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Speech Emotion Recognition Via CNN-Transforemr
and Multidimensional Attention Mechanism

Xiaoyu Tang, Yixin Lin, Ting Dang, Yuanfang Zhang, Jintao Cheng

Abstract—Speech Emotion Recognition (SER) is crucial in
human-machine interactions. Mainstream approaches utilize
Convolutional Neural Networks or Recurrent Neural Networks
to learn local energy feature representations of speech segments
from speech information, but struggle with capturing global
information such as the duration of energy in speech. Some use
Transformers to capture global information, but there is room
for improvement in terms of parameter count and performance.
Furthermore, existing attention mechanisms focus on spatial or
channel dimensions, hindering learning of important temporal
information in speech. In this paper, to model local and global
information at different levels of granularity in speech and cap-
ture temporal, spatial and channel dependencies in speech signals,
we propose a Speech Emotion Recognition network based on
CNN-Transformer and multi-dimensional attention mechanisms.
Specifically, a stack of CNN blocks is dedicated to capturing
local information in speech from a time-frequency perspective.
In addition, a time-channel-space attention mechanism is used to
enhance features across three dimensions. Moreover, we model
local and global dependencies of feature sequences using large
convolutional kernels with depthwise separable convolutions and
lightweight Transformer modules. We evaluate the proposed
method on IEMOCAP and Emo-DB datasets and show our
approach significantly improves the performance over the state-
of-the-art methods1.

Index Terms—Speech emotion recognition, temporal-channel-
spatial attention, lightweight convolution transformer, local global
feature fusion.

I. INTRODUCTION

EMOTION recognition has significant importance in var-
ious fields, especially in increasingly common human-

computer interaction systems [1], and speech emotion recogni-
tion (SER) has promising applications in areas such as mental
health monitoring [2], educational assistance, personalized
content recommendation, and customer service quality mon-
itoring. Speech contains rich emotional information, and as
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one of the most basic human communication methods, speech
emotion recognition is particularly important for computers to
analyze and respond to the emotional state of human users and
respond to them accordingly. With the rapid development of
artificial intelligence, speech emotion recognition has received
extensive research attention. Human speech contains a wealth
of information, including not only the language content but
also attributes such as gender and emotions of the speaker.
It is of great significance to accurately identify emotional
information from speech signals.

Feature extraction of speech is a rather important and
challenging task in speech emotion recognition, and the ex-
traction of features directly affects the effectiveness of subse-
quent model training and the accuracy of the final algorithm
for emotion recognition. Speech features can be categorized
as acoustic-based features and deep learning-based features
where acoustic-based features can be broadly classified into
rhythmic features [3], spectral-based correlation features [4],
and phonetic features [5]. Among them, spectral-based corre-
lation features reflect the characteristics of the signal in the
frequency domain, where there are differences in the perfor-
mance of different emotions in the frequency domain. Based
on the spectral correlation features include linear spectrum
[6] and inverse spectrum [7], Linear Prediction Cofficients
(LPC), Log Frequency Power Coefficients (LFPC), etc.; In-
verse spectrum includes Mel-Frequency Cepstrum Coefficients
(MFCC), Linear Prediction Cepstrum Cofficients (LPCC), etc.
Among them, MFCC is regarded as a low-level feature based
on human knowledge, which is widely used in the field of
speech.

Early SER algorithms mainly used acoustic-based features
and combined with traditional machine learning algorithms,
including hidden Markov models [8], Gaussian mixture mod-
els [9], and support vector machines [10]. In recent years,
deep learning-based neural networks have gradually become
active in the field of speech emotion recognition [11], [12], and
compared with traditional models, deep learning-based models
have shown better performance in speech emotion recognition.
Deep learning-based features use neural networks to learn
more advanced features from the original signal of speech or
some low-dimensional acoustic features. Convolutional neural
networks (CNNs) are effective in capturing local acoustic
details in speech, while long short-term memory networks
(LSTMs) are widely used in speech emotion recognition for
modeling dynamic information and temporal dependencies in
speech. Additionally, attention mechanisms are also a key
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factor in improving model performance, as they can adaptively
focus on the importance of different features to obtain better
speech features at the discourse level. For example, Qi et
al. [13] proposed a hierarchical network based on static and
dynamic features, which uses LSTM to encode dynamic and
static features of speech and designs a gating model to fuse
the features, an attention mechanism is used to acquire the
discourse-level speech features. Liu et al. [14] proposed a
local-global perceptual depth representation learning system.
One module contains a multiscale CNN and a time-frequency
CNN (TFCNN) to learn the local representation, and in the
other module, a Capsule network with an improved routing
algorithm is utilized to design a multi-block dense connection
structure, which can learn both shallow and deep global
information.

Although speech emotion recognition (SER) models com-
posed of CNNs exhibit better performance than traditional
models, these networks can only extract local information in
speech, such as the energy and rhythm of a particular segment
of speech, while struggling to learn global information in
speech features, such as the overall volume and speaking rate
of the speaker, and the duration of energy, thus neglecting the
global correlation of features [15]. In recent years, the trans-
former [16] based on the self-attentive mechanism has been
widely used in major deep learning tasks. Tarantino et al. [17]
used transformer in combination with global windowing for
speech emotion recognition and achieved better performance,
but transformer is weak for local feature extraction. Some
recent work has attempted to combine CNN and transformer
to alleviate the limitations of using CNN and transformer
alone. Wang et al. [18] stacked the transformer blocks after
the CNN model to improve the global features of aggregation.
A model combining the transformer and CNN is proposed in
[19], enabling it to learn local information while capturing
global dependencies. The original transformer tends to have a
high number of parameters for computing multi-headed self-
attention, which requires a lot of resources and poses some
difficulties in the training of the network. In addition, this
kind of work tends to stack transformers in the last part of
the model or a simple combination of transformer and CNN,
which makes it hard to obtain better local information of the
speech.

