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We study the integrability to second order of the infinitesimal Einstein defor-
mations of the symmetric metric g on the complex Grassmannian of k-planes
inside Cn. By showing the nonvanishing of Koiso’s obstruction polynomial,
we characterize the infinitesimal deformations that are integrable to second
order as an explicit variety inside su(n). In particular we show that g is
isolated in the moduli space of Einstein metrics if n is odd.
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1 Introduction

Let g be an Einstein metric on a closed manifold Mm, that is Ricg = Eg, where

E = scalg
m

is the Einstein constant. An important problem is to decide whether g is
rigid, i.e. whether the equivalence class [g] under homothetic scaling and pullback by
diffeomorphisms is isolated in the moduli space of Einstein structures. By a deep result
of Koiso [8, Thm. 3.2], g is not rigid if and only if there exists an analytic curve (gt)
of Einstein metrics through g = g0 that are not all equivalent. In fact, this curve
may be taken to consist of unit volume metrics and to be transversal to orbits of the
diffeomorphism group. Thus one may assume the tangent vector h = ġ0 to be a so-called
tt-tensor, i.e. h is traceless (tr h = 0) and transverse (divergence-free, δh = 0). The
symmetric 2-tensor h = ġ0 then satisfies the linearized Einstein equation ∆Lh = 2Eh,
where ∆L is the Lichnerowicz Laplacian. The solutions to this equation which are in
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addition tt-tensors are called infinitesimal Einstein deformations. The finite-dimensional
space of infinitesimal Einstein deformations of g is denoted by ε(g). Canonically, the
isometric group of (M, g) acts on ε(g). For a comprehensive exposition, we refer the
reader to the monograph of Besse [2, §12].
It follows immediately from Koiso’s results that g is rigid if ε(g) is trivial. However

the converse is in general false, as illustrated by the symmetric metric on CP
2k × CP

1

[7]. The question is thus: given h ∈ ε(g), does there exists a curve of Einstein metrics
(gt) with h = ġ0? If this is the case, the infinitesimal deformation h is called integrable.
The main tool for studying this question is the Einstein operator

E(g) := Ricg −

∫

M
scalgvolg

m
g,

where the volume of g is normalized to one. If (gt) is an analytic curve of Einstein metrics
of volume one, then E(gt) and all its derivatives have to vanish at t = 0. This gives
a sequence of obstructions for an arbitrary curve through g to be a curve of Einstein
metrics. An element h ∈ ε(g) is called integrable to order k there exists symmetric
2-tensors h2, . . . , hk such that for the curve (gt) defined by

gt = g + th+

k
∑

j=2

tj

j!
hj ,

the first k derivatives of E(gt) vanish at t = 0, i.e.

dj

dtj

∣

∣

∣

t=0
E(gt) = 0 for j = 1, . . . , k.

An element h ∈ ε(g) is called formally integrable if it is integrable to all orders, that
is, if there is a formal power series solution of E(gt) = 0. Koiso showed that this is in
fact equivalent to integrability, i.e. the existence of an actual curve of Einstein metrics
through g with first order jet h. In particular, if h is not integrable to order k for some
k ∈ N, then there does not exist a nontrivial curve of Einstein metrics through g and
thus the metric g is rigid.
By definition, any h ∈ ε(g) is integrable to first order, i.e. the curve gt = g+ th solves

the Einstein equation to first order in the sense that the first derivative of E(gt) vanishes
at t = 0. The next step is to study the question whether a given h ∈ ε(g) is integrable
to second order. For this, one has to find a symmetric tensor h2 such that the curve
gt = g + th + t2

2
h2 satisfies

0 =
d2

dt2

∣

∣

∣

t=0
E(gt) = E′′

g(h, h) + E′
g(h2), (1)

that is, E′′
g(h, h) ∈ imE′

g. Koiso showed that this is equivalent to E′′
g(h, h) being L2-

orthogonal to the space ε(g) itself [7, Prop. 3.2]. Hence h ∈ ε(g) is integrable to second
order if and only if Ψ(h, h, k) = 0 for all k ∈ ε(g), where the trilinear form Ψ is defined
by

Ψ(h1, h2, h3) :=
(

E′′
g(h1, h2), h3

)

L2 for h1, h2, h3 ∈ ε(g).
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Thus a necessary condition for integrability to second order for an h ∈ ε(g) is the
vanishing of the Koiso obstruction Ψ(h) = Ψ(h, h, h). Koiso gives an explicit formula for
Ψ(h), which is a complicated combination of second order derivatives of h [7, Lem. 4.3],
which is in general rather difficult to compute.
In [10, Thm. 1.1] an explicit formula for the full obstruction form Ψ(h1, h2, h3) is given

in terms of the Frölicher-Nijenhuis bracket in a coordinate-free way. For the special case
h1 = h2 = h3 = h it recovers the Koiso obstruction Ψ(h). In particular, it turns out that
Ψ is symmetric in all 3 arguments. However, it can be shown a priori that on ε(g), the
form Ψ coincides with the third variation of the Einstein–Hilbert functional at g and is
thus completely symmetric. Hence the new formula for Ψ(h1, h2, h3) can also be checked
by reformulating the Koiso obstruction and then polarizing.
Let (M, g, J) be a compact Kähler–Einstein manifold with Kähler form ω. In this

case, a further simplification of the expression for Ψ is possible. Identifying symmetric
2-tensors with symmetric endomorphisms of TM via the metric, one has a splitting of
Sym2 T ∗M into endomorphisms commuting resp. anti-commuting with J , and a corre-
sponding splitting

ε(g) = ε+(g)⊕ ε−(g).

Koiso showed in [8] that

ε+(g) = {F ◦ J |F ∈ Ω1,1
0 (M) ∩ ker(∆− 2E) ∩ ker d∗},

where Ω1,1
0 (M) is the space of primitive (1, 1)-forms and ∆ = dd∗ + d∗d is the Hodge

Laplacian. Now [10, Thm. 1.4] gives the following criterion:1

1.1 Proposition. Assume that (M, g, J) is a compact Kähler–Einstein manifold with
ε−(g) = 0. Then h = F ◦ J ∈ ε(g) is integrable to second order if and only if

(

ω ∧ dG, F ∧ dF
)

L2 +
(

ω ∧ dF, F ∧ dG+G ∧ dF
)

L2 = 8E
(

F 2 ◦ J,G
)

L2

holds for all elements G ◦ J ∈ ε+(g). In particular, the Koiso obstruction for h = F ◦ J
can be written as

Ψ(h) = 6
(

ω ∧ dF, F ∧ dF
)

L2 − 8E
(

F ∧ F, F ∧ ω
)

L2. (2)

In [6] Koiso already studied the case of compact symmetric spaces M = G/K and
arrived at the following list of infinitesimally deformable spaces:

1.2 Proposition. Only the following irreducible symmetric spaces of compact type admit
infinitesimal Einstein deformations:

(i) M = SU(n) with n ≥ 3,

(ii) M = SU(n)/ SO(n) with n ≥ 3,

(iii) M = SU(2n)/ Sp(n) with n ≥ 3,

1The original version contained a numerical error: the factor 8E originally read 17E

2
.
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(iv) M = SU(p+ q)/S(U(p)×U(q)) with p, q ≥ 2,

(v) M = E6/F4.

In all of these cases it turned out that ε(g) ∼= g as a G-module, where g ∼= iso(M, g)
is the Lie algebra of G, which is also the isometry group of (M, g). Moreover, in these
cases the Koiso obstruction can be viewed as an invariant cubic polynomial on g, i.e. as
an element of (Sym3 g∗)G.
Koiso already showed that all infinitesimal Einstein deformations on M = E6/F4 are

unobstructed to second order simply because in this case (Sym3 g∗)G = 0. The first
substantial progress on the rigidity problem for compact symmetric spaces was recently
obtained in [1]. The authors show that the bi-invariant metric on SU(n) is rigid for n
odd, thereby exhibiting the first example of a rigid Einstein metric on an irreducible
manifold. In addition, for n even they describe the variety of infinitesimal Einstein
deformations integrable to second order.
In this article we will study the complex Grassmannians M = SU(p + q)/S(U(p) ×

U(q)), with p, q ≥ 2. These are the only Hermitian symmetric spaces in the list above.
Moreover, all other spaces in the list admit an invariant symmetric 3-tensor [4, Prop. 2.1],
which can be used to give an explicit parametrization of the space ε(g) by Killing vector
fields through a bundle morphism [1, Lem. 2.8]. For the Grassmannians we need another
way to make the isomorphism g ∼= ε(g) explicit. Extending and generalizing the approach
of [10], we construct it as a first-order differential operator instead of a bundle map.
The construction in [10] relies on the quaternionic Kähler structure of the two-plane
Grassmannians, however our approach shows that this is not a crucial ingredient.
We note that the complex Grassmannians satisfy the assumptions of Proposition 1.1

since the space ε−(g) vanishes, as will become evident later. This enables us to make
use of the simpler form (2) for the obstruction polynomial.
In [10, Thm. 1.5] it is shown that the symmetric metric on the 2-plane Grassmannian

SU(n + 2)/S(U(2) × U(n)) is rigid for n odd. More generally the set of infinitesimal
Einstein deformations integrable to second order is explicitly characterized as an alge-
braic subset of g = su(n + 2). We prove a similar statement for all Grassmannians,
simplifying the argument, and recovering the results of [10] in the special case of the
2-plane Grassmannian. Our main result is the following.

