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Abstract

Artificial Intelligence (AI) has great potential to improve health outcomes by
training systems on vast digitized clinical datasets. Computational Pathology, with
its massive amounts of microscopy image data and impact on diagnostics and
biomarkers, is at the forefront of this development. Gigapixel pathology slides pose
a unique challenge due to their enormous size and are usually divided into tens of
thousands of smaller tiles for analysis. This results in a discontinuity in the machine
learning process by separating the training of tile-level encoders from slide-level
aggregators and the need to adopt weakly supervised learning strategies. Training
models from entire pathology slides end-to-end has been largely unexplored due
to its computational challenges. To overcome this problem, we propose a novel
approach to jointly train both a tile encoder and a slide-aggregator fully in memory
and end-to-end at high-resolution, bridging the gap between input and slide-level
supervision. While computationally expensive, detailed quantitative validation
shows promise for large-scale pre-training and fine-tuning of pathology foundation
models.

1 Introduction

The application of Artificial Intelligence (Al) in the medical domain has the potential to improve
health and disease outcomes of the population at large. The advent of Al in healthcare is driven by
the digitization of vast quantities of clinical data. In recent years, pathology departments around
the world have started transitioning to a digital workflow which includes scanning pathology slides,
paving the way for the emergence of computational pathology and the development of Al-based
systems for diagnosis and prognosis in pathology. Compared to other medical image modalities,
digitized pathology slides are orders of magnitude larger resulting in giga-pixel images that can span
over 100,000 pixels in each dimension at 40x magnification. Processing these very large images is
challenging, leading to the common strategy in pathology to divide slides into tens of thousands of
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small tiles for analysis. Weakly supervised learning is often used, frequently formalized with multiple
instance learning (MIL) Dietterich et al.|[1997], to train predictive models.

Most works in computational pathology fall into two main categories: 1) approaches that focus
on training a tile-level encoder, and 2) approaches that focus on training a slide-level aggregator,
commonly leveraging a pre-trained encoder for feature extraction. Tile-level encoders can be trained
to directly extract relevant features for specific tasks. Traditionally this was achieved with supervised
learning through the use of pixel-level annotations, but this approach suffered from the lack of
annotated datasets. The introduction of weakly supervised learning marked a paradigm shift and
allowed for the training of tile-encoders directly without the need for annotations. A notable example
is|Campanella et al.|[2019]] where a clinical-grade decision support system was trained on a large
scale using max-pool MIL. In contrast, aggregator strategies rely on extracting features from tiles
using a frozen encoder which was trained on a different task |lIse et al.|[2018]],|Shao et al.|[2021]]. In
this approach, the tile-level encoder is not optimized. Originally, ImageNet pre-trained encoders were
used for this purpose. More recently, with the success of self-supervised learning (SSL), pre-trained
models on pathology data have been published Kang et al.|[2022],[Wang et al.|[2022], Filiot et al.
[2023]], |Chen et al.| [2022} [2023]], [Vorontsov et al.| [2023]], |(Campanella et al.| [2023]], |Chen et al.
[2024] and a transition from ImageNet based encoders to pathology tailored ones is occurring. While
SSL strategies applied to pathology can achieve better performance in various downstream tasks
compared to ImageNet trained models Campanella et al.|[2023]], it is still unknown whether current
SSL strategies result in encoders that show optimal downstream task performance.

Naively training a model end-to-end on entire pathology slides at high resolution would be too
memory intensive for a single GPU and not a lot of research has been devoted to this line of work.
End-to-end training requires that the loss generated at the slide-level is backpropagated all the way to
the image pixels. |Qu et al.|[2022], proposed to train both a tile encoder and slide aggregator by using
the attention scores of the aggregator to guide tile selection for training the encoder in teacher-student
framework. While both encoder and aggregator are trained, this work can’t be considered end-to-end
since there is a disconnect between the two training stages. |Xie et al.[[2020] presented a method that
allows to train an encoder directly from slide labels by clustering the feature space and representing
a slide as a list of tiles closest in feature space to learned prototypes. While this method performs
end-to-end training, it is restricted to a small subset of tiles and can’t be extended to analyze pixel
data from an entire slide.

Pioneering work from |Pinckaers et al.|[2022] proposed for the first time a method to train a convolu-
tional neural network (CNN) end-to-end from pixels to slide labels on images at high resolution. They
introduced “streaming convolutions” where they leverage an ad-hoc check-pointing strategy, trading
off compute for memory consumption, to perform a stack of 2D-convolution operations on images of
arbitrarily large size. While their original proof of concept was tested on down-sampled slides of
about 8k pixels, the authors improved the method in [Pinckaers et al.| [2021]], |Dooper et al.|[2023],
eventually analyzing up to 65k pixel images, where a majority of pathology slides can be analyzed at
high resolution. Interestingly, in REF they also introduced an aggregator on top of the CNN-based
backbone which aligns their efforts with the most recent trends in computational pathology literature.
We find that their latest method proposed in REF, presents the following drawbacks: 1) Due to the
need to recompute intermediate activations, streaming convolutions are several times slower than
vanilla convolutions. 2) The method relies on the locality of convolutional operations. Due to this, the
portions of the model that are streamed can’t contain global operations such as batch-normalization
and self-attention. More generally, it is not possible to leverage any arbitrary encoder network,
including the now popular transformer-based pathology foundation models (Chen et al.| [2023]],
Campanella et al.|[2023]], [Vorontsov et al.| [2023],/Chen et al.|[2024])), limiting the potential of this
method in the fine-tuning setting. 3) The most advanced version of this approach uses a ResNet34 as
the CNN backbone, which may limit the representation capacity and downstream performance due to
its limited size. While larger models could be used, they become impractical with current hardware.