In addition, attention mechanisms improve the effectiveness
of task processing by selectively attending to features that are
most relevant to the current task, and have received widespread
attention in major fields. In recent years, several researchers
have utilized deep learning methods for feature extraction
and used attention mechanisms to improve performance. A
lightweight self-attention module is proposed in [20], which
uses MLP to extract channel information and a large perceptual
field extended CNN to extract spatial contextual information.
Guo et al. [21] proposed an attention mechanism based on
time, frequency, and CNN channels to improve representa-
tion learning ability. However, temporal information is often
embedded in speech, which reflects the dynamic changes of
speech, such as pitch and energy variations over time. Tem-
poral features can reflect the temporal context and evolution
of emotion expression in speech. However, it falls short in

capturing the temporal information present in speech, which
represents the dynamics of speech and plays a crucial role in
emotion recognition. This limitation is a common issue in both
MLPs and CNNs.

In this paper, we investigate how to effectively combine
transformer and CNN and apply them to SER to characterize
local features and global features in speech signals, and
propose the temporal-channel-space attention mechanism in
the model for multiple dimensions of feature enhancement.
Specifically, we first use a set of stacked CNNs to capture local
information in speech and learn shallow features of speech for
the transformer module for better training of the transformer
module. In the stacked CNN module, two sets of convolutional
filters of different shapes are used to capture both temporal
and frequency domain contextual information. Specifically,
after stacking the CNN modules, we introduced a temporal-
channel-space attention mechanism that models the contextual
emotional expression of features over time, and efficiently
fuses the attention of the spatial and channel dimensions of
the speech feature map through the Shuffle unit. Furthermore,
a combination of transformer and CNN is used to model
the local and global dependencies of feature sequences by a
deep separable convolution with residuals and a lightweight
transformer module. The main contributions of this work are
summarized as follows:

• A framework based on CNN and transformer is proposed
for speech emotion recognition. Our framework uses
time-frequency domain convolution and stacked convolu-
tion blocks to extract initial local features of speech and
stacked CNN and transformer blocks are used to enhance
local and global features.

• To enhance the finiteness of the feature map and model
the temporal information of speech, a temporal-channel-
space attention mechanism called Time-Shuffle Attention
(T-Sa) is used in our model. T-Sa enhances the feature
map in multi-dimensions.

• We propose a module based on deeply separable convo-
lution and a lightweight transformer called Lightweight
convolution transformer(LCT). This model employs
lightweight convolutional blocks to efficiently extract
local information from features, and incorporates Coor-
dinate Attention (CA) into the multi-head self-attention
mechanism to capture long-range dependencies among
features while enhancing their temporal and spectral
information.

• Extensive experiments of our proposed model on IEMO-
CAP and EMO-DB datasets demonstrate the effectiveness
of the model in SER tasks.

The rest of the paper is organized as follows. Section
II briefly reviews related work. Details of the system are
presented in Section II. In Section IV,we present experimental
results to showcase the effectiveness of our model on two
widely-used benchmark datasets. Section V concludes this
work.

II. RELATED WORK
In this section, we will briefly review the algorithms related

to speech emotion recognition, namely convolutional and
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recurrent neural networks, attention mechanism, and trans-
former.

A. Convolutional neural networks and recurrent neural net-
works

Speech is a continuous time-series signal, and CNN and
RNN have been two main network structures for SER. Moti-
vated by the studies of CNN in computer vision, AlexNet [22]
and ResNet [23] show promising results in image classification
tasks and therefore have been studies in SER. Zhu et al.
[24] has proposed a new Global Aware Multi-scale (GLAM)
neural network that utilizes a global perception fusion module
to learn multi-scale feature representations, with a focus on
emotional information. The multi-time-scale (MTS) method
was introduced in [25], which extends the CNNs by scaling
and resampling the convolutional kernel along the time axis
to increase temporal flexibility. Liu et al. [14] proposed a
local global-aware deep representation learning system that
uses CNNs and Capsule Networks to learn local and deep
global information.

RNN can model the temporal information in speech and
capture long-term dependencies in the speech signal more
effectively. A new layered network HNSD was proposed [13]
that can efficiently integrate static and dynamic features of
SER, which uses LSTM to encode static and dynamic features
and gated multi-features unit (GMU) for frame level feature
fusion for the emotional intermediate representation. Xu et
al. [26] proposed a hierarchical grained and feature model
(HGFM) that uses recurrent neural networks to process both
discourse-level and frame-level information of the speech.
Since convolutional neural networks can capture local in-
formation of features, while recurrent neural networks take
advantage of modeling temporal information, many works
have combined these two approaches and achieved outstanding
results. Li [27] extracted location information from MFCC
features and VGGish features by bi-direction long short time
memory (BiLSTM) neural network, and then fused these two
features to predict emotions. Liu et al. [28] combined triplet
loss and CNN-LSTM models to obtain more discriminative
sentiment information, and the proposed framework yielded
excellent results in experiments. Zou [29] et al. used CNN,
BiLSTM, and wav2vec2 to extract different levels of speech
information, including MFCC, spectrogram, and acoustic in-
formation, and fused these three features by an attention
mechanism. Zhang [30] et al. used CNNs to learn segment-
level features in spectrograms, using a deep LSTM model to
capture temporal dependencies between speech segments.