1.3 Theorem. Let M = SU(n)/S(U(n+) × U(n−)), n = n+ + n− with n+, n− ≥ 2,
the complex Grassmannian with its Hermitian symmetric structure (M, g, J). Then the
following holds:

(i) The set of infinitesimal Einstein deformations in ε(g) which are integrable to second
order is isomorphic to the variety

Q =

{

X ∈ su(n)

∣

∣

∣

∣

X2 =
tr(X2)

n
In

}

.

(ii) If n is odd, then all infinitesimal Einstein deformations are obstructed to second
order. Thus the metric g is rigid.
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The structure of the article is as follows. §2 recalls some basic facts about the structure
of the complex Grassmannians as a homogeneous space and introduces some notation.
In §3 we shall discuss the required fibrewise machinery, that is, considerations of rep-
resentation theory and curvature, and some auxiliary invariant objects are introduced.
After a brief discussion of Killing fields and potentials in §4 together with some dif-
ferential identities, we explicity parametrize the infinitesimal Einstein deformations by
Killing vector fields in §5.
Before we can take on the Koiso obstruction polynomial Ψ, we collect some of the

properties of and identities between invariant cubic forms on su(n) resp. on Killing
fields in §6. Finally, in §7, we express Ψ in terms of previously defined polynomials and
prove Theorem 1.3.
Returning to the list in Proposition 1.2, we note that the only remaining spaces where

one can expect to show rigidity are SU(n)/ SO(n) with n ≥ 3 odd. Indeed, forG = SU(n)
with n even, Propositions 6.1 and 6.4 show that there always exist infinitesimal Einstein
deformations that are integrable to second order, regardless of whether the obstruction
polynomial Ψ vanishes identically or not. Therefore, in order to investigate the rigidity
of the remaining symmetric spaces, one would have to take into account at least the
third order obstruction. That is, given an infinitesimal deformation h ∈ ε(g) together
with a symmetric tensor h2 satisfying the second order condition 1, by differentiating
E(gt) thrice and applying Koiso’s orthogonality argument [7, Prop. 3.2], one needs to
check whether

E′′′
g (h, h, h) + 3E′′

g(h, h2) ⊥ ε(g).

A closed formula for E′′′
g , which would involve the third variation of the Ricci tensor, is

however currently lacking.

2 The structure of the complex Grassmannians

Let n+, n− ≥ 2 and n = n+ + n−. We consider in this article the complex Grassman-
nians

M = G/K =
SU(n)

S(U(n+)×U(n−))
,

a symmetric space of real dimension 2n+n−. Denoting with g and k the Lie algebras
of G and K, respectively, we have a reductive decomposition g = k ⊕ m that satisfies
the Cartan relation [m,m] ⊂ k. The isotropy representation m, canonically identified
with the tangent space ToM at the identity coset, is as a complex representation of K
isomorphic to Cn+ ⊗C (Cn−)∗, where Ck denotes the definining representation of U(k).
Equipped with the standard metric g induced by the negative of the Killing form

(see §3.1) and the canonical complex structure J corresponding to multiplication with
i on m, the manifold (M, g, J) is an irreducible Hermitian symmetric space, and in
particular Kähler–Einstein of positive scalar curvature.
Since (M, g) is a symmetric space, the Lie algebra of Killing vector fields iso(M, g)

is isomorphic to g. The isomorphism is explicitly given by taking fundamental vector
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fields, that is

g ∋ X 7−→ X̃, X̃p :=
d

dt

∣

∣

∣

t=0
exp(tX)p.

We frequently and tacitly identify 2-forms α ∈ Λ2T ∗
pM via the metric with skew-

symmetric endomorphisms α ∈ so(TpM), and we do not notiationally distinguish be-
tween those two. Concretely, the identification is given by

g(αX, Y ) := α(X, Y ), X, Y ∈ TpM.

In particular, J is identified with the Kähler form ω.
Let Λ1,1T ∗M be the (real) subbundle of (1, 1)-forms, i.e. 2-forms commuting with J ,

and let
Λ1,1

0 T ∗M = {α ∈ Λ1,1T ∗M | tr(αJ) = 0}

be the subbundle of primitive (1, 1)-forms. We denote with α0 the projection to Λ1,1
0 T ∗M

of any α ∈ Λ1,1T ∗M . Composition with the endomorphism J yields a parallel bundle
isomorphism

Λ1,1T ∗M
∼

−→ Sym+ T ∗M : α 7−→ αJ

with the bundle of symmetric 2-tensors commuting with J .
The bundle of (1, 1)-forms is a homogeneous vector bundle with fiber Λ1,1m ∼= u(m).

Via the infinitesimal isotropy representation, the Lie algebra k ∼= R ⊕ su(n+) ⊕ su(n−)
embeds into Λ1,1m, thus defining a parallel splitting

Λ1,1
0 T ∗M = E+ ⊕ E− ⊕ F

where E± have fiber su(n±) and F := (E+ ⊕ E−)
⊥. For α ∈ Λ1,1T ∗M , we denote with

α± the projections to the subbundles E±, respectively.

3 Fibrewise identities

In order to perform calculations on the complex Grassmannians, we need a bit of
preparation. In particular, we will employ Casimir operators on representations ofK, the
eigenvalues of the curvature operator on M , commutator and anticommutator relations
for endomorphisms of TM , and some auxiliary objects that shall be explained later.

3.1 Casimir operators

We recall a few key facts about Casimir operators and record a few relations between
different normalizations.
Let g be a compact real Lie algebra equipped with an invariant inner product Q.

For any representation ρ∗ : g → gl(V ), its Casimir operator (with respect to Q) is an
equivariant endomorphism Casg,QV ∈ Endg V defined as

Casg,QV := −
∑

i

ρ∗(Xi)
2,

6



where (Xi) is any Q-orthonormal basis of g.
If Vγ is an irreducible representation of g of highest weight γ ∈ t∗ (where t ⊂ g is a

maximal toral subalgebra), then the Casimir operator acts on Vγ as multiplication with
a constant Casg,Qγ given by Freudenthal’s formula,

Casg,Qγ = Q∗(γ, γ + 2δg), (3)

where Q∗ is the dual of the restriction of Q to t, and δg is the half-sum of positive roots
of g.
The Killing form of a Lie algebra g is the invariant symmetric bilinear form Bg defined

by
Bg(X, Y ) := tr(ad(X) ◦ ad(Y )), X, Y ∈ g.

It is known to be nondegenerate if and only if g is semisimple, and negative-semidefinite
if and only if g is compact. We assume from now on that g is compact and semisimple.
Thus −Bg is an invariant inner product on g called the standard inner product.
Clearly, Casimir operators behave under scaling of the inner product as

Casg,cQV = c−1Casg,QV , c > 0. (4)

The standard inner product is distinguished by the following normalization property.

3.1 Proposition. On the adjoint representation of g, Casg,−Bg

g = Id.

This fact may be utilized to determine the ratio between two invariant inner products
that differ by a factor.
Let G be a compact semisimple Lie group with Lie algebra g, K a closed subgroup

with Lie algebra k, and m an Ad(G)-invariant complement of k in g. Then m is canon-
ically identified with the tangent space at the identity coset of the homogeneous space
M = G/K (and thus called the isotropy representation), and after restriction to m the
standard inner product −Bg induces a G-invariant Riemannian metric on M called the
standard metric. The Einstein equation for this metric reduces to a simple condition on
the Casimir operator of the isotropy representation [2, Prop. 7.89, 7.92].

3.2 Proposition. The standard metric on M = G/K is Einstein (with Einstein con-
stant E) if and only if Cask,−Bg

m = λId for some constant λ ∈ R. If this is the case,
then

λ = 2E −
1

2
.

This formula is usually employed to quickly find the Einstein constant of a standard
homogeneous Einstein manifold. However, if G/K is a symmetric space, then this is not
needed, as the following proposition shows [2, Prop. 7.93].

3.3 Proposition. The standard metric on a symmetric space of compact type is Einstein
with E = 1

2
.
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At times it becomes necessary to work with different invariant inner products on the
same Lie algebra. For example, if h ⊂ g is a simple subalgebra, then necessarily Bh is
a constant multiple of the restriction Bg

∣

∣

h
since both are h-invariant. Another example

is the situation where ad : k → so(m) is faithful and h ⊂ k is any subalgebra. Then the
standard inner product −Bg

∣

∣

m
induces on so(m) ∼= Λ2m an inner product 〈·, ·〉Λ2 in the

usual way, i.e.

