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aMathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, United Kingdom and

bDepartment of Theoretical Physics, CERN, 1211 Meyrin, Switzerland∗

We show that crossing symmetry of S-matrices is modified in certain theories with non-invertible
symmetries or anomalies. Focusing on integrable flows to gapped phases in two dimensions, we
find that S-matrices derived previously from the bootstrap approach are incompatible with non-
invertible symmetries along the flow. We present consistent alternatives, which however violate
standard crossing symmetry and obey modified rules dictated by fusion categories. We extend these
rules to theories with discrete anomalies.

I. INTRODUCTION

Symmetries and anomalies are fundamental concepts
in theoretical physics. They constrain the dynamics of
quantum field theory (QFT) by forbidding or guarantee-
ing certain interactions to be generated along the renor-
malization group (RG) flow and offer insights into in-
frared (IR) phases. They also play a crucial role in
interpreting collider experiment data; symmetries pro-
vide organizing principles for particles and resonances
while anomalies, like the Adler-Bell-Jackiw anomaly, are
needed to explain experimental observations such as
π0 → γγ decay.

Recent theoretical progress involves refinement of these
concepts, such as higher-form or non-invertible symme-
tries [1–5] and various non-perturbative anomalies [6–12].
However, unlike their traditional counterparts, their im-
plication on scattering amplitudes remains largely unex-
plored. This paper initiates such a study, with a pri-
mary focus on theories in two spacetime dimensions. The
punchline of our analysis is simple yet striking:

Crossing symmetry of S-matrices is modified in the pres-
ence of certain non-invertible symmetries or anomalies.

Our main examples are RG flows from unitary minimal
models to gapped phases which preserve both integra-
bility and non-invertible symmetries. We show that the
basic four properties that one would postulate for these
S-matrices — unitarity, crossing symmetry, Yang-Baxter
equation and non-invertible symmetries — are mutually
incompatible. We derive S-matrices satisfying all but
crossing symmetry by modifying existing proposals in the
literature. They obey modified crossing rules determined
by fusion categories. These rules extend to theories with
discrete anomalies as we see in the example of perturbed
SU(2)1 Wess-Zumino-Witten (WZW) model.

II. REVIEW OF BASIC CONCEPTS

A. Categorical symmetries in 1 + 1 dimensions

Non-invertible symmetry is a generalization of stan-
dard symmetries, which does not obey group multiplica-
tion laws. In 1 + 1 dimensions, such symmetries are de-

scribed by a set of topological line operators La belonging
to a (unitary) fusion category [13] C, as we review below.
We will follow the conventions of [14, 15]. For physics
applications, see e.g. [5, 15–26].

Fusion algebra and junction

Topological lines satisfy the fusion algebra,

LaLb =
∑
Lc

Nab
cLc , (1)

with non-negative integersNab
c. Not all La’s have inverse

i.e. La(La)
−1 = 1, rendering them ‘non-invertible’. Line

operators can form trivalent junctions. For a given set of
lines (La,b,c), there can be multiple such choices, which
form finite-dimensional vector spaces. We denote them
by Vab

c or Vc
ab, depending on the orientation,

(2)

and dim(Vab
c) = Nab

c. The junctions satisfy orthogonal-
ity and completeness relations,

= δabδxy

√
dcdd
da

(3)

and

=
∑
Lc, x

√
dc

da db
(4)
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Here da is the quantum dimension, defined by the expec-
tation value1 of a closed loop of La:

⟨La⟩ = = da . (5)

Below we omit the junction labels (x and x†) since
dim(Vab

c) = 0 or 1 in our examples. We also omit the ar-
rows as we will discuss unoriented lines for which L̄ = L.

F-symbols and tetrahedral symbols

Also important in the fusion category are the F-
symbols, which relate different networks of lines:

=
∑
y

F abc
d xy (6)

They satisfy a consistency condition known as the pen-
tagon identity [13, 27]. In actual computations, it is con-
venient to use the tetrahedral symbols defined by2[

a b x
c d y

]
=

1√
dxdy

F abc
d xy . (7)

F -symbols encode the ’t Hooft anomalies of a symmetry
C. For a discrete groupG, admissible F -symbols are given
by cohomology classes ω ∈ H3(G,U(1)). A nontrivial ω
signals an ’t Hooft anomaly. The simplest example is
G = Z2 with generator η, for which the F -symbol is a
sign ϵ = ±1:

= ϵ (8)

The symmetry is anomalous iff ϵ = −1. In general, (non-
invertible) symmetries are anomalous if there is no fiber
functor i.e. a C symmetric invertible topological QFT
(TQFT) [20]. The anomalies of non-invertible symme-
tries have been studied in e.g. [5, 28–31].

Symmetry constraints and action on vacua

Non-invertible symmetries can constrain the number of
vacua in the IR. In a C-symmetric RG flow to a gapped

1 Precisely speaking, ⟨L⟩ on a plane can differ from the quantum
dimension by a phase due to the isotopy anomaly [5]. For in-
stance, ⟨LZ2 ⟩ = −1 if Z2 is anomalous.

