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ABSTRACT. We completely characterize the coloring quivers of general
torus links by dihedral quandles by first exhausting all possible numbers
of colorings, followed by determining the interconnections between col-
orings in each case. The quiver is obtained as function of the number of
colorings. The quiver always contains complete subgraphs, in particular
a complete subgraph corresponding to the trivial colorings, but the total
number of subgraphs in the quiver and the weights of their edges varies
depending on the number of colorings.

1. INTRODUCTION

The concept of a quiver and its representations was introduced in [4] by
P. Gabriel in 1972. A quiver is an oriented graph; precisely, it is a pair
Q = (V, E), where V is a finite set of vertices and E is a finite set of ar-
rows between them. Quivers have been used in many areas of mathematics
such as representation theory of finite dimensional algebras, ring theory
(Gabriel’s theorem), Lie algebras (Dynkin diagrams) and quantum groups
among others. A quiver structure on the set of quandle colorings of an ori-
ented knot was introduced in [7] where some enhancements of the counting
invariant were obtained from the quiver structure. In [1], quandle coloring
quivers of (2, q)-torus links by dihedral quandles were studied. The case of
(3, q)-torus links was investigated in [8]. The main goal of this paper is to
generalize the results of [1,8] to any torus link T(p, q). To give an overview
of the process, we decided to first cover the cases T(5,q) and T(7,q) before
the general case T(p,q). In investigating dihedral quandle coloring quivers
of general torus links, we first exhaust all possible numbers of colorings of
the torus links by dihedral quandles Rn. The quiver is obtained as function
of the number of colorings. Precisely, (1) if the number of colorings is n
then the quiver is the complete graph on n vertices with each edge hav-
ing weight n. (2) if the number of colorings is pn then the quiver graph is
composed of two complete graphs, one graph on n vertices and the other on
(p−1)n vertices, such that there is a directed edge with weight n

p
from one

graph to the other. (3) if the number of colorings is 2p−1n, then the quiver
contains 2p−1 complete subgraphs of order n. (4) if the number of colorings
is np, we obtain np−n

n(n−1)
disjoint subgraphs with vertices each having edges
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to a complete subgraph on n vertices. While some of the complete sub-
graphs of the quivers are of different orders, we also find that the weights
of the edges between them vary depending on the number of colorings.

The paper is organized as follows. In Section 2 we review the basics of
quandles and link colorings. Section 3 gives the quandle coloring quivers of
the torus links T(5, q) and T(7, q). In Section 4, we give the main result of
the paper in which we characterize the quandle coloring quivers of general
torus links T(p, q), where p is prime.

2. A REVIEW OF QUANDLES AND LINK COLORINGS

In this section, we collect some basics about quandles that we will need
through the paper. We begin with the following definition taken from [3, 5,
6].

Definition 2.1. A quandle is a set X with a binary operation
∗ : X × X −→ X satisfying the following three axioms:

(i) (right distributivity) for all x, y, z ∈ X, we have (x ∗ y) ∗ z =
(x ∗ z) ∗ (y ∗ z);

(ii) (invertibility) for all x ∈ X, the map Rx : X −→ X sending y to y∗x
is a bijection;

(iii) (idempotency) for all x ∈ X, x ∗ x = x.

Since axiom (ii) states that for each y ∈ X, the map Ry is invertible, we
will denote R−1

y (x) by x∗̄y. When the binary operation satisfies (x∗y)∗y =
x for all x, y ∈ X, then the quandles is called a kei (or involutive quandle).
Let n be a positive integer. For x, y ∈ Zn (integers modulo n), define
x ∗ y = 2y− x (mod n). Then the operation ∗ defines a quandle structure
called dihedral quandle and is denoted Rn.

Let D be a diagram of an oriented link K and let X be a quandle. A
coloring of D by the quandle X is a map C : A→ X from the set of arcs A
of the diagram D to X such that the image of the map satisfies the relation
depicted in Figure 1 at each crossing. For more on colorings of knots by
quandles the reader can consult for example [3, 5, 6].

FIGURE 1. Colorings of arcs at positive and negative crossings
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For any link K, there is an associated fundamental quandle Q(K) of the
knot K given by presentation with generators corresponding to the arcs of
a diagram D of K and quandle relations at crossings of D as in Figure 1.
The set of colorings of a knot K by a quandle X, then, is in one-to-one
correspondence with the set of quandle homomorphisms from the funda-
mental quandle Q(K) of K to X. For example, the fundamental quan-
dle of figure eight knot can be obtained from Figure 2. It is given by
Q(41) = ⟨x, y, z,w; x∗̄z = y, z∗̄x = w,w ∗ y = x, y ∗ w = z⟩ =
⟨x, y, z; y ∗ z = x, (z∗̄x) ∗ y = x, y ∗ (z∗̄x) = z⟩.