B. Attention mechanism

In recent years, attention mechanisms have received a lot of
attention in major fields to improve the effectiveness of task
processing by focusing on information that is more critical to
the current task among the many inputs. A channel attention
mechanism called Squeeze-and-Excitation (SE) was proposed
in [31], which assigns weights to individual channels and adap-
tively recalibrates the feature responses of the channels. Woo
et al. [32] proposed a convolutional block attention module

that combines both spatial and channel dimensions to obtain
attention with better results. In addition, some researchers have
used deep learning methods for feature extraction of speech
and enhancement of feature maps using attention mechanisms.
An attention pooling-based approach was proposed in [33],
compared to existing average and maximum pooling, it can
combine both class-agnostic bottom-up attention maps and
class-specific top-down attention maps in an effective manner.
Mustaqeem et al. [20] proposed a self-attentive module (SAM)
for SER systems,which uses a multilayer perceptron (MLP)
to recognize global information of the channels and identifies
spatial information using a special dilated CNN to generate
an attentional map for both channels. SAM significantly re-
duces the computational and parametric overhead. A spectro-
temporal-channel (STC) attention mechanism was proposed in
[21], which acquires attention feature maps along three dimen-
sions: time, frequency, and channel. Xi et al. [34] employed an
attention mechanism based on the time and frequency domain
to introduce long-distance contextual information.

The current attention mechanisms typically focus more
on spatial or channel information in feature maps, often
neglecting the temporal characteristics in speech. However,
temporal features in speech are equally important for emotion
recognition. Therefore, it is necessary to pay more attention to
temporal information in attention mechanisms to better explore
and utilize the temporal characteristics in speech signals.

C. Transformer

Transformer has been rapidly developing in the field of
natural language processing (NLP) in recent years and has
achieved great success. Due to its powerful ability to obtain
global information, the transformer has been gradually ex-
tended to the fields of speech. An end-to-end speech emotion
recognition model [18] was proposed to enhance the global
feature representation of the model by using stacked trans-
former blocks at the end of the model. Hu et al. [19] took
advantage of multiple models, improved the learning ability
of the model by residual BLSTM, and proposed a convolu-
tional neural network and E-transformer module to learn both
local and global information. Recently, transformer-based self-
supervised methods have also been applied to speech, and
some transformer-based models have achieved great success in
automatic speech recognition (ASR), including wav2vec [35],
VQ-wav2vec [36], and wav2vec2.0 [37]. There is also some
work in speech emotion recognition that employs these models
for migration learning. A pre-trained wav2vec2.0 model [38]
is used as the input to the network and the outputs of multiple
network layers of the pre-trained model are combined to
produce a richer representation of speech features. Cai et
al. [39] proposed a multi-task learning (MTL) framework
that uses the wav2vec2.0 model for feature extraction and
simultaneously training for speech emotion classification and
text recognition. Among computer vision tasks, ViT [40] first
applied transformer directly to image patch sequences which is
groundbreaking in applying transformer structure to computer
vision. ViT has a superior structure and reduced computa-
tional resource consumption compared to convolutional neural
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Fig. 1. An illustration of our proposed speech emotion recognition framework consisting of three modules: i) CNN Block is used to extract local information in
speech; ii) T-Sa attention module enhances speech information in three dimensions: time-space-channel; iii) LCT Block combines local and global information
in speech.

networks. There are many similar approaches in the field of
speech. ViT was introduced to speech and improved based
on the properties of spectrograms in [41], which proposed
a separable transformer (SepTr) that uses the transformer to
process tokens at the same time and the same frequency
interval, respectively. In [42], a method to improve ViT was
applied to infant cry recognition by combining the original
log-Mel spectrogram, first-order time-frame and frequency-
bin differential log-Mels 3D features into ViT for infant cry
recognition.

III. METHOD

In this section, we describe the proposed model in detail.
Our proposed model is shown in Fig. 1, which consists of three
parts, namely CNN Block, T-Sa attention mechanism module,
and LCT Block, these three modules will be introduced in
detail next.

A. Overview of the model

To take full advantage of convolutional neural networks and
transformer to model the speech sequences and use attention
mechanism to enhance the features in time, space and channel,
based on which our model is designed. As shown in Fig. 1, for
a given input speech sequence, a series of preprocessing steps
are performed. Specifically, we uniformly process different
lengths of speech sequences into 1.8s, the longer sequences
will be cropped into subsegments, and for shorter sequences,
we process them using loop filling, after which MFCC features
are extracted of speech as the input to the model. The local
features of the speech first are obtained by a CNN block, where

the irregular-sized time-frequency domain convolution is used
to obtain the features in the time and frequency domains of the
speech. The features are then enhanceed using a T-Sa attention
mechanism block, which contains a bilstm attention module
to model the features in the temporal order, followed by a
spatial-channel attention mechanism to focus on the spatial and
channel information. Finally, the global and local information
of speech is learned interactively by an LCT Block, which
enables the model to learn information at different scales. The
three parts of the model in this paper are described in detail
in the following sections.

B. CNN Block

For a large model such as transformer, if MFCC features
are directly input into transformer, it will bring a large number
of parameters. And since the dataset of speech emotion
recognition is generally small, using transformer directly for
feature learning will make the model difficult to converge.
Therefore, we introduce a CNN Block to pre-learn the local
features in speech. As shown in Figure 1, the CNN Block
consists of a series of convolutional and pooling layers.
For the input feature MFCC, the two dimensions of MFCC
correspond to two dimensions in the temporal and frequency
domains, respectively, for which we first use a pair of irregular
convolutions to obtain the perceptual field in a specific range.
For a convolution of size 3 × 1, we set the perceptual field
in the time domain to 1, thus minimizing the effect in the
time domain to learn information in the frequency domain,
and for a convolution of size 1×3 which is a similar process,
which in turn allows capturing a multi-scale representation in
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Fig. 2. An illustration of our proposed T-Sa attention module consisting of two modules: Timing attention which enhances the current features temporally
through BiLSTM, and Space-channel attention which enhances the features from the spatial and channel dimensions.

the temporal-frequency domain. The results are then fed to
successive convolutional layers and maxpooling layers, which
are used to further capture the local representation in speech,
the batch normalization (BN), and relu activation function are
applied after each convolutional layer.

