d𝑥 =

∫
ℝ

𝑟𝑧 (𝜉)𝑣𝜖 (𝜉)d𝜉 +
1
2𝜋

∫
ℝ

𝑠𝑧 (𝑘)p𝑣𝜖 (𝑘)d𝑘. (3.5)

Since 𝑣𝜖 = 𝑣 ∗ 𝜑𝜖 → 𝑣 strongly in 𝐿𝑝 (ℝ) (or weak-∗ for 𝑝 = ∞) as 𝜖 ↓ 0, we have

𝑝𝑦 ∗ 𝑣𝜖 → 𝑝𝑦 ∗ 𝑣 strongly in 𝐿𝑝 (ℝ) (or weak-∗ for 𝑝 = ∞) and ⟨𝑟𝑧, 𝑣𝜖⟩ → ⟨𝑟𝑧, 𝑣⟩

for any 0 < 𝑦 < 1 and any 𝑧 ∈ 𝑆 , respectively. On the other hand, since p𝑣𝜖 → p𝑣 in 𝐿22 (ℝ), we have

p𝑣𝜖𝑞𝑦 → p𝑣𝑞𝑦 in 𝐿2(ℝ) and ⟨𝑠𝑧,p𝑣𝜖⟩ → ⟨𝑠𝑧,p𝑣⟩,
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again for any 0 < 𝑦 < 1 and 𝑧 ∈ 𝑆 . From these convergence results (and dominated convergence),
we find that

⟨ℎ𝑦,𝜓 ⟩ = lim
𝜖↓0

⟨ℎ𝜖𝑦,𝜓 ⟩ = ⟨ℎ̃𝑦,𝜓 ⟩ for any Schwartz function𝜓 ∈ S(ℝ).

from which we infer that ℎ𝑦 (𝑥) = ℎ̃𝑦 (𝑥) for a.e. 𝑥 ∈ ℝ.
The converse implication follows directly from Lemma 3.1. ■

3.2. The variational problem over holomorphic functions. We can now use the previous lemma
to reformulate our primal and dual problems over certain Hardy-like spaces. In particular, we will
present the proof of Theorem 1.2.

Proposition 3.3 (Primal problem over holomorphic functions). Let𝑀𝛾 be the value defined in (1.1)
and let

𝑝𝛾 (𝑧) B
1
𝜋

2
𝛾

( 2
𝛾
)2 + 𝑧2

, (3.6)

then the primal problem (2.1) is equivalent to

𝑀𝛾 =
4𝜋
𝛾

inf
{
∥𝑚0∥𝛾−2𝐿1 (ℝ) ∥𝑚1∥2𝐿2 (ℝ) :𝑚 − 𝑝𝛾 ∈ ℍ1,2(𝑆)

}
, (3.7)

where𝑚0(𝑥) =𝑚(𝑥) and𝑚1(𝑥) =𝑚(𝑥 + i). Moreover, the minimizer (provided it exists) is unique
up to the transformation𝑚(𝑧) ↦→ e𝛼 (i𝑥+2/𝛾 )𝑚(𝑧) for 𝛼 ∈ ℝ.

Remark 3.4. (1) In other words, Proposition 3.3 says that the primal problem consists in
finding the best holomorphic approximation to the simple pole function (𝑧 − i 2

𝛾
)−1 with

respect to suitable 𝐿𝑝 norms on the boundary of 𝑆 .
(2) In the formulation of Proposition 3.3, the ansatz used for the primal problem in [HKRV23,

Appendix D] corresponds to

ℎ(𝑧) − 𝑝𝛾 (𝑧) =
1
2𝜋

𝛼𝑝𝛽𝑞

(𝛼 − 1 − i𝑧)𝑝 (𝛽 − 1 − i𝑧)𝑞 (1 + i𝑧) .

Proof of Proposition 3.3. Let𝑚 ∈ dom E𝛾 , i.e.𝑚 ∈ 𝐿1(ℝ) such that p𝑚 − exp ∈ 𝐿2𝛾 . By the change
of variables p𝑚(𝑘) B p𝑚( 2

𝛾
𝑘), which amounts to𝑚(𝑥) = 𝛾

2𝑚(𝛾2𝑥), we have that

dom E𝛾 =

{
𝑚 ∈ 𝐿1(ℝ) : p𝑚 − exp 2

𝛾
∈ 𝐿22 (ℝ)

}
.

Next, note that 𝑃0(𝑥) B 𝑝𝛾 (𝑥) for 𝑥 ∈ ℝ satisfies 𝑃0 ∈ 𝐿1(ℝ) with p𝑃0(𝑘) = e−
2
𝛾
|𝑘 | ; in particular,

since 𝛾 > 2, ∫
ℝ

��� p𝑃0(𝑘) − e
2
𝛾
𝑘
���2 e−2𝑘 d𝑘 =

∫ ∞

0

���e− 2
𝛾
𝑘 − e

2
𝛾
𝑘
���2 e−2𝑘 d𝑘 < ∞.

Hence, we may write

domE𝛾 = {𝑚 ∈ 𝐿1(ℝ) :𝑚 = 𝑃0 + 𝑣 for 𝑣 ∈ 𝐿1(ℝ),p𝑣 ∈ 𝐿22 (ℝ)}.
Consequently,

𝑀𝛾 =
2
𝛾
min
𝑚∈𝐿1

∥𝑚∥𝛾−2
𝐿1

∥p𝑚 − exp 2
𝛾
∥2
𝐿22

=
2
𝛾
min
𝑣∈𝐿1
p𝑣∈𝐿22

∥𝑃0 + 𝑣 ∥𝛾−2𝐿1




p𝑃0 + p𝑣 − exp 2

𝛾



2
𝐿22
. (3.8)

We now consider the function 𝑃1(𝑥) B 𝑝𝛾 (𝑥 + i), which by the residue theorem satisfies

p𝑃1(𝑘) = p𝑃0(𝑘) e−𝑘 − 2𝜋 iResi 2
𝛾

(
𝑝𝛾e−i𝑘 (𝑧−i)

)
= p𝑃0(𝑘) e−𝑘 − e

2
𝛾 e−𝑘 .
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Then by (3.8), we can write

𝑀𝛾 =
2
𝛾
min
𝑣∈𝐿1
p𝑣∈𝐿22

∥𝑃0 + 𝑣 ∥𝛾−2𝐿1




p𝑃1 exp+ exp 2

𝛾
+p𝑣 − exp 2

𝛾



2
𝐿22

=
2
𝛾
min
𝑣∈𝐿1
p𝑣∈𝐿22

∥𝑃0 + 𝑣 ∥𝛾−2𝐿1




p𝑃1 + p𝑣 exp−1



2
𝐿2 . (3.9)

Appealing to Theorem 3.2, 𝑣 is the boundary valueℎ0 of a unique holormophic functionℎ ∈ ℍ1,2(𝑆).
Since pℎ1 = p𝑣 exp−1 for such ℎ, we obtain

𝑀𝛾 =
2
𝛾

min
ℎ∈ℍ1,2 (𝑆 )

∥𝑃0 + ℎ0∥𝛾−2𝐿1




p𝑃1 + pℎ1



2
𝐿2 =

4𝜋
𝛾

min
ℎ∈ℍ1,2 (𝑆 )

∥𝑃0 + ℎ0∥𝛾−2𝐿1



𝑃1 + ℎ1

2𝐿2,
where in the last equality we used Plancherel’s theorem. This completes the proof of (3.7). ■

We can now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Similar to the previous proof, note that for any 𝑔 ∈ 𝐿∞(ℝ) such that p𝑔 ∈
𝐿2−𝛾 (ℝ) we have that the function 𝑔(𝑥) B

𝛾

2𝑔(−
𝛾

2𝑥) satisfies 𝑔 ∈ 𝐿∞(ℝ) and p𝑔 ∈ 𝐿22 (ℝ). Moreover,
there holds

∥𝑔∥𝐿∞ =
𝛾

2 ∥𝑔∥𝐿
∞, ∥p𝑔∥2

𝐿22
=
𝛾

2 ∥p𝑔∥2
𝐿2−𝛾
, and Re ⟨p𝑔, exp− 2

𝛾
⟩ = 𝛾2Re ⟨p𝑔, exp⟩.

By Theorem 3.2, we can now find a unique ℎ ∈ ℍ∞,2(𝑆) with ℎ0 = 𝑔. The function ℎ satisfies
pℎ1(𝑘) = p𝑔(𝑘)e−𝑘 for 𝑘 ∈ ℝ, and therefore

∥p𝑔∥2
𝐿22

= ∥ pℎ1∥2𝐿2 = 2𝜋 ∥ℎ1∥2𝐿2 .

Moreover, for any 𝑦 ∈ (0, 1) we have that xℎ𝑦 (𝑘) = p𝑔(𝑘) e−𝑦𝑘 for 𝑘 ∈ ℝ, hence

Re ⟨p𝑔, exp− 2
𝛾
⟩ = Re

∫
ℝ

p𝑔 e−
2
𝛾
𝑘 d𝑘 = Re

∫
ℝ

xℎ 2
𝛾
(𝑘) d𝑘 = 2𝜋Reℎ 2

𝛾
(0) = 2𝜋Reℎ(i 2

𝛾
).

We can therefore recast (2.15) into

𝑀𝛾 =
16𝜋 (𝛾 − 2)𝛾−2

𝛾𝛾+1
©­­« max
ℎ∈ℍ∞,2 (𝑆 )

Reℎ(i 2
𝛾
)

∥ℎ1∥
2
𝛾

𝐿2
∥ℎ0∥

1− 2
𝛾

𝐿∞

ª®®¬
𝛾

(3.10)

Up to a phase factor, Reℎ(i 2
𝛾
) can be replaced by |ℎ(i 2

𝛾
) | in the maximization problem (3.10),

which by translation invariance of ∥ℎ1∥𝐿2 and ∥ℎ0∥𝐿∞ can in turn be replaced by ∥ℎ 2
𝛾
∥𝐿∞ . By

passing from ℎ : 𝑆 → ℂ to the function ℎ̃ : 𝑆− → ℂ, 𝑧 ↦→ ℎ̃(𝑧) B ℎ(𝑧), we obtain (1.4). ■

4. Characterization of optimizers

In this section we derive the Euler-Lagrange equation for the primal problem and use it to
characterize the primal and dual optimizers. One of the key observations is that the primal and
dual optimizers can be seen as analytic/meromorphic extensions of each other.