〈α, β〉Λ2 =
∑

i<j

α(ei, ej)β(ei, ej) = −
1

2
tr(α ◦ β), (5)

where (ei) is a −Bg

∣

∣

m
-orthonormal basis of m. Pulling this back along ad

∣

∣

h
gives an

invariant inner product on h that we shall also denote by 〈·, ·〉Λ2.
For our purposes and in the context of the complex Grassmannians, both of these

issues shall now be addressed.

3.4 Proposition. On the defining representation Ck of su(k), Cas
su(k),−Bsu(k)

Ck = k2−1
2k2

Id.

Proof. We note first that the highest weight of the defining representation is the first
fundamental weight ω1 in the convention of Bourbaki, while the highest weight of the
adjoint representation is ω1 + ωk−1. The Casimir eigenvalues of the fundamental weight
representations are calculated for example in [14] (see the table on p. 17). Taking into
account the normalization in Prop. 3.1, we find the desired value.

3.5 Lemma. Under the standard inclusion su(k) ⊂ su(n), 2 ≤ k ≤ n− 1, one has

Bsu(n)

∣

∣

su(k)
=

n

k
Bsu(k).

Proof. Let c > 0 such that Bsu(n)

∣

∣

su(k)
= cBsu(k). We consider the Casimir operator

Cas
su(k),−Bsu(n)

su(n) and take a trace. On one hand,

tr Cas
su(k),−Bsu(n)

su(n) = −
∑

i

tr(ad(Xi)
2) = −

∑

i

Bsu(n)(Xi, Xi) = dim su(k) = k2 − 1,

where (Xi) is a −Bsu(n)-orthonormal basis of su(k). On the other hand, we note that
the restriction of the adjoint representation of su(n) to the subalgebra su(k) splits as
su(k)⊕ (n− k)Ck plus an (n− k)2-dimensional trivial summand. Thus

trCas
su(k),−Bsu(n)

su(n) = c−1 · tr Cas
su(k),−Bsu(k)

su(k) + (n− k) trCas
su(k),−Bsu(k)

Ck

= c−1 ·

(

(k2 − 1) · 1 + 2k(n− k) ·
k2 − 1

2k2

)

= c−1 · (k2 − 1) ·
n

k

by (4), Prop. 3.1 and Prop. 3.4. It follows that c = n
k
.

3.6 Lemma. Under the standard inclusion of h± := su(n±) into k := s(u(n+)⊕ u(n−)),

〈·, ·〉Λ2

∣

∣

h±
= −

n∓

2n±

Bh±.
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Proof. Let (Xi) be an orthonormal basis of h± with respect to 〈·, ·〉Λ2, and (ej) a −Bg-

orthonormal basis of m. We take a trace of Cas
h±,〈·,·〉Λ2
m as follows. Using the definition

of the inner product on 2-forms (5), we may calculate

trCas
h±,〈·,·〉Λ2
m =

∑

i,j

Bg(ad(Xi)
2ej , ej) = −

∑

i,j

Bg(ad(Xi)ej, ad(Xi)ej)

= 2
∑

i

〈Xi, Xi〉Λ2 = 2dim h± = 2(n2
± − 1).

Let c > 0 such that 〈·, ·〉Λ2

∣

∣

h±
= −cBh± . Recall that m

∼= Cn+ ⊗C (Cn−)∗ as a represen-

tation of k. Restricted to h± it splits as m ∼= n∓C
n± (or its dual, which has the same

Casimir eigenvalue). Hence, using (4) and Prop. 3.4, we find

tr Cas
h±,〈·,·〉Λ2
m = c−1 · tr Cas

h±,−Bh±
m = c−1 · 2n+n− ·

n2
± − 1

2n2
±

= c−1 · (n2
± − 1) ·

n∓

n±
.

Thus 2c = n∓

n±
as claimed.

3.7 Corollary. For the isotropy and adjoint representations of su(n±),

Cas
su(n±),〈·,·〉Λ2
m =

n2
± − 1

n+n−
Id, Cas

su(n±),〈·,·〉Λ2

su(n±) =
2n±

n∓
Id.

3.2 The curvature operator

On a Riemannian manifold (M, g) with Levi-Civita connection ∇, let R be the Rie-
mann curvature tensor defined by

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, X, Y, Z ∈ X(M).

Moreoever we denote by Ric(X, Y ) = tr(Z 7→ R(Z,X)Y ) the Ricci curvature and let

g(Ric(X), Y ) = Ric(X, Y )

define the Ricci endomorphism Ric : TpM → TpM . The curvature operator (of the first
kind) is the self-adjoint linear operatorR : Λ2TpM → Λ2TpM derived from the curvature
via

〈R(X ∧ Y ), Z ∧W 〉 = g(R(X, Y )Z,W ),

where the inner product on Λ2TpM is the usual one induced by g, cf. (5). We note that
in our convention, positive curvature operator implies negative sectional curvature.
We will need some of the eigenvalues of the curvature operator on the complex Grass-

mannians. Although they are available in the literature, we take the liberty to rederive
them using the so-called standard/Weitzenböck curvature endomorphism K(R) which is
given on any vector bundle VM = O(TM) ×ρ V associated to the orthonormal frame
bundle O(TM) as

K(R) :=
∑

a

ρ∗(ωa)ρ∗(Rωa),

9



where (ωa) is an orthonormal basis of so(TpM) ∼= Λ2TpM , and ρ∗ is the differential of
the representation ρ : O(n) → GL(V ).
We shall make use of the following known facts.

3.8 Proposition. (i) On TM , we have K(R) = Ric.

(ii) On Λ2TM , we have K(R) = Ric∗ + 2R, where Ric∗ is the extension of Ric as a
derivation, i.e.

Ric∗(X ∧ Y ) = Ric(X) ∧ Y +X ∧ Ric(Y ).

3.9 Proposition. If (M = G/K, g) is a Riemannian symmetric space with metric g
induced by the restriction to m of an invariant inner product Q on g, then

K(R) = Cask,QV

on any homogeneous vector bundle VM = G×K V .

The eigenvalues of R may now be calculated with ease.

3.10 Lemma. The eigenvalues of the curvature operator on the complex Grassmannians
with the standard metric are given by

Rω = −
1

2
ω, R

∣

∣

E±
= −

n∓

2n
Id, R

∣

∣

(Rω⊕E+⊕E−)⊥
= 0.

Proof. Recall that (M, g) is Einstein with Ric(X) = 1
2
X by Prop. 3.3. Thus we have

Ric∗(X ∧ Y ) = X ∧ Y , and Prop. 3.8 yields

K(R) = Id + 2R

on Λ2TM . Since E± are homogeneous vector bundles with fiber su(n±), we may combine
Prop. 3.9 with Prop. 3.1 and Prop. 3.5 to obtain

R
∣

∣

E±
=

1

2
Cas

k,−Bg

su(n±) −
1

2
Id =

n±

2n
Cas

su(n±),−Bsu(n±)

su(n±) −
1

2
Id =

(

n±

2n
−

1

2

)

Id = −
n∓

2n
Id.

On the trivial bundle Rω, the Casimir term vanishes, yielding Rω = −1
2
ω. For the sake

of completeness we note that Rω ⊕ E+ ⊕ E− is fibrewise isomorphic to the Riemannian
holonomy algebra k = s(u(n+)⊕ u(n−)) of the symmetric space (M, g), so the curvature
operator vanishes on its orthogonal complement.

3.11 Remark. Note that the eigenvalues of R have opposite sign as in [10] due to
different sign conventions for the curvature.

10



3.3 Commutators and anticommutators

The natural action of an endomorphism A ∈ End TpM on tensors is as a derivation.
On differential forms in particular it may be written as

A∗α =
∑

i

Aei ∧ (ei y α), α ∈ Λ∗TpM,

where (ei) is an orthonormal basis of TpM . If α is a 2-form, identified via the metric
with a skew-symmetric endomorphism, then A∗α may be expressed using a commutator
and an anticommutator as

A∗α = [AΛ2 , α] + {ASym2 , α},

where AΛ2 and ASym2 are the skew-symmetric and symmetric part of A, respectively,
according to the decomposition EndTM ∼= Λ2TM ⊕ Sym2 TM . This occurrence of
both commutators and anticommutators in the natural action warrants a discussion
about their behavior with respect to the relevant subbundles of Λ2TM on the complex
Grassmannians.
Recall that the isotropy representation m of the complex Grassmannian M = G/K is,

as a complex representation, equivalent to Cn+ ⊗C (Cn−)∗. Under this equivalence, the
almost complex structure J translates to multiplication with i. We may thus identify
the (assocative) algebra End+m of endomorphisms commuting with J with the algebra

gl(n+n−,C) = gl(n+,C)⊗ gl(n−,C)

acting on m ∼= Cn+ ⊗C (Cn−)∗ in the natural way, namely

(A⊗ B)(v ⊗ λ) = (Av)⊗ (λB∗)

for A ∈ gl(n+,C), B ∈ gl(n−,C), v ∈ Cn+ , λ ∈ (Cn−)∗. The subalgebras gl(n±,C),
which embed using the Kronecker product into gl(n+n−,C) as

gl(n+,C) →֒ gl(n+n−,C) : A 7→ A⊗ In−,

gl(n−,C) →֒ gl(n+n−,C) : B 7→ In+ ⊗B,

clearly commute with each other. This seemingly trivial observation has important
consequences for commutation and anticommutation relations between elements of the
vector bundles E± and F.

