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We develop an efficient algorithm for determining optimal adaptive quantum estimation proto-
cols with arbitrary quantum control operations between subsequent uses of a probed channel. We
introduce a tensor network representation of an estimation strategy, which drastically reduces the
time and memory consumption of the algorithm, and allows us to analyze metrological protocols
involving up to N = 50 qubit channel uses, whereas the state-of-the-art approaches are limited
to N < 5. The method is applied to study the performance of the optimal adaptive metrological
protocols in presence of various noise types, including correlated noise.

I. INTRODUCTION.

One of the main lines of research in theoretical quan-
tum metrology is development of efficient analytical and
numerical tools to assess the potential of quantum probes
in practical sensing scenarios [1–4]. On the one hand this
involves derivation of fundamental bounds on achievable
sensitivity in presence of decoherence [5–16], while on
the other hand, development of methods that allow to
directly identify the optimal metrological protocol in a
particular scenario. In this paper we will focus on the
latter goal.

The pursuit of identification of the optimal metrolog-
ical schemes may be carried out on different levels of
generality. The less fundamental, but at the same time
most experimentally relevant approach, is to consider a
particular physical system (light, cold atoms, etc.), con-
sider all experimentally available degrees of freedom and
resources (number of atoms, energy, time, squeezing, en-
tanglement, ancillary systems, detectors, etc.) and come
up with the scheme that yields the best sensitivity for the
parameter(s) of interest. In doing so, one may simply fol-
low an educated-guess path, e.g. utilize squeezed states
which provide reduced noise and hence better sensitivity
[17–21], or perform variational and control optimization
procedures [22–24].

In this paper, we take a more fundamental approach
and focus on identifying metrological protocols that lead
to the optimal sensing performance, irrespective of prac-
tical aspects of their implementations. This is not to
say that we consider idealized, e.g. noiseless scenar-
ios. On the contrary, we take into account imperfections
and decoherence that quantum probes experience during
the sensing process, but look for the optimal ways, lim-
ited only by the laws of quantum mechanics, to exploit
their full quantum sensing potential—employing entan-
glement, quantum error-correction, active feedback, etc.

∗ These two authors contributed equally to the project.

This approach helps to understand the full sensing poten-
tial of quantum systems, and indicates space for possible
improvements of existing experimental realizations.

From this perspective, a quantum metrological prob-
lem is a quantum channel estimation problem, where the
sensing process is represented by an action of a param-
eter(s) dependent quantum channel Λφ. The goal is to
identify the optimal states of quantum probes as well as
the measurements. This may be a reasonably easy task
in case of idealized noiseless models [25–27], but becomes
challenging in case of more realistic models that take into
account noise and experimental imperfections [28–31].

Fortunately, effective iterative see-saw (ISS) algo-
rithms have been proposed that work both in the quan-
tum Fisher information (QFI) optimization paradigm
[32, 33] as well as in the Bayesian one [10, 34, 35]. Fur-
thermore, an approach of computing QFI in noisy mod-
els via minimization over purifcations (MOP) of quantum
states provides an alternative method to find the optimal
protocols in the form of a single semi-definite programme
(SDP) [5, 8, 9], see Sec. II for extensive discussion.

These approaches are effective provided the dimension-
ality of the quantum probe Hilbert space is small. This,
in particular, makes them inefficient to use when opti-
mizing protocols involving entangled probes that sense
multiple (N) channels in parallel. One way this ‘curse of
dimensionality’ may be overcome is via an analysis of a
particular educated-guess protocol and proving that it is
the optimal one by comparing its performance with the
fundamental bounds. This was the way in which the use
of squeezed light in lossy optical interferometry has been
demonstrated to be asymptotically optimal [6, 8, 36], as
well as the use of spin-squeezed states in Ramsey inter-
fereomtry in presence of dephasing [6, 18, 37].

The alternative way to face the problem in the mod-
erate/large N limit is to resort to the tensor network
framework [38], where description of many-particle states
in the form of matrix product states (MPS) has been
shown to be effective in identifying the optimal states
of input probes in quantum metrology [10]—the method
to do this is based on an appropriate reformulation of
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FIG. 1. A big-picture view of the main results of the paper. Depending on the number of channels probed (N), different
methods of increasing complexity should be applied. For the single channel estimation case (N = 1), both the minimization
over purifications (MOP) method as well as the iterative see-saw (ISS) method may be directly applied. In case of relatively
small N (in practice N ≤ 5 for qubit channels) both methods may be generalized to allow for the search of the optimal adaptive
strategies utilizing the concept of quantum combs. For larger N one is forced to employ the tensor networks techniques in
order to avoid the curse of dimensionality problem, in which case the ISS method which is ideally suited. Note that in all cases,
the ISS method additionally allows for an explicit control of the size of ancillary system. The bottom row of boxes serves as a
guideline, indicating in which section of the paper a given method is described, with items representing the original contribution
of this paper highlighted.

the ISS algorithm in the language of MPS and matrix
product operators (MPO) [39, 40].

From the fundamental point of view, however, the par-
allel sensing scheme is not the most general way to es-
timate a parameter encoded in a quantum channel that
may be accessed a given number of times (N). In fact,
one may consider more general adaptive protocols (e.g.
quantum error-correction protocols, etc.) that admit all
quantum preparation, control and measurement opera-
tions that lead to the optimal extraction of informa-
tion on the parameters encoded in the quantum chan-
nels [9, 12, 13, 26, 41]. The mathematical language to
describe these protocols is the theory of quantum combs
[42], within which a number of numerical methods to find
optimal adaptive protocols for small scale problems have
been proposed [43–45]. These approaches were primarily
based on the MOP approach [44, 45] and as such did not
admit a natural way to incorporate efficient tensor net-
work description of the protocols as well as the Bayesian
approach.

This paper focuses on the development of efficient
methods to identify optimal adaptive protocols in the
limit of large/moderate number of channel uses N . In
the first step we reconcile the ISS numerical approach
with the quantum comb theory, see Sec. III B. In the next
step, we develop a tensor network approach that allows

for an efficient identification of optimal adaptive proto-
cols in the limit of large/moderate N , see Sec. IV. The
added benefits of our methods is the ability to control the
effective size of ancillary systems, which is not possible
in the MOP approach. As a result, the state-of-the-art
methods together with the techniques developed in this
paper constitute a comprehensive tool-box of numerical
methods for quantum metrology, that may be applied ir-
respective of the type of protocols analyzed and the num-
ber of channels sensed. See Fig.1 for a big-picture view,
and the context of the results presented in this paper.

Apart from these original results, we decided also to
provide a comprehensive review of the MOP approaches
in a unified framework in Sec. II A and Sec. III A so that
the paper has a self-contained character and combines in
one place many techniques that were scattered over the
literature and never thoroughly discussed and contrasted
with each other. These sections are not indispensable for
understanding of the remaining content of the paper.

II. OPTIMAL CHANNEL ESTIMATION

Let us start with a paradigmatic quantum metrologi-
cal problem of estimating a single parameter φ encoded
in the action of a general quantum channel Λφ : L(H) →
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L(K), where L(H) represents the set of density matrices
acting on Hilbert space H, and we allow for the input and
output spaces to be different. The channel is probed by
an input state ρ ∈ L(H⊗A), where A represents an ancil-
lary system with which the probing system may be entan-
gled and on which the channel acts trivially. The result-
ing output state reads ρφ = Λφ ⊗ I(ρ) and is measured
using a generalized measurement {Mi}. The measure-
ment yields result i with probability pφ(i) = Tr(ρφMi)
and the parameter is estimated via an estimator function
φ̃(i). The final goal is to identify the protocol where the
estimated value is the closest to the true one. The exact
form of the cost function depends on the approach taken,
whether it is the Bayesian, min-max, or local approach
involving unbiased estimators [46–50]. In this paper we
will focus on the latter approach, where the cost function
is given by the mean squared error

∆2φ̃ =
∑
i

pφ(i) [φ̃(i) − φ]
2 ≥ 1

FQ(ρφ)
, (1)

computed at a certain operating point φ, where the es-
timator is assumed to be locally unbiased. The advan-
tage of the local approach stems from the fact that, as
indicated in (1), the cost, according to the Cramér-Rao
(CR) bound, may be lower bounded via the inverse of the
quantum Fisher information (QFI) FQ(ρφ), which is only
a function of the output state itself [51, 52]. As a result,
the problem of identifying the optimal estimation proto-
col may be reformulated as a problem of maximization
of the output state QFI:

FQ(Λφ) = max
ρ

FQ[Λφ ⊗ I(ρ)], (2)

where FQ(Λφ) is referred to as the quantum channel QFI
[5, 53]. In what follows we will stick to the QFI-based ap-
proach as outlined above and comment on the potential
extensions to other approaches in the concluding section
of the paper.

In case of noisy channels Λφ, brute force optimiza-
tion as specified in Eq. (2) via general purpose meth-
ods quickly becomes extremely inefficient even for low-
dimensional systems [28, 29]. This is due to a relatively
involved formula for the QFI in case of mixed states

FQ(ρφ) = Tr
(
ρφL

2
φ

)
, ρ̇φ =

1

2
{ρφ, Lφ}, (3)

where ρ̇φ = ∂φρφ, {, } is the anticomutator and Lφ, im-
plicitly defined by the right-hand-side equation above, is
the symmetric logarithmic derivative (SLD).

Over the years, two approaches proved particularly ef-
fective in solving Eq. (2) and allowed for identification
of the optimal probe states in quantum metrology in
regimes out of reach for general purpose optimization
methods. For the sake of completeness we provide a con-
cise review of each of these approaches below.

A. Minimization over purifcations (MOP) method

This method is based on the key observation that the
QFI for a mixed state ρφ acting on some Hilbert space H
may be equivalently expressed as a minimization of QFI
for all admissible purifcations of ρφ [5, 6, 8]:

FQ(ρφ) = min
|Ψφ⟩

FQ(|Ψφ⟩) = 4 ⟨Ψ̇φ|Ψ̇φ⟩ , (4)

where |Ψφ⟩ ∈ H ⊗ R is a purification of ρφ, ρφ =
TrR (|Ψφ⟩ ⟨Ψφ|). The last equality in (4) is due to the
fact that the explicit formula for the QFI of a pure

state reads: FQ(|Ψφ⟩) = 4
(
⟨Ψ̇φ|Ψ̇φ⟩ − | ⟨Ψφ|Ψ̇φ⟩ |2

)
,

and that given a particular purification |Ψ̃φ⟩ we can

always find another one |Ψφ⟩ = eiξφ |Ψ̃φ⟩ (where ξ =

−i ⟨ ˙̃Ψφ|Ψ̃φ⟩) yielding the same QFI and additionally sat-

isfying ⟨Ψφ|Ψ̇φ⟩ = 0.
Utilizing this fact, we may now rewrite problem (2) in

the following equivalent ways [5]:

FQ(Λφ)
(i)
= max

|ψ⟩HA

FQ[Λφ ⊗ I(|ψ⟩ ⟨ψ|)] =

(ii)
= 4 max

|ψ⟩HA

min
|Ψφ⟩HAR

⟨Ψ̇φ|Ψ̇φ⟩ =

(iii)
= 4 max

|ψ⟩HA

min
{Kφ,k}

⟨ψ|
∑
k

K̇†
φ,kK̇φ,k ⊗ 11A |ψ⟩ =

(iv)
= 4 max

ρH
min
h

Tr

(
ρH
∑
k

K̇†
φ,k(h)K̇φ,k(h)

)
=

(v)
= 4 min

h
max
ρH

Tr

(
ρH
∑
k

K̇†
φ,k(h)K̇φ,k(h)