4.1. Euler-Lagrange equation and dual-primal optimizer relation. Let us start with the Euler-
Lagrange equation for the functional E𝛾 associated with the primal problem (2.4),

E𝛾 (𝑚) = ∥𝑚∥𝛾−2
𝐿1

∥ p𝑚 − exp∥2
𝐿2𝛾
.

Formally, the Gateaux derivative of E𝛾 is given by

d𝑚E𝛾 (𝛿) = (𝛾 − 2)∥𝑚∥𝛾−3
𝐿1

∥ p𝑚 − exp ∥2
𝐿2𝛾
Re ⟨sign𝑚,𝛿⟩ + 2∥𝑚∥𝛾−2

𝐿1
Re

〈
p𝑚 − exp
exp𝛾

, p𝛿

〉
, (4.1)
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where sign 𝑧 = 𝑧
|𝑧 | , 𝑧 ∈ ℂ \ {0}, is the complex sign function. To make this calculation rigorous,

however, the critical step is to show that𝑚(𝑥) ≠ 0 almost everywhere. It turns out that, by using
finer results in the theory of Hardy spaces, one can show that this holds for any𝑚 ∈ domE𝛾 .
This calculation, however, is rather technical and not needed for our purposes in this article.
Instead, we show here that𝑚 is a minimizer of E𝛾 , provided it satisfy the folowing Euler-Lagrange
equation.

Lemma 4.1 (Euler-Lagrange equation). Let 𝑚 ∈ domE𝛾 satisfy 𝑚(𝑥) ≠ 0 a.e. and the Euler-
Lagrange equation

{sign𝑚(𝑘) + 𝑐
(

p𝑚(𝑘) − e𝑘
)
e−𝛾𝑘 = 0 for a.e. 𝑘 ∈ ℝ, (4.2)

for some constant 𝑐 > 0, then𝑚 is a minimizer of the primal problem (2.4). Moreover, for any 𝛽 > 0,
the function

𝑔 B 𝛽 sign𝑚, (4.3)

is a maximizer of (2.15).

Proof. First note that since 𝑚 ≠ 0 a.e., we have sign𝑚 ∈ 𝐿∞(ℝ); in particular, the Fourier
transform {sign𝑚 is well-defined in the tempered distribution sense. Equation (4.2) therefore
makes sense as a distributional identity, and implies that {sign𝑚 ∈ 𝐿2−𝛾 (ℝ), from which we infer
that (4.2) also holds pointwise for a.e. 𝑘 ∈ ℝ. Hence, if we set

E𝑐
𝛾 (𝑚) B ∥𝑚∥𝐿1 +

𝑐

4𝜋 ∥ p𝑚 − exp∥2
𝐿2𝛾

where 𝑐 > 0 is the constant in (4.2), from Plancherel’s identity (Lemma 2.5) we conclude that

lim
𝜖↓0

E𝑐
𝛾 (𝑚 + 𝜖𝛿) − E𝑐

𝛾 (𝑚)
𝜖

= Re ⟨sign𝑚,𝛿⟩ + 𝑐

2𝜋 Re ⟨( p𝑚 − exp) exp−𝛾 , p𝛿⟩

=
1
2𝜋 ⟨

{sign𝑚 + 𝑐 ( p𝑚 − exp) exp−𝛾 , p𝛿⟩ = 0.

In particular,𝑚 is a critical point of E𝑐
𝛾 . Consequently,𝑚 must be the global minimizer of E𝑐

𝛾 by
the strict convexity of E𝑐

𝛾 , and therefore, a minimizer of E𝛾 by Lemma 2.4.
For the statement about the dual optimizer we set 𝑔 B 𝛽sign𝑚 for some 𝛽 > 0. Then, since𝑚

is a primal optimizer and satisfies𝑚 ≠ 0, we have

d𝑚E𝛾 (𝛿) = (𝛾 − 2)∥𝑚∥𝛾−3
𝐿1

∥ p𝑚 − exp ∥2
𝐿2𝛾
Re ⟨sign𝑚,𝛿⟩ + 2∥𝑚∥𝛾−2

𝐿1
Re

〈
p𝑚 − exp
exp𝛾

, p𝛿

〉
= 0.

From this equation, Plancherel’s identity in the version of Lemma 2.5, and (4.2), we conclude that
the constant 𝑐 > 0 in (4.2) is given by

𝑐 =
4𝜋
𝛾 − 2

∥𝑚∥𝐿1
∥ p𝑚 − exp∥2

𝐿2𝛾

> 0. (4.4)

In particular, we have

∥p𝑔∥2
𝐿2−𝛾

= 𝛽2𝑐2∥ p𝑚 − exp∥2
𝐿2𝛾

= 𝛽2
(4𝜋)2
(𝛾 − 2)2

∥𝑚∥2
𝐿1

∥ p𝑚 − exp∥2
𝐿2𝛾

.

Moreover, there holds

𝛽−1⟨p𝑔, exp−p𝑚⟩ = −𝑐 ⟨( p𝑚 − exp) exp−𝛾 , exp−p𝑚⟩ = 𝑐 ∥ p𝑚 − exp∥2
𝐿2𝛾

=
4𝜋
𝛾 − 2 ∥𝑚∥𝐿1,
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hence

⟨p𝑔, exp⟩ = 𝛽 4𝜋
𝛾 − 2 ∥𝑚∥𝐿1 + ⟨p𝑔, p𝑚⟩ = 𝛽 4𝜋

𝛾 − 2 ∥𝑚∥𝐿1 + 2𝜋 ⟨𝑔,𝑚⟩ = 𝛽
(
4𝜋
𝛾 − 2 ∥𝑚∥𝐿1 + 2𝜋 ∥𝑚∥𝐿1

)
= 𝛽

2𝜋𝛾
𝛾 − 2 ∥𝑚∥𝐿1 .

So, using that ∥𝑔∥𝐿∞ = 𝛽 , and substituting the above values in the dual problem (2.15) we find

E∗
𝛾 (𝑔) =

4(𝛾 − 2)𝛾−2
(2𝜋)𝛾−2𝛾𝛾

Re ⟨p𝑔, exp⟩𝛾

∥p𝑔∥2
𝐿2−𝛾

∥𝑔∥𝛾−2
𝐿∞

= ∥𝑚∥𝛾−2
𝐿1

∥ p𝑚 − exp∥2
𝐿2𝛾

= E𝛾 (𝑚) = 𝑀𝛾 ,

which implies that 𝑔 is an optimizer by the strong duality in Theorem 2.10. ■

In the holomorphic formulation, the above Euler-Lagrange equations can be stated as follows.

Lemma 4.2 (Euler-Lagrange - Holomorphic version). Suppose that 𝑚 ∈ 𝑝𝛾 + ℍ1,2(𝑆) can be
meromorphically extended to 𝑆2 B {𝑥 + i𝑦 : 0 < 𝑦 < 2} and satisfies the following properties:

(i) 𝑚 can be continuously extended to the boundary 𝜕𝑆2, and the function𝑚 − 𝑝𝛾 is bounded on
𝑆2,

(ii) 𝑚 satisfies the Euler-Lagrange equation

sign𝑚0 = −𝑐𝑚2, for some 𝑐 > 0. (4.5)
Then𝑚 is a minimizer of (3.7). Moreover, for any 𝛽 ∈ ℂ \ {0}, the function

ℎ(𝑧) B 𝛽𝑚(𝑧 + 2i) for all 𝑧 ∈ 𝑆−2, (4.6)
is a maximizer of (1.4).

Proof. Let 𝜑 ∈ 𝐶∞
𝑐 (ℝ), and notice that p𝜑 is an entire function by the Paley-Wiener theorem. By

assumption,𝑚 has a meromorphic extension to 𝑆2, which we also denote by𝑚, and this extension
is holomorphic in 𝑆 (1,2) = {𝑥 + i𝑦 ∈ ℂ : 1 < 𝑦 < 2}. In particular, the function 𝑧 ↦→𝑚(𝑧 + 2i)p𝜑 (𝑧)
is holomorphic in the strip 𝑆 and continuous up to the boundary. Moreover, this function is
bounded by assumption (i) and has integrable decay as |𝑥 | → ∞. Consequently, we can apply the
Cauchy integral theorem (c.f. (3.2)) and use (4.5) to obtain

⟨sign𝑚0, p𝜑0⟩ = −𝑐 ⟨𝑚2, p𝜑0⟩ = −𝑐 ⟨𝑚1, p𝜑1⟩ = −𝑐 ⟨(𝑚 − 𝑝𝛾 )1, p𝜑1⟩ − 𝑐 ⟨(𝑝𝛾 )1, p𝜑1⟩ (4.7)

for any 𝜑 ∈ 𝐶∞
𝑐 (ℝ). Note that since 𝑚 − 𝑝𝛾 ∈ ℍ1,2(𝑆) and by assumption (i), the function

𝑧 ↦→ (𝑚 − 𝑝𝛾 ) (𝑧 + i)p𝜑 (𝑧) is holomorphic in 𝑆 , bounded and continuous on 𝑆 , and has integrable
decay as |𝑥 | → ∞. Hence, by (3.2) applied to the function𝑚 − 𝑝𝛾 , there holds

⟨(𝑚 − 𝑝𝛾 )1, p𝜑1⟩ = ⟨(𝑚 − 𝑝𝛾 )0, p𝜑2⟩ = ⟨𝑚0, p𝜑2⟩ − ⟨(𝑝𝛾 )0, p𝜑2⟩. (4.8)

Recalling the definition of 𝑝𝛾 in (3.6), we see that the function 𝑓𝛾 : 𝑧 ↦→ (𝑝𝛾 ) (𝑧 + i)p𝜑 (𝑧) is
holomorphic on ℂ \ {𝑧1, 𝑧2} with two isolated poles of first order at 𝑧1,2 = i(1 ∓ 2

𝛾
). Hence, the

residue theorem implies that
⟨(𝑝𝛾 )1, p𝜑1⟩ = ⟨(𝑝𝛾 )0, p𝜑2⟩ + 2𝜋 i Res𝑧1 𝑓𝛾 = ⟨(𝑝𝛾 )0, p𝜑2⟩ − p𝜑2− 2

𝛾
(0). (4.9)

Combining (4.7), (4.8), and (4.9), it follows that
⟨sign𝑚0, p𝜑0⟩ = −𝑐 ⟨𝑚0, p𝜑2⟩ + 𝑐p𝜑2− 2

𝛾
(0) . (4.10)

Now note that from (4.5), we have sign𝑚0 ∈ 𝐿∞(ℝ), in particular, sign𝑚0 is a tempered
distribution and its Fourier transform is well-defined. On the other hand,𝑚0 ∈ 𝐿1(ℝ), so that by
the standard Plancherel identity, we can rewrite (4.10) as

⟨sign𝑚0, p𝜑0⟩ = −𝑐
∫
ℝ

(
2𝜋 q𝑚0(𝑥) − e−

2
𝛾
𝑥
)
e2𝑥𝜑 (𝑥)d𝑥, for any 𝜑 ∈ 𝐶∞

𝑐 (ℝ) .
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Since 𝐶∞
𝑐 (ℝ) is dense in S(ℝ), the (inverse) Fourier transform of sign𝑚0 is uniquely defined by

the above equation and satisfies

2𝜋 ­sign𝑚0(𝑥) = −𝑐
(
2𝜋|𝑚0(𝑥) − e−

2
𝛾
𝑥
)
e2𝑥 for a.e. 𝑥 ∈ ℝ.