More recently, Wang et al.| [2023]] introduced LongViT where they applied LongNet [Ding et al.
[2023]], a transformer model that uses a self-attention approximation with linear scaling memory, to
computational pathology. They are able to train a vision transformer (ViT) from image pixels over
an entire slide by relying on a sparse self-attention mechanism and GPU parallelization. This line
of work is promising but in its early stages and currently suffers from several drawbacks: 1) Their
pipeline relies on drastically down-sampling the slide resolution, potentially losing cellular level
information which may be important for certain tasks. Currently they tested its use with images of



up to 32k pixels, still relatively small for pathology data. 2) As per ViTs, they encode very small
patches (16 or 32 pixels), generating sequences of millions of tokens, and rely on self-attention to
obtain global representations. As such, most of the information is encoded in the spatial relationship
between the small visual tokens. Modeling sequences of millions of tokens is challenging. 3) It is still
to be seen whether LongNet, which was designed for 1D signals, is the right choice for approximating
self-attention for 2D signals. In particular, LongViT’s concept of locality applies to the flattened
sequence of tokens. Hence, neighbor tokens vertically are not considered near using LongNet’s sparse
attention. 4) Their framework is less suitable for leveraging pre-trained foundation models.

In contrast to previous efforts in this space, namely streaming convolutions and LongViT, which rely
on a single slide-level network, we follow the popular two step strategy of leveraging a deep tile-level
encoder and a global aggregator. We propose to optimize both fully in memory and end-to-end at
high-resolution, where the slide-level loss is backpropagated directly through the aggregator and
tile encoder. We achieve this via GPU-parallelization and customized GPU-GPU communication.
Compared to the other methods, the strengths of this approach are: 1) High speed. We require just a
single pass through the network, in contrast to the checkpointing strategy in streaming convolutions.
2) Flexibility in architecture design. Any combination of encoder and aggregator can be supported.
3) Can accommodate the use of pre-trained foundation models for fine-tuning. 4) While entire slides
can be processed at once with enough resources, it is straightforward to reduce the number of tiles
analyzed at each pass, enabling the use of this framework in resource constrained settings.

The rest of the manuscript is structured as follows. First, we explain the method in detail, providing
pseudo-code and a pytorch implementation. We prove the equivalence of the proposed multi-GPU
framework with its single GPU counterpart. Then, we demonstrate the effectiveness of our method
on a clinically relevant task in cancer research, EGFR mutation prediction in lung adenocarcinoma
(LUAD), for which we have thoroughly investigated other training strategies, including fully su-
pervised and weakly supervised strategies, tile-level and slide-level algorithms, as well as the use
of large scale self-supervised learning pre-training. Next, we show that it is possible to optimize
encoder/aggregator models on entire pathology slides at high resolution by training a breast cancer
detector. Finally, we use this framework to fine-tune a ViT-base pathology foundation model for
the task of predicting EGFR mutational status in LUAD patients, achieving superior performance
compared to current foundation model-based strategies.

2 Method

A modern GPU allows to jointly train a tile encoder and slide aggregator end-to-end by sampling
K tiles from each slide in each optimization step. This can be considered an extension of MIL
where, from the original bags, K -sized pseudo-bags are sampled instead. This simple strategy can be
improved by choosing which tiles to sample based on more complex criteria. For example, in | Xie
et al.|[2020] a memory bank of cluster centroids is used to select a set of heterogeneous tiles from
each slide. We computed the the training memory requirements of the end-to-end pseudo-bag strategy
for various popular vision architectures including convolutional neural networks (Fig. [Th) and vision
transformers (Fig.[Tp). With an 80GB H100 GPU, it is possible to jointly train encoder and aggregator
with at most 840 tiles for a ResNet50, and 528 tiles for a ViT-base model. By using automatic mixed
precision (AMP) with casting to 16-bit floats, it is possible to boost these numbers to 1,848 and 728
tiles for a ResNet50 and a ViT-base respectively.

We can parallelize feature encoding by assigning K tiles to N GPUs to encode N K tiles. Whole
slide images can contain tens of thousands and potentially even hundreds of thousands of tiles. In
Fig.[Ic we show the distribution of non-overlapping tissue tiles (256 pixels, 0.5 microns per pixel
= 20x magnification) per slide for the pre-training dataset described in |(Campanella et al.| [2023]].
This dataset encompasses pathology data at a health-system scale and can be considered a good
representation of clinical pathology slides in general. In this dataset, the highest number of tiles in
a slide is 50,578 where 99% of slides contain less than 27,219 tiles.With a ViT-base using AMP
is possible to encode a full slide using 70 and 38 H100 GPUs respectively. It is important to note
that while 20x magnification is the most commonly used resolution, for certain applications where
cellular and nuclear features are important, it may be necessary to use 40x magnification which will
increase by a factor of 4 the number of tiles per slide.
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Figure 1: a) H100 GPU memory usage for training ResNet encoders of different sizes. b) HI00 GPU
memory usage for training ViT encoders of different sizes. Full precision and AMP training are
compared. c) Distribution of 20x magnification non-overlapping tissue tiles per slide in a large health
system-level dataset.