FIGURE 2. Oriented figure-8 knot with labeled arcs

The set of quandle homomorphisms from the fundamental quandle Q(K)
to the quandle X is denoted by Hom(Q(K), X). This set has been used to
define computable link invariants, for example, the cardinality of the set
Hom(Q(K), X) is known as the quandle counting invariant [3].

Notations: Using a similar notation as in [8], we denote the directed
complete graph on n vertices with ω total number of edges between any
two vertices in the graph as (

←→
Kn, ω̂). When two graphs G1 and G2 have

disjoint vertex sets and edge sets, and there are d edges from each vertex of
G2 to each vertex of G1, the graph will be denoted as G1

←−
∇ d̂G2. Lastly, the

disjoint union of m copies of the graph G will be denoted as
⊔
m
G.

Known results: The only cases where quandle coloring quivers for torus
links are completely known are the two cases of T(2, q) and T(3, q). In
[1] the structure of the quandle coloring quiver of a T(2, q) with respect to
a dihedral quandle of order n, denoted Rn, was given. In [8] the coloring
quiver was studied for T(3, q). We give the known results for QRn(T(p, q))
for p = 2, 3 in the table below.
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Number of colorings N Quivers when p = 2 Quivers when p = 3

When N = n (
←→
Kn, n̂) (

←→
Kn, n̂)

When N = pn (
←→
Kn, n̂)

←−
∇ n̂

2

(←→
Kn,

n̂
2

)
(
←→
Kn, n̂)

←−
∇ n̂

3

(←→
K2n,

n̂
3

)
When N = n · 2p−1 (

←→
Kn, n̂)

←−
∇ n̂

2

(←→
Kn,

n̂
2

)
(
←→
Kn, n̂)

←−
∇ n̂

2

[ ⊔
3

(←→
Kn,

n̂
2

) ]
When N = np (

←→
Kn, n̂)

←−
∇

(←−−−→
Kn(n−1), 1̂

)
(
←→
Kn, n̂)

←−
∇

[ ⊔
n+1

(←−−−→
Kn(n−1), 1̂

) ]
TABLE 1. Quandle coloring quivers of T(2, q) [1] and
T(3, q) [8] by Rn.

Our results: We solve the problem of determining the quandle coloring
quivers of a general torus links T(p, q) by dihedral quandles. We give a
summary of the result in the following chart. For the details see the sections
below. We begin by deriving the quandle coloring quivers in the p = 5
and p = 7 cases to give an overview of the process, then we generalize to
T(p, q) for any prime p.

Number of colorings N Quivers when p is a prime

When N = n (
←→
Kn, n̂)

When N = pn (
←→
Kn, n̂)

←−
∇ n̂

p

(←−−−→
K(p−1)n,

n̂
p

)
When N = n · 2p−1 (

←→
Kn, n̂)

←−
∇ n̂

2

[ ⊔
2p−1−1

(←→
Kn,

n̂
2

) ]
When N = np (

←→
Kn, n̂)

←−
∇

[ ⊔
np−n
n(n−1)

(←−−−→
Kn(n−1), 1̂

) ]
TABLE 2. Quandle coloring quivers of T(p, q) by Rn (our
main result).

3. QUANDLE COLORING QUIVERS OF (5, q) AND (7, q)-TORUS LINKS
WITH DIHEDRAL QUANDLES

To further the understanding of deriving the quandle coloring quivers of
T(p, q)-torus links with dihedral quandles, we go through the process of
determining the number of colorings of T(p, q) by the dihedral quandle Rn

and the quivers when p = 5 and when p = 7.
Quandle Coloring Quivers of (5, q)-Torus links with Dihedral Quan-
dles: Using the braid form (σ1σ2σ3σ4)

q of the torus link T(5, q) as shown
in Figure 3, we calculate N, where N is the number of colorings of T(5, q)
by the dihedral quandle Rn, for varying values of q.
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FIGURE 3. Coloring of the braid (σ1σ2σ3σ4)
q whose clo-

sure is T(5, q)

Let f be a coloring of the torus link T(5, q) with f(xi) = yi for i =
1, ..., 5 as in Figure 3. Coloring the braid (σ1σ2σ3σ4)

q by the dihedral quan-
dle and using the fact that f(xi) = yi gives the following equation:

yi = y5 + (−1)q+1yq + (−1)qyi+q (1)
Now, using equation (1), we calculate N for the following values of q:

(1) Let q = 10k. A straightforward computation gives that all yi are
free variables and thus the number of colorings is N = n5.

(2) Let q = 10k+ 1. The computation gives y1 = y2 = y3 = y4 = y5.
Therefore, N = n.

(3) Let q = 10k + 2. The computation gives 5(yi − yj) = 0 mod n.
Therefore when gcd(5, n) = 1, we have N = n, and when gcd(5, n) =
5, we have N = 5n.