C. T-Sa attention module

In this paper, inspired by [43], we adopt a novel attention
module to combine temporal attention with spatial-channel
attention, focusing on the temporal dynamics of speech fea-
tures and spatial-channel information in the feature map, as
shown in Fig. 2, which is divided into two parts before and
after. In the former part, the attention model enhances the
temporal information in the features by Bilstm to model the
current features temporally, based on the fact that speech
information is temporal information and the order of features
in time is of importance. The latter part follows the spatial
and channel attention, which is a common concern in existing
attention, and efficiently combines the attention of the spatial
and channel dimensions of speech feature maps through the
Shuffle unit. T-Sa attention module enhances the features in
the model through three dimensions and with a small number
of parameters and achieves better results in SER.

1) Timing attention: After Pre-processing and CNN Block
for feature extraction of speech, giving the feature map size
of X ∈ RC×H×W for the input T-Sa attention module, where
C, H and W denote the number of channels, spatial height
and width, respectively. To model the temporal attention in
speech features, a recurrent neural network is used to model
the speech information which is bilstm. The input of bilstm is
a two-dimensional sequence while our speech feature map is
three-dimensional, so what we need is to process the feature
map X . If we directly reshape the feature map, the input bilstm
will bring a great number of parameters number. Therefore,
average pooling is used to reduce the dimensionality of the
channels, and the specific calculation is:

XCAvgPool =
1

C

C∑
i=1

X(i) (1)

After the feature passes through average pooling, the size
of the feature map is XCAvgPool ∈ RH×W . Feature map
is adjusted to XCAvgPool ∈ RW×H by reshaping operation

and then feeding it to the bilstm layer. By encoding long
distances from front to back and from back to front, bilstm can
better capture bidirectional feature dependencies. XCAvgPool

is encoded by bilstm as follows:
−→
h bilstm =

−−−−−−−→
BILSTM(XCAvgPool) (2)

←−
h bilstm =

←−−−−−−−
BILSTM(XCAvgPool) (3)

Two LSTMs in bilstm process the sequence forward and
backward, respectively, and then concate the outputs of the
two LSTMs together:

Hbilstm = Concatenate
(−→
h bilstm;

←−
h bilstm

)
(4)

Hbilstm is then applied sigmoid activation and multiplied with
the input feature map using the residual scheme to output
temporal attention:

Xtime = σ
(
Hbilstm

)
·X (5)

2) Space-channel attention: Spatial attention and channel
attention are widely used in computer vision. Most methods
transform and aggregate features in these two directions, such
as SE [31], CBAM [32], BAM [44], GCNet [45], but these
methods do not make full use of the correlation between space
and channel which are not efficient. Therefore, we adopted
SA-Net [43] as our spatial-channel attention module.

Given the output Xtime of the temporal attention module,
the input is first divided into G groups, and the size of
each sub-feature map is Xtime′ ∈ RC/G×H×W . Then, each
group is split into two sub-branches in the channel dimension.,
Xspatial and Xchannel, one of which obtains spatial attention
and the other obtains channel attention.

For the channel attention branch, firstly, the global average
pooling (GAP) operation is performed on the input of the
branch to embed the global information. Then, a simple
gating mechanism and sigmoid activation are used to perform
adaptive learning of spatial features. A residual scheme is used
to multiply the input channel branch feature map. The specific
operation of the spatial attention module is as follows:

Xchannel′ = σ
(
W1 ·GAP (Xchannel) + b1

)
·Xchannel (6)

W1 and b1 are learnable parameters.
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Fig. 3. An illustration of our proposed LCT Block attention module consisting of three modules: i) LLC, which efficiently captures the local information of the
features through a lightweight convolution module; ii) CA-LMAM, which captures the long-range dependencies in the features and enhance the time-frequency
domain features of speech through a CA module; iii) SE-IBFFN, which introduces a nonlinear part through a feedforward network with inverse residuals to
enhance the model the expressiveness of the model.

For the spatial attention branch, GN [46] operation is
first performed on the input of the branch to embed spatial
statistical information, and then a simple gating mechanism
and sigmoid activation are used to perform adaptive learning
of features on the channel, and the residual scheme is used to
multiply the input channel branch feature map. The specific
operation of the channel attention module is as follows:

Xspatial′ = σ
(
W2 ·GN(Xspatial) + b2

)
·Xspatial (7)

Both W2 and b2 are learnable parameters, and then the outputs
of the two branches are merged by concatenating them along
the channel dimension:

Xattention = Concatenate
(
Xchannel′ ;Xspatial′

)
(8)

The attention weights on space and channel are learned sep-
arately through two branches, and the corresponding residual
scheme is multiplied with the respective input feature map to
enhance the representations of space and channel. Finally, the
channel shuffle [47] is employed to facilitate communication
of information between different groups along the channel
dimension. The information of the features interacts in the
channel dimension, and the size of the output feature map is
the same as the initial input.