Therefore, using that q𝑚0(𝑥) = 1
2𝜋 p𝑚0(−𝑥) for 𝑥 ∈ ℝ, the rescaled function 𝑚0(𝑥) = 2

𝛾
𝑚0( 2𝛾 𝑥)

satisfies the Euler–Lagrange equation (4.2) from Lemma 4.1. Thus,𝑚 is a minimizer of the primal
problem (2.4) and from its correspondence with the holomorphic version (3.7), we conclude that
𝑚 is a minimizer of the latter.

We now prove the statement on the dual optimizer: First, notice that the dual problem (1.4) is
invariant under a phase change, in particuar, we can assume 𝛽 > 0 in (4.6) without loss of generality.
Next, notice that the re-scaled boundary value 𝑔(𝑥) B 2

𝛾
ℎ0( 2𝛾 𝑥) satisfies 𝑔(𝑥) = −𝑐𝛽 sign𝑚0( 2𝛾 𝑥)

by (4.5). As 2
𝛾
𝑚0( 2𝛾 𝑥) satisfies (4.2), the function 𝑔 satifies (4.3), and the proof follows from the

statement for the dual optimizer in Lemma 4.1. ■

4.2. Optimizers. We now give an explicit construction of the optimizers of our variational
problem. To this end, we use the following lemma to construct a phase function 𝜃 (on ℝ) whose
analytic extension satisfies a logarithmic variant of the Euler-Lagrange equation (4.5).

Definition 4.3. Let 𝑔 ∈ 𝐿1(ℝ) be an even function. For any 𝜑 ∈ S(ℝ), we define

𝜂𝑔 (𝜑) B
∫ ∞

0

𝑔(𝑘)
𝑘 (cosh(2𝑘) − 1) (𝜑 (𝑘) − 𝜑 (−𝑘) − 2𝜑 ′(0)𝑘) d𝑘, (4.11)

and

𝜂𝑔 (𝜑) B
∫ ∞

0

𝑔(𝑘)
𝑘

(𝜑 (𝑘) − 𝜑 (−𝑘)) d𝑘, (4.12)

Lemma 4.4. Let 𝑔 ∈ 𝐿1(ℝ) be an even function. Then 𝜂𝑔, 𝜂𝑔 ∈ S′(ℝ) define tempered distributions.
Moreover, for any |𝑦 | ≤ 2,

(𝜂𝑔 exp−𝑦) (𝜑) B 𝜂𝑔 (exp−𝑦 𝜑), 𝜑 ∈ S(ℝ),
is a well-defined tempered distribution.

Remark 4.5. The tempered distributions 𝜂𝑔 and 𝜂𝑔 can also be defined via the principal value
integrals

𝜂𝑔 (𝜑) = lim
𝜖↓0

∫
|𝑘 | ≥𝜖

𝑔(𝑘)
𝑘 (cosh(2𝑘) − 1) (𝜑 (𝑘) − 𝜑

′(0)𝑘) d𝑘

= lim
𝜖↓0

∫ ∞

𝜖

𝑔(𝑘)
𝑘 (cosh(2𝑘) − 1) (𝜑 (𝑘) − 𝜑 (−𝑘) − 2𝜑 ′(0)𝑘) d𝑘,

and

𝜂𝑔 (𝜑) = lim
𝜖↓0

∫
|𝑘 | ≥𝜖

𝑔(𝑘)
𝑘
𝜑 (𝑘) d𝑘 = lim

𝜖↓0

∫ ∞

𝜖

𝑔(𝑘)
𝑘

(𝜑 (𝑘) − 𝜑 (−𝑘)) d𝑘,

for any Schwartz function 𝜑 ∈ S(ℝ). Hence 𝜂𝑔 is the Cauchy principal value distribution
associated to 𝑘 ↦→ 𝑔 (𝑘 )

𝑘
.

Proof of Lemma 4.4. Let 𝑔 ∈ 𝐿1(ℝ) and |𝑦 | ≤ 2. Then for any 𝜑 ∈ S(ℝ) we can estimate���� ∫ ∞

1

𝑔(𝑘)
𝑘 (cosh(2𝑘) − 1)

(
e−𝑦𝑘𝜑 (𝑘) + e𝑦𝑘𝜑 (−𝑘) + 2𝑦𝜑 (0)𝑘 − 2𝜑 ′(0)𝑘

)
d𝑘

����
≲ sup

𝑘≥1

����e−𝑦𝑘 + e𝑦𝑘 + 2𝑦𝑘 + 2𝑘
𝑘 (cosh(2𝑘) − 1)

���� (∥𝜑 ∥𝐿∞ (ℝ) + ∥𝜑 ′∥𝐿∞ (ℝ) |
)
∥𝑔∥𝐿1 (ℝ) .

≲
(
∥𝜑 ∥𝐿∞ (ℝ) + ∥𝜑 ′∥𝐿∞ (ℝ)

)
∥𝑔∥𝐿1 (ℝ) . (4.13)
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Moreover, setting𝜓 = exp−𝑦 𝜑 and noting that the map 𝑘 ↦→ 𝜓 (𝑘) −𝜓 (−𝑘) − 2𝜓 ′(0)𝑘 is odd, we
have

|𝜓 (𝑘) −𝜓 (−𝑘) − 2𝜓 ′(0)𝑘 | =
�����∫ 𝑘

−𝑘

∫ 𝑠

0

∫ 𝑡

0
𝜓 ′′′(𝑟 ) d𝑟 d𝑡 d𝑠

����� ≤ ∥𝜓 ′′′∥𝐿∞ [−1,1]
𝑘3

3

for any 𝑘 ∈ [0, 1], hence����∫ 1

0

𝑔(𝑘)
𝑘 (cosh(2𝑘) − 1) (𝜓 (𝑘) −𝜓 (−𝑘) − 2𝜓 ′(0)𝑘) d𝑘

���� (4.14)

≲ sup
𝑘∈ (0,1)

���� 𝑘2

cosh(2𝑘) − 1

���� ∥𝜓 ′′′∥𝐿∞ [−1,1] ∥𝑔∥𝐿1 (ℝ) ≲ ∥𝜓 ′′′∥𝐿∞ [−1,1] ∥𝑔∥𝐿1 (ℝ) . (4.15)

By the definition of𝜓 , it follows from the Leibniz rule and |𝑦 | ≤ 2 that

∥𝜓 ′′′∥𝐿∞ [−1,1] ≤ sup
𝑘∈[−1,1]

e−𝑦𝑘
��𝜑 ′′′(𝑘) − 3𝑦𝜑 ′′(𝑘) + 3𝑦2𝜑 ′(𝑘) − 𝑦3𝜑 (𝑘)

�� ≲ 3∑︁
𝑗=0

∥𝜑 ( 𝑗 ) ∥𝐿∞ (ℝ) .

Together with (4.14) and (4.13), this shows that 𝜂𝑔 exp−𝑦 is a tempered distribution for any |𝑦 | ≤ 2,
in particular that 𝜂𝑔 defines a tempered distribution. The easy proof for 𝜂𝑔 is standard. ■

The phase function 𝜃 can now be defined via inverse Fourier transform of the tempered
distribution 𝜂𝑔, which can be extended to the complex plane owing to the fact that 𝜂𝑔 exp−𝑦 is a
tempered distribution for any |𝑦 | ≤ 2.

Lemma 4.6 (Singular principal value phase function). Let 𝑔 ∈ 𝐿1(ℝ) be an even function with
bounded derivatives up to order 3 on [−1, 1]. Then the function 𝑧 ↦→ 𝜃𝑔 (𝑧) := 1

2𝜋𝜂𝑔 (e
i𝑧 ( ·) ) is well-

defined and holomorphic on the open strip 𝑆 (−2,2) = {𝑥 + i𝑦 ∈ ℂ : |𝑦 | < 2}. Moreover, it has a
continuous extension to the closure of 𝑆 (−2,2) satisfying

iIm𝜃𝑔 (𝑥 − 2i) − 𝜃𝑔 (𝑥) =
1
2𝜋 𝜂𝑔 (e

i𝑥 ( ·) ), (4.16)

and the estimate ����Re𝜃𝑔 (𝑥 + i𝑦) − 𝑔(0) |𝑥 |𝑦2

���� ≲ ∥𝑔∥𝐿1 +
3∑︁
𝑗=0

∥𝑔 ( 𝑗 ) ∥𝐿∞ ( [0,1] ) , (4.17)

for any 𝑥 + i𝑦 ∈ 𝑆 (−2,2) .

Proof. For the estimate (4.17), note that for 𝑥 + i𝑦 ∈ 𝑆 (−2,2) we have

Re𝜃𝑔 (𝑥 + i𝑦) = − 1
𝜋

∫ ∞

1

𝑔(𝑘) (cos(𝑘𝑥) sinh(𝑘𝑦) − 𝑘𝑦)
𝑘 (cosh(2𝑘) − 1) d𝑘

− 1
𝜋

∫ 1

0

𝑔(𝑘) (cos(𝑘𝑥) sinh(𝑘𝑦) − 𝑘𝑦)
𝑘 (cosh(2𝑘) − 1) d𝑘.