2 Explicit expressions for these symbols in our examples are given
in Supplemental Material.

phase, these must form a module category over C (see
e.g. [20, 32, 33]), which generalizes the notion of group
representations to fusion categories. Concretely, the ac-
tion on the vacua |i⟩ on a (large) circle reads

La|i⟩ =
∑
j

nai
j |j⟩ . (9)

where nai
j provide a representation of the fusion algebra:∑

j

nai
j nbj

k =
∑
c

Nab
cnci

k . (10)

In addition, nai
j need to be non-negative integers; this

can be shown by relating them to the ground-state de-
generacy on a strip3:

nai
j = = (11)

A complete description of the module structure can be
found e.g. in [13, 32]. Unlike standard (non-anomalous)
symmetries, such representations are highly constrained,
often lacking the trivial representation and thus forbid-
ding a single vacuum in the IR.4 A necessary (but not
sufficient) condition for a single vacuum is da ∈ N>0 for
any a, since na0

0 = da when the vacuum is unique. In
our examples, this condition is violated and hence the IR
has multiple vacua.

Of particular importance is the regular representation;
the largest irreducible representation corresponding to
the choice {i} = {a} and nab

c = Nab
c . In such cases,

all the vacua can be obtained from the ‘identity vacuum’
|0⟩ by acting La:

La|0⟩ = |a⟩ . (12)

Physically, this encodes the spontaneous symmetry
breaking of C, realized for example by ϕ1,3-deformations
of minimal models discussed below.

B. Integrable scattering in 1 + 1 dimensions

Integrable QFTs in 1+1 dimensions offer rare instances
of interacting QFTs for which exact computations are
possible [34, 35]. This is due to factorized scattering —
a property that all scattering processes can be expressed
as a sequence of two-body scatterings — which in turn is
a result of higher spin conserved currents [36, 37].

3 Here we consider an infinitely large cylinder in order to project
to the ground states.

4 A ’trivial’ representation, if it exists, corresponds to the afore-
mentioned fiber functor.
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S-matrix axioms

Consider 2 → 2 S-matrices of identical mass m par-
ticles. They depend on the center of mass energy s =
(p1 + p2)

2 = 4m4 cosh2(θ/2), where θ is the rapidity dif-
ference θ ≡ θ12 = θ1 − θ2. As our focus will be on S-
matrices of kinks interpolating between different vacua
(denoted by a-d below), we denote them by

Sab
dc (θ) = (13)

Crossing symmetry exchanges in and out particles. In
the figure above, it amounts to changing the time direc-
tion from going upward to going rightward and corre-
sponds to the following relation

Sab
dc (θ) = = = Sbc

ad(iπ − θ) .

(14)
In integrable QFTs, the S-matrices obey further con-
straints: Unitarity amounts to the equality

∑
e

Seb
dc(θ)S

ab
de(−θ) = = δac (15)

while factorized scattering implies that S-matrices obey
the Yang-Baxter equations∑
g
Sgd
fe(θ12)S

bc
gd(θ13)S

ab
fg(θ23) =

∑
g
Sgc
ed(θ23)S

ag
fe(θ13)S

bc
ag(θ12)

∑
g

=
∑
g

(16)

C. Minimal models and deformations

Canonical examples of QFTs with non-invertible sym-
metries are diagonal unitary minimal models Mn =
Mn+1,n and their relevant deformations. As is well-
known [38], Mn has a set of primary fields ϕr,s (1 ≤
r ≤ n − 1, 1 ≤ s ≤ n) subject to the identification
ϕr,s = ϕn−r,n+1−s. It also hosts topological lines Lr,s

[5, 39] whose fusion algebra coincides with that of pri-
mary fields. For instance, the Ising model M3 has three
topological lines 1,N , η, corresponding to ϕ1,1, ϕ1,2, ϕ1,3,
which satisfy

η2 = 1 , Nη = ηN = N , N 2 = 1 + η . (17)

The symmetry of Mn contains a simple subcategory
An−1 = {Lr,1 , 1 ≤ r ≤ n − 1}. Its fusion algebra coin-
cides with that of SU(2)n−2 although the F -symbols are
different.

ϕ1,3-deformation

Relevant deformations of Mn by ϕ1,3 (Mn + λ
∫
ϕ1,3)

have several interesting properties:

• Depending on the sign of the deformation, they ei-
ther flow to Mn−1 (λ > 0) or to a gapped phase
with n− 1 degenerate vacua (λ < 0).

• They preserve integrability [40, 41].

• They also preserve a non-invertible An−1 symme-
try. See [5, 42] and Supplemental Material for de-
tails. The vacua in the gapped phase transform as
the regular representation of An−1.

Other deformations

Deformations by ϕ1,2 or ϕ2,1 also preserve integrabil-
ity [40, 43–45]. They flow to gapped phases irrespective
of the sign of the deformation and preserve the subcate-
gories generated by L3,1 and L1,3 respectively. Later we
study in detail the ϕ2,1-deformation of the tricritical Ising
model (M4).

III. S-MATRICES WITH MODIFIED CROSSING

We now discuss examples with modified crossing rela-
tion. We determine exact S-matrices by requiring consis-
tency with symmetries and anomalies. The results differ
from those in the literature and satisfy modified crossing
rules. A physical derivation of these rules will be pre-
sented in section IV.