)
=

(vi)
= 4 min

h
∥α(h)∥, α(h) =

∑
k

K̇†
φ,k(h)K̇φ,k(h),

(5)

where ∥ · ∥ in the final formula is the operator norm. In
step (i) we make use of the fact that one may always re-
strict to pure input states due to convexity of the QFI.
In (ii) |Ψφ⟩HAR represents a purification of the channel
output state ρφ = Λφ ⊗ I(|ψ⟩ ⟨ψ|) (notice the different
roles played by the ancillary system A and the reference
system R). In (iii) we note that an arbitrary purifca-
tion |Ψ⟩ of the state that is obtained by an action of the
channel on a pure state, may be written in terms of a
certain purification of the quantum channel itself, deter-
mined by a particular choice of a Kraus representation of
the channel Λφ, |Ψφ⟩HAR =

∑
kKφ,k⊗11A |ψ⟩HA⊗|k⟩R,

where |k⟩R represents some orthonormal basis in R. In
fact, since the quantity of interest is local (derivatives are
taken at some fixed point φ), it is enough to consider a
class of Kraus representations that lead to derivatives of
Kraus operators of the form [6, 8]

K̇φ,k(h) = ˙̃Kφ,k − i
∑
l

hklK̃φ,l, (6)
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where K̃φ,l is some fixed Kraus representation (e.g.
canonical) and hkl is an arbitrary hermitian matrix. As
a result, the minimization over Kraus representations ef-
fectively amounts to a minimization over a single her-
mitian matrix hkl. In (iv) we observe that effectively
the expression depends only on the reduced density ma-
trix ρH = TrA(|ψ⟩ ⟨ψ|) and not on the whole input state
|ψ⟩HA. This allows us to switch to maximization over
arbitrary density matrices ρH, which unlike pure states,
form a convex set. Because of this, we can apply the min-
imax theorem, and switch the order of minimization and
maximization (v), as both sets over which we optimize
are convex (h belongs to a linear space, ρH belongs to a
convex set of density matrices) and the optimized func-
tion is convex in h (in fact convex quadratic) and concave
in ρH (in fact linear). Finally (vi) reflects a property of
the operator norm.

Channel QFI as a semi-definite programme. Interest-
ingly, the final variant for the channel QFI optimization
problem can be cast as a simple semi-definite programme
(SDP) [8]:

FQ(Λφ) = 4 min
λ,h

λ, subject to A ⪰ 0, (7)

where

A =


λ1d K̇†

φ,1(h) . . . K̇†
φ,r(h)

K̇φ,1(h)
... 1d·r

K̇φ,r(h)

 , (8)

where d is the dimension of the space H and r is the
number of canonical Kraus operators of the channel and λ
is a real optimization variable. This makes this approach
so appealing, as there are many good SDP solvers on the
market, providing solutions accompanied by optimality
benchmarks [54].

Identifying the optimal input probe state. Interest-
ingly, a solution of the above programme yields the de-
sired channel QFI, but in general does not explicitly pro-
vide the form of the optimal input probe state |ψ⟩HA.
Inspecting the sequence of equalities in (5), one may only
conclude that the reduced density matrix ρH correspond-
ing to the optimal input probe state |ψ⟩HA should be
supported on the subspace spanned by eigenvectors of
the optimal α(h) corresponding to the largest absolute
eigenvalues. Only if this subspace is one-dimensional this
uniquely singles out the optimal input probe state—in
this case it also implies that entanglement between H
and A is not required to obtain the optimal QFI.

The potential loss of information about the optimal
input probe state is due to the min-max order change
in step (v) in (5). Let (ρ⋄H, h⋄) be the optimal solution
in (iv). On the other hand, let (ρH, h) be the solution
after changing the min-max order in (v). Even though,
by minimax theorem Tr[ρHα(h)] = Tr[ρ⋄Hα(h⋄)], the re-
sulting ‘optimal’ ρH will not necessarily correspond to
the reduced density matrix of the optimal input state for

the actual metrological task ρ⋄H [13]. The problem is due
to the fact that in the optimal solution of the min-max
problem the figure of merit Tr[ρHα(h)] can no longer in
general be interpreted as the QFI of the corresponding
state ρH, as for a given ρH this quantity is not minimized
over h. In order to remedy this, one needs to make sure
that one is exactly at the saddle point of the function that
appears under min-max, as then we are sure that for the
optimal state found the corresponding h⋄ minimizes the
actual figure of merit and can be regarded as the QFI of
the purification of ρH. Such a point always exists, and
can be identified by solving the following problem: find
ρH ≥ 0, Tr(ρH) = 1 such that [13]:

Tr [ρHα(h⋄)] = ∥α(h⋄)∥, ∇h=h⋄Tr [ρHα(h)] = 0, (9)

where h⋄ is obtained from solving (7). This is again a
simple SDP programme and any purification |ψ⟩HA of
such a ρH will correspond to the optimal input state.

B. Iterative see-saw (ISS) approach

The MOP method is very powerful in identifying the
optimal QFI and the corresponding optimal input probe
state, but has at least two drawbacks, which prompt to
look for alternative approaches. The first drawback is
that it is designed only for the optimization of the QFI as
a figure of merit and hence is not applicable in Bayesian
[35] or minimax [47] (sic!) analysis. Hence, it may not
be sufficient to identify optimal protocols in single-shot
or finite resources regimes [14, 48, 50, 55]. The sec-
ond drawback stems from the generality of the approach,
which makes it inefficient when analyzing large dimen-
sional systems, or protocols involving multiple uses of the
channels—see Section III. In this approach it is in partic-
ular not possible to impose restrictions on the dimension
of the ancillary system used. It is also not suitable for
implementation of tensor network based protocols that
allow for an efficient modelling of multiple-probe systems,
as well as multiple-round adaptive strategies that avoid
the ‘curse of dimensionality issue’—see Section IV.

The alternative is the ISS procedure, that was first
proposed to be used in the Bayesian phase estimation
problem [34, 35], then was generalized to deal with QFI
optimization problems [32] and now is becoming popu-
lar in a broad range of metrological optimization tasks
[33, 56]. We will present it first in the context of QFI
optimization, as this will be in fact the main focus of
this paper, and only then state its Bayesian variant for
completeness. For conciseness we will write Λφ instead
of more general Λφ ⊗ I, as in the approach discussed
the ancilla system will not play any special role and if
needed may be always incorporated into the definition of
the action of the channel itself—this is in fact the reason
why this approach, unlike the purification based method,
allows to explicitly analyze the role of the ancilla and in
particular its dimensionality.
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Let us start by considering the following ‘pre-QFI’
function:

F (ρ, L) = 2Tr (ρ̇φL) − Tr
(
ρφL

2
)
, (10)

where ρφ = Λφ(ρ). Maximization of the above function
over Hermitian operators L (since the SLD is necesserily
Hermitian) yields the QFI for a given input ρ [32], where
the corresponding optimal L⋄ is in fact the SLD operator
as given in (3). This implies that we can write the channel
QFI in the form of a double maximization problem:

FQ(Λφ) = max
ρ,L

F (ρ, L). (11)

This form prompts a very efficient iterative approach.
We start with some random input state ρ[0], for which we
maximize F (ρ[0], L) over L to obtain L[0]. Then fixing L
we optimize F (ρ, L[0]) over ρ to obtain ρ[1]. We repeat
this iterative procedure until F (ρ[i], L[i]) converges (e.g.
does not increase by more than 0.01% over five subse-
quent iteration steps)—the convergence to the optimal
QFI value is guaranteed in generic cases, see [32] for the
argument (to be on a safe side one should avoid choosing
non-generic input states in the first step).

The step where we find the optimal L[i] given ρ[i]

amounts just to solving the linear equation for the SLD
(3), where ρφ = Λφ(ρ[i])—note that it is not advisable
here to use a formula involving eigendecomposition of
ρφ, but rather directly solve the linear equation or find
L as a hermitian matrix maximizing (10), which can be
formulated as an SDP.

In order to perform the complementary step, note that
we can rewrite the pre-QFI function as:

F (ρ, L) = 2Tr
(
ρΛ̇∗

φ(L)
)
− Tr

(
ρΛ∗

φ(L2)
)
, (12)

where Λ∗
φ(·) =

∑
kK

†
k · Kk represents the dual map to

Λφ. This implies that maximizing F (ρ, L) over ρ for a
fixed L amounts to solving the following problem:

max
ρ

F (ρ, L) = max
ρ

Tr (ρM) , M = 2Λ̇∗
φ(L) − Λ∗

φ(L2),

(13)
with standard constraints on the input state ρ ≥ 0,
Tr(ρ) = 1. This is a simple SDP programme, for which
the solution can be written explicitly as ρ = |ψ+⟩⟨ψ+|,
where |ψ+⟩ is the eigenvector of M corresponding to its
largest eigenvalue.

There are a number of variations of the algorithm,
where one may restrict the set of allowed input states
ρ to some convex set, or fix the measurement, in which
case the optimized quantity is the classical Fisher infor-
mation (FI) [32]. Most importantly, the procedure may
be easily adapted to minimize the Bayesian quadratic
cost with arbitrary prior distribution for the estimated
parameter p(φ), which we briefly review below.

The average Bayesian quadratic cost for estimating pa-
rameter φ is defined as

∆2φ̃ =

∫
dφp(φ)

∑
i

pφ(i) [φ̃(i) − φ]
2

(14)

and corresponds to (1) averaged over the prior. Min-
imization of the cost over measurements, estimators
and input states results in the formula for the minimal
Bayesian cost of estimating a parameter of the channel
in the form [10, 35]:

∆2φ̃(Λφ) = ∆2φ− max
ρ,L̄

Tr
(
2ρ̄′L̄− ρ̄L̄2

)
, (15)

where ∆2φ represents variance of the prior distribution
p(φ), ρ̄ =

∫
dφp(φ)ρφ is the output state averaged with

respect to the prior, whereas ρ̄′ =
∫

dφp(φ)(φ − φ̄)ρφ
with φ̄ being the prior expectation value of φ. Com-
paring the above formula with (10,11) we see that an
analogous iterative optimization procedure may now be
applied. With fixed ρ, the search for the corresponding
optimal L̄ amounts to solving the SLD-like equation, (3),
with ρφ replaced by ρ̄ and ρ̇φ replaced by ρ̄′. On the other
hand, with fixed L̄ the search for the optimal input state
ρ amounts to the search for the eigenstate corresponding
to the largest eigenvalue of

M̄ =

∫
dφp(φ)Λ∗

φ

[
(φ− φ̄)L̄− L̄2

]
. (16)

This shows how versatile the see-saw method is, as it can
equally well address two conceptually different estimation
problems.

III. OPTIMAL CHANNEL ESTIMATION WITH
MULTIPLE COHERENT USES

In the previous section we have presented efficient
methods to identify optimal metrological protocols fo-
cusing on a single use of a quantum channel. In quan-
tum metrology, however, we most typically face a situ-
ation where quantum channels may be utilized multiple
times. Physically, this represents situations when we are
able to utilize many quantum probing systems simulta-
neously (e.g. multiple atoms sensing common magnetic
field, multiple photons travelling through the same in-
terferometer, etc.), or utilize a single quantum system
to perform a coherent sensing of the same environment
over extended periods of time (single photon bouncing
multiple-times in a cavity, single spin experiencing the
same magnetic field over long times, etc.) or a combi-
nation of both. In order to understand the fundamen-
tal potential of quantum metrology, one should be able
to identify the optimal protocols which lead to the best
estimation of quantum channel parameters, for a given
number of channel uses, assuming any kind of quantum
control is allowed.