To allow training of an encoder and aggregator end-to-end using the encoder parallelism described
above we propose to separate encoding and aggregation to different GPU groups, where each
group can consist of multiple GPUs. In our experiments, the encoding group consists of multiple
GPUs, while the aggregator group is one GPU, consistent with the fact that the vast majority of
current aggregation strategies rely on a single GPU. To allow for training we customize GPU-GPU
communications to simulate the flow of activations and gradients as if the data was processed
on a single GPU card. Assuming a GPU cluster with NV + 1 GPUs, we denote rank 0 as the
aggregator process and ranks 1, ..., N the encoder processes. For each epoch and slide, a distributed
sampler directs the N batches of images to the N GPUs while rank 0 waits for input. Next, the
encoder processes perform a forward pass through the encoder to generate features. At this stage,
feature vectors from ranks 1, ...,V are sent to rank O via a gather call. The gather call breaks the
computing graph and we will have to route the gradients manually during the backward pass. Rank
0 then concatenates these into a single feature matrix that is the input to the aggregation model
which generates a slide level feature vector that is projected to class logits or other output for loss
computation. During the backward phase, aggregator gradients are generated from the loss [ in
rank 0 back to the input features. The feature gradients are then split into /N chunks and sent to
each respective rank via a scatter call. To propagate the gradients back to the encoder model, each
process with rank 1, ..., IV generates a pseudo-loss [ based on the features output from the encoder

f and the feature gradient g coming from rank 0: [, = N Zzel fig:- We note that the pseudo-loss
must be scaled by the number of processes in the encoder group NV to recover the expected gradient
magnitude. We leverage torch’s DistributedDataParallel (DDP) to wrap the encoder model
which automatically ensures that gradients will be all-reduced and the models’ weights are the same
after optimization across all ranks 1, ..., N. Fig. 2]summarizes the method.

One advantage of the proposed framework is that it can be customized to fit the needs of different
use cases. The encoder architecture can be any neural network which can be initialized with custom
weights if needed. The aggregator can also be chosen arbitrarily. In our experiments we focus on
the popular architecture gated MIL attention [lse et al.|[2018]], but any aggregation method can be
used. The current code base supports any aggregation as long as it can trained on a single GPU.
Multi-GPU aggregators could also be supported in the future. The code will be available on GitHub
while pseudo-code is provided in the Appendix in Listing [I]

3 Results

3.1 Gradient Equivalence

In this section we provide experimental evidence of the equivalence of single and multi-GPU runs. We
inspect gradients in a simple deterministic toy network and in a non-deterministic convolutional neural
network. For the deterministic experiment, we manually set the random seed and used the following
settings in torch which allow to run in a deterministic fashion: cudnn.benchmark = False and
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Figure 2: Method overview. A distributed sampler generates appropriate batches of tissue tiles
for each encoder rank in the DDP group. Features generated by the encoder ranks are gathered
and concatenated in rank 0. Aggregator forward and backward passes are executed in rank 0. The
gradients of the input features to the aggregator are split and scattered to the appropriate rank. In
each rank a pseudo-loss is generated to continue backpropagation.
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Figure 3: Gradient equivalence in real world networks. We tracked parameters and gradients of three
layers in the network, including two convolutional layers from the encoder and the classification layer
of the aggregator. Left) Normalized L1 norm of the difference between model parameters in single
and multi-GPU experiments. Middle) Absolute difference in the loss between single and multi-GPU
experiments. Right) Normalized L1 norm of the difference between model parameters’ gradients in
single and multi-GPU experiments.

cudnn.deterministic = True. Both encoder and aggregator networks were composed of linear
layers and ReLU non-linearities. We compared a single GPU run with an equivalent SGPU run
and established the equivalence of parameter gradients. Neural networks used in practice are
implemented in a non-deterministic way due to the nature of GPU computations. We tested the
parallelization using a ResNet50 encoder and GMA aggregator. We stored parameters and gradients
of the first convolutional layer (Encoder Conv 1), a late convolutional layer (Encoder Conv 51), and
the classification layer in the aggregator (Classifier), as well as the loss at each step. To minimize
stochasticity, image augmentations were not performed, GMA was instantiated without dropout, and
the batch normalization layers were synchronized. We measured the normalized L1 distance between
single GPU and multi-GPU runs for several optimization steps. In Fig.[3] we show the results of this
experiment. We can see small magnitude differences in parameters, loss, and gradients which seem
to plateau after a few optimization steps. In practice these differences do not have a significant effect
on training as we will show in the next section.

3.2 Proof of Concept: Lung Adenocarcinoma EGFR Mutation Prediction

In this section we describe experiments performed on real-world clinical data where we applied the
proposed method to the prediction of EGFR mutations on a large clinical dataset described in|Cam-
panella et al.|[2022]. The dataset consists of 2,449 digitized slides from 2,056 lung adenocarcinoma