3.12 Lemma. [E+,E−] = 0.

Proof. Since E± are subbundles of the algebra bundle End+ TM whose fibers correspond
to the subspaces su(n±) ⊂ gl(n±,C) ⊂ gl(n+n−,C) ∼= End+ m, this follows directly from
the observation above.

3.13 Lemma. Under the above identification Λ1,1m ∼= {iAB |A ∈ u(n+), B ∈ u(n−)}.
In particular

F = span{αβJ |α ∈ E+, β ∈ E−}.

11



Proof. Identifying m ∼= Cn+ ⊗C (Cn−)∗, the space Λ1,1m corresponds precisely to the
subspace u(n+n−) ⊂ gl(n+n−,C). Following the above discussion, we may write

gl(n+n−,C) = span{AB |A ∈ gl(n+,C), B ∈ gl(n−,C)}.

Recall that the anticommutator of two skew-Hermitian matrices is Hermitian. Take now
A ∈ u(n+) and B ∈ u(n−). Since they commute we have

iAB =
i

2
{A,B} ∈ i{u(n+n−), u(n+n−)} ⊂ u(n+n−) ∼= Λ1,1m.

By counting dimensions, we see that these elements actually span Λ1,1m. Further split-
ting u(n±) = su(n±)⊕ iR we obtain

u(n+n−) = iR⊕ su(n+)⊕ su(n−)⊕ span{iAB |A ∈ su(n+), B ∈ su(n−)}.

Thus F, being the invariant complement of Rω ⊕ E+ ⊕ E− in Λ1,1TM , is associated to
the last summand.

3.14 Corollary. If α, hJ ∈ E±, then {h, α} ∈ E± ⊕ Rω.

Proof. Indeed, {u(n±), iu(n±)} ⊂ u(n±), which is the fiber of E± ⊕ Rω.

3.15 Corollary. If α ∈ E±, hJ ∈ E∓, then {h, α} ∈ F.

Proof. Since [E+,E−] = 0 by Lemma 3.12 and both α and h commute with J , we have
{h, α} = 2αh which lies in F by Lemma 3.13.

3.4 Some auxiliary identities

In order to parametrize the infinitesimal Einstein deformations and work out the
second order obstruction to integrability, we introduce a few auxiliary objects and record
some additional useful, albeit technical identities.

3.16 Definition. Let (ω±
a ) always denote a local 〈·, ·〉Λ2-orthonormal frame of E±.

(i) We define the 4-forms Ω± :=
∑

a ω
±
a ∧ ω±

a and Ω :=
n2
−−1

2n
Ω+ −

n2
+−1

2n
Ω−.

(ii) For any A ∈ EndTM , we define C±(A) :=
∑

a ω
±
a Aω

±
a . Here we again identify

2-forms with skew-symmetric endomorphisms.

3.17 Remark. It is not hard to see that the above definitions are independent of the
choice of basis. The 4-forms Ω± serve the same purpose as the Kraines form in the
quaternionic Kähler case n+ = 2 (or n− = 2) [10]. Since the bundles E± are parallel and
the ω±

a are skew-symmetric, it follows that also the Ω± and thus Ω are parallel.

12



3.18 Lemma. The operators C± can be expressed as

C±(A) =
1

2
Cas

su(n±),〈·,·〉Λ2

gl(m) (A)−
n2
± − 1

n+n−

A.

In particular C± is su(n±)- and thus k-equivariant, i.e.

C±([α,A]) = [α,C±(A)] ∀α ∈ Rω ⊕ E+ ⊕ E−,

and we have C±(A) =
1

n+n−
A if A ∈ E± ⊕ F and C±(A) = −

n2
±−1

n+n−
A if A ∈ Rω ⊕ E∓.

Proof. As su(n±) ⊂ so(m) acts on gl(m) by the commutator, we calculate

Cas
su(n±),〈·,·〉Λ2

gl(m) (A) = −
∑

a

[ω±
a , [ω

±
a , A]] =

∑

a

(2ω±
a Aω

±
a − A(ω±

a )
2 − (ω±

a )
2A)

= 2C±(A) + {A,Cas
su(n±),〈·,·〉Λ2
m }.

Corollary 3.7 now implies the first assertion. The equivariance under k follows from the
fact that Cassu(n±) commutes with the action of su(n±) and that [E+,E−] = 0 = [E±, J ].
Restricting the k-module

Λ1,1m ∼= R⊕ su(n+)⊕ su(n−)⊕ su(n+)⊗ su(n−)

to su(n±), we observe that su(n±) acts trivially on R⊕su(n∓), while the rest is equivalent
to n2

∓ copies of the adjoint representation of su(n±). By Corollary 3.7 we obtain

C±(A) = −
n2
± − 1

n+n−
A, A ∈ Rω ⊕ E∓,

C±(A) =

(

1

2
·
2n±

n∓
−

n2
± − 1

n+n−

)

A =
1

n+n−
A, A ∈ E± ⊕ F.

The following lemma is elementary but stated for convenience.

3.19 Lemma. For any α, β, γ ∈ Λ2TM , we have

α y (β ∧ γ) = 〈α, β〉γ + 〈α, γ〉β + βαγ + γαβ.

In particular
α y (β ∧ β) = 2〈α, β〉β + 2βαβ.

We shall now take a closer look at the 4-forms Ω± and Ω.

3.20 Lemma. For any X ∈ TM ,

(i)
∑

i ei ∧ (ei ∧X)± = −1
2
X y Ω±,

13



(ii)
∑

i ei y (ei ∧X)± =
n2
±−1

n+n−
X.

Proof. (i) We calculate

X y Ω± = 2
∑

a

(X y ω±
a ) ∧ ω±

a = 2
∑

i,a

〈ei, X y ω±
a 〉ei ∧ ω±

a

= 2
∑

i,a

〈X ∧ ei, ω
±
a 〉ei ∧ ω±

a = −2
∑

i

ei ∧ (ei ∧X)±.

(ii) Similarly,
∑

i

ei y (ei ∧X)± = −
∑

i,a

〈X ∧ ei, ω
±
a 〉ω

±
a (ei) = −

∑

i,a

〈ei, X y ω±
a 〉ω

±
a (ei)

= −
∑

a

(ω±
a )

2(X) = Cas
su(n±),〈·,·〉Λ2
m (X),

and the assertion now follows from Corollary 3.7.

3.21 Lemma. For any α ∈ Λ2TM , we have We note α y Ω± = 2α± + 2C±(α).

Proof. It follows from Lemma 3.19 that

α y Ω± =
∑

a

α y (ω±
a ∧ ω±

a ) =
∑

a

(2〈α, ω±
a 〉ω

±
a + 2ω±

a αω
±
a ) = 2α± + 2C±(α).

3.22 Lemma. The 4-form Ω is primitive, i.e. ω y Ω = 0.

Proof. Since ω ⊥ Ep, Lemma 3.18 and Lemma 3.21 imply that

ω y Ω± = 2C±(ω) = −2
n2
± − 1

n+n−
ω

and one checks using the definition of Ω that ω y Ω = 0.

3.23 Corollary. The 4-forms Ω± and Ω are all nondegenerate in the sense that if
X y Ω± = 0 or X y Ω = 0 for any X ∈ TM , then X = 0.

Proof. This is a consequence of the holonomy principle: indeed, the kernels of the maps
X 7→ X y Ω±, X 7→ X y Ω would define parallel subbundles of TM . Since (M, g) has
irreducible holonomy, it follows that these 4-forms are either nondegenerate or vanish.
However Lemma 3.18 and Lemma 3.21 imply that

α y Ω± =
n+n− + 1

n+n−
α

for any α ∈ E±, so Ω± cannot vanish. A similar computation shows that the same is
true for the linear combination Ω.

