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AFFINE FLAG VARIETIES OF TYPE D

QUANYONG CHEN, ZHAOBING FAN, AND QI WANG*

Abstract. The Hecke algebras and quantum group of affine type A admit geometric

realizations in terms of complete flags and partial flags over a local field, respectively.

Subsequently, it is demonstrated that the quantum group associated to partial flag vari-

eties of affine type C is a coideal subalgebra of quantum group of affine type A. In this

paper, we establish a lattice presentation of the complete (partial) flag varieties of affine

type D. Additionally, we determine the structures of convolution algebra associated to

complete flag varieties of affine type D, which is isomorphic to the (extended) affine

Hecke algebra. We also show that there exists a monomial basis and a canonical basis

of the convolution algebra, and establish the positivity properties of the canonical basis

with respect to multiplication.
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1. Introduction

The geometric realization of Hecke algebra has played important roles in geometric

representation theory. Iwahori [Iw64] provided a geometric realization of Hecke algebras

as convolution algebras HA on pairs of complete flags over a finite field. Soon after,

Iwahori and Matsumoto [IM65] realized the affine Hecke algebras H
Ã
by utilizing pairs of

complete flags of affine type over a local field. These works are the foundation of geometric

representation theory.

The geometric realization of quantum groups and Hecke algebras has always been a

topic of great interest and significance. Beilinson, Lusztig and McPherson [BLM90] made

a significant contribution by constructing a geometric realization of quantum Schur algebra

SA
n,d as convolution algebras on pairs of partial flags over a finite field. They also realized

the (modified) quantum group U(gln) in the process of the stabilization and completion

of quantum Schur algebras, and showed the modified quantum group U̇(gln) admits a

canonical basis. In a subsequent work by Grojnowski and Lusztig [GL92], the Schur-Jimbo

duality is realized geometrically by considering the product variety of the complete flag

varieties and the n-step partial flag varieties of type A. The affine quantum Schur algebra

Sn,d is by definition the convolution algebra of pairs of flags of affine type A in [Lu99, Lu00].

Also, there is an affine version of Schur-Jimbo duality formed in [CP96]. Motivated by

[BW13], Bao, Kujawa, Li and Wang [BKLW14, BLW14] provided a geometric construction

of Schur-type algebras Sı
n,d and Hecke algebras HC in terms of n-step partial flags and

complete flags of type Cd, respectively. Fan and Li [FL14] established a new duality

between the Quantum algebra Sm and the Iwahori-Hecke algebra HD of type D attached

to SOF (2d) algebraically and geometrically by considering the (partial) flag varieties of

type D.

Recall that there is a lattice representation of the complete and n-step flag varieties

of affine type C over a local field in [Sa99]. The affine Schur algebra Sc
n,d (resp. affine

Hecke algebra H
C̃
) are by the definition the convolution algebra of pairs of partial (resp.

complete) flags of affine type C [FLLLW20]. The crucial point to study the structure of

the Sc
n,d, as long as the corresponding i-quantum group, for example, generators, relations

and the canonical basis etc., is the lattice presentation of the partial flag varieties. The
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quantum algebra Uc
n is by definition a suitable subalgebras of the projective limit of the

projective system of Lusztig algebras, and the comultiplication homomorphisms gives rise

to show that Uc
n is a coideal subalgebra of U(ŝln).

To this end, it is compelling to ask what happens to the classical case of the affine type

D. The purpose of this paper is to provide an answer to this question, as a sequel to

[FL14, FLLLW20]. In section 2, we recall some results of flag varieties of type D over a

finite field. In section 3, our first main result is the construction of lattice presentation

which can be adapted to affine type D, on which the special orthogonal group SOF (V )

(where F = F((ε))) acts for the complete flag varieties Yd
d and for the n-step partial flag

varieties X d
n,d, which is formulated in this paper, for n even. This lattice presentation can

be used to study the affine Schur algebra and the corresponding i-quantum group, which

has been study in forthcoming paper [CF]. In section 4, we parameterize the orbits for the

product Yd
d × Yd

d under the diagonal action of the group SOF (V ) by the set of matrices.

We show that the affine Hecke algebra Hd
d is by the definition the convolution algebra

of pairs of the complete flags in Yd
d , and admits a monomial basis and a canonical basis,

which enjoys a positivity with respect to multiplication.

In this paper, we denote by N and [a, b] the set of nonnegative integers and the set of

integers between a and b, respectively.

Acknowledgement. We express our gratitude Haitao Ma for valuable discussions and

comments. This paper was partially supported by the NSF of China grant 12271120 and

12101152, the NSF of Heilongjiang Province grant JQ2020A001, and the Fundamental

Research Funds for the central universities.

2. Flag varieties of type D

In this short section, we introduce general conventions, fix some notation, and offer a

brief review of some definitions and facts for flag varieties of type D over a finite field. For

more details, we refer the reader to [W97].

Let F be a finite field of q elements with odd characteristic. Fix a positive integer d

and set D = 2d. Moreover, we fix a symmetric bilinear form Q on FD whose associated
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matrix under the standard basis is

(2.1) J =




0 0 · · · 0 1

0 0 · · · 1 0
...