One option is to probe quantum channels in paral-
lel, sending (possibly) entangled states of N probes into
Λ⊗N
φ . Note that this situation is formally equivalent to

the one discussed in the previous section, where Λφ needs
to be replaced by Λ⊗N

φ . Hence, the methods presented
above are valid, and can be applied provided N is not too
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FIG. 2. A general scheme of coherent probing of N inde-
pendent quantum channels Λφ (or a general global channel

Λ
(N)
φ —gray) via an adaptive strategy represented by a quan-

tum comb P . Quantum Fisher Information of the output
state is optimized over P either via minimization over pu-
rification (MOP) method or the iterative see-saw approach
(ISS).

large, as in this case the curse of dimensionality makes the
problem numerically intractable. If this is actually the
case, however, one may no longer optimize over arbitrary
input states but instead needs to restrict to some rea-
sonable classes of states and compute their performance
without invoking the formalism of the full Hilbert space.
This can be done using tensor networks methods [39, 40],
or by direct Heisenberg picture computations of the per-
formance of particular input probe states and measure-
ment observables [31, 37]. When the performance of the
protocols is shown to coincide with some fundamental
bounds, this proves the protocols are indeed optimal.

Still, the parallel schemes do not cover the most general
quantum adaptive strategies, including quantum control,
active quantum feedback, quantum error correction, etc.
The problem of the search for the most general quantum
adaptive strategy may be formulated as follows. Given
N uses of a quantum channel Λφ : L(H) → L(K) find
the optimal superoperator P, see Fig. 2, that yields the

output state ρ
(N)
φ ∈ L(KN ⊗ AN ) with maximal possi-

ble QFI (or minimizing the corresponding Bayesian cost
if one follows the Bayesian approach). In what follows,
we will denote superoperators with non-italic font P,
while its italic variant P will represent the correspond-
ing Choi-Jamio lkowski (CJ) operator [57]. In particu-
lar, Λφ ∈ L(K ⊗ H) will represent the CJ operator of
Λφ. The superoperator P represents all possible inter-
action of the sensing system with arbitrarily large an-
cillary systems, and allows for any control operations in
between subsequent channel uses. Mathematically P is a
linear operator P : L(K1⊗ . . .KN−1) → L(H1⊗ . . .HN ⊗
AN ) that satisfies conditions for being a quantum comb
[42] P ∈ Comb[(∅,H1), (K1,H2), ..., (KN−1,HN ⊗ AN )],
where pairs of spaces represent respective input/output
spaces of each ‘tooth’ of the comb. In terms of the corre-
sponding CJ matrix P ∈ L(H1⊗K1⊗. . .HN−1⊗KN−1⊗
HN⊗AN ) (the ordering of spaces is chosen for notational

convenience) the conditions for P being a comb read:

P ≥ 0, TrAN⊗HN
P = P (N−1) ⊗ 11KN−1

, (17)

∀
1<k<N

TrHk
P (k) = P (k−1) ⊗ 11Kk−1

, TrH1P
(1) = 1,

where P (k) represents P traced out over Kk ⊗ Hk+1 ⊗
· · · ⊗ KN−1 ⊗ HN ⊗ AN . The final output state ρ

(N)
φ is

now obtained by concatenating P operation with N -fold
use of the channel Λφ, which mathematically corresponds
to application of the link product operation to the corre-
sponding CJ operators [42], defined as follows:

ρ(N)
φ = Λ⊗N

φ ⋆ P. (18)

Given two operators A ∈ L(A ⊗ C), B ∈ L(C ⊗ B),
where the common subsystem on which they act is de-
noted by C, the link product is defined as A ⋆ B =
TrC

[
(A⊗ 11B)(11A ⊗BTC )

]
, where TC denotes transpo-

sition with respect to subsystem C. Note that when
A = |A⟩⟨A|, B = |B⟩⟨B| are rank-1 operators, so is
their link product, as A ⋆ B = |A ⋆ B⟩ ⟨A ⋆ B|, where
|A ⋆ B⟩ :=

∑
c ⟨c|A⟩ ⊗ ⟨c|B⟩, with {|c⟩ ∈ C} representing

the basis in C (the distinguished basis, with respect to
which the partial transposition is defined).

The problem of identifying the optimal metrological
protocol now amounts to the following optimization task:

F
(N)
Q (Λφ) = max

P
FQ[Λ⊗N

φ ⋆ P ], (19)

with constraints on P given in (17). When compared
with the single channel estimation problem, (2), the only
difference amounts to the replacement of the input state
ρ with the quantum comb P . This problem can again
be approached using either the MOP or the ISS method.
In the discussion below, we will consider an even more
general scenario, where we replace N independent uses
of a channel Λφ by an arbitrary N -teeth quantum comb

Λ
(N)
φ —mathematically this amounts to replacing Λ⊗N

φ by

Λ
(N)
φ . This will allow us to also discuss the models where

the probed channels are subject to e.g. correlated noise,
see Fig. 2 and Section V E.

A. Minimization over purifcations (MOP) method

Since the set of quantum combs is convex and the

output state ρ
(N)
φ is a linear function of P , the concav-

ity of QFI implies that we may restrict ourselves to ex-
tremal quantum combs at the input. Unlike in the single-
channel estimation case, an extremal comb is not neces-
sarily pure, i.e. a CJ operator of rank one P = |P ⟩⟨P |,
due to non-trivial constraints (17). Still, we may always
purify it at the expense of possibly increasing the di-
mension of the ancillary system AN . Hence, we may
now follow an analogous procedure as in (5), by noticing
that the minimization of the QFI formula over different

purifications of ρ
(N)
φ can again be understood in terms
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of minimization over different Kraus representations of

Λ
(N)
φ . Let {K(N)

φ,k } be a Kraus representation of Λ
(N)
φ ,

which can be written in terms of the decomposition of

the corresponding CJ matrix Λ
(N)
φ =

∑
k |K

(N)
φ,k ⟩⟨K

(N)
φ,k |,

where |K(N)
φ,k ⟩ ∈ K1 ⊗ H1 ⊗ · · · ⊗ KN ⊗ HN represents

a vectorized Kraus operator. Each Kraus representa-
tion may be associated with the following purification

|Ψ(N)
φ ⟩KNANR =

∑
k |K

(N)
φ,k ⋆ P ⟩⊗ |k⟩R ∈ KN ⊗AN ⊗R,

where we have used the notation for the link product of
rank-1 operators. With this notation, we can now adapt
(5) in order to derive the formula for the optimal QFI:

FQ(Λ(N)
φ ) = 4 max

P
min

|Ψ(N)
φ ⟩KNANR

⟨Ψ̇(N)
φ |Ψ̇(N)

φ ⟩ =

= 4 max
P

min
{K(N)

φ,k }

∑
k

⟨K̇(N)
φ,k ⋆ P |K̇

(N)
φ,k ⋆ P ⟩ =

= 4 max
P

min
{K(N)

φ,k }
Tr

(∑
k

|K̇(N)
φ,k ⟩⟨K̇

(N)
φ,k | ⋆ P

)
=

= 4 max
P

min
h

Tr [(Ω(h) ⊗ 11AN
)(P ⊗ 11KN

)] =

(i)
= 4 max

P̃
min
h

Tr
[
Ω̃(h)P̃

]
=

(ii)
= 4 min

h
max
P̃

Tr
[
Ω̃(h)P̃

]
,

(20)

where Ω(h) =
∑
k |K̇

(N)
φ,k (h)⟩⟨K̇(N)

φ,k (h)|
T

, while |K̇(N)
φ,k (h)⟩

is defined analogously as in (6), but this time h is in prin-
ciple a huge matrix, as the number of Kraus operators

K
(N)
φ,k will typically grow exponentially with N . In step

(i) we performed the partial trace over spaces AN and

KN and introduced P̃ = TrAN
P , Ω̃(h) = TrKN

Ω(h) ∈
L(H1 ⊗ K1 ⊗ . . .HN−1 ⊗ KN−1 ⊗ HN ), while in (ii) we
again used the minimax theorem, as optimization over
both h and P̃ is over convex spaces and the function it-
self is convex in h and concave (linear) in P̃ . Note that

in the special case N = 1, Ω̃(h) = α(h), P̃ = ρH and
we recover the formula from (5). Unlike in (5), how-
ever, we cannot replace the maximization over the comb
by the operator norm due to nontrivial constraints on
P̃ . Nevertheless, if maximization over P̃ is replaced by
an appropriate minimization of the dual problem, one
may in the end write the double minimization as a single
semi-definite programme in a form resembling that of the
single channel optimization (7) [45]:

FQ(Λ(N)
φ ) = 4 min

λ,h,Q(k)
λ, subject to A ⪰ 0, (21)

∀
2≤k≤N−1

TrKk
Q(k) = 11Hk

⊗Q(k−1),TrK1
Q(1) = 11H1

where

A =


11HN

⊗Q(N−1) | ˙̃K1,1(h)⟩ . . . | ˙̃Kr,d(h)⟩
⟨ ˙̃K1,1(h)|

... λ1dr
⟨ ˙̃Kr,d(h)|

 .

(22)

In the above expression, d = dim(KN ), | ˙̃Ki,k(h)⟩ =

KN
⟨i|K̇(N)

φ,k (h)⟩ ∈ K1⊗H1⊗. . .KN−1⊗HN−1⊗HN , while

dual problem variables Q(k) ∈ L(K1⊗H1⊗· · ·⊗Kk⊗Hk)
are subject to the same quantum-comb constraints, apart
from the positivity requirement.

The above optimization problem will correctly yield
the optimal QFI F ⋄

Q of the channel and the corresponding
h⋄ matrix. If, however, one wants to identify the corre-
sponding quantum comb P ⋄ that represents the optimal
strategy, one needs to step back to the original primal
problem formulation, and find P̃ satisfying the quantum
comb constraints such that [45]:

4Tr
[
Ω̃(h⋄)P̃

]
= F ⋄

Q, ∇h=h⋄Tr
[
Ω̃(h)P̃

]
= 0. (23)

Similarly as in (9) the second condition is necessary to
make sure the solution is at the saddle point and the
resulting P̃ ⋄ corresponds indeed to the optimal protocol.
Note that in the original paper [44] this second condition
was not included and hence the procedure described there
might not lead to the actual optimal protocol—it has only
been remedied in the follow-up paper [45].

B. Iterative see-saw (ISS) approach

As a completely new result, we demonstrate how the
ISS optimization can be generalized to the multiple co-
herent uses regime—it turns out to be more straight-
forward than generalization of the MOP method. The
generalization of the ‘pre-QFI’ function from (10), to be
maximized, now takes the form:

F (N)(P,L) = 2Tr
(
ρ̇(N)
φ L

)
− Tr

(
ρ(N)
φ L2

)
, (24)

where ρ
(N)
φ = Λ

(N)
φ ⋆ P . The optimal QFI is again ob-

tained as a result of double maximization:

FQ(Λ(N)
φ ) = max

P,L
F (N)(P,L), (25)

with constraints on P to be a quantum comb as given
in (17). We start the iteration procedure with some
randomly chosen initial P [0] and find the corresponding
L[0] maximizing F (N)(P [0], L). This step is identical to
the one in the single channel estimation approach and

amounts to finding the SLD for the state ρ
(N)
φ . Then

fixing L[0] we identify the optimal P [1] and so on. This
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second step, while slightly more complex than in the sin-
gle channel case (13), can nevertheless again be written
as a relatively simple SDP programme:

max
P

F (N)(P,L) = max
P

Tr
(
PM (N)

)
,

M (N) = 2L ⋆
(

Λ̇(N)
φ

)T
− L2 ⋆

(
Λ(N)
φ

)T
, (26)

where we used straightforward properties of the link
product operation to rewrite (24) in the above form. This
is a linear optimization problem in P with convex con-
straints (17), hence an SDP. In each step of the iteration
F (N) will not decrease, and we terminate the procedure
when it converges up to the desired accuracy.

Similarly as in the optimization over purifications
method, this procedure is efficient provided the di-

mensions of spaces on which channel Λ
(N)
φ acts are

reasonable—for multiple uses of a single qubit channel
this usually means N ≤ 5. One of advantages of the ISS
approach over the MOP is that we can control the size of
the final ancillary space AN by restricting optimization
over P to combs with a fixed dimension of AN (but with-
out the control of the size of ancillary systems required
for the inner action of the comb itself). The main ad-
vantage, however, is that the approach can be naturally
adapted to the tensor network formalism, as described in
Sec. IV and in many cases allows to go around the curse
of dimensionality problem and study optimal metrolog-
ical protocols in the limit of large number of coherent
channel uses. In this approach it will also be possible to
control the size of ancilla at every step of the protocol.