(4) Let q = 10k+ 3. The computation gives y1 = y2 = y3 = y4 = y5.
Therefore, N = n.

(5) Let q = 10k + 4. The computation gives 5(yi − yj) = 0 mod n.
Therefore when gcd(5, n) = 1, we have N = n, and when gcd(5, n) =
5, we have N = 5n.

(6) Let q = 10k + 5. The computation gives 2(yi − yj) = 0 mod n.
Therefore when gcd(2, n) = 1, we have N = n, and when gcd(2, n) =
2, we have N = 24n.

(7) Let q = 10k + 6. The computation gives 5(yi − yj) = 0 mod n.
Therefore when gcd(5, n) = 1, we have N = n, and when gcd(5, n) =
5, we have N = 5n.

(8) Let q = 10k+ 7. The computation gives y1 = y2 = y3 = y4 = y5,
and so N = n.

(9) Let q = 10k + 8. The computation gives 5(yi − yj) = 0 mod n.
Therefore when gcd(5, n) = 1, we have N = n, and when gcd(5, n) =
5, we have N = 5n.
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(10) Let q = 10k+ 9. The computation gives y1 = y2 = y3 = y4 = y5,
and so N = n.

We summarize these results in the following table below.

q Number of colorings N when p = 5

When q ̸= 0 mod p is odd N = n

When q ̸= 0 mod p is even N = n · gcd(5, n)
When q = p mod 2p When n is even, N = 24n. When n is odd, N = n

When q = 0 mod 2p N = n5

TABLE 3. Number of colorings of T(5, q) by Rn

We characterize in this section all the quandle coloring quivers of the
torus links T(5, q) with the dihedral quandle Rn.

In the following four theorems we let T(5, q) be a torus link and Rn be
the dihedral quandle.

Theorem 3.1. If |Hom(T(5, q), Rn)| = n, then the full quandle coloring
quiver is the complete directed graph:

QRn(T(5, q)) = (
←→
Kn, n̂).

Proof. If |Hom(T(5, q), Rn)| = n, this corresponds to the n trivial color-
ings. Now assume that f and g are both trivial colorings given respectively
by f(xi) = j and g(xi) = k for all xi ∈ Q(T(5, q)). Since any endomor-
phism of the dihedral quandle, Rn, has the form

ϕ(f) = af+ b (2)

where a, b ∈ Rn (see [2]), then there are exactly n solutions of endomor-
phisms ϕ making equation (2) hold. Thus we obtain the complete graph
QRn(T(5, q)) = (

←→
Kn, n̂). □

Theorem 3.2. If |Hom(T(5, q), Rn)| = 5n, then the full quandle coloring
quiver is the directed graph:

QRn(T(5, q)) = (
←→
Kn, n̂)

←−
∇ d̂

(←→
K4n, d̂

)
,

where d = n
5
.

Proof. Let f, g ∈ Hom(Q(T(5, q)), Rn) be two vertices of the quiver.
Since any endomorphism of the dihedral quandle Rn is given by equa-
tion (2), we need to find the number of endomorphisms ϕ making equa-
tion (2) hold. We know when there are N = 5n colorings, then gcd(5, n) =
5. Now, since there are no edges from a trivial coloring to a non-trivial col-
oring, we consider the following 3 cases

(1) Case 1. It is clear that if f and g are trivial colorings, then there are
n possible solutions to equation (2). Therefore, we have n edges
between trivial colorings
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(2) Case 2. When f is a nontrivial coloring, and g is a trivial coloring,
so g(xi) = k for all xi, equation (2) becomes a(f(xi) − f(xj)) = 0
mod n for all i, j.Thus, we have n

5
edges from nontrivial colorings

to trivial colorings.
(3) Case 3. When f and g are both non-trivial colorings, then f and

g are given by g(x1) = g(x3) = g(x5) ̸= g(x2) = g(x4), and
5(g(x1) − g(x2)) = 0 modulo n. Since the equation (g(x1) −
g(x2)) − a(f(x1) − f(x2)) = 0 in Rn has n

5
solutions for a, we

get the result.
□

Theorem 3.3. If |Hom(T(5, q), Rn)| = 16n, then the full quandle coloring
quiver is the directed graph:

QRn(T(5, q)) = (
←→
Kn, n̂)

←−
∇ d̂

[ ⊔
15

(←→
Kn, d̂

) ]
,

where d = n
2
.

Proof. In order to have N = 16n colorings, we know n must be even and
for any coloring f, 2(f(xi) − f(xj)) = 0 for any i, j. The 16n colorings
consist of n trivial colorings and 15n nontrivial colorings. By Theorem 3.1,
the n trivial colorings correspond to a subgraph (

←→
Kn, n̂) of QRn(T(5, q)).