... . .
. ...

...

0 1 · · · 0 0

1 0 · · · 0 0




.

For a vector subspace W of FD, we write |W | and W⊥ for its dimension and orthogonal

complement, respectively. A vector subspace W is called isotropic if W ⊂ W⊥. For any

isotropic subspace W , the bilinear form Q induces a non-degenerate symmetric bilinear

form Q|W⊥/W on W⊥/W . Moreover, the associated matrix of Q|W⊥/W is of the form (2.1)

with rank D − 2|W | under a certain basis.

Denote by OF(D) and SOF(D) the orthogonal group and the special orthogonal group

with respect to Q, respectively. We have the following propositions.

Proposition 2.1. Let W and W ′ be isotropic subspaces with dimension d − 1 and f :

W → W ′ an invertible transformation. Then there exists g ∈ SOF(D) such that g|W = f .

Proposition 2.2. Let W be an isotropic subspace with dimension d− 1. Then there exist

exactly two maximal isotropic subspaces V1 and V2 containing W . Moreover, these two

maximal isotropic subspaces are in different SOF(D)-orbits.

Proposition 2.3. Let W and W ′ be two maximal isotropic subspaces. Then

|W/W ∩W ′| ≡ 0 mod 2

if and only if there exists g ∈ SOF(D) such that gW = W ′.

Fix a maximal isotropic subspace M . Let Y be the set of filtrations as following:

Y =
{
F = (Fi)0≤i≤D

∣∣ |Fi| = i, Fi = F⊥
D−i and |Fd ∩M | ≡ 0 mod 2

}
.

By Proposition 2.3, SOF(D) acts on Y component wisely, i.e., (gF )i = g · Fi. Moreover,

SOF(D) acts transitively on Y thanks to the condition |Fd ∩M | ≡ 0 mod 2.
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We consider the stable subgroup B of F for some F = (Fi)0≤i≤D ∈ Y . Suppose

{v1, · · · , vD} is a basis of FD such that Q(vi, vj) = δi,D+1−j and {v1, · · · , vi} a basis of Fi,

for 1 ≤ i ≤ D. Denote by Bi the subgroup of SOF(D) such that

Bi = {g ∈ SOF(D) | gFi = Fi}.

It is easy to see that B = ∩1≤i≤DBi is a Borel subgroup and Y ≃ SOF(D)/B.

3. Lattice presentation of affine flag varieties of type D

In this section, we will establish a lattice presentation of the complete (partial) flag

varieties of affine type D.

Let F = F((ε)) be the field of formal Laurent series over F and o = F[[ε]] the ring of

formal power series. Denote by m the maximal ideal of o generated by ε.

Let V = FD be a vector space with a symmetric bilinear form Q : V × V → F whose

associated matrix under the standard basis is of the form (2.1). A free o-submodule L of

V with rank D is called an o-lattice. Clearly, an o-basis of L is also an F -basis of V . For

any lattice L of V , we set

L♯ = {v ∈ V | Q(v,L) ⊂ o}, L∗ = {v ∈ V | Q(v,L) ⊂ m}.

The o-modules L♯,L∗ are also lattices of V . It is straightforward to show that (L♯)♯ = L

and L∗ = εL♯. For any two lattices L and M, the following equations hold:

(L +M)♯ = L♯ ∩M♯, (L ∩M)♯ = L♯ +M♯;

(L+M)∗ = L∗ ∩M∗, (L ∩M)∗ = L∗ +M∗.
(3.1)

Moreover, for any g ∈ OF (V ), we have

(3.2) gL♯ = (gL)♯, gL∗ = (gL)∗.

3.1. Primitive lattice. A lattice L is called o-valued with respect to Q if Q(L,L) ⊂ o.

Suppose L is an o-valued, we can define an induced symmetric F-bilinear form

Q : L/εL ×L/εL −→ o/m ≃ F

by Q(x+ εL, y + εL) = Q(x, y)|ε=0.
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Definition 3.1. A lattice L is called primitive if L is o-valued and the induced symmetric

bilinear form Q is non-degenerate on L/εL.

Proposition 3.2. A lattice L is primitive if and only if L = L♯.

Proof. Let {x1, · · · , xD} be a basis of L and B = (bij)D×D the associated matrix of the

bilinear form under this basis. Denote by B∗ = (b∗ij)D×D the adjoint matrix of B.

Suppose that L is primitive. Then we have bij, b
∗
ij ∈ o and det(B) ∈ o\m. We only need

to verify that L♯ ⊂ L. Let v = a1x1 + · · ·+ aDxD ∈ L♯. Then Q(xi, v) ∈ o for 1 ≤ i ≤ D,

which means that

(3.3) B




a1
...

aD


 ∈ oD.

By left multiplying B∗ on the two sides of (3.3), we have

det(B)ai ∈ o ⇒ ai ∈ o ⇒ L = L♯.