C. Decomposition of a quantum comb into
elementary operations

Given the CJ operator P of the optimal quantum
comb, obtained from either the MOP or ISS method, it
may be non-trivial to interpret what kind of metrologi-
cal protocol it actually represents and how to implement
it in practice. For this purpose procedures of decom-
position of a quantum comb into a sequence of unitary
operations (isometries) has been proposed in [42, 58]. A
quantum comb P can be always rewritten as a concatena-
tion of isometries {V (k)}Nk=1 corresponding to the comb’s

consecutive teeth, s.t. V (k) : Kk−1 ⊗ Ak−1 → Hk ⊗ Ak

(where Ak−1,Ak are the ancillae on the input and output
of the k-th tooth, respectively and K0,A0 are trivially
C). The input and output spaces of the isometries can

schematically be pictured as follows:

V (1) V (2) V (N)

. (27)

The details on how to find the corresponding isometries
are presented in Appendix A.

However, constructing these isometries in general will
require ancillary systems of dimensions that may grow
exponentially with k. The minimal possible dimension
of ancilla Ak necessary to represent V (k) is dim(Ak) =
rank(P (k)) [58]. Rank of P (k) may be as large as the di-
mension of the space on which the operator acts, which
in this case is the product of dimensions of all its input
and output spaces Ki−1,Hi, up to i = k. From our nu-
merical experience it appears that in typical metrological
scenarios, the isometries corresponding to optimal metro-
logical strategies in noisy models obtained from comb
optimization methods described above are very complex,
and the size of ancillary systems indeed tends to grow
significantly with k—see the discussion of an example in
Sec. V D.

Another challenge is that even if the optimal strat-
egy may not be that complex, it may be returned by the
optimization procedure in a basis which is not easy to in-
terpret. In principle one could use automated methods,
implemented in e.g. BQSKit [59] , UniversalQCompiler
[60] of decomposition of isometries into gates from stan-
dard gate sets to obtain a practical implementation of
the optimal protocols. This approach to describing op-
timal metrological protocols was taken e.g. in Ref. [45].
However, the challenge of interpreting those schemes still
remains.

These difficulties in obtaining a simple and intuitive
structure of the optimal protocols are related to substan-
tial freedom when identifying optimal quantum combs.
The optimal comb found is typically not unique and its
form rarely allows for a direct intuitive understanding
of the essence of the protocol. This is another strong
argument (apart from the curse of dimensionality issue)
in favour of the tensor network approach presented in
the next section, where we are able to control the size
of the ancillary systems at each ‘tooth’ of the comb, and
have means to force the optimization procedure, tooth by
tooth, to yield optimal strategies in a form we are able
to interpret. Note that by nature of the approach, this
is not possible in the MOP-type methods.
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IV. TENSOR NETWORK APPROACH TO
IDENTIFY THE OPTIMAL ADAPTIVE

METROLOGICAL PROTOCOLS

The main obstacle in finding the optimal adaptive pro-
tocols is the exponential growth of complexity of algo-
rithms presented in Section III with increasing N . This
is related to the size of the CJ operator P representing
the estimation strategy comb. Even in the simplest case
of qubit channels Λφ and no output ancilla, P acts on a
Hilbert space of total dimension 22N−1. This limits the
applicability of introduced methods on present-day per-
sonal computers to the cases where N ≤ 5—for larger N ,
SDP memory and time requirements are hard to meet.

Moreover, in the approaches presented so far, the inter-
nal structure of P cannot be controlled—in particular, we
cannot limit the size of the ancillary system required to
implement each tooth of the optimal comb, we can only
control the last ancilla AN . Consequently, the strategies
obtained may be very complex even for small N .

To overcome both of these problems, we decompose P
into teeth P1, P2, ..., PN , representing simpler quantum
channels whose concatenation leads to P . Formally,

P = P1 ⋆ P2 ⋆ ... ⋆ PN , (28)

where P1 ∈ L(H1⊗A1), Pk ∈ L(Ak−1⊗Kk−1⊗Hk⊗Ak)
for 2 ≤ k ≤ N—when the link product between Pk and
Pk+1 is performed the common subspace is Ak. Impor-
tantly, Pi can be arbitrary CJ matrices, not necesarily
isometries, contrary to the comb decomposition described
in Section III C. This allows for effective optimization
over each comb tooth Pi, since CJ matrices, unlike isome-
tries, form a convex set. This also changes the meaning
of ancillary spaces A—in Section III C they played dual
role of a comb memory and purification, whereas in (28)
we do not need to purify Pi, so ancillary system is only
used as a quantum memory.

The link product is linear in both arguments, and can
be represented as contraction of indices between two ten-
sors (see appendices B and C for short introduction to
tensor networks formalism and technical details). Con-
sequently, we can write down the RHS of (28) as a ten-
sor network, whose nodes (rectangles) represent quantum
channels, open links represent subspaces on which P acts
and closed links represent link products:

.
(29)

Notice that with this graphic notation it is clear which
subspaces must be contracted while performing the link
product.

When output and input spaces of probed channels are
all of the same dimension (dim(Hk) = dim(Kk) = dH),
and the size of ancilla is fixed during the whole proto-
col (dim(Ak) = dA), then d4N−2

H d2A complex variables

are required to store P in the memory. We can sub-
stantially compress the information about P by stor-
ing P1, P2, ..., PN separately, which requires only d2Hd

2
A +

(N−1)d4Hd
4
A variables. The latter approach is much more

effective for fixed dA and growing N—the used memory
scales linearly, not exponentially with N . To take advan-
tage of this, it is crucial to design an optimization algo-
rithm that operates on P1, P2, ..., PN separately, and does
not need to refer to the whole P . This approach is com-
pletely different than the one from Section III C—instead
of finding optimal P and decomposing it, we use ansatz
(28) from the very beginning to overcome the curse of
dimensionality.

The compression of P is only possible for combs which
can be written as (28) with small dA. In general, the
size of ancillary system required to simulate all possible
combs grows exponentially with N , and so does the size
of CJ operators Pk. However, it makes sense to search
only through strategies P with limited dA because such
strategies are usually substantially easier to implement
in practice. One may also optimize the QFI over P with
growing dA—when the figure of merit no longer increases
with increasing dA it strongly suggests that the optimal
strategy P has been found.

The analogous idea is used in other tensor networks ap-
proximations, in particular in the construction of matrix
product state (MPS) representation of entangled states
of N particles [38, 61]. The size of a density matrix of
such a system grows exponentially with N . However,
states that are weakly entangled can be efficiently rep-
resented as a tensor network (MPS). Then, the memory
required to store the information about a state grows
linearly with N , but also depends on a so-called bond
dimension d. The more entangled the state is, the larger
d is required. In our case, dA plays a role of a bond di-
mension, with a clear physical interpretation of the size
of available ancillary system.

The CJ operator Λ
(N)
φ , containing information about

the estimated signal and (possibly correlated) noise, can
be also represented as a tensor network. Using the intro-
duced graphical notation:

,
(30)

where Ek represents the environment space after the k-
th use of the channel to be estimated. When the sig-

nal and the noise are not correlated, then Λ
(N)
φ = Λ⊗N

φ ,
the state of environment does not affect the action of
the subsequent channel, and consequently Ek links may
be ignored—the tensor network representing Λ⊗N

φ is a
trivial network without connections. Different types of
correlations can be simulated using non-trivial action of
channels on Ek—see Section V E for an example involv-
ing a correlated dephasing noise model. The more com-
plicated and long-range correlations are, the larger the
dimension of Ek required to simulate them. Again, to
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simulate all possible signal combs Λ
(N)
φ , one would need

dim(Ek) that grows exponentially with N . Luckily, for
many typical correlation models, the required dim(Ek)
does not depend on N at all.

The problem of identifying the optimal QFI for a se-
quence of (possibly correlated) channels Λφ, with limited
size of ancillary system dA, can be written using ISS ap-
proach as

F
(dA)
Q (Λ(N)

φ ) = max
P1,P2,...,PN ,L

F (N)(P,L), (31)

where P is given by (28) with links A of dimensions
dA and F (N)(P,L) is defined as in (24). Obviously,

F
(dA)
Q (Λ

(N)
φ ) ≤ FQ(Λ

(N)
φ ), and F

(dA)
Q (Λ

(N)
φ ) = FQ(Λ

(N)
φ )

for sufficiently large dA.
To perform the maximization (31) numerically, we pro-

ceed as follows. Initially, P1, P2, ..., PN are random CJ
operators and L is a random hermitian matrix. Then, we
maximize the figure of merit over P1, fixing P2, ..., PN , L.
In the next step, we maximize over P2, then over P3, etc.
In the final step, the maximization over L is performed.
The entire procedure is then repeated until convergence is
achieved. Notice, that compared to the algorithm from
Section III B, we need to perform N + 1 maximization
steps in one iteration instead of just 2 steps. However,
the computational complexity of each step does not scale
with N . It is also crucial that each maximization step is
SDP (as we show below).

The network representing F (N)(P,L) can be depicted
as

,
(32)

where we used the identity A ⋆ B = Tr(ABT ) valid for
matrices A,B acting on the same Hilbert space. The ma-

trices ρ
(N)
φ , ρ̇

(N)
φ , L are all of size dHdA × dHdA, which

does not depend on N . Hence those matrices can be eas-

ily stored in memory. Given ρ
(N)
φ , ρ̇

(N)
φ , the optimization

over L can be performed in the same way as it was done
in Sections II B, III B. The nontrivial part is the efficient

computation of matrices ρ
(N)
φ , ρ̇

(N)
φ . This can be done by

contracting the following networks:

,
(33)

.
(34)

Notice, that ρ̇
(N)
φ is represented as a sum of N

elements—in the i-th element the derivative acts on CJ
operator of the i-th probed channel Λφ.

The key property of tensor networks is the freedom of

choice of indices contraction order. Even though ρ
(N)
φ

is constructed by contraction of networks representing

P and Λ
(N)
φ , it is not necessary to compute these con-

stituent networks in order to obtain ρ
(N)
φ (which would

be equivalent to the procedure from Section(III B)). In-
stead, one should contract indices in the following order:
H1,A1,K1, E1,H2,A2, ... , EN−1,HN . Then, the max-
imal size of a tensor we need to process at a time does

not depend on N . This allows to compute ρ
(N)
φ and its

derivative efficiently even for large N , and then find op-
timal L in the same way as in previously described ISS
procedures.

To optimize over Pk, we proceed as follows. Firstly,
we represent the figure of merit using (32). Then, we

replace ρ
(N)
φ and ρ̇

(N)
φ with networks (33), (34). The

figure of merit is then represented as a sum of N + 1 net-

works: N from the term 2Tr(ρ̇
(N)
φ L) and 1 from the term

Tr(ρ
(N)
φ L2). In each component network, we contract all

the indices apart from those corresponding to subspaces
linked to Pk. Then, we obtain

,
(35)

where Sk,0 denotes the contracted network representing

term with ρ
(N)
φ and Sk,i for i > 0 denotes the i-th term

from the expansion of the term with ρ̇
(N)
φ . CJ operators

Sk,i act on the Hilbert space of dimension d2Ad
2
H, and

their sum

Sk =

N∑
i=0

Sk,i (36)

can be directly computed, which allows to write the figure
of merit as

F (N)(P,L) = Tr(PkS
T
k ). (37)

Therefore, the optimization over Pk boils down to the
following SDP:

max
Pk

F (N)(P,L) = max
Pk

Tr
(
PkS

T
k

)
,

s. t. TrHk⊗Ak
(Pk) = 1Kk−1⊗Ak−1

, Pk ≥ 0. (38)

The first condition for Pk corresponds to the trace
preservation of a channel, and should be replaced with
Tr(Pk) = 1 for k = 1 because P1 represents a density
matrix of an input state.