Clearly, since |𝑦 | ≤ 2, the first term is bounded by
1
𝜋

����∫ ∞

1

𝑔(𝑘) (cos(𝑘𝑥) sinh(𝑘𝑦) − 𝑘𝑦)
𝑘 (cosh(2𝑘) − 1) d𝑘

���� ≲ ∥𝑔∥𝐿1 .

For the second term, we write
1
𝜋

∫ 1

0

𝑔(𝑘) (cos(𝑘𝑥) sinh(𝑘𝑦) − 𝑘𝑦)
𝑘 (cosh(2𝑘) − 1) d𝑘

=
1
𝜋

∫ 1

0

𝑔(𝑘) (cos(𝑘𝑥) − 1) sinh(𝑘𝑦)
𝑘 (cosh(2𝑘) − 1) d𝑘 + 1

𝜋

∫ 1

0

𝑔(𝑘) (sinh(𝑘𝑦) − 𝑘𝑦)
𝑘 (cosh(2𝑘) − 1) d𝑘,
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and use that since

sup
𝑘∈ (0,1)

���� sinh(𝑘𝑦) − 𝑘𝑦
𝑘 (cosh(2𝑘) − 1)

���� ≤ |𝑦 |3
12 ,

the latter expression is bounded by

1
𝜋

����∫ 1

0

𝑔(𝑘) (cos(𝑘𝑥) − 1) sinh(𝑘𝑦)
𝑘 (cosh(2𝑘) − 1) d𝑘

���� ≲ ∥𝑔∥𝐿1 .

To estimate the remaining term, we take an even, smooth cut-off function 𝜒 ∈ 𝐶∞
𝑐 (−1, 1) with

|𝜒 | ≤ 1 and 𝜒 ≡ 1 on [− 1
2 ,

1
2 ], and split

1
𝜋

∫ 1

0

𝑔(𝑘) (cos(𝑘𝑥) − 1) sinh(𝑘𝑦)
𝑘 (cosh(2𝑘) − 1) d𝑘

=
1
𝜋

∫ 1

0
𝜒 (𝑘) 𝑔(𝑘) sinh(𝑘𝑦)

𝑘 (cosh(2𝑘) − 1) (cos(𝑘𝑥) − 1) d𝑘 (4.18)

+ 1
𝜋

∫ 1

0
(1 − 𝜒 (𝑘)) 𝑔(𝑘) sinh(𝑘𝑦)

𝑘 (cosh(2𝑘) − 1) (cos(𝑘𝑥) − 1) d𝑘. (4.19)

The term (4.19) is again bounded by |(4.19)| ≲ ∥𝑔∥𝐿1 (uniformly in 𝑥), while for (4.18) we have to
extract the behaviour in 𝑥 more carefully. To this end, we write

cos(𝑘𝑥) − 1 = −
∫ 1

0
𝑘𝑥 sin(𝑘𝑥𝑡) d𝑡 = −

∫ 1

0

∫ 1

0
𝑘2𝑥2𝑡 cos(𝑘𝑥𝑡𝑠) d𝑠 d𝑡

and obtain ∫ 1

0
𝜒 (𝑘) 𝑔(𝑘) sinh(𝑘𝑦)

𝑘 (cosh(2𝑘) − 1) (cos(𝑘𝑥) − 1) d𝑘

= −𝑥2
∫ 1

0

∫ 1

0

∫ 1

0
𝜒 (𝑘)𝑔(𝑘) 𝑘 sinh(𝑘𝑦)

cosh(2𝑘) − 1𝑡 cos(𝑘𝑥𝑡𝑠) d𝑠 d𝑡 d𝑘. (4.20)

Note that the function 𝜓𝑦 : ℝ → ℝ, 𝜓𝑦 (𝑘) B 𝜒 (𝑘)𝑔(𝑘) 𝑘 sinh(𝑘𝑦)
cosh(2𝑘 )−1 for 𝑘 ∈ ℝ, is even, so that

interchanging the order of integration (which is justified by the absolute integrability of the
integrand), we may write

(4.20) = −𝑥2
∫ 1

0

∫ 1

0
x𝜓𝑦 ( |𝑥 |𝑡𝑠)𝑡 d𝑠 d𝑡 = −|𝑥 |

∫ 1

0

∫ |𝑥 |𝑡

0
x𝜓𝑦 (𝑠) d𝑠 d𝑡

= −|𝑥 |
∫ ∞

0
x𝜓𝑦 (𝑠) d𝑠 + |𝑥 |

∫ 1

0

∫ ∞

|𝑥 |𝑡
x𝜓𝑦 (𝑠) d𝑠 d𝑡 = −|𝑥 |𝜋𝜓𝑦 (0) + |𝑥 |

∫ 1

0

∫ ∞

|𝑥 |𝑡
x𝜓𝑦 (𝑠) d𝑠d𝑡 .

At this place the regularity of 𝑔 comes into play: first, in order to evaluate

𝜓𝑦 (0) = 𝜒 (0)𝑔(0) lim
𝑘→0

𝑘 sinh(𝑘𝑦)
cosh(2𝑘) − 1 = 𝑔(0)𝑦2 ,

and secondly, to extract decay of x𝜓𝑦 . Indeed,𝜓𝑦 is a compactly supported 𝐶2 function on (−1, 1)
with bounded third derivative, hence

|x𝜓𝑦 (𝑠) | ≲
3∑︁
𝑗=0

∥𝜓 ( 𝑗 )
𝑦 ∥𝐿1 (1 + 𝑠)−3

for any 𝑠 ≥ 0. Using that 𝑘 ↦→ 𝑘 sinh(𝑘𝑦)
(cosh(2𝑘 )−1) is uniformly bounded on ℝ for |𝑦 | ≤ 2, it follows that

|x𝜓𝑦 (𝑠) | ≲
3∑︁
𝑗=0

∥𝑔 ( 𝑗 ) ∥𝐿∞ ( [0,1] ) (1 + 𝑠)−3,
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in particular

|𝑥 |
∫ 1

0

∫ ∞

|𝑥 |𝑡
x𝜓𝑦 (𝑠) d𝑠d𝑡 ≲

( 3∑︁
𝑗=0

∥𝑔 ( 𝑗 ) ∥𝐿∞ ( [0,1] )

)
|𝑥 |

∫ 1

0

∫ ∞

|𝑥 |𝑡
(1 + 𝑠)−3 d𝑠 d𝑡 ≲

3∑︁
𝑗=0

∥𝑔 ( 𝑗 ) ∥𝐿∞ ( [0,1] ) .

Hence, we have shown that����Re𝜃𝑔 (𝑥 + i𝑦) − 𝑔(0) |𝑥 |𝑦2

���� ≲ ∥𝑔∥𝐿1 +
3∑︁
𝑗=0

∥𝑔 ( 𝑗 ) ∥𝐿∞ ( [0,1] ) .

In order to prove the relation (4.16), note that

Im𝜃𝑔 (𝑥 − i𝑦) = 1
𝜋

∫ ∞

0

𝑔(𝑘) (sin(𝑘𝑥) cosh(𝑘𝑦) − 𝑘𝑥)
𝑘 (cosh(2𝑘) − 1) d𝑘,

and

𝜃𝑔 (𝑥) =
i
𝜋

∫ ∞

0

𝑔(𝑘) (sin(𝑘𝑥) − 𝑘𝑥)
𝑘 (cosh(2𝑘) − 1) d𝑘.

It follows that

iIm𝜃𝑔 (𝑥 − 2i) − 𝜃𝑔 (𝑥) =
i
𝜋

∫ ∞

0

𝑔(𝑘)
𝑘

sin(𝑘𝑥) d𝑘 =
1
2𝜋 𝜂𝑔 (e

i𝑥 ( ·) ) .

■

We are now in position to construct the optimizers of our variational problem.

Theorem 4.7 (Analytic formula for optimizers). Up to the transformation ℎ𝛼,𝛽,𝜅 (𝑧) = 𝛽ℎ(𝑧 −𝜅)ei𝛼𝑧 ,
𝛼 ∈ ℝ, 𝛽 ∈ ℂ \ {0}, 𝜅 ∈ ℝ, the unique optimizer ℎ ∈ ℍ∞,2(𝑆−) of (1.4) is given by the formula

ℎ(𝑧) = 𝐵𝛾 (𝑧)e𝜃𝛾 (𝑧 ) , where 𝐵𝛾 (𝑧) =
𝑧 − i(2 − 2

𝛾
)

𝑧 + i(2 − 2
𝛾
)

(4.21)

is the Blaschke factor (on the upper half plane) with zero at i(2 − 2
𝛾
), and 𝜃𝛾 B 1

2𝜋𝜂𝑔𝛾 (e
i𝑧 ( ·) ) with 𝜂𝑔

given by Definition 4.3, and

𝑔𝛾 (𝑘) B 𝜋

(
2e−(2− 2

𝛾
) |𝑘 | + e−

2
𝛾
|𝑘 | − e−(4− 2

𝛾
) |𝑘 |

)
. (4.22)

Remark 4.8. A simple calculation shows that for 𝛾 > 2 the function 𝑔𝛾 is two times continuously
differentiable on ℝ with 𝑔𝛾 (0) = 2𝜋 . The third derivative of 𝑔𝛾 is continuous away from the origin
but has a jump discontinuity at zeros with 𝑔′′′𝛾 (0+) = 24𝜋 (2 − 2

𝛾
) = −𝑔′′′𝛾 (0−). By the exponential

decay in both directions it follows that 𝑔 ( 𝑗 )𝛾 ∈ 𝐿1(ℝ) ∩ 𝐿∞(ℝ) for 𝑗 ≤ 3.

Remark 4.9. Note that for 𝛼 > 0, the Blaschke factor 𝑏𝛼 (𝑧) B 𝑧−i𝛼
𝑧+i𝛼 has the following properties:

(i) 𝑏𝛼 has a simple pole at −i𝛼 in the lower half plane and a simple zero at i𝛼 in the upper
half plane.