patients collected at *Inst* paired with EGFR mutational status derived from the IMPACT sequencing
panel |Cheng et al.|[2017]. We used the same Monte Carlo Cross Validation scheme as in|Campanella
et al.| [2022]] where 1,951 slides were used for training and 498 for validation with 20 randomly
generated splits following a Monte Carlo Cross-Validation (MCCV) scheme. At each epoch, 50%
of the slides were selected for training to speed up the experiments. For each slide, K tiles were
sampled at random. If a slide contained less than K tiles, sampling with replacement was performed.
Tiles were loaded on the fly using the cucim library from NVIDIA, no pre-tiling of the slides was
performed. We jointly trained a ResNet50 and GMA with increasing number of K tiles per slide.
With K € {50,100, 350, 700} we used a single GPU, while with K € {700, 2100,4900} we used
our parallel implementation with up to 8 GPUs. For each value of K in the multi-GPU setting, we
compared training with full precision and AMP. Experiments were run on a cluster of H100 GPUs.
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Figure 4: EGFR Mutation Prediction in LUAD. Each data point summarizes the 20 MCCV runs. a)
Training loss convergence curves stratified by K tiles per slide and GPU parallelization strategy. The
shaded area is calculated by bootstrapping with 95% confidence intervals (CI). b) Final Training loss
stratified by GPU parallelization strategy in relation to [ tiles per slide. The error bar is estimated via
bootstrapping using 95% CI. c) Validation AUC stratified by GPU parallelization strategy in relation
to K tiles per slide. The error bar is the 95% CI average estimate calculated via bootstrapping. d)
Comparison of validation AUCs between GPU parallelization strategies.

In Fig. @] we present the results of these experiments. It can be observed that the training loss decreases
as K increases. In concordance with our gradient equivalence experiments, there is no significant
difference in loss when comparing single and parallel runs (see K = 700 in Fig.@h,b). Full precision
and AMP runs are also comparable in terms of training loss. In Fig. @b we plotted the final training
loss against K tiles and observed an exponential decay of the loss as K increases. In terms of
validation AUC, we recorded the best validation AUC for each MCCV split. In Fig. Bk we plot the
validation AUC stratified by GPU parallelization strategy in relation to the values of K and observe
that the estimate of average AUC increases with larger K values. It is likely that a further decrease in
loss and increase in validation AUC could be observed for larger K values. Interestingly, full and
half precision result in similar performance in terms of validation AUC (Fig.[@d). In summary, we
determined that increasing K results in lower training loss and higher validation AUC and confirmed
that the various GPU strategies are equivalent.

In Table[T|we compare these results with previous published and unpublished results on this same
dataset using a variety of training strategies: i) training in a supervised manner on all tissue tiles with



Table 1: Comparison of performance on the EGFR prediction task of popular training strategies from
published and unpublished results. For the proposed method, we show the results for various values
of K and GPU parallelization strategies. S stands for single GPU, P stands for parallel GPUs, H
stands for parallel GPUs with half precision. {|/Campanella et al.|[2022]]; ; \Campanella et al.|[2023]];
* Unpublished

Algorithm Pre-trained Encoder Tiles AUC Avg (Std) Publication
Encoder training:

Supervised ResNet50 ImageNet All 71.0 (4.7) T
Supervised ResNet50 ImageNet Tumor 74.6 (5.3) T
Max-pool MIL ResNet50 ImageNet All 68.0 (2.6)
Aggregator training:

GMA Supervised Tumor All 78.8 (2.8) T
TransMIL Supervised Tumor All 73.9 (4.2) T
GMA tResNet50 ImageNet All 64.9 (3.1) i
GMA DINO ViT-small 423k All 75.3 (3.0) 1
GMA DINO ViT-base 423k  All 76.6 (2.4) *
Proposed:

K =50 ResNet50 ImageNet All 74.4 (2.9)

K =100 ResNet50 ImageNet All 75.9 (2.5)

K =350 ResNet50 ImageNet All 76.5 (1.7)

K =700 (S) ResNet50 ImageNet All 77.5 (2.0)

K =700 (P) ResNet50 ImageNet All 76.9 (2.9)

K =700 (H) ResNet50 ImageNet All 77.3 (1.7)

K = 2100 (P) ResNet50 ImageNet All 77.4(1.5)

K =2100 (H) ResNet50 ImageNet All 77.5(2.1)

K =4900 (P) ResNet50 ImageNet All 78.3(1.9)

K = 4900 (H) ResNet50 ImageNet All 78.3 (1.9)

slide-level targets as in Coudray et. al. Coudray et al. [2018]] or ii) only from tumor tiles, iii) using
max-pool MIL as in Campanella et. al. Campanella et al.|[2019],, iv) training a GMA aggregator based
on the features learned in strategy ii, v) training a transMIL |Shao et al.|[202 1] aggregator based on the
features learned in strategy ii, vi) training a GMA aggregator using an ImageNet pre-trained truncated
ResNet50 as popularized by [Lu et al.|[2021]], vii-viii) training a GMA aggregator using DINO trained
ViT models described in|Campanella et al.|[2023]]. Some of these strategies require significantly more
effort and resources. The best performing (strategy iv) requires training a tumor segmentation model,
then training a tile encoder model on tumor tiles, and finally training a slide-aggregation model. The
next best, strategies vii and viii require access to hundreds of thousands of slides and thousands of
GPU hours to train a SSL tile encoder before training a slide encoder. Yet, compared to previous
strategies, the proposed method’s performance is on par or better while processing a relatively low
number of tiles per slide.