14



4 Killing fields and differential identities

We recall that a Killing vector field X on a Kähler manifold (M, g, J) is Hamiltonian
with respect to the Kähler form ω, i.e. LXω = 0. Hence, if M is compact and simply
connected, we have a globally defined function zX , called Killing potential uniquely
determined from X y ω = dzX and

∫

M
zXvol = 0. Note that the equation LXJ = 0 also

implies that dX is in Ω1,1(M).
Assume that g is a Kähler–Einstein metric of Einstein constant 1

2
. Then Killing vector

fields and their Killing potentials are both in the kernel of ∆− Id, where ∆ = d∗d+ dd∗

is the Laplacian defined by the metric g. In fact, by Matsushima’s Theorem, the map
X 7→ zX defines an isomorphism between the space of Killing vector fields iso(M, g) and
the (minimal) eigenspace ker(∆ − Id) on functions. In particular, we have (X, Y )L2 =
(zX , zY )L2 and we see that if a Killing potential is L2-orthogonal to all other Killing
potentials, it has to vanish.
By a theorem of Kostant [9, Thm. 3.3], if X is a Killing vector field on a compact

manifold (M, g), the skew-symmetric endomorphism dX is contained in the Riemannian
holonomy algebra of g at each point. Hence, for the complex Grassmannians, dX takes
values in the subbundle Rω ⊕ E+ ⊕ E− with fiber k ⊂ Λ1,1m.

4.1 Remark. As mentioned in §2, the Killing vector fields on the complex Grassmannian
M = G/K = SU(n)/S(U(n+) × U(n−)) are precisely the fundamental vector fields
generated by the action of G = SU(n). For such a fundamental vector field X̃ generated
by X ∈ g, clearly its value at the identity coset only depends on its m-part – on the
other hand, its exterior derivative is (at the identity coset) given by

(dX̃)o(Y, Z) = g([X, Y ], Z), Y, Z ∈ m ∼= ToM,

cf. [2, Lem. 7.27]. By the Cartan relation [m,m] ⊂ k, we see that this only depends on
the k-part of the Lie algebra element X , which is consistent with the conclusion above.

4.2 Lemma. If X is a Killing vector field,

(dX)0 = (dX)+ + (dX)− = dX −
zX

n+n−
ω.

Proof. Since dX takes values in Rω ⊕ E+ ⊕ E−, we know that

dX = (dX)+ + (dX)− +
〈dX, ω〉

|ω|2
ω.

We have |ω|2 = −1
2
tr(J2) = dimC M = n+n−. Recall that X being Killing is equivalent

to dX = 2∇X . Using that J and g are parallel, we may thus calculate

〈dX, ω〉 =
1

2

∑

i

〈Jei, ei y dX〉 = −
∑

i

〈ei,∇ei(JX)〉

= d∗JX = d∗dzX = zX ,

and the assertion follows.
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4.3 Lemma. Any Killing vector field X satisfies the following identities:

(i) d(dX)± =
n∓

2n
X y Ω±,

(ii) d∗(dX)± =
n2
± − 1

n±n
X.

(iii) d|(dX)±|
2 =

2n∓

n
X y (dX)±.

(iv) ∆|(dX)±|
2 =

2n∓

n
|(dX)±|

2 −
2(n2

± − 1)n∓

n±n2
|X|2.

Proof. (i) We recall that since X is Killing, it satisfies ∇dX = 2R(·, X). Using that
the bundles E± are parallel and that the curvature operator R is symmetric and
has eigenvalues −n∓

2n
on E± by Lemma 3.10, we calculate

d(dX)± =
∑

i

ei ∧∇ei(dX)± =
∑

i

ei ∧ (∇eidX)±

= 2
∑

i

ei ∧ R(ei, X)± = −
n∓

n

∑

i

ei ∧ (ei ∧X)±.

Applying Lemma 3.20 (i) now yields the first assertion.

(ii) Similar to the above, we find

d∗(dX)± = −
∑

i

ei y∇ei(dX)± =
n∓

n

∑

i

ei y (ei ∧X)±.

The assertion follows now from Lemma 3.20 (ii).

(iii) Using the same identities as above, we calculate

d|(dX)±|
2 = −4

∑

i

〈R(X, ei)±, (dX)±〉ei =
2n∓

n
X y (dX)±.

(iv) By taking the codifferential in (iii) and applying Lemma 3.20 (ii), we obtain

∆|(dX)±|
2 =

2n∓

n

∑

i

((dX)±(ei,∇eiX) + 2〈R(X, ei)±, X ∧ ei〉)

=
2n∓

n
|(dX)±|

2 −
2(n2

± − 1)n∓

n±n2
|X|2.
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5 The infinitesimal Einstein deformations

It has been known for some time that the space ε(g) of infinitesimal Einstein defor-
mations of the complex Grassmannian is, as a G-submodule of the space of tt-tensors,
isomorphic to g and thus to the space iso(M, g) of Killing vector fields ([6], see also [3,
Prop. 8.4]). The infinitesimal Einstein deformations have been explicitly described in the
case n+ = n− by Gasqui–Goldschmidt [3, §VIII.4], while a parametrization by Killing
vector fields has been given in the case n− = 2 by Nagy–Semmelmann [10, Prop. 6.2].
We extend the latter approach to all n+, n− ≥ 2.
We shall parametrize the infinitesimal Einstein deformations of (M, g) in terms of

Killing vector fields using the following map.

5.1 Definition. Let e : X(M) → Ω1,1
0 (M) be the linear map defined by

X 7−→ eX :=
n2
− − 1

n−
(dX)+ −

n2
+ − 1

n+
(dX)−.

5.2 Theorem. If X is any Killing vector field, then

(i) deX = X y Ω,

(ii) d∗eX = 0,

(iii) ∆eX = eX .

Moreover, the map e is injective restricted to Killing vector fields.

Proof. (i) and (ii) follow immediately from Lemma 4.3 and the definition of Ω (Defini-
tion 3.16). Moreover, by (i) and (ii), we find that ∆eX = d∗(X y Ω). Next, we observe

d∗(X y Ω) = dX y Ω−X y d∗Ω,

and d∗Ω = 0 since Ω is parallel (Remark 3.17). Now combining Lemma 3.18, Lemma 3.21
and the fact that Ω is primitive (Lemma 3.22), it is straightforward to calculate that

∆eX = dX y Ω = (dX)+ y Ω + (dX)− y Ω

=
n2
− − 1

n−
(dX)+ −

n2
+ − 1

n+
(dX)− = eX .

Finally, let X be a Killing field such that eX = 0. Then by (i), X y Ω = 0, and the
nondegeneracy of Ω (Corollary 3.23) implies X = 0.

The infinitesimal Einstein deformations of a Kähler–Einstein metric were described
by Koiso [8, Prop. 7.3], cf. [10, §5]. Generally ε(g) splits into two subspaces ε±(g) of
symmetric 2-tensors commuting resp. anticommuting with J , and we have

ε+(g) = {αJ |α ∈ Ω1,1
0 (M), d∗α = 0, ∆α = 2Eα}.

For the complex Grassmannians we have thus constructed an injective map from the
space of Killing fields to ε+(g)J . By the fact that iso(M, g) has the same dimension as
ε(g), we arrive at the following statement.
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5.3 Corollary. The map X 7→ eXJ is a linear isomorphism iso(M, g)
∼
→ ε+(g) = ε(g).

5.4 Remark. One may also arrive at the desired isomorphism by a purely algebraic
argument. In light of the Peter–Weyl Theorem for homogeneous vector bundles [11,
Thm. 5.3.6], which states that given such a bundle VM = G×K V over a homogeneous
space M = G/K of a compact Lie group G,

L2(M,VM) ∼=
⊕

γ∈Ĝ

Vγ ⊗HomK(Vγ, V )

as a G-module (where the sum ranges over all equivalence classes of irreducible repre-
sentations of G), everything equivariantly derived from Killing vector fields plays out
(in our case) on the Fourier mode Vγ = g, the adjoint representation.
The infinitesimal Einstein deformations fit into an exact sequence

0 −→ iso(M, g) −→ ker(∆− 2E)
∣

∣

Ω1(M)
−→ ker(∆L − 2E)

∣

∣

S 2
0 (M)

−→ ε(g) −→ 0,

cf. [12, §4]. Since on an irreducible compact symmetric space g ∼= iso(M, g) and g is the
only Fourier mode with Laplace eigenvalue 2E [7, Lem. 5.2], this sequence descends to
the level of Fourier coefficients as

0 −→ HomK(g,m) −→ HomK(g,m) −→ HomK(g, Sym
2
0m) −→ T −→ 0.

For the complex Grassmannians, we have HomK(g,m) = span{prm}, HomK(g, Sym
2
0m)

is via J isomorphic to HomK(g,Λ
1,1
0 m) which in turn is spanned by both adk ◦ prsu(n±),

and T is a suitable one-dimensional subspace of HomK(g, Sym
2
0m) such that the cor-

responding symmetric 2-tensors are divergence-free. That is, T is the space of Fourier
coefficients corresponding to the G-submodule ε(g).
A straightforward calculation, also using Casimir operators, yields the appropriate

linear combination of adk ◦ prsu(n±) (or (dX)± in Definition 5.1, respectively) that spans

the one-dimensional subspace JT inside HomK(g,Λ
1,1
0 m).