(ii) |𝑏𝛼 (𝑥) | = 1 for 𝑥 ∈ ℝ, while |𝑏𝛼 (𝑧) | ≤ 1 for 𝑧 ∈ ℂ+; in particular,

sign𝑏𝛼 (𝑥) = 𝑏𝛼 (𝑥) = exp
(
−2i arctan 𝛼

𝑥

)
for 𝑥 ∈ ℝ.

(iii) For 𝑥,𝑦 ∈ ℝ such that 𝑥 + i𝑦 ≠ i𝛼 , there holds

sign𝑏𝛼 (𝑥 + i𝑦) =
{
exp

[
i
(
arctan 𝑦−𝛼

𝑥
− arctan 𝑦+𝛼

𝑥

) ]
, 𝑥 ≠ 0,

sign 𝑦−𝛼
𝑦+𝛼 , 𝑥 = 0.
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Proof. In view of Remark 4.8 and Lemma 4.6, the function 𝜃𝛾 is holomorphic on 𝑆 (−2,2) with a
continuous extension to the boundary of the strip. Since the Blaschke factor 𝐵𝛾 is meromorphic
on ℂ with a single simple pole at −i(2 − 2

𝛾
) ∈ 𝑆 (−2,2) , the function ℎ is meromorphic on 𝑆 (−2,2) .

Moreover, by (4.17),

|e𝜃𝛾 (𝑥+i𝑦) | = eRe𝜃𝛾 (𝑥+i𝑦) ≲ e−𝜋 |𝑥 | |𝑦 | for 𝑦 ∈ (−2, 0) . (4.23)

Consequently,

ℎ𝑦 ∈ 𝐿1 ∩ 𝐿∞ for any −2 < 𝑦 < 0, 𝑦 ≠ −(2 − 2
𝛾
), (4.24)

and since ℎ has exactly one simple pole at −i(2 − 2
𝛾
), there exists 𝛽 > 0 such that5

|𝛽ℎ(𝑧) − 𝑝𝛾 (𝑧 + 2i) | ≲ 1 for 𝑧 in a neighborhood of − i(2 − 2
𝛾
) . (4.25)

From (4.24) and (4.25), we see that the function𝑚(𝑧) = 𝛽ℎ(𝑧 − 2i) is meromorphic in 𝑆2 with
𝑚 − 𝑝𝛾 ∈ ℍ1,2(𝑆). Moreover,𝑚 extends continuously to the boundary 𝜕𝑆2, and therefore satisfies
assumption (i) from Lemma 4.2. Consequently, it remains to show that ℎ solves

signℎ−2 = −ℎ0. (4.26)

To this end, note that by Remark 4.9,

sign𝐵𝛾 (𝑥 − 2i) = exp
(
−i arctan

(
4 − 2

𝛾

𝑥

)
+ i arctan

( 2
𝛾

𝑥

))
,

and

𝐵𝛾 (𝑥) = exp
(
−2i arctan

(
2 − 2

𝛾

𝑥

))
,

hence

sign𝐵𝛾 (𝑥 − 2𝑖)
𝐵𝛾 (𝑥)

= ei𝑓𝛾 (𝑥 ) , where 𝑓𝛾 (𝑥) = 2 arctan
(2 − 2

𝛾

𝑥

)
+ arctan

( 2
𝛾

𝑥

)
− arctan

(4 − 2
𝛾

𝑥

)
.

It follows that
signℎ−2(𝑥)
ℎ0(𝑥)

= ei𝑓𝛾 (𝑥 ) eiIm𝜃𝛾 (𝑥+2i)−𝜃𝛾 (𝑥 ) .

Consequently, ℎ satisfies (4.26) if and only if

iIm𝜃𝛾 (𝑥 − 2i) − 𝜃𝛾 (𝑥) = −i𝑓𝛾 (𝑥) − i𝜋𝑎(𝑥), (4.27)

for some 𝑎 : ℝ → 2ℤ + 1. Since the distributional Fourier transform of 𝑓 (𝑥) = arctan 1
𝑥
is given

by

p𝑓 (𝑘) = −𝜋 i1 − e−|𝑘 |
𝑘

for 𝑘 ∈ ℝ,

we have that

p𝑓𝛾 (𝑘) = i
𝑔𝛾 (𝑘) − 2𝜋

𝑘
.

5In fact, 𝛽 = 1
4𝜋 (2− 2

𝛾
) e

−𝜃𝛾 (−i(2− 2
𝛾
) ) , which is positive because 𝛾 > 2 and 𝜃𝛾 (−i(2 − 2

𝛾 )) =
1
2𝜋 𝜂𝑔𝛾 (e

(2− 2
𝛾
) ( ·) ) ∈ ℝ.
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In particular, taking 𝑎(𝑥) = sign (−𝑥) with distributional Fourier transform p𝑎(𝑘) = 2i p.v. 1
𝑘
, we

have
1
2𝜋 𝜂𝑔𝛾 (e

i𝑥 ( ·) ) = 1
2𝜋 lim

𝜖↓0

∫
|𝑘 | ≥𝜖

𝑔𝛾 (𝑘)
𝑘

ei𝑘𝑥 d𝑘 =
i
2𝜋 lim

𝜖↓0

∫
|𝑘 | ≥𝜖

𝑔𝛾 (𝑘)
𝑘

sin(𝑘𝑥) d𝑘

=
i
2𝜋 lim

𝜖↓0

∫
|𝑘 | ≥𝜖

𝑔𝛾 (𝑘) − 2𝜋
𝑘

sin(𝑘𝑥) d𝑘 + i
2𝜋 lim

𝜖↓0

∫
|𝑘 | ≥𝜖

2𝜋
𝑘

sin(𝑘𝑥) d𝑘

=
1
2𝜋

∫
ℝ

p𝑓𝛾 (𝑘) sin(𝑘𝑥) d𝑘 +
1
2𝜋 x𝜋𝑎(sin(𝑘 (·))) = −i𝑓𝛾 (𝑥) − i𝜋𝑎(𝑥) .

It then follows with (4.16) that (4.27) holds. ■

5. Further conseqences for the CLR and LT bound

5.1. Asymptotics of LT and CLR upper bound. In this section, we prove the asymptotic upper
bounds for the LT and CLR constant presented respectively in Corollary 1.7 and Table 1.2, which
are based on the following lemma.

Lemma 5.1 (Asymptotics for three-line problem). Let 𝛾 > 2 and ℎ be the optimizer from Theorem 1.3.
Then we have

lim
𝛾↓2

4𝜋 (𝛾 − 2)𝛾/2

𝛾𝛾/2

∥ℎ−2/𝛾 ∥𝛾𝐿∞ (ℝ)

∥ℎ0∥𝛾−2𝐿∞ (ℝ) ∥ℎ−1∥
2
𝐿2 (ℝ)

= 1 (5.1)

lim
𝛾→∞

4𝜋
∥ℎ−2/𝛾 ∥𝛾𝐿∞ (ℝ)

∥ℎ0∥𝛾−2𝐿∞ (ℝ) ∥ℎ−1∥
2
𝐿2 (ℝ)

= 4𝜋e2
( ∫

ℝ

𝑥2 + 9
𝑥2 + 1𝑒

2Re𝜃∞ (𝑥−i)d𝑥
)−1

≈ 5.342823, (5.2)

where

Re𝜃∞(𝑥 − i) =
∫ ∞

0

2𝑒−2𝑘 − 𝑒−4𝑘 + 1
𝑘 (cosh(2𝑘) − 1)

(
cos(𝑥𝑘) sinh(𝑘) − 𝑘)d𝑘.

Proof. We start with a few preliminary observations. Note that for 𝑥 + i𝑦 ∈ ℂ \ {−i(2 − 2
𝛾
)} we

have

|𝐵𝛾 (𝑥 + i𝑦) |2 =
𝑥2 +

(
2 − 2

𝛾
− 𝑦

)2
𝑥2 +

(
2 − 2

𝛾
+ 𝑦

)2 , (5.3)

and |e𝜃𝛾 (𝑥+i𝑦) | = eRe𝜃𝛾 (𝑥+i𝑦) with

Re𝜃𝛾 (𝑥 + i𝑦) = − 1
𝜋

∫ ∞

0

𝑔𝛾 (𝑘)
𝑘 (cosh(2𝑘) − 1)

(
cos(𝑥𝑘) sinh(𝑦𝑘) − 𝑦𝑘

)
d𝑘. (5.4)

It follows that ∥ℎ0∥𝐿∞ = 1, and

∥ℎ−1∥2𝐿2 (ℝ) =

∫
ℝ

𝑥2 + (3 − 2
𝛾
)2

𝑥2 + (1 − 2
𝛾
)2
e2Re𝜃𝛾 (𝑥−i) d𝑥

=
1

1 − 2
𝛾

∫
ℝ

(1 − 2
𝛾
)2𝑥2 + (3 − 2

𝛾
)2

𝑥2 + 1 e2Re𝜃𝛾 ( (1−
2
𝛾
)𝑥−i) d𝑥 .

In particular, by dominated convergence (recall (4.23)), we obtain(
1 − 2

𝛾

)
∥ℎ−1∥2𝐿2 (ℝ)

𝛾↓2
−→ 4e2Re𝜃2 (−i)

∫
ℝ

d𝑥
𝑥2 + 1 = 4𝜋e2Re𝜃2 (−i) . (5.5)
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Moreover, the re-scaled boundary value 𝑔(𝑥) = 2
𝛾
ℎ0( 2𝛾 𝑥) is an optimizer of (2.15) by construction

(see the proof of Lemma 4.2), in particular, ∥ℎ− 2
𝛾
∥𝐿∞ =

𝛾

2Re ⟨exp, p𝑔⟩ = ℎ(−
2
𝛾
i). Hence,

∥ℎ− 2
𝛾
∥𝐿∞ = |ℎ(−i 2

𝛾
) | = 1

1 − 2
𝛾

eRe𝜃𝛾 (−i
2
𝛾
)
, (5.6)

so that (
1 − 2

𝛾

)𝛾
∥ℎ− 2

𝛾
∥𝛾
𝐿∞ = e𝛾Re𝜃𝛾 (−i

2
𝛾
) 𝛾↓2
−→ e2Re𝜃2 (−i) . (5.7)

Combining (5.5) and (5.7), we have

lim
𝛾↓2

4𝜋 (𝛾 − 2)𝛾/2

𝛾𝛾/2

∥ℎ−2/𝛾 ∥𝛾𝐿∞ (ℝ)

∥ℎ0∥𝛾−2𝐿∞ (ℝ) ∥ℎ−1∥
2
𝐿2 (ℝ)

= lim
𝛾↓2

4𝜋
(
1 − 2

𝛾

) 𝛾

2 −1 (1 − 2
𝛾
)𝛾 ∥ℎ− 2

𝛾
∥𝛾
𝐿∞

(1 − 2
𝛾
)∥ℎ−1∥2𝐿2

= 1,

since lim𝛾↓2
(
1 − 2

𝛾

) 𝛾

2 −1
= 1.