3.3 Running on Whole Slides: Breast Cancer Detection

In this section we describe how we applied the proposed system to a cancer detection task and trained
a model end-to-end on the entire slide at 20x magnification. From our *Inst*’s research slide archive
we queried all scanned and de-identified H&E breast slides from the beginning of the scanning
initiative until September 2023. On these cases, we automatically extracted cancer status (benign vs
cancer) at the specimen level from the pathology laboratory information systems (LIS). We were able
to obtain an automatically curated dataset of 77,768 slides, where 67,654 were negative and 10,114
were positive. We further sampled this cohort to obtain a balanced dataset of 16,302 slides. The data
was then divided at the patient level in a training split consisting of 13,050 slides and a validation
split consisting of 3,252 slides. We calculated the maximum number of tissue tiles of size 224 pixels
per slide on this cohort. To allow for full slide analysis, we parallelized encoding with a ResNet18
network on 11 GPUs with K = 4, 096 tiles per GPU, enabling training up to 45,056 tiles per slide.
We trained the encoder and a GMA aggregator jointly, end-to-end on 12 H100 80GB GPUs. At each
epoch, 50% of the slides were sampled for training. We used the AdamW [Loshchilov and Hutter,
2017]) optimizer and a peak learning rate of 5 - 10~5. No hyperparameter tuning was performed. In



Fig.[5|we show training and validation results of this experiment. We found a maximum validation
AUC of 0.968 after 30 epochs, after which we can see signs of overfitting.
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Figure 5: Breast Cancer Detection Experiment. a) Training loss convergence. b) Validation AUC
convergence. Bars represent bootstrapped 95% confidence interval. ¢) ROC curve for the best
validation result. The shaded region represents the bootstrapped 95% confidence interval.

3.4 Fine-Tuning Foundation Models: Lung Adenocarcinoma EGFR Mutation Prediction

In this section we provide evidence of the benefits of fine-tuning pathology foundation models using
the proposed framework. For this experiment, we expanded the dataset described in |Campanella
et al.[[2022] using the same inclusion criteria. We obtained a total of 6,916 slides from *Inst* with
accompanying EGFR mutational status identified via the IMPACT sequencing panel. 5,174 slides
were randomly selected for training and 1,742 for testing. The foundation model we used is a ViT-base
pre-trained on 423 thousand slides from *Inst* as described in/Campanella et al.|[2023[]. As a baseline,
we train a GMA aggregator model without optimizing the foundation model (frozen encoder). This
represents the most common training strategy in computational pathology. We compare this baseline
with the training end-to-end of the foundation model and a GMA aggregator using the proposed
framework. The GMA-only model was trained on a single GPU using the AdamW optimizer for 20
epochs with a peak learning rate of 10~%. The ViT-base with GMA model was trained using mixed
precision on 16 H100 GPUs using the AdamW optimizer for 20 epochs with a peak learning rate of
10~5. For each slide, 15 * 728 tiles were sampled at each optimization step. Figure@presents the
results of this experiment. We observed that the GMA-only model can be trained faster (i.e., with less
epochs), but results in inferior performance compared to the model where we allow the optimization
of the tile-encoder model. After training, the GMA-only model achieves a validation AUC of 0.76,
whereas the fine-tuned model reaches an AUC of 0.82.
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Figure 6: Fine-tuning of a Foundation Model to predict EGFR mutations on a large LUAD dataset.
A comparison between using a frozen encoder and using the proposed framework to fine-tune it. a)
Training loss convergence. b) Validation AUC convergence. c) ROC curves. Shaded regions represent
the bootstrapped 95% confidence interval.



4 Discussion

Recent advances in computer vision and computational pathology, along with the digitization of
pathology data, have enabled the development of decision support systems tailored to a wide variety
of clinical tasks, from quality control to survival analysis. Despite the numerous efforts in this
space, so far only one system has found its way into clinical practice|(Commissioner| [2021]. While
diagnostic decision support systems in pathology have met the high standards of clinical application,
the same is not true for many other tasks where computational pathology may be of great benefit.
These include biomarker prediction, treatment response prediction, and treatment recommendation.
While in diagnostic tasks, the signal is generally well defined and recognizable by human experts
and is contained within small tissue regions, for more complex tasks the source of the signal, if at
all present, is largely unknown. It is possible that local and global spatial arrangements of cells
may be informative and methods that can capture both may be more suited for more complex tasks.
The majority of work in computational pathology rely on a two-step approach where features are
independently learned at a tile-level, and then aggregated at a slide-level. This has proven successful
for some tasks, especially cancer detection and classification, but it has not seen the same level of
success in others. By connecting both steps in an end-to-end fashion, it may be possible to obtain
a better representation of a pathology slide which could improve performance for certain tasks.
Research in this direction is starting to appear (Pinckaers et al.| [2022]],|Wang et al.|[2023]]).

In this paper we present a framework that allows for the analysis of an entire pathology slide
at full resolution. Unlike previous efforts, our framework relies on full resolution slides and is
modular, allowing encoders and aggregators to be chosen to fit the needs and resources of a particular
project. We applied the proposed architecture to a variety of use cases and tasks, demonstrating its
flexibility and wide applicability. Importantly, we strived to provide evidence of clinical deployment
performance by leveraging datasets generated during the standard clinical workflow. We applied
the framework to the clinically relevant task of predicting EGFR mutations in lung adenocarcinoma
patients where we showed that our end-to-end approach superior to all previous training strategies,
especially in the fine-tuning setting. Further, we proved the feasibility of training end-to-end on entire
slides at full resolution by applying the proposed framework to a breast cancer detection task. While
the proposed method can be scaled up to analyze an entire slide end-to-end, it is also amenable to
more modest set-ups by simply sampling fewer tiles per slide. In our experiments we have shown
that this strategy can be effective. Our proposed method can be trained from scratch on a specific
task, or fine-tuned from a pre-trained encoder.