D. LCT Block

Inspired by [48], we proposed an LCT Block shown in Fig.
3, which consists of three modules: lightweight local con-
volution (LLC), coordinate attention-lightweight multi-head

attention mechanism (CA-LMAM) and SE Inverted Bottleneck
feed forward network (SE-IBFFN). Through the combination
of convolution and transformer, LCT Block obtains the in-
formation of features from the local and the whole, which is
more efficient and has fewer parameters than the traditional
transformer. LLC is a lightweight convolution module, which
efficiently obtains local information of features. The CA-
LMAM module can capture the long-distance dependencies
of features and enhance the information in the time-frequency
domain through the Coordinate Attention (CA) [49] module.
SE-IBFFN introduces a nonlinear part through a feedforward
network with inverted residuals, which enhances the perfor-
mance of the model and can further capture the local infor-
mation of features. These three modules will be introduced in
detail below

1) LLC: In order to make up for the lack of local infor-
mation in trasnformer, a convolution module is used to obtain
local information in speech which called LLC. Some work
such as CMT [48] also adopted a similar architecture, but the
convolution module in CMT is relatively simple, only using
a Depthwise convolution with residuals, which can not obtain
effective local information. Inspired by [50], we used a large
convolution kernel Depthwise convolution with residuals and
a Pointwise convolution in the local feature extraction module,
given an input feature X ∈ RC×H×W as follows:

LLC (X) = PWConv (DWConv (X) +X) (9)

The activation layer and batch normalization are omitted, and
the same omission will be in subsequent formulas. PWConv
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represents Pointwise convolution and DWConv represents
Depthwise. In PWConv we used a large 7 × 7 convolution
kernel is used to get a larger receptive field than a 3 × 3
convolution kernel. In addition, PWConv has smaller param-
eters than DWConv and ordinary convolution. Additionally,
a residual structure is incorporated to address the issue of
gradient dispersion.

2) CA-LMAM: In transformer, multi-head attention is usu-
ally used to make the model pay more attention to the more
noteworthy part of itself, which can obtain long-distance de-
pendence in speech features. Given the output X ∈ RC×H×W

in the LLC module, the input of multi-head attention is query
Q, key K, and value V , respectively. If the original features
are directly input into multi-head attention, it will often bring
a large amount of calculation. The amount of calculation is
related to the size of the input features. Therefore, 2 × 2
DWConv is used to downsample the parts of K and V , as
shown below:

K = DWConv (X) (10)

V = DWConv (X) (11)

Where K ∈ RC×H
2 ×W

2 , V ∈ RC×H
2 ×W

2 , then the H and W
dimensions are merged and input a linear layer respectively.
Finally get K ′ ∈ RN ′×C , V ′ ∈ RN ′×C , where N ′ = H

2 ×
W
2 ,

C is the dimension of the linear layer output.
For Q, a CA module is used to enhance the time-frequency

domain representation of speech features. This attention mech-
anism can obtain long-distance feature dependence along one
direction and spatial dependence information in another direc-
tion. However, in speech, speech features have more special
significance in the spatial dimension. The abscissa of speech
features is the time axis, which represents the time domain
information of speech while the ordinate of the speech feature
represents the frequency information of the speech, so CA
can better aggregate the dependent information in the time
domain and frequency domain for speech features, which is
more suitable for SER tasks.

The specific operation of CA is shown in Fig. 3. Given
the input X ∈ RC×H×W , pooling is performed in the time
domain and frequency domain respectively:

XTAvgPool =
1

W

W∑
i=1

X(i) (12)

XFAvgPool =
1

H

H∑
j=1

X(j) (13)

XTAvgPool ∈ RC×H×1 and XFAvgPool ∈ RC×1×W are
the feature maps after aggregation in two directions of time-
frequency domain. Then, they concatenate and perform con-
volution operations to encode the information:

Xtf = Conv
(
concatenate

(
XTAvgPool;XFAvgPool

))
(14)

Where Xtf ∈ RC/r×1×(W+H), r is the reduction rate of the
channel, and then separated into two separate features Xt, Xf

along the spatial direction, where Xt ∈ RC/r×H×1, Xf ∈

RC/r×1×W . The extraction of features is then performed by
two separate convolutions, followed by activation using the σ
activation function, and then multiplied by the initial output
to learn the more critical information in the feature:

st = σ
(
Conv

(
Xt

))
(15)

sf = σ
(
Conv

(
Xf

))
(16)

Q = X · st · sf (17)

We adjust the dimension of Q, eventually Q′ ∈ RN×C , where
N = H ×W .

Eventually learning information about the model itself
through multi-headed self-attention:

LMAM(Q,K, V ) = Softmax

(
Q′K ′T
√
C

+B

)
V ′ (18)

Where B is a learnable parameter, representing the relative
position coding of multi-head self-attention, which is used to
characterize the relative position relationship between tokens.
It is more flexible than the traditional absolute position coding,
making transformer better model the relative position informa-
tion of speech features.

3) SE-IBFFN: In the original transformer, FFN is generally
composed of two linear layers. In this paper, inspired by [51],
a series of Pointwise convolution and Depthwise convolution
make up our SE-IBFFN. Compared with the Transformer
model traditionally composed of linear layers, this module can
capture local information while learning channel information,
and has a smaller number of convolution parameters than
ordinary ones.

The structure of SE-IBFFN is shown in Fig. 3. Given the
input X ∈ RC×H×W , the specific calculation process is as
follows:

Xconv = PWConv (DWConv (PWConv (X))) (19)

SE-IBFFN (X) = SE (Xconv) +X (20)

Firstly, the Pointwise convolution operation is performed on
the input, and the number of channels is expanded to 4 times of
the original to increase the feature size of the channels. Then
a 7× 7 large convolution kernel DWConv is used to obtain
the local information in the feature, and the large convolution
kernel can provide a larger receptive field without increasing
too many parameters. The feature map is then restored to its
original size using PWConv.