6 Invariant cubic forms

As explained in the introduction, the second order integrability obstruction manifests
as an invariant cubic form on ε(g). Ultimately our goal is to reduce it to an invariant
polynomial on the Lie algebra g = su(n) and in particular to show that it does not vanish
identically. Throughout the calculation in §7 we will encounter various such polynomials,
however first we shall record a few of their properties and relations between them.

6.1 Polynomials on su(n)

The following fact is well-known, cf. [3, Prop. 2.1], and has already been exploited in
order to study the second order obstruction on homogeneous spaces of SU(n) [1, 10, 13].
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6.1 Proposition. The space (Sym3 g∗)G of invariant cubic forms on g = su(n) is one-
dimensional and spanned by the element P0, defined by

P0(X) := i tr(X3), X ∈ g.

6.2 Remark. Recall that for any homogeneous polynomial, the associated symmetric
multilinear form may be recovered via polarization. Using the same symbol for the
multilinear form, we may thus write

P0(X, Y, Z) =
i

2
tr(XY Z + ZY X), X, Y, Z ∈ g.

Moreover, P0 ∈ Sym3 g∗ is contained in Sym2 g∗ ⊗ g∗ as the g∗-valued quadratic form
X 7→ P0(X,X, ·).

6.3 Definition. Let Q ⊂ g denote the variety defined as the zero set of the quadratic
map X 7→ P0(X,X, ·), i.e.

Q := {X ∈ g |P0(X,X, Y ) = 0 ∀Y ∈ g}.

This variety may be described explicitly, cf. [1, Lem. 3.3], [10, Lem.6.7].

6.4 Proposition. (i) Q = {X ∈ su(n) |X2 = tr(X2)
n

In}.

(ii) If n is odd, then Q = {0}.

(iii) If n = 2k is even, then Q is the union of SU(n)-orbits of all block matrices of the
form

(

itIk 0
0 −itIk

)

, t ∈ R,

and thus a cone over the complex Grassmannian SU(2k)/S(U(k)× U(k)).

6.2 Polynomials on Killing vector fields

We define the following G-invariant cubic forms on iso(M, g) ∼= g.

6.5 Definition. For any Killing vector field X , let

(i) µ(X) :=

∫

M

z3Xvol,

(ii) ν±(X) :=

∫

M

|(dX)±|
2zXvol.

6.6 Remark. The G-invariance of µ, ν± is clear from the fact that G acts by translation
and the mappings X 7→ zX , X 7→ (dX)± are all G-equivariant. Thus integrating over
M with respect to the invariant volume form vol averages out the action of G.
It was shown in [5] that the polynomial µ does not vanish identically on iso(M, g)

provided n+ 6= n−. However for n+ = n− it does vanish, as we will shortly see.
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6.7 Remark. The (partially) polarized forms of µ and ν± are given by

µ(X,X, Y ) =

∫

M

z2XzY vol, ν±(X,X, Y ) =

∫

M

|(dX)±|
2zY vol.

The latter is not obvious, but follows along the lines of [10, Lem. 6.8].

Since µ, ν± are both G-invariant, they are (after application of the isomorphism
g ∼= iso(M, g)) multiples of the polynomial P0 described above. Unfortunately, we
cannot leave it at this observation. In order to obtain an expression for the obstruction
polynomial Ψ as a linear combination of µ and ν± and to show that Ψ corresponds to
a nonzero multiple of P0 defined above, it is necessary to relate the polynomials µ, ν±
to other cubic integrals. In particular we need the following nonvanishing result, which
shall be proved in §6.4.

6.8 Lemma. The polynomials ν± do not vanish identically.

First, however, we shall discuss a few relations between the polynomials µ, ν± and
some cubic integrals of Killing vector fields.

6.3 Relations between cubic integrals

To avoid redundancy, we note here that the proofs in this section repeatedly use the
following facts: any Killing field X satisfies dX = 2∇X and ∇dX = 2R(·, X), while its
Killing potential satisfies dzX = JX as well as ∆zX = zX . Moreoever, as a consequence
of Lemma 3.10 and the symmetry of R, we have the identity R(X, Y )± = −n∓

2n
(X ∧Y )±

for all X, Y ∈ TpM , and thus, since the bundles E± are parallel,

∇Y (dX)± =
n∓

n
(X ∧ Y )±

for all Y ∈ TM and Killing vector fields X . We also remind the reader that n = n++n−.

6.9 Lemma. For any Killing vector fields X and Y ,

(i)

∫

M

|X|2zY vol =
1

2

∫

M

z2XzY vol,

(ii)

∫

M

|dX|2zXvol = 0.

Proof. (i) Using that dzX = JX and ∆zX = zX , we find

d∗(z2XdzY ) = −2〈JX, JY 〉zX + z2Xd
∗dzY = −2〈X, Y 〉zX + z2XzY ,

d∗(zXzY dzX) = −|JX|2zX − 〈JX, JY 〉zX + zXzY d
∗dzX

= −|X|2zX − 〈X, Y 〉zX + z2XzY .

Combining the above and integrating yields the assertion.
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(ii) First, integrating by parts we obtain
∫

M

(∆|X|2)zXvol =

∫

M

|X|2∆zXvol =

∫

M

|X|2zXvol

Using a local orthonormal basis that is parallel at the point of evaluation, we
calculate

∆|X|2 = −2
∑

i

ei(〈∇eiX,X〉) =
∑

i

ei(〈X ∧ ei, dX〉)

= −
∑

i

〈ei ∧ ∇eiX, dX〉 −
∑

i

〈ei ∧X,∇eidX〉

= −〈dX, dX〉+ 2Ric(X,X) = −|dX|+ |X|2.

Thus we also obtain
∫

M

(∆|X|2)zXvol = −

∫

M

|dX|2zXvol +

∫

M

|X|2zXvol

and conclude that
∫

M
|dX|2zXvol = 0.

6.10 Remark. In fact, the statement of Lemma 6.9 holds true on any compact Kähler–
Einstein manifold with E = 1

2
.

6.11 Corollary. The polynomials µ, ν± satisfy the following relations.

(i) ν+ + ν− +
1

n+n−
µ = 0.

(ii) (n∓ − n±)ν± =
n∓(n

2
± − 1)

n±n
µ. In particular µ = 0 if n+ = n−.

Proof. (i) This follows directly from combining Lemma 4.2 with Lemma 6.9 (i).

(ii) We recall from Lemma 4.3 (iv) that

∆|(dX)±|
2 =

2n∓

n
|(dX)±|

2 −
2(n2

± − 1)n∓

n±n2
|X|2.

Taking the product with zX and integrating, we find with Lemma 6.9 (i) that
∫

M

(∆|(dX)±|
2)zXvol =

2n∓

n
ν±(X)−

(n2
± − 1)n∓

n±n2
µ(X).

But on the other hand, integration by parts simply yields
∫

M

(∆|(dX)±|
2)zXvol =

∫

M

|(dX)±|
2∆zXvol = ν±(X)

Together, these imply the assertion.
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6.12 Lemma. For any Killing vector field X,

(i)

∫

M

(dX)±(JX,X)vol = −ν±(X) +
n2
± − 1

2n±n
µ(X),

(ii)

∫

M

〈(dX)2+J, (dX)±〉vol =
−n2

±n∓ + n± + 3n∓

n+n−n
ν±(X) +

(n2
± − 1)(n2

± − 2)

2n2
±n

2
µ(X).

Proof. (i) First, we calculate

∇Y (zXX y (dX)±) = 〈JX, Y 〉X y (dX)± +
1

2
zXdX(Y ) y (dX)±

+
n∓

n
zXX y (X ∧ Y )±.

Together with Lemma 3.20 (ii) it follows that

d∗(zXX y (dX)±) = (dX)±(JX,X) + |(dX)±|
2zX −

n2
± − 1

n±n
|X|2zX

and by integrating and combining with Lemma 6.9 (i) we obtain the desired equal-
ity.

(ii) We start by calculating the codifferential of the vector field (dX)2±JX . Similar to
the above, we find that

∇Y ((dX)2±JX) =
n∓

n
{(X ∧ Y )±, (dX)±}JX +

1

2
(dX)2±JdX(Y ).

Let us consider the terms occurring in d∗(dX)2±JX one by one. First,
∑

i

〈ei, (X ∧ ei)±(dX)±JX〉 =
∑

i

〈ei y (ei ∧X)±, (dX)±JX〉

=
n2
± − 1

n+n−
(dX)±(JX,X)

by Lemma 3.20 (ii). Second,
∑

i

〈ei, (dX)±(X ∧ ei)±JX〉 =
∑

i,a

〈ei, X y ω±
a 〉(dX)±(JX y ω±

a , ei)

=
∑

a

(dX)±(JX y ω±
a , X y ω±

a )

= −C±((dX)±)(JX,X) = −
1

n+n−

(dX)±(JX,X)

by virtue of Lemma 3.18. Third, we note that by Corollary 3.14 applied to α =
hJ = (dX)±, the endomorphism (dX)2±J is a section of E± ⊕ Rω. Thus, using
Lemma 4.2, we find that

∑

i

〈ei, (dX)2±JdX(ei)〉 = −2〈(dX)2±J, dX〉 = −2〈(dX)2±J, dX±〉+
2zX
n+n−

|(dX)±|
2.
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Note that the factor −2 comes from the definition of the inner product on 2-forms,
cf. (5). Putting everything together, we obtain

d∗((dX)2±JX) = −
n2
± − 2

n±n
(dX)±(JX,X) + 〈(dX)2±J, (dX)±〉 −

zX
n+n−

|(dX)±|
2

and after integrating and applying (i) the assertion follows.