Conversely, suppose that L = L♯. It is apparent that L is o-valued. If the induced

bilinear form Q is degenerate on L/εL, then there exists a vector v =
∑

aixi ∈ L\εL such

that Q(v, xi) ∈ m for 1 ≤ i ≤ D. This implies that ε−1v ∈ L♯, which is in contradiction to

L = L♯. We complete the proof. �

By a similar argument as that of [W97, Theorem 1.26] and [FL14, Lemma 3.1.1], we

have the following proposition.

Proposition 3.3. A lattice L is primitive if and only if there exists a basis {v1, · · · , vD}

of L such that Q(vi, vj) = δi,D+1−j.

Proof. One side is clear. Suppose that L is a primitive lattice. Let {x1, · · · , xD} be a

basis of L and B = (bij)D×D the associated matrix of the bilinear form under this basis.

Then we have bij ∈ o and det(B) ∈ o\m. Without loss of generality, we may assume that

b11 ∈ o\m. Let

x′1 = x1, x′i = xi − b1,ib
−1
11 xi for 2 ≤ i ≤ D.
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Then {x′1, · · · , x
′
D} is a basis of L and the matrix B′ = (b′ij)D×D of the bilinear form Q

under this basis is

B′ =




b′11 0 · · · 0

0 b′22 · · · b′2,D
...

...
. . .

...

0 b′D,2 · · · b′D,D



.

Performing the same produce, we can find a basis {x′′1 , · · · , x
′′
D} of L such that the as-

sociated matrix of the bilinear form Q under this basis is a diagonal matrix, denoted by

D = Diag(d11, · · · , dDD), where dii ∈ o\m for 1 ≤ i ≤ D. Note that there exist ci ∈ o\m

and ci|ε=0 = 1 such that dii = siic
2
i , where sii = dii|ε=0. According to [W97, Theorem

1.26], there exists a basis {v1, · · · , vD} of L such that the associated matrix under this

basis is of the form (2.1). We complete the proof. �

Let M,L be two lattices such that εL ⊂ M ⊂ L = L♯ and Q(M,M) ⊂ m. Then M/εL

is an isotropic subspace of L/εL, whose complement space is M∗/εL. In particular, if

M∗ = M, then M/εL is a maximal isotropic subspace.

By a similar process of extending basis of finite type, we have the following proposition.

Proposition 3.4. Let M,L be two lattices such that εL ⊂ M ⊂ L = L♯. Assume that

Q(M,M) ⊂ m and |M/εL| = a. Then there exists a basis {v1, · · · , vD} of L such that

Q(vi, vj) = δi,D+1−j and {v1, · · · , va, εva+1, · · · , εvD} a basis of M.

We now consider the set Z of pair of lattices

Z =
{
(M,L) | M = M∗,L = L♯, εL ⊂ M ⊂ L

}
.

By (3.2), there exists an OF (V )-action on Z by g · (M,L) 7→ (gM, gL),∀g ∈ OF (V ).

Moreover, OF (V ) acts transitively on Z by Proposition 3.4.

Proposition 3.5. Let (M0,L0), (M,L) be two pairs in Z such that

|M/M∩M0|+ |L/L ∩ L0| = 1.

Then for (M′,L′) ∈ Z, we have

(3.4) |M′/M′ ∩M0|+ |M′/M′ ∩M|+ |L′/L′ ∩ L0|+ |L′/L′ ∩ L| ≡ 1 mod 2.
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Proof. We shall to show that (3.4) holds in both of the following two cases:

(3.5) (a) M = M0, |L/L ∩ L0| = 1; (b) L = L0, |M/M∩M0| = 1.

Suppose that case (a) in (3.5) holds. We only need to verify that

|L′/L ∩ L′|+ |L′/L ∩ L0| ≡ 1 mod 2.

According to Proposition 3.4, there exists a basis {v1, · · · , vD} of L such that Q(vi, vj) =

δi,D+1−j and {ε−1v1, v2, · · · , vD−1, εvD} a basis of L0. We have

L = L ∩ L0 ⊕ FvD; L0 = L ∩ L0 ⊕ Fε−1v1.

The result will be verified by showing that L ∩ L0 ∩ L′ is exactly properly contained in

exactly one of the L ∩ L′ and L ∩ L0. We verified it by contradiction. If L ∩ L0 ∩ L′

is properly contained in L ∩ L′ and L′ ∩ L0, then there exist y1, y2 ∈ L ∩ L0 such that

vD + y1 and ε−1v1 + y2 ∈ L′, which is absurd since L′ is primitive. So we may suppose

that L∩ L0 ∩L′ = L ∩ L′ = L0 ∩L′. It is equivalent that L+ L′ = L0 + L′, which means

that vD = x+ y + aε−1v1 ∈ L for some x ∈ L′, y ∈ L ∩ L0 and a ∈ F. We get a = 0 since

Q(x, x) ∈ o. Similarly, there exist x′ ∈ L′ and y′ ∈ L ∩L0 such that ε−1v1 = x′ + y′. This

is a contradiction to Q(x, x′) ∈ o. We complete the proof of the case (a).