Now, there are 15n nontrivial colorings, so let f be a nontrivial coloring,
thus we have for some j, f(xi) = f(x1) + mi−1 for 1 < i ≤ 5 where
mi−1 = 0 or n

2
. Since n is even and f is nontrivial, there exists i such

that mi−1 = n
2
. We know for some coloring g ∈ Hom(Q(T(5, q)), Rn),

g(xi) = g(x1)+m ′
i−1 where m ′

i−1 = 0 or n
2

. By satisfying equation (2), we
have ami−1 = m ′

i−1 for 1 < i ≤ 5. If any mi−1 = 0, then m ′
i−1 = 0. Thus,

consider the mi−1 such that mi−1 = n
2

and so we have an
2
= 0 or n/2.

If an
2
= 0 then a is even, i.e. g must be trivial, and we have n/2 edges

between nontrivial colorings to trivial colorings. If an
2
= n

2
then a is odd,

so mi−1 = m ′
i−1 =

n
2
, and we have n/2 edges between nontrivial colorings

to nontrivial colorings. For each choice of m1,m2,m3,m4, there are n

colorings which divides the nontrivial colorings into 15 disjoint
(←→
Kn,

n̂
2

)
.
□

Theorem 3.4. If |Hom(T(5, q), Rn)| = n5, where n is prime, then the full
quandle coloring quiver is the directed graph:

QRn(T(5, q)) = (
←→
Kn, n̂)

←−
∇

[ ⊔
m

(←−−−→
Kn(n−1), 1̂

) ]
,

where m = n5−n
n(n−1)

.

Proof. In this case, y1, ..., y5 are free elements of Rn, so there are n5 col-
orings (vertices), and we need to determine the edges in this quiver. By
Theorem 3.1 we will have the n trivial colorings corresponding to the sub-
graph (

←→
Kn, n̂). Now, there are n5 − n nontrivial colorings. Let f be a
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nontrivial coloring, thus we have

f(xi) = f(x1) +mi−1

where 1 < i ≤ 5 and 0 ≤ mi−1 ≤ n − 1. Since f is nontrivial, there exists
an index j such that mj ̸= 0. Let g be another coloring, thus we have

g(xi) = g(x1) +m ′
i−1

where 1 < i ≤ 5 and 0 ≤ m ′
i−1 ≤ n − 1. To satisfy equation (2), we get

for 1 < i ≤ 5,
ami−1 = m ′

i−1

If any mi−1 = 0, then m ′
i−1 = 0. Thus, we need only consider the i − 1

such that mi−1 ̸= 0. Let ρ(n) be the Euler function of n, which is prime
by hypothesis, and so m

ρ(n)
i−1 = 1. Therefore, we have a unique solution

(an edge) for a if the following equation is satisfied for all i − 1 such that
mi−1 ̸= 0 :

m ′
1m

ρ(n)−1
1 = m ′

2m
ρ(n)−1
2 = m ′

3m
ρ(n)−1
3 = ... = m ′

4m
ρ(n)−1
4 (3)

Fix mj for each j such that mj ̸= 0, so 1 ≤ mj ≤ n− 1. Now, we consider
the following 3 cases

(1) Case 1: if mj = m ′
j for all j:

It is clear that equation (3) is satisfied in this case. Therefore there is
an edge between the n vertices for each choice of m1, ...,m4. This
divides the nontrivial colorings into n5−n

n
(
←→
Kn, 1̂) subgraphs.

(2) Case 2: if mj = m ′
j for some j and mk ̸= m ′

k for some k:
In this case, it is impossible to satisfy equation (3), since 1 =

m ′
jm

ρ(n)−1
j ̸= m ′

km
ρ(n)−1
k . Therefore there are no edges between

colorings in this case.
(3) Case 3: if mj ̸= m ′

j for all j:
We have n − 2 options for m ′

j , which determines the other m ′
k’s to

satisfy equation (3). Therefore there is an edge between each vertex
of the n5−n

n
(
←→
Kn, 1̂) subgraphs from Case 1, to each vertex of n− 2

other n5−n
n

(
←→
Kn, 1̂) subgraphs. This means we now have subgraphs

(
←−−−→
Kn(n−1), 1̂). We thus have n5−n

n(n−1)
(
←−−−→
Kn(n−1), 1̂) subgraphs.

Case 2 tells us that the (
←−−−→
Kn(n−1), 1̂) subgraphs are disjoint. How-

ever, we have an edge from each nontrivial coloring to each trivial
coloring since equation (3) is always satisfied if m ′

i−1 = 0 for all
i− 1. This gives the desired result.

□

We give the following examples of the full quandle coloring quiver for
varying values of N.
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Example 3.5. When N = n, we have QRn(T(5, q)) = (
←→
Kn, n̂) by Theorem

3.1. In Figure 4, we show the graph (
←→
K5 , 5̂) corresponding to the full R5-

quandle coloring quiver of T(5, q), while Figure 5 shows QR20
(T(5, q)) =

(
←→
K20, 2̂0). For visual simplicity, we leave out arrows on the graph edges and

remind the reader that the weight of each directed edge is n.