Then, the SE module is to obtain the attention of the channel
dimension of the feature map. Given the input X ∈ RC×H×W

of SE, the specific calculation process is as follows:

SE (X) = σ (GAP (FC (FC (X)))) ·X (21)

Compared with [51], we put the SE module after PWConv,
which makes the parameters of the model smaller. A residual
structure is used to solve the problem of gradient dispersion.
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IV. EXPERIMENTS SETUP

In this section, we will introduce the dataset and experimen-
tal details used in our study, as well as the evaluation metrics
used to assess the performance of our algorithm.

A. Corpus Description

To verify the performance of our proposed algorithm, per-
formance tests on two benchmark databases are conducted, on
which we will evaluate our algorithm.

Actually, Interactive Emotional Dyadic Motion Capture
(IEMOCAP) [52] is an action, multimodal, and multimodal
database that contains data from 10 actors and actresses
during an emotional binary interaction, with two speakers
(one male and one female) speaking in each session. The
IEMOCAP database has been annotated by several annotators
with categorical labels and dimensional labels. The database
combines discrete and dimensional sentiment models. In our
work, the method used improvisational and scripted data,
choose anger, happiness, neutral, sadness and excitement as
basic emotions, and merge happy and excited into happy. We
partitioned the IEMOCAP dataset into training and testing sets
by randomly selecting 80% and 20% of the data, respectively.

To valid our method robustness, we tested our method
in other datasets. The Berlin Emotional Database (Emo-DB)
[53] is a German emotional speech database recorded by
the Technical University of Berlin. The database includes
recordings of ten actors, comprising of five male and five
female, who simulate seven emotions, including neutral, anger,
fear, joy, sadness, disgust, and boredom, on ten sentences
(five short and five long), resulting in a total of 535 speech
recordings (233 male and 302 female). It has high emotional
freedom, adopts 16 kHz sampling, and 16-bit quantization, and
saves files in WAV format. It is a discrete emotional language
database, and the excitation method is performance type.

B. Implementation Details

In the feature generation phase, the method uses the mel-
frequency cepstrum coefficients (MFCCs) extracted by 26 Mel
filters as the feature input. Meanwhile it divided each input
speech into 1.8 seconds of speech segments, and the overlap
between segments is 1.6 seconds, which can generate a large
number of speech samples to solve the problem of scarcity of
data set samples in SER. To obtain the prediction result for a
sentence in the test set, we take the average of the prediction
results of all speech segments within that sentence. Our model
trained a total of 150 epochs, used the cross entropy criterion
as the objective function, and used the Adam optimizer. The
weight decay rate is 10−6, the learning rate and the mini-
batch size are set to 0.001 and 128, respectively, and the
multiplication factor 0.95 is exponentially decayed until the
value reaches 10−6. Our experiment is carried out on Ubuntu
18.04 with a GeForce RTX 2080ti GPU, and we utilized
Pytorch 1.7 as the training framework.

In addition, we use the method of mixup [54] to train, so
as to improve the generalization ability of the system. This
method constructs new training samples and labels by linear

interpolation, and effectively smoothes the discrete data space
into continuous space. In our proposed model, we set α to 0.2
for best performance.

C. Evaluation Metrics

In this section, we’ll describe in detail the criteria we use
to evaluate the performance of our algorithms. For various
categories of performance in the dataset, Precision, Recall, and
F1-score are the general metrics to measure their performance.
First of all, four concepts will be introduced: True Positive
(TP), False Positive (FP), True Negative (TN), and False
Negative (FN), where TP means actual positive and predicted
positive, FP means actual positive and predicted negative, TN
means actual negative and predicted positive, and FN means
actual negative and predicted negative. The Precision, Recall,
and F1-score can be expressed as:

Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

F1− score =
precisio× recall × 2

precision+ recall
(24)

To evaluate the overall performance of our model, weighted
average accuracy (WA) and unweighted average accuracy
(UA) will be used as evaluation metrics, where WA is the
weighted average accuracy of different sentiment categories,
and its weight is related to the number of sentiment categories,
and UA is the average accuracy of different sentiment cate-
gories. The validity of the model is better evaluated in the
context of unbalanced SER dataset samples. The calculation
methods for these two metrics are as follows:

Acci =
TPi

TPi + FPi
(25)

WA =

∑C
i=1 Ni ×Acci∑C

i=1 Ni

(26)

UA =
1

C

C∑
i=1

Acci (27)

Among them, C represents the number of emotional cate-
gories, and Ni represents the number of samples of class i.

V. RESULTS

In this section, we conduct extensive experiments to evaluate
the performance of our method on two datasets. The section
mainly compares our proposed model with state-of-the-art
baselines, and then verify the effectiveness of our proposed
modules through ablation experiments.
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A. Comparison with State-of-the-Art
To compare with our proposed model, we evaluate the

performance of the algorithm from the WA and UA perspective
with a series of existing methods in IEMOCAP and Emo-DB
datasets, as shown in Table I and Table II. The proposed model
is compared with several commonly used speech emotion
recognition models, including algorithms based on the combi-
nation of CNN and transformer [19], CNN-based algorithms
[14] [55], LSTM-based algorithms [56] [57], attention-based
methods [21] [58], and some other algorithms.

TABLE I
COMPARISON ON IEMOCAP

Comparative Methods WA UA

Latif et al. [59] - 68.8
Hu et al. [19] 69.73 70.11
Guo et al. [21] 61.32 60.43
Gao et al. [60] 70.34 70.82

Wang et al. [57] 69.40 69.50
Latif et al. [56] - 64.10
Liu et al. [14] 70.34 70.78
Dai et al. [61] 65.40 66.90

Proposed 71.64 72.72

TABLE II
COMPARISON ON EMO-DB

Comparative Methods WA UA

Tuncer et al. [62] 90.09 89.47
Li et al. [58] 83.30 82.10

Zhong et al. [63] 85.76 86.12
Kerkeni et al. [64] - 86.22
Suganya et al. [55] - 85.62

Proposed 90.65 89.51

To verify the performance of our proposed method, we
compare it with other speech emotion recognition algorithms
in IEMOCAP and Emo-DB datasets. The results are shown in
Table I and Table II.