The proof of case (b) is a counterpart in case (a) and so we omit it. �

Similar to the argument of finite case, which is formal and not reproduced here, we have

the following proposition.

Proposition 3.6. Let (M0,L0), (M,L) be two pairs in Z defined as in Proposition

3.5. Then (M0,L0), (M,L) are in different SOF (V )-orbits. Moreover, there exists g ∈

OF (V )\SOF (V ) such that g(M0,L0) = (M,L).

The following proposition shows that there are exactly two SOF (V )-orbits on Z.

Proposition 3.7. For any two pairs (M0,L0), (M,L) ∈ Z, we have

|M/M∩M0|+ |L/L ∩ L0| ≡ 0 mod 2

if and only if there exists g ∈ SOF (V ) such that g(M0,L0) = (M,L).
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Proof. Assume that |M/M ∩ M0| + |L/L ∩ L0| ≡ 0 mod 2. We shall define (Mi,Li)

inductively by setting that

Mi+1 = εLi +M∩Li, Li+1 = Mi+1 + L ∩ ε−1Mi+1, for i ≥ 0.

By (3.1) and induction, we have M∗
i = Mi,L

♯
i = Li. For i, a ∈ N, we get

M∩ ε−aMi = M∩ ε−aLi−1 = M∩ ε−a−1Mi−1 = M∩ ε−a−1Li−2.

This implies that
∣∣∣ Mi

Mi−1 ∩Mi

∣∣∣ =
∣∣∣ M∩Li−1

M∩Mi−1

∣∣∣ =
∣∣∣ M∩Mi

M∩Mi−1

∣∣∣.

Similarly, we have

L ∩ ε−aLi = L ∩ ε−a−1Mi = L ∩ ε−a−1Li−1 = L ∩ ε−a−2Mi−1,

and ∣∣∣ Li

Li ∩ Li−1

∣∣∣ =
∣∣∣L ∩ ε−1Mi−1

L ∩ Li−1

∣∣∣ =
∣∣∣ L ∩ Li

L ∩ Li−1

∣∣∣.

Thus,

∣∣∣ L

L ∩ L0

∣∣∣ =
∑

a≥1

∣∣∣ L ∩ ε−aL0

L ∩ ε−a+1L0

∣∣∣ =
∑

a≥1

∣∣∣ L ∩ La

L ∩ La−1

∣∣∣;

∣∣∣ M

M∩M0

∣∣∣ =
∑

a≥1

∣∣∣ M∩ ε−aM0

M∩ ε−a+1M0

∣∣∣ =
∑

a≥1

∣∣∣ M∩Ma

M∩Ma−1

∣∣∣.

So we have the following diagram:

(M0,L0) −→ (M1,L0) −→ (M1,L1) −→ (M2,L1) −→ (M2,L2) −→

· · · −→ (Mk,Lk) −→ (Mk+1,Lk) −→ (Mk+1,Lk+1) −→ · · · .
(3.6)

According to diagram (3.6) and Proposition 3.6, there exists g ∈ OF (V )\SOF (V ) such

that g(M0,L0) = (M,L).

Conversely, suppose that there exists g ∈ SOF (V ) such that g(M0,L0) = (M,L). Let

(M′,L′) be a pair in Z such that (M,L), (M′,L′) are two pairs defined as in Proposition

3.6. If

|M/M∩M0|+ |L/L ∩ L0| ≡ 1 mod 2,
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then according to Proposition 3.5, we have

|M′/M′ ∩M0|+ |L′/L′ ∩ L0| ≡ 0 mod 2.

From above results, there exists g′ ∈ SOF (V ) such that g′(M0,L0) = (M′,L′). We have

g′g(M,L) = (M′,L′), which is contray to Proposition 3.6. We complete the proof. �

3.2. Complete affine flag varieties of type D. Fix a pair (M,L) ∈ Z, we consider

the set Yd
d of all collections Λ = (Λi)i∈Z of lattices in V as following:

Yd
d =

{
Λ = (Λ)i∈Z | Λi ⊂ Λi+1,Λi = εΛi+D, Λ∗

i = ΛD−i, |Λi/Λi−1| = 1,

for i ∈ Z, |L/L ∩ ΛD|+ |M/M∩ Λd| ≡ 0 mod 2
}
.

From (3.2) and Proposition 3.7, we define an SOF (V )-action on Yd
d by g : Λ 7→ g(Λ) = Λ′,

where Λ′
i = g(Λi) for i ∈ Z.

Proposition 3.8. The action of SOF (V ) on Yd
d is transitive.