The performance of the iterative optimization is the
most stable when CJ operators Λφ are full-rank. In other
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cases, we observe that convergence to the optimal value
is not always achieved. To overcome this issue, we add
an artificial depolarizing noise to each channel Λφ. The
strength of this noise decays exponentially over the course
of running the algorithm, such that its role becomes neg-
ligible for final iterations, and the optimization result is
unaffected. Due to this improvement, our algorithm is
very stable, and converges to the same value with differ-
ent random inputs.

The algorithm outputs not only the optimal QFI value,

F
(dA)
Q (Λ

(N)
φ ), but also the sequence of CJ operators Pk

corresponding to the optimal estimation protocol. In
many cases, this protocol can be further simplified. Let
us consider the following transformation of two subse-
quent comb teeth:

Pk → (IHk
⊗ UAk

) ◦ Pk (39)

Pk+1 → Pk+1 ◦ (IKk
⊗ U†

Ak
), (40)

where I is an identity channel, U is an arbitrary uni-
tary channel, U† is its inverse and subscript denotes
a space on which a channel acts. Channels UAk

and

U†
Ak

become identity when the link product Pk ⋆ Pk+1 is
performed—consequently, the described transformation
does not change P . The proper choice of UAk

may sim-
plify the teeth P1, P2, ..., Pk of the optimal strategy—this
is an analogue of the ‘local-gauge’ choice in the MPS de-
scription [38]. In our algorithm we can fix the initial teeth
in an easy to interpret basis, rerun the optimization over
the remaining ones and thus, step by step, limit some of
the gauge freedom.

V. EXAMPLES

To demonstrate the efficiency of the introduced tensor
network based approach, we use it to find the optimal
adaptive protocols of estimation of different noisy qubit
channels and the corresponding QFI in the limit of large
number of channel uses.

The methods we have developed can be applied to
channels Λφ with arbitrary parameter dependence. Still,
for concreteness we focus on qubit channel estimation
models with unitary parameter encoding and parameter
independent noise, for which the Kraus operators have
the following structure:

Kφ,k = UφKk, Uφ = e−
i
2φσz , (41)

which means that the angle of rotation of the Bloch vec-
tor around z axis is estimated, and signal comes after
noise described by Kraus operators Kk. This allows us
to discuss models that manifest qualitatively different be-
haviour both in terms of asymptotic QFI scaling, and in
terms of the impact of the size of available ancillary sys-
tem.

We will present results on the achievable QFI for op-
timal adaptive protocols utilizing given size of ancil-
lary systems for four representative types of uncorrelated

noise affecting phase estimation: perpendicular dephas-
ing (V A), parallel dephasing (V B), perpendicular am-
plitude damping (V C), and parallel damping (V D)—see
Fig. 3. We present the result for number of channel uses
up to N = 20 as in these regime all the relevant qualita-
tive observations can be made, but this not a fundamen-
tal limitation of the method. As a final example, in V E
we will present results for a correlated dephasing noise
model (for number of channel uses up to N = 50), which
shows how effective the tensor network method is in un-
derstanding the potential of correlated noise models, for
which the fundamental metrological limitations are not
yet fully understood.

For all the cases studied, we obtain the optimal adap-
tive QFI as a function of N for 0, 1 and 2-qubit ancillary
systems (this corresponds to dA ∈ {1, 2, 4}). We com-
pare our results with fundamental upper-bounds, which
were derived in Ref. [16]. The bounds are guaranteed
to be saturable when N → ∞ and ancillary system is
large enough [13, 16]. However, for some cases, the gap
between the upper bound and the result of ISS optimiza-
tion is very small. It means, that an almost optimal
adaptive estimation protocol can be implemented with a
small size ancillary system. To guarantee a high preci-
sion of the results obtained, we stop the algorithm only
when the relative result increases less than 0.01% over 5
full iterations (optimization over P1,..., PN , L is counted
as one iteration). We also made sure, that for different,
randomly chosen initial guesses P1,..., PN , L, the final
result is the same up to a numerical error.

A. Perpendicular dephasing

The noise Kraus operators for this model are given by

K1 =
√
p 11, K2 =

√
1 − pσx, (42)

which means that the dephasing acts perpendicularly
to the axis of the parameter encoding unitary rotation.
This model has long been a paradigmatic example of the
potential of application of quantum-error correction in-
spired protocols to recover the Heisenberg scaling of pre-
cision despite presence of noise [11, 12, 62–65].

In case when signal comes before a noise, that is when
Kφ,k = KkUφ instead of Kφ,k = UφKk (41), the im-
pact of noise can be completely eradicated with only one
ancillary qubit [11, 12, 62–65].

It is also known that when signal comes after the noise,
which is the case we consider in this paper, the Heisen-
berg scaling may also be preserved, yet with a reduced
coefficient [16]. In Ref. [16] the optimal protocol in case
of N = 2 uses of channel has also been explicitly con-
structed, which required no ancillary system at all. It
was not clear, however, what is the structure of the opti-
mal protocol for larger N and in particular what size of
ancillary system is required to reach the optimal perfor-
mance.
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FIG. 3. Optimal values of QFI normalised by N for optimal
adaptive strategy, given N channel uses, for different dimen-
sions of ancillary system: dA = 1 (blue), dA = 2 (red) and
dA = 4 (yellow). Symbols depict values of QFI in a situa-
tion where all the N channels are used in a single adaptive
protocol, while dashed lines allow for multiple repeated ex-
periments with N channels used in total. Solid black lines
correspond to the fundamental upper-bound computed using
the methods from [16]. The four plots correspond to different
metrological models: (A) perpendicular dephasing, Eq. (42)
(p = 0.9); (B) parallel dephasing, Eq. (43)(p = 0.85) (C)
perpendicular amplitude damping, Eq. (44) (p = 0.75); (D)
parallel amplitude damping, Eq. (47) (p = 0.9).

In Fig. 3A we see that the ancillary system is indeed
needed in order to preserve the character of the Heisen-
berg scaling, and that a single qubit ancilla already pro-
vides an almost optimal performance—the results fall
very close to the fundamental bound, and the numerical
improvements thanks to the addition of second ancillary
qubit are marginal.

The exemplary almost optimal protocol for N = 3 that
utilizes only a single ancillary qubit, that we were able to
extract from the obtained numerical results, is described
in Appendix D 1.

B. Parallel dephasing

Parallel dephasing is one of the most commonly con-
sidered decoherence models in quantum metrology, as
it represents the typical situation where the coherences
required to sense the parameter of interest are being
reduced by decoherence processes. The corresponding
noise Kraus operators are

K1 =
√
p 11, K2 =

√
1 − pσz, (43)

which means that the dephasing is defined with respect
to the same axis as the parameter encoding rotation.

It is well known that this model does not admit asymp-
totic Heisenberg scaling, and the quantum enhancement
amounts to a constant factor improvement, with the
asymptotically achievable upper bound on QFI given as

F (N) ≤ N (p−1/2)2

p(1−p) [6, 8, 9]. It is also well known, that in

the parallel-scheme framework the bound can be asymp-
totically achieved via a Ramsey interferometry scheme
and the use of weakly spin-squeezed states [6, 18, 39] or
low bond dimension MPS [39, 66]. These protocols may
be practical in many-body systems, as the effecitve en-
tanglement required between the particles is weak, but,
nevertheless, large number of elementary probes need to
be entangled. As such, it is not obvious if the perfor-
mance of this optimal parallel many-probe protocol can
be effectively simulated via adaptive protocols with small
ancilla size in the limit of large N .

Fig. 3B illustrates that increasing size of ancilla signif-
icantly improves the performance of the protocol. The
largest size considered, dA = 4, shows significantly bet-
ter performance than the single qubit ancilla case, but
clearly, increasing the dimension of ancilla further would
allow to approach the bound even closer—this would re-
quire a more dedicated numerical effort though, as three
qubit ancilla dA = 8 is on the borderline of numeri-
cal complexity that a high performance PC is capable
of dealing with. Note that for low dimensional ancilla,
at some point QFI starts to drop down, since the deco-
herence is dominating, and the ancillary systems are not
sufficiently large to deal with. In this case it is more ad-
visable to stop the protocol at some n < N , and use the
remaining resources for a fresh run of the protocol—this
strategy is illustrated with dashed lines, and this allows
to avoid the drop in per-channel-use performance with in-
creasing N . Interestingly, the effect of QFI per channel
descrease is barely noticeable already with a two qubit
ancilla.

C. Perpendicular amplitude damping

Let us now consider a perpedicular damping model,
where the corresponding Kraus operators read

K1 = |−⟩ ⟨−|+√
p |+⟩ ⟨+| , K2 =

√
1 − p |−⟩ ⟨+| , (44)

where |±⟩ = (|0⟩ ± |1⟩)/
√

2 are the eigenvectors of σx.
This is variation on the standard amplitude damping
model, where the damping axis is perpendicular to the
phase encoding rotation axis.

Despite perpendicular character of the noise, this
model, unlike the perpendicular dephasing one, does not
admit asymptotic Heisenberg scaling [16]. The analysis
of this model leads to a particularly interesting conclu-
sions, as the adaptive upper-bounds for QFI derived in
Ref. [16] are saturable for all values of p and N . Previ-
ously, this fact was only demonstrated for N ≤ 4. Using
the tensor network approach, we show numerically, that
the bound is also saturable for N up to 50. Moreover,
one qubit ancilla (dA = 2) is enough to saturate the
bound, see Fig. 3C. On top of this, using the structure
of the numerical solution, we find the analytical form of
the optimal protocol for all values of p and N .
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FIG. 4. Schematic representation of the optimal metrological
protocol for phase estimation in the presence of perpendicu-
lar damping noise. Initially, probe and ancilla qubits are pre-
pared in a state |−⟩H1⊗|0⟩A1 , and for first k steps, no external
control is applied—the probe state is freely evolved through
channels Λφ. Then, the protocol consists of the interactions
Vi between system and ancilla, followed by measurement of
ancilla in |0⟩/|1⟩ basis. If the result of this measurement is
mA = 0 , the protocol is continued, if mA = 1, the protocol is
terminated, and the number of step i in which it happened is
saved. After N steps the system is measured in |+⟩/|−⟩ basis
(provided that the protocol was not terminated earlier).

Let us consider the local parameter estimation around
the value φ = 0 (for other values of φ one needs to ad-
just the protocol by proper rotation of a probe qubit).
Initially, the probe (H1) and ancilla (A1) qubits are pre-
pared in a product state |−⟩H1

⊗|0⟩A1
—notice, that this

state is not affected by damping noise. The protocol in-
volves entangling operations Vi applied between the i-th
and i+1-th use of the channel Λφ followed by the readout
of the ancillary qubit. The action of Vi reads:

Vi |−⟩ ⊗ |0⟩ = |−⟩ ⊗ |0⟩ , (45)

Vi |+⟩ ⊗ |0⟩ = ti |+⟩ ⊗ |0⟩ +
√

1 − t2i |−⟩ ⊗ |1⟩ , (46)

where ti ∈ [0, 1] describes the coupling strength between
the probe and the ancilla. For ti = 0 the coupling is
the strongest, and probe is measured in |±⟩ basis, with
readout saved on ancillary qubit; for ti = 1, there is no
coupling, the input state remains unaffected. All inter-
mediate values describe a weak measurement, when infor-
mation accumulated in a probe is partially transformed
to ancilla.