For the limit 𝛾 → ∞, first observe that

Re𝜃𝛾 (−i 2𝛾 ) =
1
𝜋

∫ ∞

0

𝑔𝛾 (𝑘)
𝑘 (cosh(2𝑘) − 1)

(
sinh( 2

𝛾
𝑘) − 2

𝛾
𝑘
)
d𝑘,

and since sinh( 2
𝛾
𝑘) − 2

𝛾
𝑘 ≲ ( 2

𝛾
𝑘)3 for 𝑘 ≤ 𝛾

2 and sinh( 2
𝛾
𝑘) − 2

𝛾
𝑘 ≲ 𝑒

2
𝛾
𝑘 for 𝑘 ≥ 𝛾

2 , we may bound∫ 𝛾

2

0

𝑔𝛾 (𝑘)
𝑘 (cosh(2𝑘) − 1)

(
sinh( 2

𝛾
𝑘) − 2

𝛾
𝑘
)
d𝑘 ≲

(
2
𝛾

)3 ∫ ∞

0
𝑔𝛾 (𝑘) d𝑘 =

(
2
𝛾

)3
𝜋𝛾3

2𝛾2 − 3𝛾 + 1 ,

and, since 𝑘 ↦→ e
2
𝛾
𝑘
𝑘 (cosh(2𝑘) − 1) is decreasing on [𝛾2 ,∞), we have∫ 𝛾

2

0

𝑔𝛾 (𝑘)
𝑘 (cosh(2𝑘) − 1)

(
sinh( 2

𝛾
𝑘) − 2

𝛾
𝑘
)
d𝑘 ≲ 2

𝛾

1
cosh(𝛾) − 1

∫ ∞

0
𝑔𝛾 (𝑘) d𝑘

=
2
𝛾

1
cosh(𝛾) − 1

𝜋𝛾3

2𝛾2 − 3𝛾 + 1 .

In particular, 𝛾Re𝜃𝛾 (−i 2𝛾 ) → 0 as 𝛾 → ∞. Hence, using that
(
1 − 2

𝛾

)𝛾
→ e2 as 𝛾 → ∞, it follows

that

lim
𝛾→∞

∥ℎ− 2
𝛾
∥𝛾
𝐿∞ (ℝ) = lim

𝛾→∞

(
1 − 2

𝛾

)−𝛾
e𝛾Re𝜃𝛾 (−i

2
𝛾
)
= e2. (5.8)

On the other hand, by dominated convergence we have

Re𝜃𝛾 (𝑥 − i) = 1
𝜋

∫ ∞

0

𝑔𝛾 (𝑘)
𝑘 (cosh(2𝑘) − 1) (cos(𝑥𝑘) sinh(𝑘) − 𝑘) d𝑘

𝛾→∞
−→ 1

𝜋

∫ ∞

0

𝑔∞(𝑘)
𝑘 (cosh(2𝑘) − 1) (cos(𝑥𝑘) sinh(𝑘) − 𝑘) d𝑘 = Re𝜃∞(𝑥 − i),

with 𝑔∞(𝑘) = 𝜋
(
2e−2 |𝑘 | + 1 − e−4 |𝑘 |

)
. Therefore,

∥ℎ−1∥2𝐿2 =
∫
ℝ

𝑥2 + (3 − 2
𝛾
)2

𝑥2 + (1 − 2
𝛾
)2
e2Re𝜃𝛾 (𝑥−i) d𝑥

𝛾→∞
−→

∫
ℝ

𝑥2 + 9
𝑥2 + 1e

2Re𝜃∞ (𝑥−i)d𝑥 .

Combining this with (5.8) then yields (5.2). ■

The proof of the asymptotic bounds displayed in Table 1.2 and equation (1.14) are now immediate
consequences of Theorem 1.2, Theorem 1.6, and equation (5.2) in the case of the CLR bound, and
Theorem 1.2, Corollary 1.7, and equations (5.1) and (5.2) in the case of the LT bound.
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Appendix A. Connection with maximal Fourier multipliers

In this section we show how the variational characterization of the Fourier transform of
integrable functions from Lemma 2.1 can be used to reformulate the maximal Fourier multiplier
bound derived in [HKRV23, Theorem 2.1, Theorem 4.2].

To this end, let us first recall the setup of [HKRV23]. Let 𝑓 , 𝑔 : ℝ𝑑 → ℝ+ be Lebesgue
measurable functions on ℝ𝑑 , 𝑑 ≥ 1,𝑚 : ℝ+ → ℝ+ be a continuous bounded function, and 𝐵𝑓 ,𝑔,𝑚

the operator whose integral kernel is given by

𝐵𝑓 ,𝑔,𝑚 (𝑥, 𝜂) = 1
(2𝜋)𝑑/2

ei𝑥 ·𝜂𝑚(𝑓 (𝑥)𝑔(𝜂)) . (A.1)

We then define the maximal operator associated to 𝐵𝑓 ,𝑔,𝑚 as6

B𝑔,𝑚 (𝜑) (𝑥) B sup
𝑓 ≥0

|𝐵𝑓 ,𝑔,𝑚 (𝜑) (𝑥) |, 𝑥 ∈ ℝ𝑑 , for 𝜑 ∈ S(ℝ𝑑 ). (A.2)

One of the key results in [HKRV23] concerns the boundedness of the maximal operator B𝑔,𝑚 on
𝐿2(ℝ𝑑 ).

Theorem A.1 (Theorem 2.1 in [HKRV23]). Assume that

𝑚(𝑡) =
∫
ℝ+

𝑚1
( 𝑡
𝑠

)
𝑚2(𝑠)

d𝑠
𝑠

for some𝑚1,𝑚2 ∈ 𝐿2(ℝ+,
d𝑠
𝑠
). Then the maximal operator B𝑔,𝑚 defined in (A.2) extends to a bounded

(sub-linear) operator on 𝐿2(ℝ𝑑 ) with operator norm bounded by

∥B𝑔,𝑚 ∥𝐿2 (ℝ𝑑 )→𝐿2 (ℝ𝑑 ) ≤ ∥𝑚1∥𝐿2 (ℝ+,
d𝑠
𝑠
) ∥𝑚2∥𝐿2 (ℝ+,

d𝑠
𝑠
) . (A.3)

The proof of Theorem A.1 presented in [HKRV23] relies on a clever combination of Plancherel’s
and Fubini-Tonelli’s theorem, and the scaling invariance of the Haar measure d𝑠

𝑠
. The bound

(A.3), however, is not optimal since the convolutional decomposition of𝑚 is not unique, and the
product of the 𝐿2 norms of𝑚1 and𝑚2 – and hence the bound in (A.3) – depends on this choice.
In particular, this leaves some room for improvement by optimizing over𝑚1 and𝑚2.

It turns out that minimizing over the functions𝑚1 and𝑚2 yields precisely the 𝐿1 norm of the
Fourier transform of𝑚, as proved in Lemma 2.1. From this observation, we obtain the following
improved version of Theorem A.1.

Theorem A.2 (Improved maximal Fourier multiplier Bound). Let 𝑔 : ℝ𝑑 → ℝ+ be a measurable
function in ℝ𝑑 , 𝑑 ≥ 1, and suppose that𝑚 : ℝ+ → ℝ+ is a non-negative measurable function whose
Fourier transform, defined as

p𝑚(𝜔) B
∫ ∞

0
𝑚(𝑡)e−i log𝜔 log 𝑡 d𝑡

𝑡
,

6For the precise definition of the maximal operator, in particular measurability issues, we refer to [HKRV23].



ON A VARIATIONAL PROBLEM RELATED TO THE CLR AND LT INEQUALITIES 27

satisfies

∥ p𝑚∥
𝐿1 (ℝ+,

d𝜔
𝜔

) =

∫ ∞

0
| p𝑚(𝜔) |d𝜔

𝜔
< ∞. (A.4)

Then the maximal operator B𝑔,𝑚 defined in (A.2) extends to a bounded operator on 𝐿2(ℝ𝑑 ) with

∥B𝑔,𝑚 ∥𝐿2 (ℝ𝑑 )→𝐿2 (ℝ𝑑 ) ≤
1
2𝜋 ∥ p𝑚∥

𝐿1 (ℝ+,
d𝑠
𝑠
) . (A.5)

Proof. First note that the exponential map exp : ℝ → ℝ+ is a group isomorphism from the
additive group to the multiplicative group, and pushes the Lebesgue measure forward to the
measure d𝑠

𝑠
. Thus for any 𝑚 ∈ 𝐿𝑝 (ℝ+,

d𝑠
𝑠
), 1 ≤ 𝑝 ≤ ∞, there holds ∥𝑚∥𝐿𝑝 (ℝ) = ∥𝑚∥

𝐿𝑝 (ℝ+,
d𝑠
𝑠
) ,

where𝑚(𝑥) B 𝑚(exp(𝑥)), and∫
ℝ+

𝑚1
( 𝑡
𝑠

)
𝑚2(𝑠)

d𝑠
𝑠

=

∫
ℝ

𝑚1(log 𝑡 − 𝑥)𝑚2(𝑥)d𝑥 .

Moreover, we have p̃𝑚 = p𝑚, where p𝑚 is defined via (A.4) and p𝑚 is the standard Fourier transform
of𝑚 on ℝ. In particular, the variational characterization of ∥ p𝑚∥𝐿1 in Lemma 2.1 can be transfered
to the multiplicative group, i.e.,

inf
{
∥𝑚1∥𝐿2 (ℝ+,

d𝑠
𝑠
) ∥𝑚2∥𝐿2 (ℝ+,

d𝑠
𝑠
) :𝑚1 ∗𝑚2 =𝑚

}
= ∥ q𝑚∥

𝐿1 (ℝ+,
d𝑠
𝑠
) =

1
2𝜋 ∥ p𝑚∥

𝐿1 (ℝ+,
d𝑠
𝑠
) .