Proof. Let Λj = (Λj
i )i∈Z ∈ Yd

d for j ∈ {1, 2}. By Proposition 3.4, we can find bases

{vj1, · · · , v
j
D} of Λj

D as in Proposition 3.3 such that {vj1, · · · , v
j
i , εv

j
i+1, · · · , εv

j
D} are bases

of Λj
i , for i ∈ [1,D]. We define a linear transformation g of V by sending v1i to v2i . It

is easy to verify that g · Λ1 = Λ2 and g ∈ OF (V ). According to Proposition 3.7, there

exist ρ1, ρ2 ∈ SOF (V ) such that ρ1(M,L) = (Λ1
d,Λ

1
D) and ρ2(M,L) = (Λ2

d,Λ
2
D). Thus

ρ2ρ
−1
1 (Λ1

d,Λ
1
D) = (Λ2

d,Λ
2
D). Moreover, we have

|Λ1
d/Λ

1
d ∩ Λ2

d|+ |Λ1
D/Λ

1
D ∩ Λ2

D| ≡ 0 mod 2,

which implies that g ∈ SOF (V ). �

Given Λ = (Λi)i∈Z ∈ Yd
d , we consider the stable subgroup IΛ of Λ. Let {v1, · · · , vD} be

a basis of ΛD defined as in Proposition 3.3 such that {v1, · · · , vi, εvi+1, · · · , εvD} is a basis

of Λi for 1 ≤ i ≤ D. Denote by IΛi
the subgroups of SOF (V ) such that

IΛi
= {g = (grs)D×D ∈ SOF (V ) | gΛi = Λi}.

For the lattice Λi and g ∈ IΛi
, we have

∑
grsvs ∈ Λi, for 1 ≤ r ≤ i;

∑
εgrsvs ∈ Λi, for i < r ≤ D.
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Thus, we get that

grs ∈





m, if 1 ≤ r ≤ i, i < s ≤ D;

m−1, if i < r ≤ D, 1 ≤ s ≤ i;

o, otherwise,

where m−1 is the o-module generated by ε−1. Moreover, we have IΛ = ∩1≤i≤DIΛi
, and IΛ

is consists of the elements as the following form:

(3.7)




o m · · · m m

o o · · · m m

...
...

. . .
...

...

o o · · · o m

o o · · · o o




.

Hence IΛ is an Iwahori subgroup and Yd
d ≃ SOF (V )/IΛ.

3.3. Partial flag varieties. Fix an even positive integer n = 2r, for some r ∈ N. Let

X d
n,d be the set of chains L = (Li)i∈Z of lattices in V subject to the following conditions:

(3.8) Li ⊂ Li+1, Li = εLi+n, L∗
i = Ln−i ∀i ∈ Z.

Then SOF (V ) acts on X d
n,d by component-wise action. Denote by X d,0

n,d and X d,1
n,d the subsets

of X d
n,d as following:

X d,0
n,d =

{
L = (Li)i∈Z ∈ X d

n,d

∣∣ |M/Lr ∩M|+ |L/Ln ∩ L| ≡ 0 mod 2
}
;

X d,1
n,d =

{
L = (Li)i∈Z ∈ X d

n,d

∣∣ |M/Lr ∩M|+ |L/Ln ∩ L| ≡ 1 mod 2
}
.

Then X d
n,d can be decomposed as X d

n,d = X d,0
n,d ⊔ X d,1

n,d. We set

Λd
n,d =



λ = (λi)i∈Z ∈ NZ

∣∣∣ λi = λ1−i = λi+n,∀i ∈ Z;
∑

1≤i≤n

λi = D



 .(3.9)

The set X d
n,d admits the following decomposition:

X d
n,d =

⊔

a=(ai)∈Λd

n,d

X d
n,d(a), where X d

n,d(a) =
{
L ∈ X d

n,d

∣∣ |Li/Li−1| = ai,∀i ∈ Z
}
.
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For the partial flag varieties, we have the counterpart of Proposition 3.8.

Corollary 3.9. Assume L = (Li)i∈Z, L′ = (L′
i)i∈Z ∈ X d,0

n,d ∩X d
n,d(a) (resp. X d,1

n,d ∩X d
n,d(a))

for some a = (ai)i∈Z ∈ Λd
n,d. Then there exists g ∈ SOF (V ) such that g · L = L′.

Let L = (Li)i∈Z ∈ X d
n,d(a) for some a = (ai)i∈Z ∈ Λd

n,d. Denote by GP (a) the stabilizer

of L under the basis defined as in Proposition 3.3. By the same argument as for the

complete case, each element of GP (a) is of the form as following:

(3.10)




B1 m · · · m m

o B2 · · · m m

...
...

. . .
...

...

o o · · · Bn−1 m

o o · · · o Bn




,

where Bi is the block of type ai × ai with all entries in o for i ∈ [1, n]. Moreover, GP (a) is

a parahoric subgroup. Then we have

X d,0
n,d =

⊔

a∈Λd

n,d

{
L = (Li)i∈Z ∈ X d,0

n,d

∣∣ L ∈ Xn,d(a)
}
=

⊔

a∈Λd

n,d

SOF (V )/GP (a),

and X d,0
n,d ≃ X d,1

n,d ≃
⊔

a∈Λd

n,d
SOF (V )/GP (a).

4. Geometric realization of the affine Hecke algebra

In this section, we study the convolution algebra Hd
d of pairs of complete flags of affine

type D. We present multiplication formulas in Hd
d with generators, and prove Hd

d is

isomorphic to the (extended) affine Hecke algebra of type D.