A. Gapped flows from minimal models

Conjecture in the literature

The first example is the ϕ1,3-deformation of Mn to a
gapped phase. The spectrum of this flow consists of kinks
interpolating between neighboring vacua, all with identi-
cal mass m. S-matrices for these kinks were conjectured
in [46–48] based on bootstrap, i.e. by imposing unitarity,
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crossing symmetry and Yang-Baxter equation. They take
the Restricted-Solid-On-Solid (RSOS) form [49] and read

Ŝab
dc (θ) = Z(θ)

(
dadc

dbdd

) iθ
2π

[√
dadc
dbdd

sinh
(
θ
n

)
δbd + sinh

(
iπ−θ
n

)
δac

]
,

(18)
Here a, b, c, d = 0, 1/2, . . . , n/2− 1 label the n− 1 vacua

(adjacent vacua differ by 1/2) and da = sin[(2a+1)π/n]
sin(π/n) .

The prefactor Z(θ) is crossing symmetric and is neces-
sary for unitarity (see Supplemental Material). As we
see below, these S-matrices turn out to be incompatible
with non-invertible symmetries preserved along the flow.

Ward identity

When the theory has a line L as its symmetry, the
S-matrix satisfies the Ward identity (WI),

∑
g

=
∑
g

(19)

WI for non-invertible symmetries relates a single matrix
element to a sum of matrix elements and imposes highly
non-trivial constraints on the amplitudes5.
As we will derive in section IVA, the action of the

symmetry line on a kink is given by (cf. [15])

= (dada′dbdb′)
1/4

[
φ a′ a
v b b′

]
. (20)

Using (20), we found that the S-matrices in the litera-
ture (18) fail to satisfy (19). This poses a sharp puzzle;
mutual incompatibility of unitarity, crossing symmetry,
Yang-Baxter equation and non-invertible symmetry.

A new proposal

Since integrability and non-invertible symmetry are es-
tablished facts in conformal perturbation theory [5, 40],
and unitarity is fundamental, the only viable option is
to relinquish crossing symmetry. Indeed we found S-
matrices that satisfy all but crossing symmetry:

Sab
dc (θ) = Z(θ)

[√
dadc
dbdd

sinh
(
θ
n

)
δbd + sinh

(
iπ−θ
n

)
δac

]
,

(21)

5 See Supplemental Material for explicit forms of constraints for
the flow from tricritical Ising model.

These differ from (18) by a factor6
(

dadc

dbdd

) iθ
2π

and obey

the modified crossing relation,

Sab
dc (θ) =

√
dadc
dbdd

Sbc
ad(iπ − θ) . (22)

We propose that (21) is the correct S-matrix of this the-
ory and provide a physical explanation of the modified
crossing (22) in section IVB.

ϕ2,1-deformation of tricritical Ising model

Another example where standard crossing is incom-
patible with non-invertible symmetries is the ϕ2,1-
deformation of the tricritical Ising model. In this case
there are two vacua [50] and the flow preserves the Fi-
bonacci fusion category with elements {1,W} [5]. The
spectrum consists of a kink, an anti-kink and a bound
state, all with equal mass due to the non-invertible sym-
metry [51]. The S-matrix compatible with non-invertible
symmetries is

Sab
dc (θ) = R(θ)

[√
dadc

dbdb
sinh

(
θ

5/9

)
δbd + sinh

(
iπ−θ
5/9

)
δac

]
,

(23)

where a, b, c, d = {1,W} and d1 = 1 and dW = 1+
√
5

2 .
The overall factor R(θ) is given in the Supplemental Ma-
terial. The amplitude obeys the same modified crossing
(22).

In the literature, several different proposals exist for
the S-matrix of this theory [43–45, 52]. Our result sup-
ports the one in [44, 45], whose validity has not been
established in the past as it violates standard crossing.

B. Perturbed SU(2)1 WZW model

We next consider the JJ̄-deformed SU(2)1 WZW
model [53, 54]; a prime example where standard crossing
clashes with the Z2 ’t Hooft anomaly. The undeformed

theory has G = SU(2)L×SU(2)R
Z2

symmetry, which reduces

to Z2 × SO(3)V upon deformation,7 with the Z2 sym-
metry being anomalous. Due to the anomaly, the model
cannot be trivially gapped, and has two degenerate vacua
[53]. Alternatively it can be described as a compact scalar
X ∼ X + 2πR at the self-dual radius R =

√
2 with the

deformation,

JaJ̄a = cos (2X/R) , (24)

6 The factor drops out in the derivation of Thermodynamic Bethe
ansatz (TBA), so that both amplitudes are compatible with
known TBA results.

7 We thank Shu-Heng Shao and Yifan Wang for noting an error in
the previous version of this section.
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FIG. 1. Kinks (solid lines) and anti-kinks (dashed lines) con-
necting the minima of the potential. Both come with two-fold
degeneracy (blue and yellow) due to the Kramers degeneracy.

which has two minima at X = ±πR/2. This breaks the
U(1)m × U(1)w symmetry to (Z2)m × U(1)w with the

anomalous Z2 being the diagonal Zdiag
2 . This description

allows one to write kink-creation operators near the UV
fixed point8 [55]

K± =
{
V 1

2 ,
1
2
, V 1

2 ,−
1
2

}
, K̄± =

{
V− 1

2 ,−
1
2
, V− 1

2 ,
1
2

}
, (25)

where Vm,w is a vertex operator with momentum m and
winding w. As they have half-units of m and w, these op-
erators are endpoints of Zdiag

2 , indicating that kink world-

lines act as symmetry lines of Zdiag
2 .