For IEMOCAP dataset, as shown in Table I, our proposed
method outperforms other methods. In addition, compared
with the simple splicing of transformer and CNN [19], our
method achieves the best results through the ingenious design
of local and global feature extraction. Compared to tradi-
tional spatial and channel attention [21], temporal attention
information makes it more competitive. In addition, for the
CNN or LSTM-based method [14] [57] [56] [61], our method
introduces global information through a lightweight trans-
former module to bring more comprehensive features to the
system, and also shows that our transformer module has a
stronger ability to obtain global information than some capsule
networks. Finally, our method is as competitive as the method
using semi-supervised methods [59] and pre-trained models
[60].

For Emo-DB dataset, as shown in Table II, our proposed
method outperforms several methods. Similar to the perfor-
mance in IEMOCAP dataset, our attention mechanism and

local-global model have significant advantages over traditional
attention and CNN-based models [58] [63] [55]. In addition,
Emo-DB dataset is a smaller dataset. Compared with non-deep
learning feature extraction and feature learning methods [62]
[64], our overall end-to-end network based on deep learning
also has a relatively better performance on this small dataset,
indicating that our method still has excellent robustness on
small datasets.

In summary, combining the performance of these two
datasets proves the superiority of our proposed method.

B. Results and Analysis

In this section, Table III and Table IV list the Precision,
Recall, F1-score, and overall WA and UA for each sentiment
category in IEMOCAP dataset and Emo-DB dataset, respec-
tively. In addition, the confusion matrices are visualized of the
two datasets in Fig. 4 and Fig. 5, where the diagonal indicates
that the sentiment is correctly classified, and other locations
indicate that the sentiment is misclassified as other sentiments.
The darker the color in the grid while higher the accuracy.

TABLE III
CONFUSION MATRIX OF THE PROPOSED MODEL ON IEMOCAP

Emotion Precision Recall F1-score

Neural 72.88 62.32 67.19
Sad 70.51 75.00 72.68

Angry 74.43 79.13 76.71
Happy 69.68 74.43 71.98

WA 71.64
UA 72.72

TABLE IV
CONFUSION MATRIX OF THE PROPOSED MODEL ON EMO-DB

Emotion Precision Recall F1-score

Neural 86.67 100.00 92.86
Sad 94.44 100.00 97.14

Angry 88.00 95.65 91.67
Happy 83.33 83.33 83.33

Boredom 100.00 93.75 96.77
Disgust 100.00 76.92 86.96

Fear 83.33 76.92 80.00

WA 90.65
UA 89.51

For IEMOCAP dataset, as shown in Table IV and Fig. 4,
our proposed model achieves good results on this dataset and
has good accuracy for all four emotions, especially sadness,
anger and happiness. Among these four emotions, anger has
the highest recognition accuracy, while neutral has the lowest
recognition accuracy. Sadness, anger and happiness will be
misjudged as neutral in some cases. The result is similar
to that in [65], which also verifies that neutral emotion is
a defect of expression. This emotion is easily expressed as
other emotions, which makes the model misjudged. Therefore,
neutral emotions are easily confused with other emotions.
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(a) (b)
Fig. 4. Visualization the confusion matrices of the proposed method: (a) Confusion matrix on IEMOCAP; (b) Confusion matrix on Emo-DB.

For Emo-DB dataset, as shown in Table IV and Fig.
5, our proposed model also achieved good results on this
dataset, and has good accuracy for seven emotions. The three
emotions achieved 100% accuracy, and Angry also achieved
96% accuracy. In addition, the wrong judgment in happiness is
anger. We believe that this is because these two emotions have
similar arousal, while the wrong judgment in disgust is fear.
Finally, the accuracy of fear is lower than that of other emotion
categories, but it also achieves relatively good results. In some
cases, fear is easily misjudged as sad, angry and happy, this
is because these four emotions have a high degree of arousal.

TABLE V
PERFORMANCE WITH DIFFERENT EXPERIMENTAL SETTINGS

Models WA UA

W/o T-Sa 69.92 71.18
W/o lstm attention 67.84 69.62

W/o LCT 67.12 68.93
W/ Conv-LCT 68.29 69.98

W/o CA 69.29 70.12
W/o SE 69.92 71.31

Proposed 71.64 72.72

C. Ablation Study

To explore the role of each part of our proposed model,
Table V shows the results of a series of ablation experiments.
The following are the modules for comparison.

• W/o T-Sa: This module removes the T-Sa module from
our model, using only the CNN Block and LCT Block
sections.

• W/o lstm attention: This module removes the temporal
attention lstm attention part in our T-Sa module, and the
other parts are retained.

• W/o LCT: This module removes the LCT module in our
model and only uses the CNN Block and T-Sa parts.

• W/ Conv-LCT: This module replaces the LLC module in
our LCT module with a 3 × 3 convolution, and the rest
is preserved.

• W/o CA: This module removes the CA portion of our
LCT module and preserves the rest.

• W/o SE: This module removes the SE Attention part of
our LCT module, and the other parts are retained.

It can be seen from the table that when using the T-Sa
module, our method has an absolute improvement of 1.2%
and 1.54% in WA and UA, indicating that our attention
mechanism module has a very significant effect and can
aggregate the noteworthy parts of the features. In addition,
when the temporal attention is removed, the model effect is
also greatly reduced, indicating that temporal attention plays
a non-important role in our model to enhance the temporal
information in speech. We also directly removed the LCT
module, which caused the performance of the model to be
reduced by 4.52% and 3.79% on WA and UA, it clearly shows
the importance of introducing global information into our LCT
module.