4.1. Parametrizing SOF (V )-orbits on Yd
d × Yd

d. Let Σd be the set of matrices with

entries being non-negative integer as following:
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Σd =

{
σ ∈ MatZ×Z(N)

∣∣∣∣ σij = σ1−i,1−j = σi+D,j+D, ∀i, j ∈ Z,
∑

i

σij =
∑

j

σij = 1,

∑

i≤0<j

σij +
∑

i≤d<j

σij ≡ 0 mod 2

}
.

Let SOF (V ) act diagonally on the product Yd
d × Yd

d . Thanks to the condition

|L/L ∩ ΛD|+ |M/M∩ Λd| ≡ 0 mod 2,

we may define a map Φ from the set of SOF (V )-orbits in Yd
d × Yd

d to Σd, by sending the

orbit SOF (V ) · (Λ,Λ′) to σ = (σij)i,j∈Z, where

σij =
∣∣∣

Λi + Λi ∩ Λ′
j

Λi−1 + Λi ∩ Λ′
j−1

∣∣∣.

By the definition of σij, we have

σ1−i,1−j =
∣∣∣
Λ−i + Λ1−i ∩ Λ′

1−j

Λ−i + Λ1−i ∩ Λ′
−j

∣∣∣ =
∣∣∣
ΛD−i +ΛD+1−i ∩ Λ′

D+1−j

ΛD−i + ΛD+1−i ∩ Λ′
D−j

∣∣∣

=
∣∣∣
(Λi ∩ (Λi−1 + Λ′

j−1))
∗

(Λi ∩ (Λi−1 + Λ′
j))

∗

∣∣∣ =
∣∣∣
Λi−1 + Λi ∩ Λ′

j

Λi−1 + Λi ∩ Λ′
j−1

∣∣∣ = σij , for i, j ∈ Z.

By a similar argument as for [FLLLW20, Proposition 3.1.2] and [H99, Proposition 2.6],

we have the following proposition.

Proposition 4.1. Let σ = (σij)i,j∈Z be the associated matrix of (Λ,Λ′) under the map Φ.

Then we can decompose V into V = ⊕i,j∈ZVij as F-vector spaces satisfying that |Vij |= σij ,

Λi =
⊕

k,l∈Z,k≤i

Vkl, Λ′
j =

⊕

k,l∈Z,l≤j

Vkl, ∀i, j ∈ Z.

Moreover, there exists a basis {xmij |1 ≤ m ≤ aij} of Vij such that

xmi,j = εxmi+D,j+D, ∀i, j ∈ Z, 1 ≤ m ≤ σij ,

Q(xmij , x
m′

kl ) = Q(xm
′

kl , x
m
ij ), ∀i, j, k, l ∈ Z, 1 ≤ m ≤ σij, 1 ≤ m′ ≤ σkl,

Q(xmij , x
m′

kl ) = εQ(xmij , x
m′

k+D,j+D), ∀i, j, k, l ∈ Z, 1 ≤ m ≤ σij , 1 ≤ m′ ≤ σkl,

Q(xmij , x
m′

kl ) = δm,m′ , ∀1 ≤ i, k ≤ D, i+ k = D + 1, j + l = D + 1.

(4.1)
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From proposition 4.1, we have the Iwahori-Bruhat decomposition for the group SOF (V ).

Proposition 4.2. The map Φ : SOF (V )\Yd
d × Yd

d → Σd is a bijection.

Proof. By Proposition 4.1, Φ is clearly surjective. Assume that there exist two pairs

(Λ,Λ′), (Λ̃, Λ̃′) of lattice chains in Yd
d such that φ(Λ,Λ′) = Φ(L̃, L̃′) = σ. We can find bases

{xmij } and {ymij } for the pairs (Λ,Λ′) and (Λ̃, Λ̃′), respectively, defined as in Proposition 4.1.

We define a linear transformation g : V → V by sending xmij to ymij for i, j ∈ Z, 1 ≤ m ≤ σij.

Then we have g ∈ OF (V ) and g · (Λ,Λ′) = (Λ̃, Λ̃′). Moreover, since Λ and Λ′ belong to

Yd
d , we get g ∈ SOF (V ) from Proposition 3.7. We complete the proof. �

4.2. Convolution algebra. Let v be an indeterminate and A = Z[v, v−1]. We define

Hd
d;A = ASOF (V )(Y

d
d × Yd

d)

to be the space of SOF (V )-invariant A-valued functions on Yd
d × Yd

d . For σ ∈ Σd, we

denote by [σ] the characteristic function of the corresponding orbit Oσ. Then Hd
d;A is a

free A-module with a basis {[σ] | σ ∈ Σd}. We define a (generic) convolution product ∗ on

Hd
d;A as follows. For a tripe of matrices (σ, σ′, σ′′) ∈ Σd×Σd×Σd, we choose (Λ,Λ

′′) ∈ Oσ′′ ,

and let gσ,σ′,σ′′;q be the number of Λ′ ∈ Yd
d such that (Λ,Λ′) ∈ Oσ and (Λ′,Λ′′) ∈ Oσ′ .