Limitations. The main limitation is related to computational expense. While it is possible to analyze
entire slides, it requires significant resources, rendering this approach less appealing for training in
resource constrained settings. Despite that, we observed that sub-sampling tile in a slide often provide
good performance in the tasks analyzed so far. In addition, experiments shown here focused on the
use of clinical datasets, making comparisons with other methods more challenging. More studies will
be needed to assess the benefits of this method more broadly.

In this paper we have explored training and fine-tuning models for specific downstream tasks. Yet,
approaches such as the one presented here open the way for novel strategies to train foundation
models in pathology by learning better tile-encoders and pathology representations directly from
slide-level signals. Current strategies for foundation model training rely on applying SSL algorithms
to tiles extracted from pathology slides. While these SSL trained encoders are an improvement
over natural images pre-trained networks, further improvements could be obtained by leveraging
supervised or self-supervised tasks at the slide level. In future experiments we plan to investigate the
use of the proposed framework to train a large foundation model from scratch or to align SSL-trained
foundation models to specific pathology tasks, based on slide-level signals automatically extracted
from the pathology LIS.

Acknowledgments and Disclosure of Funding

This work is supported in part through the use of research platform Al-Ready Mount Sinai (AIR.MS),
the expertise provided by the team at the Hasso Plattner Institute for Digital Health at Mount Sinai
(HPL.MS), and through the computational and data resources and staff expertise provided by Scientific
Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and



Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing
Translational Sciences.

5 References

References

Gabriele Campanella, Matthew G. Hanna, Luke Geneslaw, Allen Miraflor, Vitor Werneck
Krauss Silva, Klaus J. Busam, Edi Brogi, Victor E. Reuter, David S. Klimstra, and Thomas J.
Fuchs. Clinical-grade computational pathology using weakly supervised deep learning on
whole slide images. Nature Medicine, 25(8):1301-1309, August 2019. ISSN 1078-8956,
1546-170X. doi: 10.1038/s41591-019-0508-1. URL https://www.nature.com/articles/
s41591-019-0508-1.

Gabriele Campanella, David Ho, Ida Haggstrom, Anton S Becker, Jason Chang, Chad Vanderbilt,
and Thomas J Fuchs. H&E-based Computational Biomarker Enables Universal EGFR Screening
for Lung Adenocarcinoma. 2022. doi: 10.48550/ARXIV.2206.10573. URL https://arxiv,
org/abs/2206.10573. Publisher: arXiv Version Number: 1.

Gabriele Campanella, Ricky Kwan, Eugene Fluder, Jennifer Zeng, Aryeh Stock, Brandon Veremis,
Alexandros D. Polydorides, Cyrus Hedvat, Adam Schoenfeld, Chad Vanderbilt, Patricia Kovatch,
Carlos Cordon-Cardo, and Thomas J. Fuchs. Computational Pathology at Health System Scale
— Self-Supervised Foundation Models from Three Billion Images, October 2023. URL http:
//arxiv.org/abs/2310.07033. arXiv:2310.07033 [cs, eess].

Richard J. Chen, Chengkuan Chen, Yicong Li, Tiffany Y. Chen, Andrew D. Trister, Rahul G. Krishnan,
and Faisal Mahmood. Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-
Supervised Learning. 2022. doi: 10.48550/ARXIV.2206.02647. URL https://arxiv.org/
abs/2206.02647. Publisher: arXiv Version Number: 1.

Richard J. Chen, Tong Ding, Ming Y. Lu, Drew F. K. Williamson, Guillaume Jaume, Bowen Chen,
Andrew Zhang, Daniel Shao, Andrew H. Song, Muhammad Shaban, Mane Williams, Anurag
Vaidya, Sharifa Sahai, Lukas Oldenburg, Luca L. Weishaupt, Judy J. Wang, Walt Williams,
Long Phi Le, Georg Gerber, and Faisal Mahmood. A General-Purpose Self-Supervised Model
for Computational Pathology. 2023. doi: 10.48550/ARXIV.2308.15474. URL https://arxiv,
org/abs/2308.15474. Publisher: arXiv Version Number: 1.

Richard J. Chen, Tong Ding, Ming Y. Lu, Drew F. K. Williamson, Guillaume Jaume, Andrew H.
Song, Bowen Chen, Andrew Zhang, Daniel Shao, Muhammad Shaban, Mane Williams, Lukas
Oldenburg, Luca L. Weishaupt, Judy J. Wang, Anurag Vaidya, Long Phi Le, Georg Gerber, Sharifa
Sahai, Walt Williams, and Faisal Mahmood. Towards a general-purpose foundation model for
computational pathology. Nature Medicine, 30(3):850-862, March 2024. ISSN 1546-170X. doi:
10.1038/s41591-024-02857-3. URL https://doi.org/10.1038/s41591-024-02857-3,

Donavan T. Cheng, Meera Prasad, Yvonne Chekaluk, Ryma Benayed, Justyna Sadowska, Ah-
met Zehir, Aijazuddin Syed, Yan Elsa Wang, Joshua Somar, Yirong Li, Zarina Yelskaya,
Donna Wong, Mark E. Robson, Kenneth Offit, Michael F. Berger, Khedoudja Nafa, Marc
Ladanyi, and Liying Zhang. Comprehensive detection of germline variants by MSK-IMPACT,
a clinical diagnostic platform for solid tumor molecular oncology and concurrent cancer pre-
disposition testing. BMC Medical Genomics, 10(1):33, December 2017. ISSN 1755-8794.
doi: 10.1186/s12920-017-0271-4. URL http://bmcmedgenomics.biomedcentral.com/
articles/10.1186/s512920-017-0271-4.