FIGURE 4. (
←→
K5 , 5̂)

FIGURE 5. (
←→
K20, 2̂0)

Example 3.6. By Theorem 3.2, when N = 5n, we have

QRn(T(5, q)) = (
←→
Kn, n̂)

←−
∇ d̂

(←→
K4n, d̂

)
,

where d = n
5
. The full R5-quandle coloring quiver of T(5, q) is thus,

QR5
(T(5, q)) = (

←→
K5 , 5̂)

←−
∇ 1̂

(←→
K20, 1̂

)
.

Notice that the subgraph components of the quiver QR5
(T(5, q)) can be seen

in Figures 4 and 5. In Figure 6 we draw QR5
(T(5, q)) as a simplified graph

where the blue (left) and red (right) dots represent (
←→
K5 , 5̂) and (

←→
K20, 2̂0),
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respectively, and the directed edge indicates a directed edge with weight 1
from every vertex of (

←→
K20, 2̂0) to every vertex of (

←→
K5 , 5̂).

FIGURE 6. QR5
(T(5, q)) = (

←→
K5 , 5̂)

←−
∇ 1̂

(←→
K20, 1̂

)

Example 3.7. By Theorem 3.3, when N = 16n, we have

QRn(T(5, q)) = (
←→
Kn, n̂)

←−
∇ d̂

[ ⊔
15

(←→
Kn, d̂

) ]
,

where d = n
2
. Thus, if n = 6, we know QR6

(T(5, q)) = (
←→
K6 , 6̂)

←−
∇ 3̂

[ ⊔
15

(←→
K6 , 3̂

) ]
.

In Figure 7 we again use the simplified technique of illustrating this quiver,
where the blue dot (center) represents (

←→
K6 , 6̂) and each of the 15 green dots

represent (
←→
K6 , 3̂). Each of the directed edges from a green dot to a blue dot

indicates that there is a directed edge from each vertex of (
←→
K6 , 3̂) to every

vertex of (
←→
K6 , 6̂).

FIGURE 7. QR6
(T(5, q)) = (

←→
K6 , 6̂)

←−
∇ 3̂

[ ⊔
15

(←→
K6 , 3̂

) ]

Quandle Coloring Quivers of (7, q)-Torus links with Dihedral Quan-
dles We calculate the quiver of T(7, q) when q = 14k, 14k + 1, 14k +
2, . . . , 14k+ 13. Let N be the number of colorings of T(7, q) by Rn.

Using the braid form (σ1σ2 . . . σ6)
q of T(7, q), we calculate N for vary-

ing values of q. Let f be a coloring of T(7, q) by Rn, and f(xi) = yi for
i = 1, ..., 7. Coloring the braid (σ1σ2σ3σ4σ5σ6)

q by the dihedral quandle
and using the fact that f(xi) = yi gives the following equation:

yi = y7 + (−1)q+1yq + (−1)qyi+q (4)

Now, using equation (4) and following a similar process as in the p = 5
case, we summarize the results for p = 7 in the following table below:
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q Number of colorings N when p = 7

When q=p When n = 7k for k ≥ 2, N = 26n

When q=p When gcd(7,n)=1 or n=7, N = n

When q is even N = n · gcd(7, n)

When q is odd, not p N = n

TABLE 4. Number of colorings of T(7, q) by Rn

Theorem 3.8. If |Hom(T(7, q), Rn)| = n, then the full quandle coloring
quiver is the complete directed graph:

QRn(T(7, q)) = (
←→
Kn, n̂).

Proof. If |Hom(T(7, q), Rn)| = n (this corresponds to trivial colorings).
Now assume that f and g are both trivial colorings given respectively by
f(xi) = j and g(xi) = k for all xi ∈ Q(T(7, q)). Since any endomorphism
of the dihedral quandle Rn has the form ϕ(f) = af + b, where a, b ∈
Rn, then there are exactly n solutions of functions ϕ making the equa-
tion ϕ(f) = g hold. Thus we obtain the complete graph QRn(T(7, q)) =

(
←→
Kn, n̂). □

Theorem 3.9. If |Hom(T(7, q), Rn)| = 7n, then the full quandle coloring
quiver is the directed graph:

QRn(T(7, q)) = (
←→
Kn, n̂)

←−
∇ d̂

(←→
K6n, d̂

)
,

where d = n
7
.

Proof. Let f, g ∈ Hom(Q(T(7, q)), Rn) be two vertices of the quiver.
Since any endomorphism of the dihedral quandle Rn is given by ϕ(f) =
af + b (see [2]), we need to find the number of endomorphisms ϕ making
the equation (2) hold. We know when there are N = 7n colorings, then
gcd(7, n) = 7. Now, since there are no edges from a trivial coloring to a
non-trivial coloring, we consider the following 3 cases:

(1) Case 1. It is clear that if f and g are trivial colorings, i.e. constant
maps, then there are n possible solutions to equation (2), and we
have n edges between trivial colorings.