As shown in [56, 57], the Z2 anomaly induces the time
reversal anomaly T 2 = −1 on such kink worldlines, im-
plying the two-fold Kramers degeneracy of kinks. Here
it simply corresponds to two different ways of connecting
the two vacua, see Figure 1.
The S-matrix of these (anti-)kinks has a tensor-product

structure [53, 54], SRSOS2
⊗ Š, where SRSOS2

is a trivial
factor that distinguishes the two vacua (denoted by ±)

SRSOS2 : = = 1 , (26)

while Š is the scattering among Kramers pairs [53, 54, 58]

Šab
dc (θ) = = S0(θ)

θ δac δ
b
d − iπ δbcδ

a
d

θ − iπ
, (27)

with a, b, c, d = {1, 2} and

S0(θ) = −Γ(1− θ/2πi)Γ(1/2 + θ/2πi)

Γ(1 + θ/2πi)Γ(1/2− θ/2πi)
. (28)

One can verify that Š violates standard crossing rule
by a sign:

Šab
dc (θ) = −Ccc′ Š

bc′

a′d(iπ − θ)Ca′a , (29)

8 These operators are singled out by imposing 1. they have a half-
unit of winding since kinks interpolate between two vacua, 2. they
need to be purely holomorphic or anti-holomorphic since kinks
are massless in the UV.

where C is the charge conjugation matrix satisfying CT =
−C and C12 = −C21 = −1. Note that C2 = −1 as ex-
pected from the time-reversal anomaly on the worldline.9

This violation of crossing was already noted in the liter-
ature [54] but a physical origin was not elucidated. In
section IVB, we show that the extra sign in (29) is due
to the Z2 anomaly.
A couple of comments are in order: 1. the deformation

(24) is different from the standard sine-Gordon model
with the potential cos(X/R). In the latter case, the
vacuum is unique and there is no Z2 anomaly. Hence
it satisfies standard crossing. 2. the compact boson
with the deformation (24) (called SG(β, 2) in [52, 55])
is Z2-anomalous and obeys the modified crossing, even
at R ̸=

√
2 . See the Supplemental Material for details.

IV. DERIVATION OF SYMMETRY ACTION
AND MODIFIED CROSSING

A. Action of symmetry lines

We now derive the action of symmetry lines on kinks
(20) by studying states on a line with specified boundary
conditions at infinity indicating the vacua10. We denote
them by |ψ⟩⟩ to distinguish them from states on a circle.
We begin by evaluating a path integral on a large Eu-

clidean disk with radius R(≫ m−1), where fields ap-
proach the vacuum ‘0’ at the boundary. This computes
the norm of |0⟩⟩ on a line, which we normalize to be 1.

⟨⟨0|0⟩⟩ = = 1 . (30)

Since the vacua transform as the regular representation
(cf. (12)), the norms of other vacua |a⟩⟩ can be computed
by inserting a loop of La on the disk. Since ⟨La⟩ = da,
we get11

|a⟩⟩ = , ⟨⟨a|a⟩⟩ = = da . (31)

Next consider a matrix element of Lφ on normalized

states,
⟨⟨b|Lφ|a⟩⟩√
⟨⟨a|a⟩⟩⟨⟨b|b⟩⟩

. This can be represented in the path

integral as

⟨⟨b|Lφ|a⟩⟩√
⟨⟨a|a⟩⟩⟨⟨b|b⟩⟩

=
1√
dadb

(32)

9 This follows from CT being anomaly-free on the worldline.
10 This is essentially the same as ‘open’ Hilbert space discussed

e.g. in [32].
11 In CFTs, da is related to a ratio of g-functions da = ga/g0.



6

Using (3) and (5), we evaluate the network of lines as

=
√
dadbdφNφa

b . (33)

This shows that, when computing the action on an infi-
nite line, each Lφ needs to be divided by

√
dφ in order

to realize the correct action:

L̂φ =
1√
dφ

(34)

Finally we consider a state with a single kink be-
tween two vacua, a and b. The kink interpolates between
neighboring vacua and, in the IR limit, its effect on the
vacua is identical to that of the symmetry line Lv, with
v = 1

2 for the ϕ1,3-deformations and v = W for the ϕ2,1-
deformation of the tricritical Ising model.12 Thus, the
state can be represented by the path integral:

|a; b⟩⟩ = (35)

Its norm can be computed using (33) as ⟨⟨a; b|a; b⟩⟩ =√
dadbdv. A matrix element of L̂φ on normalized states

can be computed using (3), (4) and (6) as13

⟨⟨a′;b′|L̂φ|a;b⟩⟩√
⟨⟨a;b|a;b⟩⟩⟨⟨a′;b′|a′;b′⟩⟩

=
(
dada′dbdb′d

2
vd

2
ϕ

)− 1
4

= (dada′dbdb′)
1/4

[
φ a′ a
v b b′

]
,

(36)
which gives (20).

B. Modified crossing

We now present a general derivation of modified cross-
ing rules of S-matrices. As we see below, the main reasons
for the modification are

• The IR dynamics is described by a nontrivial
TQFT.