Then there exists a polynomial gσ,σ′,σ′′ ∈ Z[v, v−1] such that gσ,σ′,σ′′;q = gσ,σ′,σ′′ |v=√
q for

every odd prime power q. We define the convolution product on Hd
d;A by letting

[σ] ∗ [σ′] =
∑

σ′′

gσ,σ′,σ′′ [σ′′].

Equipped with the convolution product, the A-module Hd
d;A becomes an associative A-

algebra. We set that

Hd
d = Q(v)⊗A Hd

d;A.
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We shall provide an explicit description of the multiplication formulas of Hd
d. For any

1 ≤ j ≤ d− 1, define the characteristic function [Tj ] in Hd
d;A by

[Tj ](Λ,Λ
′) =

{
1, if Λi = Λ′

i,∀i ∈ [0, d]\{j},Λj 6= Λ′
j;

0, otherwise.

[T0](Λ,Λ
′) =

{
1, if Λi = Λ′

i,∀i ∈ [2, d],Λ0 6= Λ′
0,Λ1 6= Λ′

1,Λ−1 ⊂ Λ′
1;

0, otherwise.

[Td](Λ,Λ
′) =

{
1, if Λi = Λ′

i,∀i ∈ [0, d− 2],Λd−1 6= Λ′
d−1,Λd 6= Λ′

d,Λd−1 ⊂ Λ′
d+1;

0, otherwise.

[Tρ](Λ,Λ
′) =

{
1, if Λi = Λ′

i,∀i ∈ [1, d− 1],Λ0 6= Λ′
0,Λd 6= Λ′

d;

0, otherwise.

For i, j ∈ Z, let Eij be the Z × Z matrix whose (k, l)-th entries are 1, for all (k, l) ≡

(i, j) mod n, and 0 otherwise. We set

Eij
θ = Eij + E1−i,1−j .

Moreover, we define a function on Z× Z by

ξ(x, y) =

{
2, if x > y;

0, oterwise.

By a similar argument to [Lu99, Proposition 3.5] and [FLLLW20, Lemma 4.3.1], we get

the following lemma.

Lemma 4.3. Assume that h ∈ [1, d− 1]. Let σ = (σij)i,j∈Z ∈ Σd.

(a) Assume that σh,k = σh+1,l = 1. Then

(4.2) [Th] ∗ [σ] = vξ(k,l)[σ − Eh,k
θ −Eh+1,l

θ + Eh,l
θ + Eh+1,k

θ ] + (vξ(k,l) − 1)[σ].

(b) Assume that σ−1,k = σ1,l = 1. Then

(4.3) [T0] ∗ [σ] = vξ(k,l)[σ − E−1,k
θ − E1,l

θ + E−1,l
θ + E1,l

θ ] + (vξ(k,l) − 1)[σ].

(c) Assume that σd−1,k = σd+1,l = 1. Then

(4.4) [Td] ∗ [σ] = vξ(k,l)[σ − Ed−1,k
θ − Ed+1,l

θ + Ed−1,l
θ + Ed+1,k

θ ] + (vξ(k,l) − 1)[σ].
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(d) Assume that σ0,k = σd,l = 1. Then

(4.5) [Tp] ∗ [σ] = [σ − E0,k
θ −Ed,l

θ + E1,k
θ + Ed+1,l

θ ].

A product of basis elements [B1] ∗ · · · ∗ [Bm] in Hd
d;A is called monomial if for each i, Bi

is of the form Tα for some α ∈ [0, d] ∪ {p}.

From Lemma 4.3 and a similar argument to [BF05, §8.6], we get the following proposi-

tion.

Proposition 4.4. For any σ ∈ Σd, there exists a monomial product [B1]∗· · ·∗[Bm] ∈ Hd
d;A

such that [σ] = [B1] ∗ · · · ∗ [Bm].

Proof. By the results of [BF05, §8.6], for any matrix σ = (σij) ∈ Σd such that
∑

i≤0<j σij ≡∑
i≤d<j σij ≡ 0 mod 2, there exists a monomial product such that

(4.6) [σ] = [B1] ∗ · · · ∗ [Bm],

where Bi is of the form Tj for some j ∈ [0, d]. By Lemma 4.3, given a matrix σ ∈ Σd

satisfying that
∑

i≤0<j σij ≡
∑

i≤d<j σij ≡ 1 mod 2, we have

[Tp] ∗ [σ] = [σ′],

where σ′ = σ − E0,k
θ − Ed,l

θ + E1,k
θ + Ed+1,l

θ . Then there exists a monomial product such

that [σ′] = [B′
1] ∗ · · · ∗ [B

′
m′ ] is of the form (4.6). Thus,

[σ] = [Tp] ∗ [B
′
1] ∗ · · · ∗ [B

′
m′ ].

We complete the proof. �

Example 4.5. Consider the matrix σ = (σij)i,j∈Z ∈ Σd as following:
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σ =

c−1 c0 c1 c2 · · · cd cd+1 · · · cD−1 cD cD+1

r1 1

r2 1
...