(2) Case 2. When f is a non-trivial coloring, then for some trivial col-
oring g we have g(xi) = k for all xi, and equation (2) becomes
a(f(xi)− f(xj)) = 0 mod n for all i, j. Since 7(f(xi)− f(xj)) = 0
mod n, we have n

7
from nontrivial colorings to trivial colorings.

(3) Case 3. When f and g are both non-trivial colorings, then f and g
are given by 7(f(xi) − f(xj)) = 7(g(xi) − g(xj)) = 0 modulo n.
Since the equation (g(xi)−g(xj))−a(f(xi)− f(xj)) = 0 in Rn has
n
7

solutions for a, we get the result.
□
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Theorem 3.10. If |Hom(T(7, q), Rn)| = 64n, then the full quandle color-
ing quiver is the directed graph:

QRn(T(7, q)) = (
←→
Kn, n̂)

←−
∇ d̂

[ ⊔
63

(←→
Kn, d̂

) ]
,

where d = n
2
.

Proof. In order to have N = 64n colorings, we know n must be even and
for any coloring f, 2(f(xi) − f(xj)) = 0 for any i, j. The 64n colorings
consist of n trivial colorings and 63n nontrivial colorings. By Theorem 3.8,
the n trivial colorings correspond to a subgraph (

←→
Kn, n̂) of QRn(T(7, q)).

Now, there are 63n nontrivial colorings, so let f be a nontrivial coloring,
thus we have, f(xi) = f(x1) + mi−1 for 1 < i ≤ 7 where mi−1 = 0 or
n
2
. Since n is even and f nontrivial, there exists i such that mi−1 =

n
2
. We

know for some coloring g ∈ Hom(Q(T(7, q)), Rn), g(xi) = g(x1) +m ′
i−1

where m ′
i−1 = 0 or n

2
. By satisfying equation (2), we have ami−1 = m ′

i−1

for 1 < i ≤ 7. If any mi−1 = 0, then m ′
i−1 = 0. Thus, consider the mi−1

such that mi−1 = n
2

and so we have an
2
= 0 or n/2. If an

2
= 0 then a

is even, i.e. g must be trivial, and we have n/2 edges between nontrivial
colorings to trivial colorings. If an

2
= n

2
then a is odd (mi−1 = m ′

i−1 =
n
2

and we have n/2 edges between nontrivial colorings to nontrivial colorings.
For each choice of m1,m2, ...,m6, there are n colorings which divides the
nontrivial colorings into 63 disjoint

(←→
Kn,

n̂
2

)
. □

Theorem 3.11. If |Hom(T(7, q), Rn)| = n7, then the full quandle coloring
quiver is the directed graph:

QRn(T(7, q)) = (
←→
Kn, n̂)

←−
∇

[ ⊔
m

(←−−−→
Kn(n−1), 1̂

) ]
,

where m = n7−n
n(n−1)

.

Proof. We know the quiver will have a subgraph (
←→
Kn, n̂) corresponding to

the n trivial colorings. Let f be a nontrivial coloring, thus we have

f(xi) = f(x1) +mi−1

where 1 < i ≤ 7 and 0 ≤ mi−1 ≤ n − 1. Since f is nontrivial, there exists
an index j such that mj ̸= 0. Let g be another coloring, thus we have

g(xi) = g(x1) +m ′
i−1

where 1 < i ≤ 7 and 0 ≤ m ′
i−1 ≤ n − 1. To satisfy equation (2), we get

for 1 < i ≤ 7,
ami−1 = m ′

i−1

If any mi−1 = 0, then m ′
i−1 = 0. Thus, we need only consider the i − 1

such that mi−1 ̸= 0. Let ρ(n) be the Euler function of n, which is prime
by hypothesis, and so m

ρ(n)
i−1 = 1. Therefore, we have a unique solution
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(an edge) for a if the following equation is satisfied for all i − 1 such that
mi−1 ̸= 0:

m ′
1m

ρ(n)−1
1 = m ′

2m
ρ(n)−1
2 = m ′

3m
ρ(n)−1
3 = ... = m ′

6m
ρ(n)−1
6 (5)

Fix mi for each i such that mi ̸= 0, so 1 ≤ mi ≤ n− 1. Now, we consider
the following 3 cases

(1) Case 1: if mi = m ′
i for all i:

It is clear that equation (5) is satisfied in this case. Therefore there is
an edge between the n vertices for each choice of m1, ...,m6. This
divides the nontrivial colorings into n7−n

n
(
←→
Kn, 1̂) subgraphs.