6.4 The nonvanishing of ν±

The purpose of this section is to prove Lemma 6.8. We note that in the case n+ 6= n−,
the nonvanishing of ν± follows from Corollary 6.11 (ii) and the nonvanishing of µ [5, §5].
Thus it remains to focus on the case n+ = n−.
For any Killing vector field X let the functions f±

X ∈ C∞(M) be defined by

f±
X := |(dX)±|

2.

As an immediate consequence of Lemma 4.3 (iv) we find

6.13 Corollary. If n+ = n−, then the function fX := f+
X − f−

X satisfies ∆fX = fX , i.e.
fX is a Killing potential.

As an analogue of [10, Lem. 6.12, (iii)] we have

6.14 Lemma. For any Killing vector field X, the function given by

|X|2 +
1

2n+n−
z2X +

n

2n+
f+
X +

n

2n−
f−
X

is constant on M .

Proof. This follows immediately by taking the differential, applying Lemma 4.2 and
Lemma 4.3 (iii), and noting that d|X|2 = X y dX .

6.15 Corollary. If n+ = n−, then for any two Killing vector fields X, Y we have
∫

M

fXzY vol = ±2ν±(X,X, Y ).

Proof. Recall that since zY is a Killing potential,
∫

M
zY vol = 0. Multiplying the expres-

sion in Lemma 6.14 with zY and integrating, we thus obtain
∫

M

(

|X|2zY +
1

2n2
+

z2XzY + f+
XzY + f−

XzY

)

vol = 0.

Also note that the terms
∫

M
|X|2zY vol and

∫

M
z2XzY vol vanish as a consequence of

Lemma 6.9 (i) and Corollary 6.11 (ii), since the latter is just the polarized form µ(X,X, Y ).
It follows that

∫

M

f+
XzY vol +

∫

M

f−
XzY vol = 0

With Remark 6.7, we have
∫

M
f±zY vol = ν±(X,X, Y ) and the assertion follows.
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6.16 Remark. The above corollary amounts to the fact that the polynomials ν± only
differ by a sign when n+ = n−. The geometric reason is the existence of an isometric
antiholomorphic involution between the Grassmannians

SU(n)

S(U(n+)×U(n−))
−→

SU(n)

S(U(n−)×U(n+))

that maps any n+-plane in Cn to its orthogonal complement. For n+ = n− this involution
interchanges the isomorphic bundles E± and thus the polynomials ν± up to a sign change
due to the orientation reversal.

We finish now the proof of Lemma 6.8. Let X be Killing vector field such that
ν±(X,X, Y ) = 0 for all Killing vectors fields Y . By Corollary 6.15, this is equivalent to
(fX , zY )L2 = 0, hence fX = 0, since fX and zY are both Killing potentials. But fX = 0 is
equivalent to |(dX)+|

2 = |(dX)−|
2 everywhere. We may conclude similarly to the proof

of [10, Prop. 6.16]: of course, there are Killing vector fields with |(dX)+|
2 6= |(dX)−|

2

at some point. For example, the fundamental vector field X̃ generated by some nonzero
matrix X ∈ su(n+) ⊂ su(n) has ((dX̃)o)+ 6= 0, but ((dX̃)o)− = 0 at the identity coset.
This shows that the cubic forms ν± cannot vanish identically.

6.17 Remark. An alternative, algebraic proof of Lemma 6.8 for general n+, n− goes as
follows. Consider the (non-invariant) polynomial ν ′

± on iso(M, g) given by evaluating
the integrand of ν± at the identity coset, i.e.

ν ′
±(X) := |((dX)o)±|

2zX(o), X ∈ iso(M, g)

The inner product on E± pulled back to su(n±) ⊂ k is some multiple of the trace form
on su(n±), while the Killing potential zX(o) is a constant multiple of 〈ξ,X〉, cf. [5, §2.3],
where we may choose the generator ξ of su(n)K to be

ξ := i diag(n−,
n+ times. . . , n−,−n+,

n− times. . . ,−n+).

Thus, under the identification iso(M, g) ∼= g = su(n), the polynomial ν ′
± corresponds to

a nonzero multiple of the cubic form P1 ∈ Sym3 g∗ given by

P1(X) := tr(X2
su(n±)) tr(ξX)

= in

(

tr(X2
u(n±))−

2n± − 1

n2
±

(trXu(n±))
2

)

trXu(n±), X ∈ su(n).

The key idea is now that integrating ν ′
± over M to the invariant polynomial ν± amounts

to projecting P1 to the G-invariant part (Sym3 g∗)G, which is by Proposition 6.1 spanned
by

P0(X) := i tr(X3), X ∈ su(n).

In order to prove the nonvanishing of ν± it thus suffices to show that P0 and P1 are not
orthogonal with respect to the invariant inner product on Sym3 g∗ given by

〈a1a2a3, b1b2b3〉 =
∑

σ∈S3

3
∏

i=1

〈ai, bσ(i)〉, ai, bi ∈ g∗.
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To do that it is convenient to complex-linearly extend P0 and P1 to cubic forms on
sl(n,C), and to express them using the standard basis (xab)

n
a,b=1 of gl(n,C)

∗. We remark
that restricted to sl(n,C), these linear forms satisfy

〈xab, xcd〉sl = δacδbd −
1

n
δabδcd.

The rest is a lenghty but elementary calculation.

7 The second order obstruction to integrability

Recall from Corollary 5.3 that the map X 7→ eXJ from Killing vector fields to in-
finitesimal Einstein deformations constructed in §5 is an isomorphism, and in particular
ε(g) = ε+(g). This enables us to apply Proposition 1.1. Plugging the parametriza-
tion above into the second order obstruction polynomial (2) and noting that E = 1

2
by

Proposition 3.3, we obtain the expression

Ψ(X) = 6
(

ω ∧ deX , eX ∧ deX
)

L2 − 4
(

eX ∧ eX , eX ∧ ω
)

L2 . (6)

Using the preceding results, the goal of this section is to express the polynomial Ψ on
iso(M, g) in terms of the polynomials µ, ν± defined in §6.2 and finally to show that under
the idenfitication g ∼= iso(M, g), Ψ corresponds to a nonzero multiple of the invariant
cubic form P0 that spans (Sym

3 g∗)G (Proposition 6.1). In order to do that, we are going
to analyze the two terms in (6) separately.

7.1 The first term

Using Theorem 5.2 (i), the integrand in the first term of (6) is given by

〈ω ∧ deX , eX ∧ deX〉 = 〈ω ∧ (X y Ω), eX ∧ (X y Ω)〉

Setting h := eXJ , an elementary calculation using that eX is primitive by construction
and Ω is primitive by Lemma 3.22 shows that

h∗(X y Ω) = ω y (eX ∧ (X y Ω))

and thus the integrand my be rewritten as

〈ω ∧ deX , eX ∧ deX〉 = 〈h∗(X y Ω), X y Ω〉.

Substituting in the definitions of eX and Ω and expanding the sum, we are faced with
terms of the following type.

7.1 Lemma. For any v ∈ TM and h ∈ Sym2 TM such that hJ ∈ E±, we have

(i) 〈h∗(v y Ω±), v y Ω±〉 = 4
n3
±n∓ − n2

± − 5n±n∓ − 3

n2
+n

2
−

h(v, v),
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(ii) 〈h∗(v y Ω∓), v y Ω∓〉 = 4
n3
±n∓ + 3n2

± − n±n∓ − 3

n2
+n

2
−

h(v, v),

(iii) 〈h∗(v y Ω±), v y Ω∓〉 = 〈h∗(v y Ω∓), v y Ω±〉 = −4
n2
+n

2
− − n2

± − 3n2
∓ + 3

n2
+n

2
−

h(v, v).

Proof. Suppose that hJ ∈ E+ ⊕ E−. First, we note that since h∗ is a derivation,

h∗(v y Ω±) = v y h∗Ω± − h(v) y Ω±,

= 2
∑

a

(

(v y {h, ω±
a }) ∧ ω±

a + (v y ω±
a ) ∧ {h, ω±

a } − (h(v) y ω±
a ) ∧ ω±

a

)

.