• Normalizations of in- and out-states receive correc-
tions from the TQFT degrees of freedom.

12 In the generic case, identifying the line v involves determining
the UV CFT counterpart of the kink creation operator, which is
an operator in the v-twisted sector.

13 Note that the lines v and φ do not intersect (i.e. there is no
junction between them). This choice is motivated by 1. the sym-
metry line should not act directly on kinks; rather its action
on kinks should derive automatically from the action on vacua.
2. Eq. (36) coincides with the action of symmetry lines on lattice
models studied in [15].

• The corrections are different between s- and t-
channels.

The derivation does not rely on integrability. Thus the
modified crossing rule (42) should be applicable to non-
integrable theories as well.

Derivation

The Lehmann–Symanzik–Zimmermann (LSZ) reduc-
tion formula, commonly used to derive S-matrices from
local operator correlation functions, is not applicable in
our cases due to the non-locality of kink-creation opera-
tors attached to lines. Instead, we adopt an alternative
formalism linking the S-matrix to correlation functions
on two Cauchy slices [59, Ch. 5]. This is expressed as
[60]14:

S({pi}) = limT→∞
∫ ∏

j dvje
ipjx(vj)

∏
k(nk ·

↔
∂ xk

)G({x(vk)}) ,
(37)

where xµ(v) parametrizes past and future Cauchy sur-
faces, T denotes the time separation between them, nk
are unit normal vectors at points vk, and G({x(vk)}) rep-
resents a correlation function with kink-creation opera-
tors inserted at vk.

By analytic continuation, G({x(vk)}) is related to a
correlation function on a large Euclidean disk with appro-
priate boundary condition changing operators that cre-
ate kinks. Thus the S-matrix of kinks can be expressed
schematically as

Sab
dc (θ) ∝

∣∣∣∣∣
analyt. cont.

(38)

However, to ensure standard unitarity, we must take into
account normalizations of in- and out-states,

|in⟩⟩ = , |out⟩⟩ = , (39)

which are given by networks of lines, 15

⟨⟨in|in⟩⟩ = , ⟨⟨out|out⟩⟩ = .

(40)

14 Strictly speaking, the formula has not been derived for non-local
operators such as kink-creation operators. However it was proven
useful in another context in which non-locality is present [60],
and we assume that it also holds in our case. Also, here we
are assuming implicitly that operator insertions in G({x}) are
approriately normalized so that it gives unitary S-matrix.

15 Here we are stripping out the usual momentum dependent nor-
malization of the two-particle state in terms of the (squared)
center of mass energy s = (p1 + p2)2

⟨p′1, p′2|p1, p2⟩ = (2π)2 2
√
s
√

s− 4m2 δ2(p1 + p2 − p′1 − p′2) .
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Physically, these represent corrections to normalizations
of in- and out-states due to the TQFT dynamics. Thus
the S-matrix between normalized states, which satisfies
standard unitarity, is given by

Sab
dc (θ) =

∣∣∣∣∣
analyt. cont.√√√√ . (41)

Notably, while the numerator is crossing symmetric, the
denominator changes with the channels one considers.
This leads to the modification of crossing symmetry

Sab
dc (θ) =

√√√√√√√√√√√ Sbc
ad(iπ − θ) . (42)

For the gapped flows from minimal models, the ratio of
the networks in (42) gives the modified crossing factor
found in (22). For the case with the Z2 anomaly, the
ratio gives the F -symbol ϵ = −1 (see (8)), reproducing
the sign in the crossing relation (29).

V. CONCLUSION

We initiated the study of the interplay among non-
invertible symmetries, anomalies, and S-matrices, focus-
ing on integrable flows in 1 + 1 dimensions. Our find-
ings show that the crossing symmetry of S-matrices is
modified when the IR phase is governed by a nontrivial
TQFT, as the TQFT affects the normalization of in- and
out-states.

There are numerous future directions to explore:

• Testing our proposed S-matrices by computing
physical observables that distinguish ours from
those in the literature: A prime candidate is the
finite-volume spectrum with an insertion of a non-
invertible defect (i.e. defect Hilbert space) [61].

• In our Z2 example the modification of crossing sym-
metry was a consequence of the ’t Hooft anomaly.
In cases with non-invertible symmetry, the ’t Hooft
anomaly prevents the flow to a trivially gapped
phase while the modification of crossing symme-
try is captured by a ratio of quantum dimensions,
which are relative Euler terms [33]. It would be in-
teresting to clarify the precise relationship between
’t Hooft anomalies and the modified crossing.

• Finding examples of modified crossing in higher di-
mensions: In 2+1 dimensions, modifications have

been observed in Chern-Simons matter theories
[62], which exhibit nontrivial TQFT dynamics in
the IR. It is important to understand these find-
ings in a unified (categorical) framework alongside
our case. Additionally, our analysis suggests that
such modifications can occur even in theories where
TQFT degrees of freedom are not apparent in the
UV Lagrangian description. Identifying such ex-
amples in 2+1 dimensions and beyond would be of
great interest. Furthermore examples of RG flows
preserving non-invertible symmetries in 3+1 dimen-
sions have been constructed [63–69] . It would be
interesting to see the consequence of non-invertible
symmetries on S-matrices in such examples.