(2) Case 2: if mi = m ′
i for some i and mj ̸= m ′

j for some j:
In this case, it is impossible to satisfy equation (5), since m ′

jm
ρ(n)−1
j ̸=

1 = m ′
im

ρ(n)−1
i . Therefore there are no edges between colorings in

this case.
(3) Case 3: if mi ̸= m ′

i for all i:
We have n − 2 options for m ′

i, which determines the other m ′
j’s to

satisfy equation (5). Therefore there is an edge between each vertex
of the n7−n

n
(
←→
Kn, 1̂) subgraphs from Case 1, to each vertex of n− 2

other n7−n
n

(
←→
Kn, 1̂) subgraphs. This means we now have subgraphs

(
←−−−→
Kn(n−1), 1̂). We thus have n7−n

n(n−1)
(
←−−−→
Kn(n−1), 1̂) subgraphs.

Case 2 tells us that the (
←−−−→
Kn(n−1), 1̂) subgraphs are disjoint. How-

ever, we have an edge from each nontrivial coloring to each trivial
coloring since equation (5) is always satisfied if m ′

i = 0 for all i.
This gives the desired result.

□

4. QUANDLE COLORING QUIVERS OF GENERAL (p, q)-TORUS LINKS
WITH DIHEDRAL QUANDLES

Using the braid form (σ1σ2...σp−1)
q of T(p, q), we calculate the number

of colorings, N, for varying values of q when p is an odd prime. Let f be a
coloring of T(p, q) by Rn and f(xi) = yi for i = 1, ..., p. Coloring the braid
(σ1σ2...σp−1)

q by the dihedral quandle and using the fact that f(xi) = yi

gives the following equation:

yi = yp + (−1)q+1yq + (−1)qyi+q (6)

Thus, we have the following:
• When q = 2pk, N = np.
• When q = 2pk + i where i < 2p is an odd number but i ̸= p,
N = n.

• When q = 2pk+ j where j < 2p is an even number,
– When n = p or gcd(n, p) = 1, N = n;
– When n ≥ 2p and gcd(n, p) = p, N = pn.

• When q = 2pk+ p,
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– When gcd(2, n) = 1, N = n.
– When gcd(2, n) = 2, N = 2p−1n.

Theorem 4.1. If |Hom(T(p, q), Rn)| = n, then the full quandle coloring
quiver is the complete directed graph:

QRn(T(p, q)) = (
←→
Kn, n̂).

Proof. We know if |Hom(T(p, q), Rn)| = n, this corresponds to the n triv-
ial colorings. Now assume that f and g are both trivial colorings given
respectively by f(xi) = j and g(xi) = k for all xi ∈ Q(T(p, q)). Since any
endomorphism of the dihedral quandle Rn is given by ϕ(f) = af + b (see
[2]), we need to find the number of endomorphisms ϕ making the equation

ϕ(f) = af+ b = g (7)

hold, where a, b ∈ Rn. there are exactly n solutions of functions ϕ mak-
ing the equation ϕ(f) = g hold. Thus we obtain the complete graph
QRn(T(p, q)) = (

←→
Kn, n̂). □

Theorem 4.2. If |Hom(T(p, q), Rn)| = pn, then the full quandle coloring
quiver is the directed graph:

QRn(T(p, q)) = (
←→
Kn, n̂)

←−
∇ d̂

(←−−−→
K(p−1)n, d̂

)
,

where d = n
p

.

Proof. Let f, g ∈ Hom(Q(T(p, q)), Rn) be two vertices of the quiver.
Since any endomorphism of the dihedral quandle Rn is given by ϕ(f) =
af + b, we need to find the number of endomorphisms ϕ making the
equation (7) hold. We know when there are N = pn colorings, then
gcd(p, n) = p. Now, since there are no edges from a trivial coloring to
a non-trivial coloring, we consider the following 3 cases:

(1) Case 1. It is clear that if f and g are trivial colorings, i.e. constant
maps, then there are n possible solutions to equation (7), and we
have n edges between trivial colorings.

(2) Case 2. When f is a non-trivial coloring, then for some trivial col-
oring g we have g(xi) = k for all xi, and equation (7) becomes
a(f(xi)− f(xj)) = 0 mod n for all i, j. Since p(f(xi)− f(xj)) = 0
mod n, we have n

p
edges from nontrivial colorings to trivial color-

ings.
(3) Case 3. When f and g are both non-trivial colorings, then f and g

are given by p(f(xi) − f(xj)) = p(g(xi) − g(xj)) = 0 modulo n.
Since the equation (g(xi)−g(xj))−a(f(xi)− f(xj)) = 0 in Rn has
n
p

solutions for a, we get the result.

□
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Theorem 4.3. If n is even and |Hom(T(p, q), Rn)| = 2p−1n, then the full
quandle coloring quiver is the directed graph:

QRn(T(p, q)) = (
←→
Kn, n̂)

←−
∇ d̂

[ ⊔
2p−1−1

(←→
Kn, d̂

) ]
,

where d = n
2
.