After the action of Vi, the ancillary qubit is measured
in the basis {|0⟩ , |1⟩}. When the result is |1⟩, then the
probe no longer carries any information about φ, the
whole protocol is restarted, and the number of a step
in which it happened is saved (therefore, there is no need
to specify how Vi acts on states of the form |ψ⟩H⊗|1⟩A).
When the result is |0⟩, the protocol is uninterrupted.
Provided |0⟩ is measured in all N subsequent coherent
uses of Λφ, then the final probe state is measured in the
basis (|±⟩). The total classical FI achieved using this
scheme depends on coupling parameters ti. When the
values of ti are chosen optimally the bound derived in
[16] is saturated for all N .

In particular we observe, that when the damping noise

is weak enough, then first k optimal coupling parameters
are ti = 1—that means, that one should initially let the
probe freely evolve through channels Λφ. After this stage,
interactions Vi effectively keep the probe state in some
optimal, fixed point, in which the effect of damping noise
is not too large, and at the same time, the measurements
performed on ancillary qubit are as informative as possi-
ble. See Fig. 4 for the sketch of the described strategy
and Appendix D 2 for the derivation and more details.

Apart from one ancillary qubit, the described protocol
requires classical memory to store information about the
step number in which |1⟩ was measured. The protocol
found by our algorithm does not need any extra memory
by construction. However, we observed the same struc-
ture in the initial teeth of the numerically found strategy.
Notice, that it is not possible to saturate the bound with-
out ancilla (see Fig. 3C, points corresponding to dA = 1).

D. Parallel amplitude damping

For completness of discussion of uncorrelated noise
models, we consider the standard amplitude damping
model representing e.g. spontaneous emission, where de-
coherence axis is parallel to the phase encoding rotation
axis. The Kraus operators for this model are

K1 = |0⟩ ⟨0| +
√
p |1⟩ ⟨1| , K2 =

√
1 − p |0⟩ ⟨1| . (47)

In this model, again, the Heisenberg scaling is asymptot-
ically unattainable [8, 16], as can be also seen in Fig. 3D
where the curve representing the bound on F (N)/N
(black solid) reveals the asymptotic convergence to a con-
stant for large N .

Similarly to the parallel dephasing model, we see that
the performance of the protocol improves significantly
with increasing size of the ancillary system, and the 2-
qubit ancilla results could be further improved by in-
creasing dA. It can also be seen that while a strategy
with 1 ancilla qubit offers a significant advantage over
the one without ancilla for all N > 1, the difference be-
tween strategies with 1 or 2 ancilla qubits are negligible
for small N .

We use this example to demonstrate that the tensor
network approach provides benefits also in the low-N
regime, by allowing for identifying a simpler structure of
optimal protocols than the standard full-comb optimiza-
tion procedures. More concretely, we focus on the basic
N = 2 uses case, and p = 0.5, and show a significantly
simpler protocol than the one obtained in [45], where the
MOP optimization, combined with standard procedure of
decomposing combs into isometries (discussed in Section
III C) was applied.

Because the difference between QFIs achieved with
one- and two-qubit ancillae is small for N = 2, here we
present the strategy with one-qubit ancilla, which is more
intuitive and almost optimal (for N = 2 the QFI changes
from 2.174 to 2.179 when the second ancillary qubit is
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FIG. 5. Optimal strategy for parallel damping noise model
with two uses of channel Λφ, when ancilla is restricted to 1
qubit. a) Teeth P1, P2 of the strategy act before each channel
use. First tooth of strategy, P1, prepares an entangled state.
After channel Λφ acts for the first time, the 2-qubit state
is |ϕ⟩. b) Second tooth, P2, acts on |ϕ⟩ with a unitary U
acting only on subspace spanned by |00⟩, |11⟩ or prepares a
new entangled state |ψ1⟩ if the input state to P2 was |01⟩.

added). The 2-qubit ancilla strategy achieves the maxi-
mal possible QFI and is described in Appendix D 3.

The optimal strategy with one-qubit ancilla is
schematically presented in Fig. 5. Its first tooth prepares
an entangled state |ψ0⟩, which is close to the maximally
entangled state 1√

2
(|00⟩ + |11⟩). The second tooth ap-

plies a unitary U on the subspace spanned by |00⟩, |11⟩
and prepares a different entangled state |ψ1⟩ for an in-
put state |01⟩ (notice, that input |10⟩ is forbidden due
the noise character). See Appendix D 3 for more detailed
description of this protocol.

In [45] the authors provided a decomposition of the re-
sulting isometries into elementary gates using the pack-
age from Ref. [60]. The first tooth of their strategy’s
comb prepares a pure state. To represent the action of
the second tooth, 33 CNOT gates acting between 5 qubits
were required. As demonstrated above, the second tooth
of the strategy which we obtained from our tensor net-
work method, restricting ancilla to one qubit, is signifi-
cantly simpler and provides an intuitve understanding of
the action of the protocol. Even strictly optimal strat-
egy involving two ancillary qubits is much simpler than
the one presented in Ref. [45], as we demonstrate in Ap-
pendix D 3.

E. Correlated parallel dephasing

The examples discussed above covered four uncorre-
lated noise models. For such models, asymptotically tight
bounds can be efficiently derived, and serve as a bench-
mark of actual protocols [6, 8, 9, 11, 16].

We now move on to show the potential of tensor net-
work methods to deal with correlated noise models. In
this case, there are no universal methods to derive fun-
damental bounds, and hence effective numerical meth-

ods to identify optimal metrological protocols are even
more desired. We will focus on a simple generalization of
parallel dephasing model, that would allow us to study
the impact of the strength of temporal (anti-)correlations
present in the dephasing process.

Parallel dephasing noise can be interpreted as random
rotations of a qubit around the dephasing axis. In the
uncorrelated case, these random rotations are assumed
to be independent for subsequent interactions of a probe
state with the probed channels. In what follows, we will
consider a model where these random rotations may be
(anti)correlated up to the desired degree.

The physical context for such a model is a situation
where we measure the value of a constant magnetic field
with a known direction using a spin 1/2 probe. The prob-
ing spin is also affected by a randomly fluctuating field of
a different origin, whose direction is parallel to the field
we want to estimate. Moreover, if the time scale of the
field fluctuations is comparable or slower than the system
probing dynamics, then the random rotations represent-
ing dephasing in the subsequently probed channels will

be correlated. Therefore, Λ
(N)
φ ̸= Λ⊗N

φ , and the noise
is properly described by tensor network with nontrivial
Hilbert spaces Ei—see (30).

The one-qubit dephasing of strength p, defined in (43),
can be alternatively described using a different set of
Kraus operators

K1 =
1√
2
U+ϵ, K2 =

1√
2
U−ϵ, (48)

where U±ϵ = e∓
i
2φσz , p = cos2(ϵ/2). This implies, that

the dephasing model can be as well interpreted as result-
ing from a rotation by angle ϵ around z axis in random
direction (50% left, 50% right).

To represent the most basic form of dephasing cor-
relations, we assume that the rotational directions for
consecutive dephasing channels are elements of a binary
Markov chain given by

pi|i−1(+|+) = pi|i−1(−|−) =
1 + C

2
, (49)

pi|i−1(+|−) = pi|i−1(−|+) =
1 − C

2
, (50)

where pi|i−1(si|si−1) for i ∈ {2, 3, ..., N}, is the condi-
tional probability of rotational direction si in channel i
assuming direction si−1 in channel i − 1, C ∈ [−1, 1] is
a correlation parameter: C = 0 corresponds to no cor-
relations, C = 1 means maximal positive correlations
(all rotations are in the same direction), and C = −1—
maximal negative correlations (directions are always dif-
ferent in two neighbor channels). Furthermore, we as-
sume that directions + and − are equally probable in
the first channel: p1(+) = p1(−) = 1/2.

To model this type of correlations using our tensor net-
works framework, we consider channels Λφ acting on a
two-qubit space: first qubit (K) is the physical probe, and
the second one (E) is a classical bit of memory. When
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this classical bit is in a state |±⟩, then the unitary U±ϵ
acts on the probe. After each channel use, the register
state is drawn according to the conditional probabilities
described in (49), (50). The Kraus operators describing
the action of a channel on a probe and register are

K1 =

√
1 + C

2
U+ϵ ⊗ |+⟩ ⟨+| , K2 =

√
1 − C

2
U+ϵ ⊗ |−⟩ ⟨+| ,

(51)

K3 =

√
1 − C

2
U−ϵ ⊗ |+⟩ ⟨−| , K4 =

√
1 + C

2
U−ϵ ⊗ |−⟩ ⟨−| .

(52)

The input state of a register of a 1st channel is 11/2 to
satisfy the condition p1(+) = p1(−1) = 1/2. Notice, that
the action of a single channel on a probe is equivalent to
dephasing of strength p = cos2 ϵ when there is no in-
formation about remaining channels and about classical
register state.

We performed numerical calculations for negative (C =
−0.75) and positive (C = 0.75) correlations for dephas-
ing strength p = 0.85. The results are shown in Fig. 6.
Note that we also plotted the bound corresponding to the
uncorrelated dephasing noise model of the same strength.
Interestingly, both negative and positive correlations al-
low to beat the upper bound calculated for uncorrelated
case. However, negative correlations allow for signifi-
cantly larger values of QFI. In fact, we observed that pos-
itive correlations may even decrease the QFI for smaller
values of C.

The gain in precision related with negative spatial
noise correlations fluctuation is a well known phenomena,
and has been discussed in parallel quantum metrological
schemes [39, 67–70]. Note, however, that here for the
first time, we provided results of optimal performance of
adaptive protocols for time-correlated dephasing models
in the limit of large N and with arbitrarily tunable cor-
relation parameter.

The gain thanks to positive correlations may be less
intuitive when trying to base it on spatial-correlations
analogy. In this case, one would expect that the more
collective character of dephasing (positive correlations)
leads to even stronger reduction of the achievable QFI—
the correlated dephasing [30, 35] makes the noise more
similar to the signal we are sensing. This observation
requires a deeper analysis, in order to understand how
much of this effect is due to discretization of the phase
fluctuations model, and how much is the advantage that
appears thanks to the adaptive nature of the protocols
considered.

VI. CONCLUSIONS AND OUTLOOK

The methods presented here allow for the efficient iden-
tification of optimal adaptive protocols in the paradigm
of multiple coherent channel uses. These results may be
seen as complementary to the research focusing on the

FIG. 6. The QFI per channel (F
(N)
Q /N) as a function of

number of channels coherently probed (N) in presence of cor-
related dephasing noise. The data shown were obtained for
dephasing strength p = 0.85, for negative (C = −0.75, blue)
and positive (C = 0.75, red) correlations. For comparison,
we also show an upper bound for precision for uncorrelated
dephasing noise (black line). Interestingly, this bound can be
violated with the help of correlations. For small values of N ,
zero and one-qubit ancilla (dA = 1, 2 ) seem to be enoguh
to obtain an optimal precision. However, for larger N , the
strategy involving two ancillary qubits (dA = 4) performs sub-
stantially better. Notice, that calculations for N = 50 will be
impossible without tensor network decomposition technique.

derivation of fundamental bounds for the performance of
adaptive metrological protocols [9, 11, 12, 16]. In the lat-
ter case, the obtained results are guaranteed to be larger
or equal to the largest achievable QFI—if numerical op-
timization is not exact, the final result can be only too
large, never too small. On the contrary, in the ISS op-
timization, the obtained QFI can never be larger than
the optimal one, since we always construct an explicit
protocol that allows to achieve the QFI returned by an
algorithm. Provided the QFI obtained from the two ap-
proaches coincide, we are sure that the protocol we have
identified is the optimal one. Interestingly, independently
of our paper, a recent study appeared where metrologi-
cal bounds are discussed taking into account limited size
of ancillary systems [71]. This approach may be viewed
as complementing our results even better, as one may
now focus both on protocols and bounds under the same
assumptions regarding the limit on the ancillary system
size.