• Performing the S-matrix bootstrap analysis [70–
72] of theories with non-invertible symmetries
[73]: Particularly interesting are theories with the
Haagerup fusion category [74–76], for which the
QFT realization is not fully understood. See Sup-
plemental Material for crossing and unitarity in the
projector basis, which will be useful for performing
such analyses. Additionally, bounding the UV cen-
tral charge of such theories via form factor boot-
strap [77, 78] could be valuable, especially given in-
dications that the fixed point has a central charge
2 in certain lattice realizations [79, 80].

• We focused on examples in which the vacua are in
the regular representation. Extending to other rep-
resentations should be straightforward by combin-
ing our analysis with that in [32]. We expect that
the natural generalization to IR vacua in arbitrary
representations is given by a factor

ϵv

√
d̃ad̃c

d̃bd̃d
, (43)

where ϵv = ±1 is the Frobenius-Schur indicator of
v (i.e. its time reversal anomaly) and d̃a is the disk
partition function [32].

• It was argued that the scattering of monopoles and
fermions in 3+ 1 dimensions violates crossing sym-
metry [81], alongside indications of significant roles
played by non-invertible symmetries [82, 83]. Es-
tablishing a connection with our analysis would be
interesting.

• The nontrivial TQFT dynamics in our examples
serve as toy models for the soft IR dynamics of pho-
tons and gravitons [84]. Just as in our examples, the
Faddeev-Kulish dressing [85] modifies the norms of
in- and out-states. Furthermore the IR phases of
electrodynamics and gravity possess exotic (gener-
alized) symmetries [86–88]. Can the categorical lan-
guage offer a suitable framework for understanding
these soft dynamics?
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SUPPLEMENTAL MATERIAL

A. F -symbols

As (7) shows, F-symbols and tetrahedral symbols are
proportional to each other. For the An−1 category dis-
cussed in the main text the tetrahedral symbols are the
same as q-deformed Wigner 6j-symbols up to a sign:

[
a b c
d e f

]
= (−1)p

{
a b c
d e f

}
q

, q = e2πi/n , (44)

p = 1
2

[
3(a+ b+ c+ d+ e+ f)2 − (a+ d)2 − (b+ e)2 − (c+ f)2

]
.

The q-deformed Wigner 6j-symbols are given in terms of

the quantum dimensions [a] = [a]q = da = sin[(2a+1)π/n]
sin(π/n)

as follows{
a b c
d e f

}
q

= ∆(a, b, c)∆(a, e, f)∆(d, b, f)∆(d, e, c)×∑
z

(−1)z [z+1]
[a+b+d+e−z][a+c+d+f−z][b+c+e+f−z]×

1
[−a−b−c+z][−c−d−e+z][−b−d−f+z][−a−e−f+z] ,

(45)

where the sum is over half integers z such that the sum-
mand is free of divergences and

∆(a, b, c) =

{√
[a+b−c][a−b+c][−a+b+c]

[1+a+b+c] if Nabc = 1

0 otherwise .

(46)

B. Scalar factors of exact S-matrices

The prefactor in (21) is given by [48]

Z(θ) = 1
sinh θ−iπ

n

exp

{
i
2

∞∫
−∞

dk
k sin kθ

sinh kπ
2 (n−1)

sinh nkπ
2 cosh kπ

2

}
.

(47)
It is crossing symmetric Z(θ) = Z(iπ − θ) and satisfies

Z(θ)Z(−θ) =
(
sinh θ−iπ

n sinh −θ−iπ
n

)−1
. Similarly for the

ϕ2,1 deformation the prefactor R(θ) is crossing symmetric
and ensures unitarity [44, 52]

R(θ) =
−1

sinh
θ + iπ

5/9

f−2/5 (9θ/5) f3/5(9θ/5)F−1/9(θ)F2/9(θ) ,

(48)

R(θ)R(−θ) =
(
sinh

θ − iπ

5/9
sinh

θ + iπ

5/9

)−1

. (49)

The building blocks are fα(θ) =
sinh( θ+iαπ

2 )
sinh( θ−iαπ

2 )
and Fα

are the Castillejo-Dalitz-Dyson (CDD) factors Fα(θ) =
−fα(θ)fα(iπ − θ).

C. Non-invertible symmetries of ϕr,s deformations

Here we study symmetry lines preserved by the ϕr,s
deformation of the n-th minimal model Mn = Mn+1,n:

Mn −→ Mn + λ

∫
ϕr, s . (50)

First, recall that the action of Verlinde lines Lr′, s′ onto
a primary ϕr, s is given by (see e.g. [5] for a review):

=
Sr′,s′; r,s

S1,1; r,s
(51)

where the modular S-matrix is given by

Sr′,s′; r,s =
√

8
n(n+1) (−)1+rs′+r′s sin

(
πnrr′

n+1

)
sin

(
π(n+1)ss′

n

)
.