For our LCT part, our experiments also verified the role
of different modules within the LCT. Firstly, the LLC part is
replaced with a 3×3 ordinary convolution, which reduces the
performance of the model by 3.35% and 2.74% on WA and
UA, and the number of parameters has also been improved.
This shows that the wider receptive field brought by our large
convolution kernel LLC module is very important, and it does
not bring a larger number of parameters. In order to verify
the role of our CA module, we removed the CA module,
which caused the performance of the model to decrease
by 2.35% and 2.6% on WA and UA, indicating that the
time-frequency domain representation of the speech features
enhanced by the CA module is of vital importance. Finally,
the SE Attention part in our SE-IBFFN is removed, which
reduces the performance of the model by 1.72% and 1.41%
on WA and UA. It also proves that using the SE module to
obtain the attention of the feature map channel dimension can
improve the performance of the model to recognize emotions.

D. Model Efficiency Analysis

In order to explore the size and efficiency of the proposed
model, Table VI presents a comparison of the parameter
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TABLE VI
COMPARISON OF MODEL PARAMETERS AND ACCURACY

Models Params WA UA

W/ Conv-LCT 1,404,922 68.29 69.98
W/ConvFFN-LCT-L 10,390,522 70.46 72.14
W/ConvFFN-LCT-S 2,526,202 68.83 69.71

W/Transformer 1,357,810 69.38 70.43
W/MobileVitv1 block-depth2 [66] 2,036,458 70.01 70.98
W/MobileVitv1 block-depth3 [66] 2,726,506 66.58 67.30
W/MobileVitv2 block-depth2 [67] 937,898 68.29 69.68
W/MobileVitv2 block-depth3 [67] 1,086,634 67.12 69.79
W/MobileVitv3 block-depth2 [68] 661,162 69.20 70.14
W/MobileVitv3 block-depth3 [68] 884,010 68.47 69.73

Proposed 1,031,674 71.64 72.72

counts and accuracy between our model and other models.
The following are the modules we designed for comparison.

• W/ Conv-LCT: This module replaces the LLC module in
our LCT module with a 3× 3 convolution and the other
parts are retained.

• w/ ConvFFN-LCT-L: This module replaces the first PW
convolution and DW convolution in the SE-IBFFN mod-
ule of our LCT module with a 7× 7 convolution and the
other parts are retained.

• W/ ConvFFN-LCT-S: This module replaces the first PW
convolution and DW convolution in the SE-IBFFN mod-
ule of our LCT module with a 3× 3 convolution and the
other parts are retained.

• W/Transformer: This module replaces CA-LMAM and
SE-IBFFN with traditional transformer, which is the same
as the setting of LCT.

• W/ MobileVit block: This module replaces our LCT
module with the MobileVit block of various series of
Mobile Vit, with an input channel size of 128 and a depth
of 2 or 3. The intermediate layer size of the MLP is set
to 4 times of the input channel size for all versions. For
v1 and v2, the number of intermediate layers is 192, and
for v3, the number of intermediate layers is 128.

From the Table VI, it can be seen that when the LLC
module in LCT is replaced with a regular convolution, the
number of parameters increases and the accuracy is lower
than that of the LLC module. This indicates that LLC has
better accuracy with fewer parameters. Additionally, when the
first PW and DW convolutions in SE-IBFFN are replaced
with regular convolutions, the number of parameters increases
significantly, and the accuracy is still lower than the original
model. We also reduced the size of the convolution kernel to
3×3, which improved the number of parameters, but it is still
larger than the original SE-IBFFN, and the accuracy decreased.
This suggests that the SE-IBFFN module did not bring a huge
number of parameters while using a larger convolution kernel
to achieve a larger receptive field, and the accuracy is still
excellent.

Additionally, we attempted to replace CA-LMAM and SE-
IBFFN in LCT with traditional transformers, and experimental
results showed that the traditional transformer has a larger

number of parameters and a decrease in accuracy compared
to LCT, with a decrease of 2.23% and 2.29%, respectively. The
entire LCT module was also replaced with other transformer
models, including the MobileVit series which combines CNN
and Vit and is a lightweight transformer model. The MobileVit
block in each series was used to replace LCT, and the results
showed that the parameter size of the MobileVitv3 block is
smaller than LCT, but there is still a gap in accuracy. The
performance of the two-layer MobileVitv1 block was the best,
but it still did not reach the accuracy of LCT. Additionally,
we found that models with a depth of 2 performed better than
those with a depth of 3, due to the difficulty of fitting to small
SER datasets as the number of parameters increases.

VI. CONCLUSION

In this study, to better model local and global features
of speech signals at different levels of granularity in SER
and capture temporal, spatial and channel dependencies in
speech signals, we propose a Speech Emotion Recognition
network based on CNN-Transformer and multi-dimensional
attention mechanisms. The network consists of three modules.
First, a CNN block is used to model time-frequency domain
information in speech, capturing preliminary local information
in speech. Second, we propose a T-Sa network to model
the emotional expression context of features over time and
efficiently fuse the spatial and channel dimensions of speech
feature maps through Shuffle units. Finally, to efficiently fuse
local information and long-distance dependencies in speech,
we propose an LCT module that uses lightweight convolu-
tional modules and introduces Coordinate Attention into multi-
head self-attention. This allows for the fusion of features at
different levels of granularity while enhancing information in
the time-frequency domain of features without introducing a
high number of parameters.

In future work, in addition to MFCC features, we will
try more hierarchical speech features and combine current
CNN and transformer structures to improve the performance
of Speech Emotion Recognition from multiple feature dimen-
sions.
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