To complete the proof, we can now apply Theorem A.1 to B𝑔,𝑚 (note that𝑚 is continuous as its
Fourier transform lies in 𝐿1(ℝ)), optimize over𝑚1 and𝑚2, and use the above characterization. ■

Appendix B. Some technical details on the spaces ℍ𝑝,𝑞

In this section, we give the proof of Lemma 3.1 on the existence of boundary values in the sense
of distributions for functions in ℍ𝑝,2(𝑆).

Lemma B.1 (Uniform estimate). Let 1 ≤ 𝑝 ≤ ∞ and ℎ ∈ ℍ𝑝,2(𝑆), then we have

|ℎ(𝑧) | ≲ ∥ℎ∥ℍ𝑝,2
(
𝑦
− 1

𝑝 + (1 − 𝑦)− 1
2
)

for any 𝑧 = 𝑥 + i𝑦 ∈ 𝑆.

Proof. First note that by the definition of ℍ𝑝,2(𝑆) in (1.3), we can find two functions 𝑓 , 𝑔 : 𝑆 → ℂ

such that 𝑓 + 𝑔 = ℎ and
∥ 𝑓𝑦 ∥𝐿𝑝 (ℝ) ≲ ∥ℎ∥ℍ𝑝,2 (1 − 𝑦) and ∥𝑔𝑦 ∥𝐿2 (ℝ) ≲ ∥ℎ∥ℍ𝑝,2𝑦, (B.1)

for 𝑦 ∈ (0, 1). Consequently, by the mean value property of holomorphic functions and Hölder’s
inequality, for any 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝑆 and 𝜌 < min{𝑦, 1 − 𝑦} we have

|ℎ(𝑧) | = 1
𝜋𝜌2

∫ 𝜌

0

���� ∫ 2𝜋

0
ℎ(𝑧 + 𝑟e𝑖𝑡 )d𝑡

����𝑟d𝑟 ≤ 1
𝜋𝜌2

∫
𝐵𝜌 (𝑧 )

|𝑓 (𝑢) |d𝑢 + 1
𝜋𝜌2

∫
𝐵𝜌 (𝑧 )

|𝑔(𝑢) |d𝑢

≤ (𝜋𝜌2)1−
1
𝑝

𝜋𝜌2

( ∫ 𝑦+𝜌

𝑦−𝜌
∥ 𝑓𝑤 ∥𝑝𝐿𝑝 (ℝ)d𝑤

) 1
𝑝

+ (𝜋𝜌2) 1
2

𝜋𝜌2

( ∫ 𝑦+𝜌

𝑦−𝜌
∥𝑔𝑤 ∥2𝐿2d𝑤

) 1
2

≲ ∥ℎ∥ℍ𝑝,2

[
1

𝜌
2
𝑝

( ∫ 𝑦+𝜌

𝑦−𝜌
(1 −𝑤)𝑝d𝑤

) 1
𝑝

+ 1
𝜌

( ∫ 𝑦+𝜌

𝑦−𝜌
𝑤2d𝑤

) 1
2
]
. (B.2)

Hence by taking the limit 𝜌 → min{𝑦, (1 −𝑦)}, the first term in (B.2) can be bounded by 𝑦−
1
𝑝 and

the second term by (1 − 𝑦)− 1
2 . ■

For the proof of Lemma 3.1, we shall need the following regularity result.

Lemma B.2 (Absolute continuity of measures with exponentially weighted Fourier transform).
Let 𝜇 ∈ M(ℝ) and suppose that p𝜇 ∈ 𝐿2𝛾 for some 𝛾 ∈ ℝ. Then 𝜇 is absolutely continuous with respect
to the Lebesgue measure.
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The proof of Lemma B.2 relies on a classical result of F. and M. Riesz [RR16] on analytic
measures, that is, Borel measures 𝜇 on ℝ with the property that p𝜇 (𝑘) = 0 for all 𝑘 ≤ 0. The
following version can be found in [Mas09, Lemma 13.4].

Lemma B.3. Let 𝜇 ∈ M(ℝ). Then the following are equivalent:

(i) 𝜇 is analytic;
(ii) for any 𝑧 ∈ ℂ+ = {𝑧 ∈ ℂ : Im(𝑧) > 0},∫

ℝ

𝜇 (d𝑥)
𝑥 − 𝑧 = 0;

(iii) 𝜇 (d𝑥) = 𝑢 (𝑥)d𝑥 , where 𝑢 ∈ 𝐿1(ℝ) with p𝑢 (𝑘) = 0 for all 𝑘 ≤ 0.

We refer to [Mas09, Sections 5.5 and 13.2] for more details and the proof.

Proof of Lemma B.2. The case 𝛾 = 0 follows from the fact that the Fourier transform is an iso-
morphism on 𝐿2(ℝ). Moreover, by considering 𝜇̃ (𝐴) = 𝜇 (−𝐴) instead of 𝜇, we may assume that
p𝜇 ∈ 𝐿2𝛾 with 𝛾 > 0.

Define the function

p𝑚(𝑘) B p𝜇 (𝑘)1{𝑘≤0},

then from the assumption p𝑚 ∈ 𝐿2𝛾 and Hölder’s inequality, we have that p𝑚 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ),
which implies that𝑚 ∈ 𝐶0(ℝ) ∩ 𝐿2(ℝ). In particular, the measure

𝜇1 B 𝜇 −𝑚d𝑥

has a well-defined Fourier transform that vanishes identically for 𝑘 ≤ 0.
Now note that for any 𝑧 ∈ ℂ+, the function 𝑥 ↦→ 𝑟𝑧 (𝑥) ≔ 1

2𝜋 i
1

𝑥−𝑧 belongs to 𝐶0(ℝ) ∩ 𝐿2(ℝ),
and its Fourier transform p𝑟𝑧 (𝑘) = e−i𝑧𝑘1{𝑘≤0} lies in 𝐿1(ℝ) ∩ 𝐿2(ℝ). Let 𝜑 ∈ S(ℝ) and define
𝜑𝜖 ≔ 𝜖−1𝜑 ( ·

𝜖
). Then 𝜇1 ∗ 𝜑𝜖 = 𝜇 ∗ 𝜑𝜖 +𝑚 ∗ 𝜑𝜖 ∈ 𝐿1(ℝ) + 𝐿2(ℝ) and we have

𝜇 ∗ 𝜑𝜖
∗
⇀ 𝜇 inM(ℝ) 𝑎𝑛𝑑 𝑚 ∗ 𝜑𝜖 →𝑚 in 𝐿2(ℝ) as 𝜖 ↓ 0.

In particular

1
2𝜋 i

∫
ℝ

𝜇1(d𝑥)
𝑥 − 𝑧 =

∫
ℝ

𝑟𝑧 (𝑥) 𝜇1(d𝑥) = lim
𝜖↓0

∫
ℝ

𝑟𝑧 (𝑥) 𝜇1 ∗ 𝜑𝜖 (𝑥) d𝑥 .

Parseval’s formula then implies that for any 𝜖 > 0∫
ℝ

𝑟𝑧 (𝑥) 𝜇1 ∗ 𝜑𝜖 (𝑥) d𝑥 =
1
2𝜋

∫
ℝ

p𝑟𝑧 (𝑘) p𝜇1(𝑘) p𝜑𝜖 (𝑘) d𝑘 = 0,

since p𝑟𝑧 (𝑘) and p𝜇1(𝑘) have disjoint support. It follows that for all 𝑧 ∈ ℂ+,

1
2𝜋 i

∫
ℝ

𝜇1(d𝑥)
𝑥 − 𝑧 = 0.

From the identity (𝑧1−𝑧2) (𝑥 −𝑧1)−1(𝑥 −𝑧2)−1 = (𝑥 −𝑧1)−1− (𝑥 −𝑧2)−1 for any 𝑥 ∈ ℝ, 𝑧1, 𝑧2 ∈ ℂ+,
we conclude that ∫

ℝ

𝜇1(d𝑥)
(𝑥 − 𝑧1) (𝑥 − 𝑧2)

= 0 for any 𝑧1, 𝑧2 ∈ ℂ+.

In particular, the measure 𝜇2(d𝑥) B (𝑥 + i)−1𝜇1(d𝑥) is a bounded Radon measure satisfying the
assumptions of Lemma B.3. Therefore, 𝜇2 is absolutely continuous with respect to Lebesgue
measure on ℝ, which implies that 𝜇 (d𝑥) = (𝑥 + i)𝜇2(d𝑥) +𝑚d𝑥 is also absolutely continuous.

■
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Proof of Lemma 3.1. The first step is to show that for any 𝜑 ∈ 𝐶∞
𝑐 (ℝ), the function

𝑦 ↦→ ⟨ℎ𝑦, p𝜑𝑦0−𝑦⟩ is independent of 𝑦 ∈ (0, 1). (B.3)

For this, we notice that the function 𝑧 ↦→ ℎ(𝑧)p𝜑 (𝑧 + i𝑦0) is holomorphic on 𝑆− , as p𝜑 is entire by
the Paley-Wiener theorem. Hence Cauchy’s Integral Theorem implies that∫ 𝑅

−𝑅

(
ℎ𝑦 (𝑥)p𝜑𝑦0−𝑦 (𝑥) − ℎ𝑦′ (𝑥)p𝜑𝑦0−𝑦′ (𝑥)

)
d𝑥

+
∫ 𝑦

𝑦′

(
ℎ𝑤 (−𝑅)p𝜑𝑦0−𝑤 (−𝑅) − ℎ𝑤 (𝑅)p𝜑𝑦0−𝑤 (𝑅)

)
d𝑤 = 0,

for any 𝑦,𝑦′ ∈ (0, 1). In the limit 𝑅 → ∞, the first term converges to ⟨ℎ𝑦, p𝜑𝑦0−𝑦⟩ − ⟨ℎ𝑦′, p𝜑𝑦0−𝑦′⟩,
while by the uniform (with respect to 𝑅) control on ℎ𝑤 (±𝑅) from Lemma B.1 and the fast decay of
𝜑𝑤 (±𝑅), the second term vanishes, which proves (B.3).