(52)
The line Lr′, s′ is preserved along the flow if and only if
its action on the deforming operator is trivial. That is, if

(51) = =
Sr′,s′; 1,1

S1,1; 1,1
(53)

In the case of the ϕ1,3 discussed in the main text, the
above equation reduces to the condition:

cos

(
2π

n
s′
)

= cos

(
2π

n

)
, (54)

whose only solution (up to the Z2 action on the Kac table)
is s′ = 1. Thus the ϕ1, 3 deformation preserves exactly
the An−1 subalgebra given by the Lr′,1 lines. Following

the flow Mn → Mn−1 this is mapped into the Ãn−1

algebra in the IR minimal model, generated by L1,2.

https://doi.org/10.1007/JHEP08(2021)029
https://doi.org/10.1007/JHEP08(2021)029
https://arxiv.org/abs/2009.14213
https://arxiv.org/abs/2306.07318
https://arxiv.org/abs/2312.17746
https://arxiv.org/abs/1703.05448
https://doi.org/10.1007/BF01066485
https://doi.org/10.21468/SciPostPhys.6.1.006
https://doi.org/10.21468/SciPostPhys.6.1.006
https://arxiv.org/abs/1802.09512
https://doi.org/10.1007/JHEP05(2022)045
https://arxiv.org/abs/2111.12089
https://doi.org/10.1007/JHEP02(2023)151
https://arxiv.org/abs/2205.12272
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D. Examples of Ward identities

Here we show explicitly some of the Ward identities
(19) the S-matrix for the ϕ1,3 deformation of the n-th
minimal model Mn should satisfy. In this gapped flow,
the n − 1 vacua are labelled by a = 0, 12 , . . . ,

n−2
2 . The

only non trivial symmetry line present for any n is the
Z2 (invertible) defect η. It maps the first vacuum to last
one and more generally a↔ n−2

2 − a. Since the previous
map is one to one, the Ward identities relate two S-matrix
elements, for instance:

η : S
l− 1

2 , l

l, l+ 1
2

(θ) = S
n
2 −l− 1

2 ,
n
2 −l−1

n
2 −l−1, n

2 −l− 3
2

(θ) . (55)

These Ward identities are satisfied both for the amplitude
previously written in the literature (18) and our proposal
(21). It follows from the fact that the quantum dimen-
sions are the same between the vacua da = dn−2

2 −a. Now

let us check a WI for the simplest non-invertible defect N
present in the flow from tricritical Ising M4. The action
of the symmetry lines on the three vacua a = 0, 12 , 1 can
be represented in matrix form as follows

1 =

1 0 0
0 1 0
0 0 1

 , N =

0 1 0
1 0 1
0 1 0

 , η =

0 0 1
0 1 0
0 0 1

 .

(56)
One of the WI for the N line is

N : S
1
2 0

0 1
2

(θ) = S
0 1

2
1
2 0
(θ) + S

0 1
2

1
2 1
(θ) , (57)

which our proposal (21) satisfies:

√
2 sinh θ

4 + sinh iπ−θ
4 = 1√

2
sinh θ

4 + sinh iπ−θ
4 + 1√

2
sinh θ

4 ,

(58)
but the amplitude (18) does not:

(√
2 sinh

θ

4
+ sinh

iπ − θ

4

)√
2
iθ/π

̸=
(

1√
2
sinh

θ

4
+ sinh

iπ − θ

4
+

1√
2
sinh

θ

4

)(
1√
2

) iθ/π

.

(59)

In a similar fashion, the WI for non-invertible defects for

any n are spoiled by the
(

dadc

dbdd

) iθ
2π

factors in (18).

E. Crossing and unitarity in the projector basis

We can construct a basis of projectors of two v = 1/2
lines into a fusion channel χ satisfying

PχPχ′ = δχχ′Pχ , (60)∑
χ

Pχ = 1 . (61)

These projectors can be written as16

(Pχ)
ab
dc = =

√
dadc dχ

[
v v χ
d b a

] [
v v χ
d b c

]
,

(62)
where we have used dotted indices and double line nota-
tion to emphasize the prefactor

√
dadc dχ. Using orthog-

onality of the tetrahedral symbols∑
χ

dχ

[
v v χ
d b a

] [
v v χ
d b c

]
= δac

Nv
baN

v
da

da
, (63)

one can verify that that (62) indeed satisfies eqs. (60)
and (61). Explicitly, we have

∑
e

(Pχ)
ab
de (Pχ′)ebdc =

=
∑
e

√
dadc dedχdχ′

[
v v χ
d b a

] [
v v χ
d b e

] [
v v χ′

d b e

] [
v v χ′

d b c

]
= δχχ′

√
dadc dχ

[
v v χ
d b a

] [
v v χ
d b c

]
= δχχ′ (Pχ)

ab
dc ,

(64)

∑
χ

(Pχ)
ab
dc =

∑
χ

√
dadc dχ

[
v v χ
d b a

] [
v v χ
d b c

]
= δac .

(65)
Note that the square root prefactor in (62) is crucial in
the above equations.

The projectors make the categorical symmetry mani-
fest, as they commute with the action of the symmetry
lines as defined in (20):

=
∑
β

ω
√

dβdb

[
φ a′ a
v b β

] [
φ β b
v c c′

]
(Pχ)

b′c′

a′β

=
∑
β

ω
√

db′dβ

[
φ a′ a
v β b′

] [
φ b′ β
v c c′

]
(Pχ)

βc
ab =

(66)

16 Here we are considering categories for which the fusion coeffi-
cients are Nc

ab = 0, 1.
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where ω = (dada′dcdc′)
1/4. The previous equality follows

from the pentagon identity satisfied by the tetrahedral
symbols

∑
β

dβ

[
φ a′ a
y b β

] [
φ c′ c
x b β

] [
a′ c′ χ
x y β

]
=

[
a c χ
x y b

] [
a c χ
c′ a′ φ

]
.