The methods presented here may also be generalized
to fit into the Bayesian framework. This in principle
poses no conceptual difficulty within the ISS approach,
provided the Bayesian cost is quadratic, as the relevant
figure of merit has an analogous structure to the QFI, see
(14). The potential practical difficulty may come, how-
ever, from a more greedy character of the Bayesian ap-
proach when it comes to the dimension of the ancillary
systems required—since the classical information is re-
trieved only in the end of the protocol, and Bayesian ap-
proaches typically require larger amount of information
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to be retrieved in the measurement compared to the QFI
based approaches [7]. Nevertheless, it is worth explor-
ing this direction and compare it with other proposals,
where methods of identifying optimal adaptive Bayesian
protocols in terms of optimization over quantum combs
are proposed [55].

The other, and probably more promising application is
to use the tensor network approach developed here to find
the optimal adaptive protocols for channel discrimination
problems [72]. In this case, even though the problem
is also Bayesian at its core, the amount of information
gathered over the run of the protocol is limited by the
number of alternatives to be discriminated, and protocols
with small size ancillary systems should be efficient. The
advantage is the possibility to study the performance of
the protocols in the limit of large number of channel uses,
a regime out of reach for the all state-of-the art methods
[73].

Our approach may also be viewed as complementary
to tensor network methods developed for identification
of optimal multi-partite probe states for parallel sensing
schemes [39]. While these approaches are well-suited to
study many particle systems (cold atoms, solid state sys-
tems, . . . ) with simple local entanglement structure, the
newly developed approach is perfect to study small scale
systems that may be interrogated coherently over many
rounds of an experiment (atomic clock systems, trapped
ions, spins, NV-centers, . . . ). In other words, the present
approach addresses the difficulties related with under-

standing long-time quantum coherence/entanglement po-
tential that may be revealed via specific adaptive pro-
tocols, while the former one focuses on spatial aspects
of distributed entanglement in multi-partite sensing sys-
tems. Interestingly, it is conceivable to combine the two
approaches in a unified framework, where both long-
range spatial and temporal effects may be satisfactorily
analyzed for the sake of identifying optimal metrological
protocols. This is an ambitious direction that may be
pursued in the future.

Finally, even though we have focused our research on
the standard single parameter quantum metrology prob-
lem, it should be possible to generalize the methods pre-
sented here to multiparameter models as well. To do this
one needs to design an effective ISS procedure involving
multiparameter figures of merit such as the exact multi-
parameter cost or the Holevo bound [49, 74]. This is still
an ongoing research.

We are also convinced that our approach may be fruit-
fully combined with more general quantum process to-
mography paradigms, where tensor network structures
naturally appear [75, 76], as well as help in optimizing
quantum control operations in non-Markovian models
[77].
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Appendix A: Decomposition of a quantum comb
into isometries

Here we summarize the procedure, given in [42], of
decomposing a quantum comb P into a concatenation
of isometries (see (27) for an illustration) applied to our
setup.

Given the CJ operator P of the comb P, we con-
struct the subsequent isometries V (1), ..., V (N), where
V (k) : Kk−1 ⊗ Ak−1 → Hk ⊗ Ak. We use the following
indices to label the respective basis elements or corre-
sponding Kraus operators:

i - basis of Ak, i ∈ [1, rank(P (k))],

j - basis of Ak−1, j ∈ [1, rank(P (k−1))],

m - basis of Hk,

n - basis of Kk−1.

The procedure is as follows.

1. Obtain ∀k∈[1,N−1] the CJ operator P (k) of the comb
P up to its k-th tooth, using (17).

2. Starting with k = 1 for each k construct the canon-

ical representation {K(k)
i }i of the channel P(k).

3. Starting with k = 2 (since for k = 1 the isometry
is just the input state), for each k construct two
different Kraus representations of the same channel
(A11) (see also (A13) and (A14)):{
K

′(k)
i,m

}
i,m

=
{(

1H1,...,k−1
⊗ ⟨m|

)
K

(k)
i

}
i,m

, (A1)

{
K

′′(k)
j,n

}
j,n

=
{
K

(k−1)
j ⊗ ⟨n|

}
j,n
. (A2)

4. Using the system of equations

K
′(k)
i,m =

∑
j,n

V
(k)
im,jnK

′′(k)
j,n (A3)

obtain the matrix elements of the isometry V (k)

which connects the two representations of the chan-
nel. Finally from:

V (k) =
∑

i,j,m,n

V
(k)
im,jn|m⟩⟨n| ⊗ |i⟩⟨j| (A4)

obtain the isometry. From this construction we
have dim(Ak) = rank(P (k)).

To see why such V (k) are indeed isometries whose con-
catenation yields P, let us first recall from (17) the con-
dition for P to be the CJ operator of a quantum comb
P:

P ≥ 0, TrAN⊗HN
P = P (N−1) ⊗ 11KN−1

, (A5)

∀
1<k<N

TrHk
P (k) = P (k−1) ⊗ 11Kk−1

, TrH1
P (1) = 1.

Note that those conditions imply that all P (k) ∈
L(
⊗k−1

i=1 Ki ⊗
⊗k

i=1 Hi) are positive semidefinite and if
we trace out all output spaces they act on (Hi : i =
1, ..., k) we get an identity operator on all input spaces
(Ki : i = 1, ..., k − 1). Hence each P (k) is a CJ operator
of a CPTP map [42]

P(k) : L

(
k−1⊗
i=1

Ki

)
→ L

(
k⊗
i=1

Hi

)
. (A6)

Through the analysis of the input and output spaces of
this map it is easy to see that it is just a quantum chan-
nel obtained from comb P by ignoring (tracing out) all
spaces related to teeth k + 1, ..., N that is Kk, Hk+1, ...,
KN−1, HN , AN . Then the conditions (A5) (apart form
positivity) can be reformulated as

TrHk+1
P(k+1)(ρ) = P(k)(TrKk

ρ), (A7)

for any density matrix ρ. Naturally, each channel P(k)

can be represented by a set of Kraus operators {K(k)
i }

and purified to isometry W (k) such that

K
(k)
i = ⟨i|W (k), (A8)

where |i⟩ is an o.-n. basis of auxiliary space Ak used
for purification. In the above formula partial inner prod-
uct was used, that is on the RHS ⟨i| formally denotes
1H1,...,k⊗⟨i|. This notation will also be used throughout
this section, when applicable.

Let us for a moment assume that P can be decomposed
into isometries V (1), ..., V (N) and investigate what condi-
tions they should satisfy. First, since V (k) performs the
action of the k-th tooth, it needs to have Kk−1 as one
of its input spaces and Hk as one of its output spaces.
Furthermore, among its input spaces we need a space
that would connect it with all previous k − 1 teeth. The
natural choice for this space is Ak−1, since it can be in-
terpreted as a comb memory after k− 1 teeth of a comb.
Analogously, we need a space that would connect V (k) to
the next tooth and the natural choice here is Ak. Thus
we are looking for an isometry

V (k) : Kk−1 ⊗Ak−1 → Hk ⊗Ak. (A9)

For such a choice we can multiply the purification of k−
1 teeth (W (k−1)) by V (k) and for V (k) to be the k-th
tooth we want the result of this multiplication to be the
purification of k teeth—W (k). In summary, we need V (k)

to satisfy:

W (k) = V (k)W (k−1). (A10)

To see that such a matrix indeed exists let us consider
two transformations:

L

(
k−1⊗
i=1

Ki

)
∋ ρ 7→ TrHk

P(k)(ρ) ∈ L

(
k−1⊗
i=1

Hi

)
, (A11)

L

(
k−1⊗
i=1

Ki

)
∋ ρ 7→ P(k−1)(TrKk−1

ρ) ∈ L

(
k−1⊗
i=1

Hi

)
.

(A12)
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Clearly both of them are CPTP maps thus they have
Kraus representations - here K ′(k) and K ′′(k) respec-
tively. Those representations can be constructed as fol-
lows:

TrHk
P(k)(ρ) =

∑
m

⟨m|P(k)(ρ) |m⟩ =

=
∑
i,m

⟨m|K(k)
i ρK

(k)†
i |m⟩ ,

so

K
′(k)
i,m = ⟨m|K(k)

i . (A13)

Analogous reasoning leads to

K
′′(k)
j,n = K

(k−1)
j ⟨n| . (A14)

By relation (A7) channels (A11) and (A12) are equal
thus K ′(k) and K ′′(k) are two Kraus representations of
the same channel. It follows that there exists an isometry
Vim,jn connecting those two representations [57]. They
are related by (A3). Finally:

W (k) (A8)
=
∑
i

|i⟩K(k)
i

(A13)
=

∑
i,m

|m⟩ |i⟩K
′(k)
i,m =

(A3)
=

∑
i,j,m,n

Vim,jn |m⟩ |i⟩K
′′(k)
j,n =

(A14)
=

∑
i,j,m,n

Vim,jn |m⟩ ⟨n| ⊗ |i⟩K(k−1)
j =

(A8)
=

∑
i,j,m,n

Vim,jn |m⟩ ⟨n| ⊗ |i⟩ ⟨j|W (k−1) =

=

 ∑
i,j,m,n

Vim,jn |m⟩ ⟨n| ⊗ |i⟩ ⟨j|

W (k−1),

thus the matrix in brackets is an isometry that satisfies
(A10) and this is indeed the matrix (A4) which we give
in the last step of our procedure.

Appendix B: Brief introduction to tensor networks
formalism

Let us introduce the basic concepts of tensor networks
formalism. Any n-index tensor Ti1i2...in can be repre-
sented as a rectangle with n legs:

...

(B1)
All the links in the depicted example come from the right
side of a rectangle, generally the side from which a link
comes out does not have any mathematical meaning.

Let Ti1i2...in and Wj1j2...jm be two tensors, and let us
assume that the range of indices ik and jl is the same:

ik, jl ∈ {0, 1, ..., d − 1}. Then, a tensor S can be con-
structed by contraction of indices ik and jl:

S = Ti1...ik−1iik+1...inWj1...jl−1ijl+1...jn , (B2)

the summation convention was used above—the
sum over i ranging from 0 to d − 1 was per-
formed. Notice, that S has n + m − 2 indices:
i1, ..., ik−1, ik+1, ..., in, j1, ..., jl−1, jl+1, ..., jm. Tensor S
can be graphically represented as

...

...
...

...

(B3)
Free legs correspond to n+m−2 indices of S, connected
legs correspond to contracted indices .We can combine
more tensors into a network, in which each link denotes
a contraction of one indices pair. For a more detailed
introduction to a tensor networks formalism see Ref. [78]

Appendix C: Tensor network representation of
quantum combs

In this section, we provide technical details regarding
the tensor network representation of quantum combs in-
troduced in Section IV of the main text.

Let us demonstrate the construction of multi-index
tensors representing quantum channels, which allow to
express a link product using tensor networks formal-
ism. Let C ∈ Lin (H1 ⊗H2 ⊗ ...⊗HN ) be a CJ ma-
trix of a channel whose input and output subspaces are
H1,H2, ...,HN (for our further considerations it does not
matter which spaces are outputs and which are inputs).
Operator C can be written as

C = Ci1i2...iNi′1i
′
2...i

′
N
|i1i2...iN ⟩ ⟨i′1i′2...i′N | , (C1)

where indices ij , i
′
j run from 0 to dj − 1, dj = dim (Hj);

vectors |0⟩ , |1⟩ , ..., |dj − 1⟩ form o.-n. basis of Hj . We
can construct an equivalent representation of C by con-
catenating indices ij and i′j into one index kj , ranging

from 0 to d2j − 1. Then, we obtain an N -index tensor C̃,
whose elements are

C̃k1k2...kN = Ci1i2...iNi′1i
′
2...i

′
N

for kj = djij + i′j . (C2)

Notice, that for N = 1, the described procedure corre-
sponds to a matrix vectorization.