It follows that

〈h∗(v y Ω±), v y Ω±〉 = −2
∑

a

〈

(ω±
a y Ω±)hω

±
a v + ω±

a ({h, ω
±
a } y Ω±)v, v

〉

. (7)

By virtue of Lemma 3.18 and Lemma 3.21, we have

ω±
a y Ω± =

2(n+n− + 1)

n+n−

ω±
a , {h, ω±

a } y Ω± = 2{h, ω±
a }± + 2C±({h, ω

±
a })

and we note that Corollary 3.14 and Corollary 3.15 imply

{h, ω±
a }± =

{

{h, ω±
a } −

2
n+n−

〈hJ, ω±
a 〉ω, h ∈ E±J,

0, h ∈ E∓J.

We substitute this into (7) and continue analyzing the occurring terms. First,

∑

a

(ω±
a y Ω±)hω

±
a =

2(n+n− + 1)

n+n−
C±(h).

Second, using the equivariance of C± from Lemma 3.18 together with Lemma 3.7,
∑

a

ω±
a C±({h, ω

±
a }) =

∑

a,b

ω±
a ω

±
b (hω

±
a + ω±

a h)ω
±
b

=
∑

a,b

(ω±
a ω

±
b [h, ω

±
a ]ω

±
b + 2ω±

a ω
±
b ω

±
a hω

±
b )

=
∑

a

(ω±
a C±([h, ω

±
a ]) + 2C±(ω

±
a )hω

±
a )

=
∑

a

(ω±
a [C±(h), ω

±
a ] +

2
n+n−

ω±
a hω

±
a )

=
∑

a

(ω±
a C±(h)ω

±
a − (ω±

a )
2C±(h)) +

2
n+n−

C±(h)

= C2
±(h) + Cas

su(n±),〈·,·〉Λ2
m C±(h) +

2
n+n−

C±(h)

= C2
±(h) +

n2
±+1

n+n−
C±(h),
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while (in the case of h ∈ E±J)
∑

a

ω±
a {h, ω

±
a } =

∑

a

(ω±
a hω

±
a + (ω±

a )
2h)

= C±(h)− Cas
su(n±),〈·,·〉Λ2
m h = C±(h)−

n2
± − 1

n+n−
h,

∑

a

〈hJ, ω±
a 〉ω

±
a J = −h.

Putting this together and applying Lemma 3.18, we obtain

〈h∗(v y Ω±), v y Ω±〉 =















4
n3
±n∓ − n2

± − 5n±n∓ − 3

n2
+n

2
−

h(v, v), h ∈ E±J,

4
n3
±n∓ + 3n2

± − n±n∓ − 3

n2
+n

2
−

h(v, v), h ∈ E∓J.

This proves (i) and (ii). In order to show (iii), we first note that it suffices to analyze
〈h∗(vyΩ±), vyΩ∓〉 with h ∈ E±J since h∗ is self-adjoint. We rerun the calculation above
with an Ω∓ on the right hand side of the inner product. Again combining Lemma 3.18
with Lemma 3.21 and Corollary 3.15, we find

ω±
a y Ω∓ = −

2(n2
∓ − 1)

n+n−
ω±
a , {h, ω±

a } y Ω∓ = 2C∓({h, ω
±
a }).

As above, we unfold
∑

a

ω±
a C∓({h, ω

±
a }) =

∑

a,b

ω±
a ω

∓
b (hω

±
a + ω±

a h)ω
∓
b

=
∑

a

ω±
a C∓([h, ω

±
a ]) + 2

∑

b

C±(ω
∓
b )hω

∓
b

= C±(C∓(h)) + Cas
su(n±),〈·,·〉Λ2
m C∓(h)− 2

n2
±−1

n+n−
C∓(h)

= C±(C∓(h))−
n2
±−1

n+n−
C∓(h)

and combining everything we obtain

〈h∗(v y Ω±), v y Ω∓〉 = −4
n2
+n

2
− − n2

± − 3n2
∓ + 3

n2
+n

2
−

h(v, v).

Assembling the preceding identities, we now obtain an expression for the first term of
the obstruction polynomial (6).

7.2 Corollary. The integrand in the first term of (6) is

〈ω ∧ deX , eX ∧ deX〉 = k+(dX)+(JX,X)− k−(dX)−(JX,X),

where the constants k± are given by

k± =
(n2

∓ − 1)2(n3
±n∓ + n2

± − 5n+n− + 3)

n2
±n

3
∓

.
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Proof. Continuing the discussion at the beginning of §7.1, we may combine the definition
of Ω with Lemma 7.1 and find

〈ω ∧ deX , (dX)± ∧ deX〉 =
(n2

∓ − 1)(n3
±n∓ + n2

± − 5n+n− + 3)

n2
+n

2
−

(dX)±(JX,X).

Combining this with the definition of eX yields the assertion.

Using the identities in Corollary 6.11 and Lemma 6.12, it is possible to express the
integral of the above term in terms of the cubic forms µ and ν+. We record the following:

7.3 Corollary. The first term of (6) is given by

(

ω ∧ deX , eX ∧ deX
)

L2 =



















(n2
+ − 1)(n2

− − 1)

n3
+n

3
−(n+ − n−)

ℓ1µ(X), n+ 6= n−,

−2
(n2

+ − 1)3(n2
+ − 3)

n5
+

ν+(X), n+ = n−,

with the constant ℓ1 given by

ℓ1 := n3
+n

3
− − 3n3

+n− − 3n+n
3
− + n2

+n
2
− + n2

+ + n2
− + 5n+n− − 3.

7.2 The second term

The second term in (6) does not depend on the derivatives of eX . Thanks to the
algebraic preparation in §3.3, it is therefore much easier to handle than the first one.

7.4 Lemma. For α, β, γ ∈ E+ ⊕ E−, we have

〈α ∧ β, γ ∧ ω〉 = 〈{α, β}J, γ〉,

and this vanishes unless either α, β, γ ∈ E+ or α, β, γ ∈ E−.

Proof. We begin with noting that

〈α ∧ β, γ ∧ ω〉 = 〈ω y (α ∧ β), γ〉

and since α, β ⊥ ω and α, β commute with J , Lemma 3.19 implies that

ω y (α ∧ β) = αJβ + βJα = {α, β}J.

The vanishing statements now follow from Corollary 3.14 resp. 3.15.

Substituting the definition of eX into 〈eX∧eX , eX∧ω〉, expanding the sum and applying
the above lemma immediately yields the following.

7.5 Corollary. The integrand in the second term of the obstruction polynomial is

〈eX ∧ eX , eX ∧ ω〉 =
2(n2

− − 1)3

n3
−

〈(dX)2+J, (dX)+〉 −
2(n2

+ − 1)3

n3
+

〈(dX)2−J, (dX)−〉.
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As before, we reduce the integral of this term to multiples of µ and ν+ by means of
Corollary 6.11 and Lemma 6.12.

7.6 Corollary. The second term of (6) is given by

(

e(X) ∧ e(X), e(X) ∧ ω
)

L2 =



















(n2
+ − 1)(n2

− − 1)

n3
+n

3
−(n+ − n−)

ℓ2µ(X), n+ 6= n−,

−2
(n2

+ − 1)3(n2
+ − 4)

n5
+

ν+(X), n+ = n−,

with the constant ℓ2 given by

ℓ2 := n3
+n

3
− − 4n3

+n− − 4n+n
3
− + 2n2

+n
2
− + n2

+ + n2
− + 7n+n− − 4.

7.3 The full obstruction polynomial

Using the expressions in Corollary 7.3 and Corollary 7.6 for the individual terms of
(6), it is now a straightforward matter of calculation to reduce Ψ itself to a multiple of
µ (if n+ 6= n−) or ν+ (if n+ = n− = n

2
), respectively. We obtain the following result.

7.7 Theorem. The obstruction polynomial Ψ may be expressed as

Ψ =















2(n2
+ − 1)2(n2

− − 1)2(n+n− − 1)

n3
+n

3
−(n+ − n−)

µ if n+ 6= n−,

−
(n2 − 4)4

2n5
ν+ if n+ = n−.

Notice that for n− = 2 this agrees with the result2 in [10, Thm. 6.24] (up to a scale

factor of
(

2
3

)3
stemming from a different parametrization, and the notation m = 2n+).

We recall from §6.2 that the cubic form ν+ is nonzero, and so is µ provided n+ 6= n−.
Thus we conclude as follows.

7.8 Corollary. The obstruction polynomial Ψ is nonzero for n+, n− ≥ 2.

Theorem 1.3 is now proved as follows. Since Ψ is an element of (Sym3 g∗)G, which
is spanned by P0 (Proposition 6.1), it must thus be a nonzero multiple of P0. As a
consequence, the set of infinitesimal Einstein deformations integrable to second order
corresponds under the parametrization X 7→ eXJ to the variety Q ⊂ g described in
Proposition 6.4. If n is odd, this variety is just the origin – thus no infinitesimal Einstein
deformation is integrable, and g is rigid.

2This refers to the updated version of [10], containing the correct formula (2), which is in preparation
at the time of writing.
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