(67)
Having these projectors, we can write a two-particle

amplitude compatible with the categorical symmetry as

Sab
dc (θ) =

∑
χ

Aχ(θ)(Pχ)
ab
dc . (68)

Elastic unitarity of the S-matrix is satisfied if
Aχ(θ)Aχ(−θ) = 1.
In the expressions above we have chosen the s-channel

decomposition. If we want to instead use the t-channel
projectors we need to perform an F-move and multiply by√

dadc

dbdd
. This factor is necessary to ensure the t-channel

projectors obey eqs. (60) and (61). The t-channel projec-
tors are then given by

(Pχ)
bc
ad = =

√
dbdd

dadc
dχ

∑
χ′

[
v v χ
v v χ′

]
(Pχ′)abdc .

(69)
In the An−1 category discussed in the main text we

can use the tetrahedral symbols defined in appendix A
to evaluate the two projectors χ = 0, 1 17

(P0)
ab
dc =

1

dv

√
dadc
dbdd

δbd , (P1)
ab
dc = δac −

1

dv

√
dadc
dbdd

δbd .

(70)
The coefficients of the amplitude in the projector basis
(68) are

A0 = Z(θ) sinh

(
iπ + θ

n

)
, A1 = Z(θ) sinh

(
iπ − θ

n

)
,

(71)
which satisfy Aχ(θ)Aχ(−θ) = 1 as one can check from
(47) and reproduce (21).

F. Sine-Gordon model and SG(β, 2)

In the main text, we discussed the perturbed SU(2)1
WZW model as an example of theories with Z2 anomaly.
It has an alternative description as a compact boson at
radius R =

√
2 with the deformation cos(2X/R). Here we

propose the exact S-matrix for such theories at arbitrary

17 In verifying (64) one encounters the sum over quantum dimen-
sions

∑
e de, however the values of e are restricted to b±1/2. To

write (70) it is enough to use the identity

dvdb = db−1/2 + db+1/2 .

R (called SG(β, 2) in [52, 55]), which obeys the same
modified crossing rule.

First let us contrast SG(β, 2) with the standard sine-
Gordon model, which is a compact boson perturbed by
cos(X/R). The sine-Gordon theory has a single vacuum
and the coupling β is determined by the radius as

β2 =
4π

R2
. (72)

The S-matrix of solitons is given by [35]

SSG =


S0 0 0 0
0 ST SR 0
0 SR ST 0
0 0 0 S0

 , (73)

where ST and SR are transmission and reflection ampli-
tudes and read

ST =
sinh(πθ/ξ)S0

sinh(π(iπ − θ)/ξ)
, SR =

i sin
(
π2/ξ

)
S0

sinh(π(iπ − θ)/ξ)
,

(74)
and

S0 = − exp

(
−i

∫ ∞

0

dt

t

sinh (t(π − ξ))

sinh(ξt) cosh(πt)
sin(2θt)

)
.

(75)
where ξ is given by

ξ =
β2

8

1

1− β2

8π

=
π

2R2 − 1
. (76)

We now consider SG(β, 2), whose S-matrix has not
been identified in the literature. The dynamics of this
theory is locally the same as sine-Gordon theory, up to a
redefinition of the coupling

β̃2 =
16π

R2
. (77)

However there are also crucial differences: 1. the theory
has two vacua 2. the theory has Z2 anomaly. We pro-
pose the following S-matrix compatible with the afore-
mentioned properties:

SSG(β,2) = SRSOS2 ⊗ ŠSG , (78)

where ŠSG describes scattering among Kramers pairs and
reads

ŠSG =


S0 0 0 0
0 −ST SR 0
0 SR −ST 0
0 0 0 S0

 . (79)

where S0, ST and SR are the same as (74) and (75) except
that the coupling is redefined as (77), i.e.

ξ =
β̃2

8

1

1− β̃2

8π

=
π

R2

2 − 1
. (80)
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The S-matrix ŠSG obeys the same modified crossing
rule as the perturbed WZW model (29). It can be de-
rived formally from the standard sine-Gordon S-matrix
by expressing it in terms of the R-matrix of Uq(sl2) and
reversing the sign of q [54]. Despite being often dubbed as
an “alternative” S-matrix for the standard sine-Gordon
model [54] due to structural similarities between Uq(sl2)
and U−q(sl2), we propose that it describes a distinct
model, SG(β, 2), with modified crossing as a consequence

of the Z2 anomaly.
There exists a one-parameter family of models general-

izing SG(β, 2): perturbed compact bosons by cos(kX/R)
with k ∈ N>0, called SG(β, k) in [52, 55]. Their local
dynamics mirror those of the sine-Gordon theory, albeit
with a coupling redefinition β2 = 4πk2/R2. The pre-
served Zk symmetry is anomalous and the IR theory has
k distinct vacua. Exploring the S-matrices of these theo-
ries and understanding their relation to symmetries and
anomalies would be interesting.
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