. . .

rd 1

rd+1 1
...

. . .

rD−1 1

rD 1

where ‘ri’ and ‘cj’ in the table indicate the i-th row and j-th column of the matrix σ,

respectively. We have

[σ] = [Tρ] ∗ [T1] ∗ · · · ∗ [Td−1] ∗ [Td] ∗ [Td−2] ∗ · · · ∗ [T1].

Recall [Lu83] that the (extended) affine-Hecke algebra H
D̃d

of type D is a unital as-

sociative algebra over A generated by Ti for i ∈ [0, d] and Tρ subject to the following

relations:

T 2
i = (v2 − 1)Ti + v2, 0 ≤ i ≤ d,

TjTj+1Tj = Tj+1TjTj+1, 1 ≤ j < d− 1,

TiTj = TjTi, 1 ≤ i, j ≤ d− 1 and |i− j| > 1,

T0Tk = TkT0, k 6= 2, TdTl = TlTd, l 6= d− 2,

T0T2T0 = T2T0T2, Td−2TdTd−2 = TdTd−2Td,

T0 = TρT1Tρ, Td = TρTd−1Tρ,(4.7)

Ti = TρTiTρ, 1 < i < d− 1.(4.8)

Proposition 4.6. The assignment of sending the functions [Tα], for α ∈ [0, d] ∪ {p}, in

the algebra Hd
d;A to the generators Tα of H

D̃d
in the same indexes is an isomorphism.
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Proof. The relations above except the labeled ones are reduced to the finite type and hence

omit it. Since (4.8) is clear, we only need to prove (4.7) holds. Note that

[Tp] ∗ [T1] ∗ [Tp] = ♯GTp,T1
[T0],

where GTp,T1
is set of the pairs (Λ′,Λ′′) in Yd

d ×Yd
d determined by the following conditions:

(1) Λ′
0 = Λ′′

0 = Λ1 ∩ Λ′
1;

(2) Λ′
1 = Λ1 and Λ′′

1 = Λ̃1;

(3) Λ′
i = Λ′′

i = Λi for i ∈ [2, d];

(4) (Λ, Λ̃) is a fixed pair in Yd
d × Yd

d whose associated matrix is T0.

It is clear that ♯GTp,T1
= 1, which implies that [T0] = [Tp] ∗ [T1] ∗ [Tp]. The left one is

similar, and hence we omit it. �

4.3. The canonical basis of Hd
d;A. Fix Λ ∈ Yd

d . For σ ∈ Σd, we define

Y Λ
σ =

{
Λ′ ∈ Yd

d | (Λ,Λ′) ∈ Oσ

}
.

This is an orbit of the stabilizer subgroup StabSOF (V )(Λ) of SOF (V ), and one can associate

to it a structure of quasi-projective algebraic variety. Now, we compute its dimension d(σ).

The following lemma analogue of [Lu99, Lemma 4.3] and [FLLLW20, Lemma 4.1.1].

Lemma 4.7. Fix Λ ∈ Yd
d . For σ ∈ Σd, the dimension of Y Λ

σ is given by

(4.9) d(σ) =
1

2

( ∑

i≥k,j<l
i∈[1,D]

σijσkl −
∑

i≥1>j

σij −
∑

i≥d+1>j

σij

)
.

Define a partial order ” ≤ ” on Σd by σ ≤ σ′ if Oσ ⊂ Oσ′ . For any σ, σ′ ∈ Σd, we say

that σ � σ′ if and only if
∑

k≥i,l≤j

σkl ≤
∑

k≥i,l≤j

σ′
kl, ∀i > j.

Since the Bruhat order of affine type D is compatible with the Bruhat order of affine type

A, we see that the partial order ”≤” is compatible with the Bruhat order of affine type D.

Assume for now that the ground field is F of the finite field F. Let ICσ be the intersection

cohomology complex of the closure Y Λ
σ of Y Λ

σ , taken in certain ambient algebraic variety

over F, such that the restriction of the stratum ICσ to Y Λ
σ is the constant sheaf on Y Λ

σ .
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We refer to [BBD82] for the precise definition of intersection complexes. The restriction

of the i-th cohomology sheaf Hi
Y Λ
σ
(ICσ) of ICσ to Y Λ

σ′ for σ′ ≤ σ is a trivial local system,

whose rank is denoted by nσ′,σ,i. Set

{σ}d =
∑

σ′≤σ

Pσ′,σ[σ], where Pσ′,σ =
∑

i∈Z
nσ′,σ,iv

i−d(σ).

The polynomials Pσ′,σ satisfy

Pσ,σ = 1, Pσ′,σ ∈ v−1Z[v−1] for any σ′ ≤ σ.

Recall {[σ] | σ ∈ Σd} forms an A-basis of Hd
d;A. We have the following theorem.

Theorem 4.8. The set {{σ}d | σ ∈ Σd} forms an A-basis of Hd
d;A, called the canonical

basis. Moreover, the structure constants of Hd
d;A with respect to the canonical basis are in

N[v, v−1].
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