Office of the Commissioner. FDA Authorizes Software that Can Help Identify Prostate Can-
cer, October 2021. URL https://www.fda.gov/news-events/press-announcements/
fda-authorizes-software-can-help-identify-prostate-cancer, Publisher: FDA.

Nicolas Coudray, Paolo Santiago Ocampo, Theodore Sakellaropoulos, Navneet Narula, Matija
Snuderl, David Feny6, Andre L. Moreira, Narges Razavian, and Aristotelis Tsirigos. Classification
and mutation prediction from non—small cell lung cancer histopathology images using deep learning.
Nature Medicine, 24(10):1559-1567, October 2018. ISSN 1078-8956, 1546-170X. doi: 10.1038/
s41591-018-0177-5. URL https://www.nature.com/articles/s41591-018-0177-5.

10


https://www.nature.com/articles/s41591-019-0508-1
https://www.nature.com/articles/s41591-019-0508-1
https://arxiv.org/abs/2206.10573
https://arxiv.org/abs/2206.10573
http://arxiv.org/abs/2310.07033
http://arxiv.org/abs/2310.07033
https://arxiv.org/abs/2206.02647
https://arxiv.org/abs/2206.02647
https://arxiv.org/abs/2308.15474
https://arxiv.org/abs/2308.15474
https://doi.org/10.1038/s41591-024-02857-3
http://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-017-0271-4
http://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-017-0271-4
https://www.fda.gov/news-events/press-announcements/fda-authorizes-software-can-help-identify-prostate-cancer
https://www.fda.gov/news-events/press-announcements/fda-authorizes-software-can-help-identify-prostate-cancer
https://www.nature.com/articles/s41591-018-0177-5

Thomas G. Dietterich, Richard H. Lathrop, and Tomds Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31-71, January 1997. ISSN
00043702. doi: 10.1016/S0004-3702(96)00034-3. URL https://linkinghub.elsevier,
com/retrieve/pii/S0004370296000343.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. LongNet: Scaling Transformers to 1,000,000,000 Tokens, July 2023. URL
http://arxiv.org/abs/2307.02486, arXiv:2307.02486 [cs].

Stephan Dooper, Hans Pinckaers, Witali Aswolinskiy, Konnie Hebeda, Sofia Jarkman, Jeroen Van
Der Laak, and Geert Litjens. Gigapixel end-to-end training using streaming and attention. Medical
Image Analysis, 88:102881, August 2023. ISSN 13618415. doi: 10.1016/j.media.2023.102881.
URL https://linkinghub.elsevier.com/retrieve/pii/S136184152300141X.

Alexandre Filiot, Ridouane Ghermi, Antoine Olivier, Paul Jacob, Lucas Fidon, Alice Mac Kain,
Charlie Saillard, and Jean-Baptiste Schiratti. Scaling Self-Supervised Learning for Histopathology
with Masked Image Modeling. preprint, Pathology, July 2023. URL http://medrxiv.org/
lookup/doi/10.1101/2023.07.21.23292757.

Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based Deep Multiple Instance
Learning. 2018. doi: 10.48550/ARXIV.1802.04712. URL https://arxiv.org/abs/1802,
04712, Publisher: arXiv Version Number: 4.

Mingu Kang, Heon Song, Seonwook Park, Donggeun Yoo, and Sérgio Pereira. Benchmarking Self-
Supervised Learning on Diverse Pathology Datasets. 2022. doi: 10.48550/ARXIV.2212.04690.
URL https://arxiv.org/abs/2212.04690. Publisher: arXiv Version Number: 2.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2017. doi: 10.48550/
ARXIV.1711.05101. URL https://arxiv.org/abs/1711.05101. Publisher: arXiv Version
Number: 3.

Ming Y. Lu, Drew F. K. Williamson, Tiffany Y. Chen, Richard J. Chen, Matteo Barbieri, and Faisal
Mahmood. Data-efficient and weakly supervised computational pathology on whole-slide images.
Nature Biomedical Engineering, 5(6):555-570, March 2021. ISSN 2157-846X. doi: 10.1038/
s41551-020-00682-w. URL https://www.nature.com/articles/s41551-020-00682-w.

Hans Pinckaers, Wouter Bulten, Jeroen Van Der Laak, and Geert Litjens. Detection of Prostate
Cancer in Whole-Slide Images Through End-to-End Training With Image-Level Labels. IEEE
Transactions on Medical Imaging, 40(7):1817-1826, July 2021. ISSN 0278-0062, 1558-254X. doi:
10.1109/TMI1.2021.3066295. URL https://ieeexplore.ieee.org/document/9380553/.

Hans Pinckaers, Bram Van Ginneken, and Geert Litjens. Streaming Convolutional Neural Networks
for End-to-End Learning With Multi-Megapixel Images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(3):1581-1590, March 2022. ISSN 0162-8828, 2160-9292, 1939-
3539. doi: 10.1109/TPAMI.2020.3019563. URL https://ieeexplore.ieee.org/document/
9178453/.