Proof. When determining the number of colorings, N, we get the equation
2(f(xi) − f(xj)) = 0 for any coloring f, and any i, j. Since f(xi) takes n
possible values, and for j ̸= i, f(xj) takes 2 values, thus giving N = n·2p−1.
This includes n trivial colorings and (2p−1 − 1)n nontrivial colorings. By
Theorem 4.1, the n trivial colorings correspond to a subgraph (

←→
Kn, n̂) of

QRn(T(p, q)). Now, there are (2p−1 − 1)n nontrivial colorings, so let f be
a nontrivial coloring, thus we have, f(xi) = f(x1) + mi−1 for 1 < i ≤ p
where mi−1 = 0 or n

2
. Since n is even and f nontrivial, there exists i such

that mi−1 = n
2
. We know for some coloring g of T(p, q) by Rn, we have

g(xi) = g(x1) + m ′
i−1 where m ′

i−1 = 0 or n
2

. By satisfying equation (7),
we have ami−1 = m ′

i−1 for 1 < i ≤ p. If any mi−1 = 0, then m ′
i−1 = 0.

Thus, consider the mi−1 such that mi−1 = n
2

and so we have an
2
= 0 or

n/2. If an
2
= 0 then a is even, i.e. g must be trivial, and we have n/2

edges between nontrivial colorings to trivial colorings. If an
2
= n

2
then

a is odd (mi−1 = m ′
i−1 = n

2
and we have n/2 edges between nontrivial

colorings to nontrivial colorings. For each choice of m1,m2, ...,mp−1, there
are n colorings which divides the nontrivial colorings into 2p−1 − 1 disjoint(←→
Kn,

n̂
2

)
. □

Theorem 4.4. If n is prime and |Hom(T(p, q), Rn)| = np, then the full
quandle coloring quiver is the directed graph:

QRn(T(p, q)) = (
←→
Kn, n̂)

←−
∇

[ ⊔
m

(←−−−→
Kn(n−1), 1̂

) ]
,

where m = np−n
n(n−1)

.

Proof. We know the quiver will have a subgraph (
←→
Kn, n̂) corresponding to

the n trivial colorings. Let f be a nontrivial coloring, so

f(xi) = f(x1) +mi−1

for some 0 ≤ m1,m2, ...,mp−1 ≤ n − 1. Now, let g ̸= f be another
coloring, so

g(xi) = g(x1) +m ′
i−1

for some 1 ≤ m ′
1,m

′
2, ...,m

′
p−1 ≤ n. To satisfy equation (7) , we get

ami−1 = m ′
i−1.

If any mi = 0, then m ′
i = 0. Thus, we need only consider the i such that

mi ̸= 0. Let ρ(n) be the Euler function of n, which is prime by hypothesis,
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and so m
ρ(n)
i−1 = 1. Therefore, we have a unique solution (an edge) if the

following equation is satisfied for all i such that mi ̸= 0:

m ′
1m

ρ(n)−1
1 = m ′

2m
ρ(n)−1
2 = m ′

3m
ρ(n)−1
3 = ... = m ′

p−1m
ρ(n)−1
p−1 (8)

Fix mi for each i such that mi ̸= 0, so 1 ≤ mi ≤ n− 1. Now, we consider
the following 3 cases

(1) Case 1: if mi = m ′
i for all i:

It is clear that equation (8) is satisfied in this case. Therefore there
is an edge between the n vertices for each choice of m1, ...,mp−1.
This divides the nontrivial colorings into np−n

n
(
←→
Kn, 1̂) subgraphs.

(2) Case 2: if mi = m ′
i for some i and mj ̸= m ′

j for some j:
In this case, it is impossible to satisfy equation (8), since m ′

jm
ρ(n)−1
j ̸=

1 = m ′
im

ρ(n)−1
i . Therefore there are no edges between colorings in

this case.
(3) Case 3: if mi ̸= m ′

i for all i:
We have n − 2 options for m ′

i, which determines the other m ′
j’s to

satisfy equation (8). Therefore there is an edge between each vertice
of the np−n

n
(
←→
Kn, 1̂) subgraphs from Case 1, to each vertice of n− 2

other np−n
n

(
←→
Kn, 1̂) subgraphs. This means we now have subgraphs

(
←−−−→
Kn(n−1), 1̂). We thus have np−n

n(n−1)
(
←−−−→
Kn(n−1), 1̂) subgraphs.

Case 2 tells us that the (
←−−−→
Kn(n−1), 1̂) subgraphs are disjoint. However, we

have an edge from each nontrivial coloring to each trivial coloring since
equation (8) is always satisfied if m ′

i = 0 for all i. This gives the desired
result.

□
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