Let us treat the case 𝑝 ∈ (1,∞] first. By definition of the space ℍ𝑝,2(𝑆), we can decompose
ℎ = 𝑓 + 𝑔 such that (B.1) holds, i.e. ∥ 𝑓𝑦 ∥𝐿𝑝 (ℝ) ≲ ∥ℎ∥ℍ𝑝,2 (1 − 𝑦) and ∥𝑔𝑦 ∥𝐿2 (ℝ) ≲ ∥ℎ∥ℍ𝑝,2𝑦. In
particular, as 𝑦 ↓ 0, we have ∥𝑔𝑦 ∥𝐿2 (ℝ) → 0 and ∥ 𝑓𝑦 ∥𝐿𝑝 (ℝ) ≲ 1. Hence, 𝑔𝑦 → 0 strongly in 𝐿2(ℝ)
as 𝑦 ↓ 0, and there exists a subsequence 𝑦𝑛 ↓ 0 and a function ℎ0 ∈ 𝐿𝑝 (ℝ) such that 𝑓𝑦𝑛 ⇀ ℎ0
weakly in 𝐿𝑝 (respectively weakly-* in 𝐿∞ for 𝑝 = ∞) as 𝑦𝑛 ↓ 0. We claim that the limit ℎ0 is
independent of the subsequence (𝑦𝑛). Indeed, there holds

⟨ℎ𝑦 − ℎ0, p𝜑0⟩ = ⟨ℎ𝑦, p𝜑−𝑦⟩ − ⟨ℎ0, p𝜑0⟩ − ⟨ℎ𝑦, p𝜑−𝑦 − p𝜑0⟩
(B.3)
= ⟨ℎ𝑦𝑛 , p𝜑−𝑦𝑛 ⟩ − ⟨ℎ0, p𝜑0⟩ − ⟨ℎ𝑦, p𝜑−𝑦 − p𝜑0⟩
= ⟨ℎ𝑦𝑛 − ℎ0, p𝜑0⟩ + ⟨ℎ𝑦𝑛 , p𝜑−𝑦𝑛 − p𝜑0⟩ − ⟨ℎ𝑦, p𝜑−𝑦 − p𝜑0⟩ (B.4)

for any 𝜑 ∈ 𝐶∞
𝑐 (ℝ). Note that for any 𝑦 ∈ (0, 1) we may bound

|⟨ℎ𝑦, p𝜑−𝑦 − p𝜑0⟩| ≤ |⟨𝑓𝑦, p𝜑−𝑦 − p𝜑0⟩| + |⟨𝑔𝑦, p𝜑−𝑦 − p𝜑0⟩|
≤ ∥ 𝑓𝑦 ∥𝐿𝑝 (ℝ) ∥p𝜑−𝑦 − p𝜑0∥

𝐿
𝑝

𝑝−1 (ℝ)
+ ∥𝑔𝑦 ∥𝐿2 (ℝ) ∥p𝜑−𝑦 − p𝜑0∥𝐿2 (ℝ) → 0

as 𝑦 ↓ 0, which follows from the uniform bounds sup0<𝑦<1
(
∥ 𝑓𝑦 ∥𝐿𝑝 + ∥𝑔𝑦 ∥𝐿2

)
≲ 1 and the

convergence p𝜑−𝑦 → p𝜑0 in 𝐿1(ℝ) ∩ 𝐿∞(ℝ) as 𝑦 ↓ 0. Hence, letting 𝑦𝑛 ↓ 0 in (B.4), we obtain
⟨ℎ𝑦 − ℎ0, p𝜑0⟩ = −⟨ℎ𝑦, p𝜑−𝑦 − p𝜑0⟩ → 0 as 𝑦 ↓ 0. The argument for the limit 𝑦 ↑ 1 is analogous.
Since C∞

𝑐 (ℝ) is dense in S(ℝ), we conclude that equation (3.1) holds for any Schwartz function
𝜑 ∈ S(ℝ).

For the case 𝑝 = 1, we can only infer the existence of a finite measure ℎ0 ∈ M(ℝ) on ℝ such
that 𝑓𝑦𝑛

∗
⇀ ℎ0 weakly-* in the sense of measures as 𝑦𝑛 ↓ 0. Therefore, it remains to show that

ℎ0 ∈ 𝐿1(ℝ). To this end, notice that (B.3) extends to 𝑦 = 0 and 𝑦 = 1, i.e.,

⟨ℎ0, p𝜑0⟩ = ⟨ℎ𝑦, p𝜑1−𝑦⟩ for any 𝜑 ∈ 𝐶∞
𝑐 (ℝ) and 0 ≤ 𝑦 ≤ 1. (B.5)

This follows from the fact that p𝜑𝑦 → p𝜑𝑦0 strongly in 𝐿1 ∩ 𝐿∞ and ℎ𝑦 → ℎ𝑦0 weakly-∗ inM(ℝ)
as 𝑦 → 𝑦0 for any 0 ≤ 𝑦0 ≤ 1, and therefore proves (3.2). We can now appeal to Lemma B.2 to
conclude the case 𝑝 = 1. Indeed, since p𝜑−1 is the Fourier transform of 𝜑 exp−1, Parseval’s formula
implies that qℎ1 = qℎ0 exp−1 ∈ 𝐿2(ℝ). In particular, ℎ0 has a Fourier transform in 𝐿22 , which implies
that ℎ0 ∈ 𝐿1(ℝ) by Lemma B.2.

■

Appendix C. Existence and uniqeness of primal optimizer

In this section, we prove that the primal problem (2.4) admits a unique (up to symmetries)
minimizer in 𝐿1(ℝ). In addition, we show that the dual problem can be restricted to the space of
continuous functions vanishing at infinity. Precisely, we shall prove the following theorem.
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Theorem C.1 (Primal optimizer). Let 𝛾 > 2 and𝑀𝛾 be defined in (2.4). Then we have

𝑀𝛾 = min
𝑚∈𝐿1 (ℝ)

∥𝑚∥𝛾−2
𝐿1

∥ p𝑚 − exp∥2
𝐿2𝛾

=
4(𝛾 − 2)𝛾−2
(2𝜋)𝛾−2𝛾𝛾 sup

𝑔∈𝐶0 (ℝ)
p𝑔∈𝐿2−𝛾

{
|⟨exp, p𝑔⟩|𝛾

∥𝑔∥𝛾−2
𝐿∞ ∥p𝑔∥2

𝐿2−𝛾

}
, (C.1)

i.e., the infimum over 𝐿1(ℝ) is attained, and the minimizer is unique up to the transformation
𝑚(𝑥) ↦→𝑚(𝑥)𝛼−i𝑥−1 for 𝛼 > 0.

For the proof of Theorem C.1, we shall use the following lemma.

Lemma C.2. Let 𝐹 ∗𝛾 : 𝐶0(ℝ) → (−∞,∞] be the functional defined in Lemma 2.8, but restricted to
𝐶0(ℝ). Then its Fenchel-conjugate 𝐹 ∗∗𝛾 : M(ℝ) → [0,∞] is given by

𝐹 ∗∗𝛾 (𝜇) =
{
∥p𝜇 − exp∥2

𝐿2𝛾
, if p𝜇 − exp ∈ 𝐿2𝛾 ,

+∞, otherwise,
, (C.2)

where M(ℝ) denotes the space of bounded Radon measures.

Proof. From similar calculations as in the proof of Lemma 2.8, we find

𝐹 ∗∗𝛾 (𝜇) = sup
𝑔∈𝐶0 (ℝ)

p𝑔∈𝐿2−𝛾

sup
𝛼∈ℂ

{
Re𝛼

(
⟨𝜇, 𝑔⟩ − 1

2𝜋 ⟨exp, p𝑔⟩
)
− |𝛼 |2
16𝜋2 ∥p𝑔∥2

𝐿2−𝛾

}

= sup
𝑔∈𝐶0 (ℝ)

p𝑔∈𝐿2−𝛾

|2𝜋 ⟨𝜇, 𝑔⟩ − ⟨exp, p𝑔⟩|2

∥p𝑔∥2
𝐿2−𝛾

(C.3)

Now note that from Parseval’s identity we have

2𝜋 ⟨𝜇, 𝑔⟩ − ⟨exp, p𝑔⟩ = ⟨p𝜇 − exp, p𝑔⟩, (C.4)

for any 𝑔 ∈ 𝐶0(ℝ) with p𝑔 ∈ 𝐶∞
𝑐 (ℝ). Thus by the Riesz representation theorem (recall that 𝐶∞

𝑐 (ℝ)
is dense in 𝐿2𝛾 (ℝ)), the supremum in (C.3) is finite if and only if p𝜇 − exp ∈ 𝐿2𝛾 (ℝ). In this case we
have

sup
𝑔∈𝐶0 (ℝ)

p𝑔∈𝐿2−𝛾

|2𝜋 ⟨𝜇, 𝑔⟩ − ⟨exp, p𝑔⟩|2

∥p𝑔∥2
𝐿2−𝛾

= sup
𝑔∈𝐶0 (ℝ)

p𝑔∈𝐿2−𝛾

|⟨p𝜇 − exp, p𝑔⟩|2

∥p𝑔∥2
𝐿2−𝛾

= ∥p𝜇 − exp∥2
𝐿2𝛾
,

which completes the proof. ■

Proof of Theorem C.1. From Lemma C.2 and the Fenchel-Rockafellar duality theorem applied to
the functional 𝐹 ∗𝛾 + ∥·∥𝐿∞ , we obtain

𝑀𝛾 B min
𝜇∈M(ℝ)
∥𝜇 ∥≤1

∥p𝜇 − exp∥2
𝐿2𝛾

= sup
𝑔∈𝐶0 (ℝ)

(
∥𝑔∥𝐿∞ + 1

16𝜋2 ∥p𝑔∥2
𝐿2−𝛾

+ 1
2𝜋 Re ⟨p𝑔, 𝑒

( ·)⟩
)
≥ 𝑀𝛾 , (C.5)

where the last inequality follows from Lemma 2.9, and a minimizer in M(ℝ) exists and is unique
by the strict convexity of ∥·∥2

𝐿2𝛾
.

To conclude the proof, just note that any 𝜇 ∈ M(ℝ) satisfying p𝜇 − exp ∈ 𝐿2𝛾 (ℝ) must be
absolutely continuous with respect to the Lebesgue measure by Lemma B.2, and therefore, the
variational problem overM(ℝ) coincides with problem (2.4). ■
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