Let E : L(H1) → L(H2⊗H3), F : L(H3⊗H4) → L(H5)
be quantum channels, and E ∈ L(H1 ⊗ H2 ⊗ H3), F ∈
L(H3⊗H4⊗H5) the corresponding CJ operators. We can
construct another channel, G : L(H1⊗H4) → L(H2⊗H5)
by using part of E (H3) a part of input of F. Then, by
construction, G ∈ Comb[(H1,H2), (H4,H5)] , and the
corresponding CJ matrix G can be written using link
product:

G = E⋆F = TrH3
[(E⊗11H4⊗H5

)(11H1⊗H2
⊗FTH3 )] (C3)
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Equivalently, we can write down the relation between
G̃, Ẽ, F̃ using tensor network formalism:

.
(C4)

This procedure can be directly generalized to chan-
nels with more input and output subspaces. We can also
concatenate more channels, to represent quantum combs
consisting of many teeth. In the main text, to simplify
the notation, we remove ∼ symbol, and write the symbols
of CJ matrices (e.g. G, E, F ) in the tensor network no-
tation. Formally, one should understand this notation as
indices contraction in the corresponding tensors G̃, Ẽ, F̃ .

Appendix D: Optimal metrological protocols for
select examples

1. Perpendicular dephasing

Here we describe the almost optimal protocol for per-
pendicular dephasing, N = 3 and dA = 2. Let us start
with the optimal protocol for N = 2. We take as an in-
put state |ϕ+⟩ = 1√

2
(|00⟩HA + |11⟩HA). After the action

of the channel this becomes a mixture of

1√
2

(|00⟩ + eiφ |11⟩), 1√
2

(|10⟩ + eiφ |01⟩), (D1)

with probabilities p and 1−p respectively. Then the error
can be detected by projecting the state on one of the two
subspaces C = span{|00⟩ , |11⟩} and E = span{|01⟩ , |10⟩}
and then corrected. The action of the second channel
leads to the mixture of

1√
2

(|00⟩ + ei2φ |11⟩), 1√
2

(|10⟩ + |01⟩), (D2)

with probabilities p and 1 − p respectively. This state
gives QFI at level 4p which is an optimal value for
p ≥ 0.5. For p ≤ 0.5 the occurrence of σx error is
more probable than not thus it is more beneficial to
treat nonoccurence of σx as an error and correct the state
when it is in span{|00⟩ , |11⟩}. Therefore finally we get

F
(2)
Q = 2(1 + |1 − 2p|).
Our protocol for N = 3 does everything as in the case

of N = 2 and then after the action of the second channel
it transforms all states in E (or C for p < 0.5) into:

1

2
(|0⟩ + |1⟩) ⊗ (|0⟩ + e−iπ/4 |1⟩). (D3)

Numerical computations showed that this results in a
QFI that is at worst 8% percent smaller than the optimal
protocol for dA = 2.

Note, that in case when signal comes before a noise
the matrix Uφ acts on a state immediately after it was
corrected. Thus it can be ensured that this state will
always be pure which allows for a complete eradication

of a noise and F
(N)
Q = N2.

2. Perpendicular amplitude damping

Let us describe in more details the optimal estimation
protocol introduced in Section V C, and calculate the as-
sociated FI . For a moment, let us assume that after ith
action of a channel Λφ the probe qubit is in a state

ρ(i)φ = |ψ⟩ciφ ⟨ψ| + O(φ3), (D4)

where

|ψ⟩ciφ = e−
i
2 ciφσz |−⟩ = cos

(ciφ
2

)
|−⟩− i sin

(ciφ
2

)
|+⟩ ,
(D5)

the ancillary qubit is in a state |0⟩. In the calculation,
we neglect higher order in φ, since the estimation around
φ = 0 is considered. Using identity

Vi |ψ⟩ciφ ⊗ |0⟩ = cos
(ciφ

2

)
|−⟩ ⊗ |0⟩+ (D6)

− iti sin
(ciφ

2

)
|+⟩ ⊗ |0⟩ − i

√
1 − t2i sin

(ciφ
2

)
|−⟩ ⊗ |1⟩

(D7)

and (D4), we can write the output of the control opera-
tion as

Vi(ρ
(i)
φ ⊗ |0⟩ ⟨0|)V †

i = |χi⟩ ⟨χi| + O(φ3), (D8)

where

|χi⟩ = |ψ⟩citiφ ⊗ |0⟩ − i
√

1 − t2i
ciφ

2
|−⟩ ⊗ |1⟩ . (D9)

The ancillary qubit of this output is measured in a com-
putational basis

• With probability p1,i =
c2iφ

2

4 (1 − t2i ) + O(φ3) we
measure ancillary qubit in state |1⟩ . Then the 1st
qubit is in a state |−⟩ and carries no information
about φ. We can start the whole protocol again.

• With probability p0 = 1 − O(φ2) we measure an-
cillary qubit in |0⟩, and the 1st qubit is then in a
state |ψ⟩citiφ ⟨ψ| + O(φ3)

In the 2nd case, we use the output state as input to next
channel Λφ—the output of Λφ can be then calculated
using (44), and after expanding around φ = 0, we obtain

Λφ(|ψ⟩citiφ ⟨ψ|) = |ψ⟩ci+1φ
⟨ψ| + O(φ3), (D10)

where

ci+1 = citi
√
p+ 1. (D11)

This justifies our initial assumption about the form of
the input state of Vi—we start with a state |−⟩ = |ψ0⟩,
and during the whole protocol the state is in the form
|ψ⟩ciφ ⟨ψ| + O(φ3). The coefficients ci are given by the

recursive relation (D11) with an initial condition c0 = 0.
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The total probability of a protocol termination in step
i is

pi = (1 − p1,1)...(1 − p1,i−1)p1,i =
c2iφ

2

4
(1 − t2i ) + O(φ4),

(D12)
note that it is equal to p1,i when terms of order φ4 and
higher are neglected. With probability 1−O(φ2) the pro-
tocol will not terminate after N channel uses, and at the
output we will obtain a probe state |ψ⟩cNφ ⟨ψ| + O(φ3)

and ancillary qubit in state |0⟩. The QFI associated with
this output state is

Fout = c2N , (D13)

the measurement which allows to achieve the classical FI
equal to QFI is, for example, the measurement in |±⟩
basis.

The total FI achieved in the described protocol is

F (N) =

n−1∑
i=1

ṗ2i
pi

+ Fout =

n−1∑
i=1

c2i (1 − t2i ) + c2N (D14)

To get an optimal performance, we need to optimize the
result over {ti}. This can be done step by step—for a
given ci we pick the value ti that maximizes the sum
of the FI associated with the measurement of ancillary
system after Vi and the QFI of the probe output state.
Therefore, we find ti maximizing the function

ṗ2i
pi

+ c2i+1 = c2i (1 − t2i ) + (citi
√
p+ 1)2 (D15)

This is a quadratic function, and it can be easily shown
that the optimal choice of ti is

ti =

{ √
p

ci(1−p) , when
√
p

(1−p) ≤ ci

1 othwerwise
(D16)

After inserting this to (D11), we obtain

ci+1 =

{
1

1−p , when
√
p

(1−p) ≤ ci

ci
√
p+ 1 othwerwise

(D17)

Notice, we always have ci ≤ ci
√
p + 1 ≤ 1

1−p for ci ≤
√
p

(1−p) , which means that ci ≤ ci+1 and ci ≤ 1
1−p for any

i. In the first stage of the protocol (first k channel uses,
see Fig. 4) the optimal value of ti is 1, which means
that no error correction is performed. In that stage, ci
keeps growing. Eventually, for i = k, ck becomes larger

than
√
p

(1−p) , and then tk < 1 must be picked, according

to (D16). Moreover, according to (D17), it means that
ck+1 = 1

1−p . Since now, protocol is in its stable phase—it

can be easily seen from (D17) and (D16), that ci = 1
1−p

and ti =
√
p for i ≥ k+ 1. The error correction with this

value of ti keeps the probe state in a state |ψ⟩φ/(1−p) as

long as ancillary qubit is measured in |0⟩. Then, the FI
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FIG. 7. The QFI per channel (F
(N)
Q /N) as a function of

number of channels N for perpendicular amplitude damp-
ing noise for different noise parameters p. The fundamental
bound (solid line) is compared with the FI achieved by the
described protocol (crosses). The bound is saturable using
this protocol, so crosses coincide with solid lines.

increase associated with each new channel is 1
1−p , which

is an optimal asymptotic value of QFI per channels for
this noise, as a result of bounds derived in Ref. [16].

To show that this protocol is indeed optimal, we calcu-
lated the FI analytically using (D17) , (D14), and com-
pared the result with the fundamental bound. The bound
turned out to be saturated in all the cases, see Figure 7.

3. Parallel amplitude damping

Here we provide details of the optimal strategies for
parallel damping, with restriction to 1 or 2 qubits of an-
cilla, as introduced in Section V D. We provide explicit
numerical values for strategies for p = 0.5, as a compari-
son with the strategy presented in [45].

a. 1-qubit ancilla

The Kraus operators {Li,j} of the i-th tooth of the
strategy are as follows. The first tooth prepares an en-
tangled state:

L0,0 = |ψ0⟩, (D18)

where |ψ0⟩ = a1|00⟩ + a2|11⟩ and for p = 0.5 a1 =
0.678, a2 = 0.735. The second tooth’s Kraus operators
are as follows:

L1,0 = U(|00⟩ + |11⟩)(⟨00| + ⟨11|),
L1,1 = |ψ1⟩⟨01|,
L1,2 = |10⟩⟨10|,

(D19)

where |ψ1⟩ = b1|00⟩ + b2|11⟩ and for p = 0.5 :
b1 = 0.590, b2 = 0.800 + 0.105i, U = 0.959|00⟩⟨00| +
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(−0.282 − 0.002i)|00⟩⟨11| + (0.278 + 0.047i)|11⟩⟨00| +
(0.945 + 0.166i)|11⟩⟨11|.

b. 2-qubit ancilla

2P
|

|φ> = |011>

|φ> = |000>
|φ> = |111>> >|ψ 3

>|ψ 2

>|ψ 1

FIG. 8. Second tooth, P2, of the optimal strategy for parallel
damping noise model with two uses of channel Λφ, when an-
cilla is restricted to 2 qubits. After a state |ψ0⟩ is prepared
by the first tooth and after the action of signal and noise, the
3-qubit input state to P2 is |ϕ⟩. P2, acts as follows: if |ϕ⟩ is
|000⟩, |ψ1⟩ is prepared; if |ϕ⟩ is |111⟩, |ψ2⟩ is prepared; if |ϕ⟩
is |011⟩, |ψ3⟩ is prepared.

For this ancilla size the adaptive bound from [16] is
saturated. The Kraus operators {Li,j} of the i-th tooth
of the optimal strategy are as follows. The first tooth

prepares an entangled state:

L0,0 = |ψ0⟩, (D20)

where |ψ0⟩ = a1|000⟩ + a2|111⟩ and for p = 0.5 : a1 =
0.675, a2 = 0.738. The second tooth’s action is repre-
sented schematically in Fig. 8. The second tooth’s Kraus
operators are as follows:

L1,0 = |ψ1⟩⟨000| + |ψ2⟩⟨111|,
L1,1 = |ψ3⟩⟨011|,
L1,k = |ψk⟩⟨ψk| for ψk ∈ {|001⟩, |010⟩, |100⟩, |101⟩, |110⟩},

(D21)
where:

|ψ1⟩ = b1|000⟩ + b2|101⟩,
|ψ2⟩ = c1|000⟩ + c2|101⟩,
|ψ3⟩ = e1|000⟩ + e2|010⟩ + e3|011⟩ + e4|101⟩

+ e5|110⟩ + e6|111⟩

(D22)

For p = 0.5 : b1 = −0.956, b2 = −0.160 − 0.248i, c1 =
0.295, c2 = −0.519 − 0.803i, e1 = 0.062, e2 = −0.041 +
0.519i, e3 = 0.289 + 0.237i, e4 = 0.042 + 0.065i, e5 =
0.370 + 0.247i, e6 = −0.580 + 0.225i.
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