Linhao Qu, Xiaoyuan Luo, Manning Wang, and Zhijian Song. Bi-directional Weakly Supervised
Knowledge Distillation for Whole Slide Image Classification. 2022. doi: 10.48550/ARXIV.2210.
03664. URL https://arxiv.org/abs/2210.03664. Publisher: arXiv Version Number: 2.

Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, and Yongbing Zhang.
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image
Classification. 2021. doi: 10.48550/ARXIV.2106.00908. URL https://arxiv.org/abs/2106,
00908. Publisher: arXiv Version Number: 2.

Eugene Vorontsov, Alican Bozkurt, Adam Casson, George Shaikovski, Michal Zelechowski, Siqi
Liu, Kristen Severson, Eric Zimmermann, James Hall, Neil Tenenholtz, Nicolo Fusi, Philippe
Mathieu, Alexander van Eck, Donghun Lee, Julian Viret, Eric Robert, Yi Kan Wang, Jeremy D.
Kunz, Matthew C. H. Lee, Jan Bernhard, Ran A. Godrich, Gerard Oakley, Ewan Millar, Matthew
Hanna, Juan Retamero, William A. Moye, Razik Yousfi, Christopher Kanan, David Klimstra,
Brandon Rothrock, and Thomas J. Fuchs. Virchow: A Million-Slide Digital Pathology Foundation
Model. 2023. doi: 10.48550/ARX1V.2309.07778. URL https://arxiv.org/abs/2309.07778!
Publisher: arXiv Version Number: 5.

11


https://linkinghub.elsevier.com/retrieve/pii/S0004370296000343
https://linkinghub.elsevier.com/retrieve/pii/S0004370296000343
http://arxiv.org/abs/2307.02486
https://linkinghub.elsevier.com/retrieve/pii/S136184152300141X
http://medrxiv.org/lookup/doi/10.1101/2023.07.21.23292757
http://medrxiv.org/lookup/doi/10.1101/2023.07.21.23292757
https://arxiv.org/abs/1802.04712
https://arxiv.org/abs/1802.04712
https://arxiv.org/abs/2212.04690
https://arxiv.org/abs/1711.05101
https://www.nature.com/articles/s41551-020-00682-w
https://ieeexplore.ieee.org/document/9380553/
https://ieeexplore.ieee.org/document/9178453/
https://ieeexplore.ieee.org/document/9178453/
https://arxiv.org/abs/2210.03664
https://arxiv.org/abs/2106.00908
https://arxiv.org/abs/2106.00908
https://arxiv.org/abs/2309.07778

Wenhui Wang, Shuming Ma, Hanwen Xu, Naoto Usuyama, Jiayu Ding, Hoifung Poon, and Furu
Wei. When an Image is Worth 1,024 x 1,024 Words: A Case Study in Computational Pathology,
December 2023. URL http://arxiv.org/abs/2312.03558. arXiv:2312.03558 [cs].

Xiyue Wang, Sen Yang, Jun Zhang, Minghui Wang, Jing Zhang, Wei Yang, Junzhou Huang,
and Xiao Han. Transformer-based unsupervised contrastive learning for histopathological im-
age classification. Medical Image Analysis, 81:102559, October 2022. ISSN 13618415. doi:
10.1016/j.media.2022.102559. URL https://linkinghub.elsevier.com/retrieve/pii/
S51361841522002043.

Chensu Xie, Hassan Muhammad, Chad M. Vanderbilt, Raul Caso, Dig Vijay Kumar Yarla-
gadda, Gabriele Campanella, and Thomas J. Fuchs. Beyond Classification: Whole Slide Tis-
sue Histopathology Analysis By End-To-End Part Learning. In Tal Arbel, Ismail Ben Ayed,
Marleen de Bruijne, Maxime Descoteaux, Herve Lombaert, and Christopher Pal, editors, Pro-
ceedings of the Third Conference on Medical Imaging with Deep Learning, volume 121 of
Proceedings of Machine Learning Research, pages 843—-856. PMLR, July 2020. URL https!
//proceedings.mlr.press/v121/xie20a.html.

A Appendix / supplemental material

Listing 1: Pytorch pseduo-code implementation

# Initialize GPU processes

# Initialize data loader and models

# Initialize DDP group for encoder model

DDPgroup = dist.new_group(ranks=[1, ..., NJ])

encoder_model = DDP(encoder_model, group=DDPgroup)

for epoch in range(E):

for i, batch in enumerate(loader):

# Note that each optimization step is done for one slide
# Data loader and distributed sampler are in charge of \
feeding the right data to each process

# Forward pass on encoder
if rank != O:
features = encoder(batch)

# Gather features
with torch.no_grad ():
if rank == 0:
dist.gather(features , allfeatures ,\
dst=0, group=None)

# Forward/Backward pass on aggregator
if rank ==
# Record gradients on features
allfeatures .requires_grad_ ()
# Forward pass aggregator
output = aggregator(allfeatures)
aggregator_loss = criterion (output, label)
# Backward pass aggregator
aggregator_loss .backward ()
# Get feature gradients
grads = allfeatures.grad.detach ()

# Scatter feature gradients

with torch.no_grad ():
dist.scatter (grads_recv, grads, src=0, group=None)
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# Backward pass encoder

# Generate loss on DDP group

# Loss has to be scaled by number of DDP processes

if rank != O:
encoder_loss = \
pseudo_loss(features , grads_recv) = (world_size —1)
encoder_loss .backward ()
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